3,330 research outputs found

    Rubble detection from VHR aerial imagery data using differential morphological profiles

    Get PDF
    Rubble detection is a key element in post disaster crisis assessment and response procedures. In this paper we present an automated method for rapid detection and quantification of rubble from very high resolution (VHR) aerial imagery of urban regions. It is a two step procedure in which the input image is projected on to a hierarchical representation structure for efficient mining and decomposition. Image features matching the geometric and chromatic properties of rubble are fused into a rubble layer that can be re-adjusted interactively. The targeted objects are evaluated based on a density metric given by spatial aggregation. The method is tested on a small-scale exercise on the publically available aerial imagery of Port-au-Prince, Haiti. Performance and preliminary results are discussed.JRC.G.2-Global security and crisis managemen

    A Global Human Settlement Layer from optical high resolution imagery - Concept and first results

    Get PDF
    A general framework for processing of high and very-high resolution imagery for creating a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 millions of square kilometres of the Earth surface spread over four continents, corresponding to an estimated population of 1.3 billion of people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1, QuickBird-2, Ikonos-2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, by band, by resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.JRC.G.2-Global security and crisis managemen

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes
    • …
    corecore