1,985 research outputs found

    Towards a continuous inland excess water flood monitoring system based on remote sensing data

    Get PDF
    Inland excess water (IEW) is a type of flood where large flat inland areas are covered with water during a period of several weeks to months. The monitoring of these floods is needed to understand the extent and direction of development of the inundations and to mitigate their damage to the agricultural sector and build up infrastructure. Since IEW affects large areas, remote sensing data and methods are promising technologies to map these floods. This study presents the first results of a system that can monitor inland excess water over a large area with sufficient detail at a high interval and in a timely matter. The methodology is developed in such a way that only freely available satellite imagery is required and a map with known water bodies is needed to train the method to identify inundations. Minimal human interference is needed to generate the IEW maps. We will present a method describing three parallel workflows, each generating separate maps. The maps are combined to one weekly IEW map. At this moment, the method is capable of generating IEW maps for a region of over 8000 km2, but it will be extended to cover the whole Great Hungarian Plain, and in the future, it can be extended to any area where a training water map can be created

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Monthly drought monitoring of the surface water area of Sawa Lake, Iraq during 2016-2022 using remote sensing data

    Get PDF
    Drought is a common phenomenon in Iraq's environment, and the country has experienced severe drought events exacerbated by the threat of climate change (low rainfall and high temperatures) over the past two decades. Iraq is located in a semi-arid region whose water resources have been restricted and mostly shared with its neighbours. To investigate the effect of drought on the surface water area of Sawa lake, we analysed 52 Sentinel-2 images from May 2016 to July 2022 using an open-source SNAP toolbox to map the boundary of the surface-water body of the lake. The results indicate that the surface water area of Sawa lake has decreased significantly over the last six years with the most extreme decline beginning in May 2021, when the area of the lake lost about 51% of its initial size (May 2016). By March 2022, the lake had disappeared and about 96% of the water's surface area had been lost. To better understand the potential causes of droughts, further analysis has been conducted on the effects of precipitation and human activities (vegetation cover and Al-Samawah saltpan for salt production) on the lake. Investigations revealed that the rapid expansion of agricultural areas around the lake by 254% and the increase in salt production from the Al-Samawah saltpan by about 121% are among the direct causes of the drought. In addition, the results of the statistical test analysis between the estimated surface water area of Sawa lake and human activities were significant at a 95% level of confidence. The findings of this study can assist decision-makers to understand the interaction between human activities and the lake's environment to design a strategic plan for lake recovery and a sustainable water resource management system in southern Iraq

    Monitoring Large-Scale Inland Water Dynamics by Fusing Sentinel-1 SAR and Sentinel-3 Altimetry Data and by Analyzing Causal Effects of Snowmelt

    Get PDF
    The warming climate is threatening to alter inland water resources on a global scale. Within all waterbody types, lake and river systems are vital not only for natural ecosystems but, also, for human society. Snowmelt phenology is also altered by global warming, and snowmelt is the primary water supply source for many river and lake systems around the globe. Hence, (1) monitoring snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced river and lake systems, and (3) quantifying the causal effect of snowmelt conditions on these waterbodies are critical to understand the cryo-hydrosphere interactions under climate change. Previous studies utilized in-situ or multispectral sensors to track either the surface areas or water levels of waterbodies, which are constrained to small-scale regions and limited by cloud cover, respectively. On the contrary, in the present study, we employed the latest Sentinel-1 synthetic aperture radar (SAR) and Sentinel-3 altimetry data to grant a high-resolution, cloud-free, and illumination-independent comprehensive inland water dynamics monitoring strategy. Moreover, in contrast to previous studies utilizing in-house algorithms, we employed freely available cloud-based services to ensure a broad applicability with high efficiency. Based on altimetry and SAR data, the water level and the water-covered extent (WCE) (surface area of lakes and the flooded area of rivers) can be successfully measured. Furthermore, by fusing the water level and surface area information, for Lake Urmia, we can estimate the hypsometry and derive the water volume change. Additionally, for the Brahmaputra River, the variations of both the water level and the flooded area can be tracked. Last, but not least, together with the wet snow cover extent (WSCE) mapped with SAR imagery, we can analyze the influence of snowmelt conditions on water resource variations. The distributed lag model (DLM) initially developed in the econometrics discipline was employed, and the lagged causal effect of snowmelt conditions on inland water resources was eventually assessed

    Convolutional Neural Networks for Water segmentation using Sentinel-2 Red, Green, Blue (RGB) composites and derived Spectral Indices

    Get PDF
    Near-real time water segmentation with medium resolution satellite imagery plays a critical role in water management. Automated water segmentation of satellite imagery has traditionally been achieved using spectral indices. Spectral water segmentation is limited by environmental factors and requires human expertise to be applied effectively. In recent years, the use of convolutional neural networks (CNN’s) for water segmentation has been successful when used on high-resolution satellite imagery, but to a lesser extent for medium resolution imagery. Existing studies have been limited to geographically localized datasets and reported metrics have been benchmarked against a limited range of spectral indices. This study seeks to determine if a single CNN based on Red, Green, Blue (RGB) image classification can effectively segment water on a global scale and outperform traditional spectral methods. Additionally, this study evaluates the extent to which smaller datasets (of very complex pattern, e.g harbour megacities) can be used to improve globally applicable CNNs within a specific region. Multispectral imagery from the European Space Agency, Sentinel-2 satellite (10 m spatial resolution) was sourced. Test sites were selected in Florida, New York, and Shanghai to represent a globally diverse range of waterbody typologies. Region-specific spectral water segmentation algorithms were developed on each test site, to represent benchmarks of spectral index performance. DeepLabV3-ResNet101 was trained on 33,311 semantically labelled true-colour samples. The resulting model was retrained on three smaller subsets of the data, specific to New York, Shanghai and Florida. CNN predictions reached a maximum mean intersection over union result of 0.986 and F1-Score of 0.983. At the Shanghai test site, the CNN’s predictions outperformed the spectral benchmark, primarily due to the CNN’s ability to process contextual features at multiple scales. In all test cases, retraining the networks to localized subsets of the dataset improved the localized region’s segmentation predictions. The CNN’s presented are suitable for cloud-based deployment and could contribute to the wider use of satellite imagery for water management

    Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine

    Get PDF
    The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species. Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands. By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal (2009–2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery with additional spectral indices to extract potential wetland inundation areas, which were further refined using LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a total area of 16,576 km2 in the Prairie Pothole Region. The results showed that the proposed method can not only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical, reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at broad geographic scales

    Enhancing Operational Flood Detection Solutions through an Integrated Use of Satellite Earth Observations and Numerical Models

    Get PDF
    Among natural disasters floods are the most common and widespread hazards worldwide (CRED and UNISDR, 2018). Thus, making communities more resilient to flood is a priority, particularly in large flood-prone areas located in emerging countries, because the effects of extreme events severely setback the development process (Wright, 2013). In this context, operational flood preparedness requires novel modeling approaches for a fast delineation of flooding in riverine environments. Starting from a review of advances in the flood modeling domain and a selection of the more suitable open toolsets available in the literature, a new method for the Rapid Estimation of FLood EXtent (REFLEX) at multiple scales (Arcorace et al., 2019) is proposed. The simplified hydraulic modeling adopted in this method consists of a hydro-geomorphological approach based on the Height Above the Nearest Drainage (HAND) model (Nobre et al., 2015). The hydraulic component of this method employs a simplified version of fluid mechanic equations for natural river channels. The input runoff volume is distributed from channel to hillslope cells of the DEM by using an iterative flood volume optimization based on Manning\u2019s equation. The model also includes a GIS-based method to expand HAND contours across neighbor watersheds in flat areas, particularly useful in flood modeling expansion over coastal zones. REFLEX\u2019s flood modeling has been applied in multiple case studies in both surveyed and ungauged river basins. The development and the implementation of the whole modeling chain have enabled a rapid estimation of flood extent over multiple basins at different scales. When possible, flood modeling results are compared with reference flood hazard maps or with detailed flood simulations. Despite the limitations of the method due to the employed simplified hydraulic modeling approach, obtained results are promising in terms of flood extent and water depth. Given the geomorphological nature of the method, it does not require initial and boundary conditions as it is in traditional 1D/2D hydraulic modeling. Therefore, its usage fits better in data-poor environments or large-scale flood modeling. An extensive employment of this slim method has been adopted by CIMA Research Foundation researchers for flood hazard mapping purposes over multiple African countries. As collateral research, multiple types of Earth observation (EO) data have been employed in the REFLEX modeling chain. Remotely sensed data from the satellites, in fact, are not only a source to obtain input digital terrain models but also to map flooded areas. Thus, in this work, different EO data exploitation methods are used for estimating water extent and surface height. Preliminary results by using Copernicus\u2019s Sentinel-1 SAR and Sentinel-3 radar altimetry data highlighted their potential mainly for model calibration and validation. In conclusion, REFLEX combines the advantages of geomorphological models with the ones of traditional hydraulic modeling to ensure a simplified steady flow computation of flooding in open channels. This work highlights the pros and cons of the method and indicates the way forward for future research in the hydro-geomorphological domain

    Remote Sensing Temporal Reconstruction of the Flooded Area in "Tablas de Daimiel" Inland Wetland 2000-2021

    Get PDF
    [EN] Tablas de Daimiel National Park (TDNP) is a unique inland wetland located in the Mancha plain (Spain). It is recognized at the international level, and it is protected by different figures, such as Biosphere Reserve. However, this ecosystem is endangered due to aquifer overexploitation, and it is at risk of losing its protection figures. The objective of our study is to analyze the evolution of the flooded area between the year 2000 and 2021 by Landsat (5, 7 and 8) and Sentinel-2 images, and to assess the TDNP state through an anomaly analysis of the total water body surface. Several water indices were tested, but the NDWI index for Sentinel-2 (threshold -0.20), the MNDWI for Landsat-5 (threshold -0.15), and the MNDWI for Landsat-8 (threshold -0.25) showed the highest accuracy to calculate the flooded surface inside the protected area's limits. During the period 2015-2021, we compared the performance of Landsat-8 and Sentinel-2 and an R2 value of 0.87 was obtained for this analysis, indicating a high correspondence between both sensors. Our results indicate a high variability of the flooded areas during the analyzed period with significant peaks, the most notorious in the second quarter of 2010. Minimum flooded areas were observed with negative precipitation index anomalies since fourth quarter of 2004 to fourth quarter of 2009. This period corresponds to a severe drought that affected this region and caused important deterioration. No significant correlation was observed between water surface anomalies and precipitation anomalies, and the significant correlation with flow and piezometric anomalies was moderate. This can be explained because of the complexity of water uses in this wetland, which includes illegal wells and the geological heterogeneity.Pena-Regueiro, J.; Estornell Cremades, J.; Aguilar-Maldonado, J.; Sebastiá-Frasquet, M. (2023). Remote Sensing Temporal Reconstruction of the Flooded Area in "Tablas de Daimiel" Inland Wetland 2000-2021. Sensors. 23(8). https://doi.org/10.3390/s2308409623

    Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments

    Get PDF
    Monitoring of changing lake and wetland environments has long been among the primary focus of scientific investigation, technology innovation, management practice, and decision-making analysis. Floodpath lakes and wetlands are the lakes and associated wetlands affected by seasonal variations of water level and water surface area. Floodpath lakes and wetlands are, in particular, sensitive to natural and anthropogenic impacts, such as climate change, human-induced intervention on hydrological regimes, and land use and land cover change. Rapid developments of remote sensing science and technologies, provide immense opportunities and capacities to improve our understanding of the changing lake and wetland environments. This special issue on Remote Sensing of Floodpath Lakes and Wetlands comprise featured articles reporting the latest innovative research and reflects the advancement in remote sensing applications on the theme topic. In this editorial paper, we review research developments using state-of-the-art remote sensing technologies for monitoring dynamics of floodpath lakes and wetlands; discuss challenges of remote sensing in inventory, monitoring, management, and governance of floodpath lakes and wetlands; and summarize the highlights of the articles published in this special issue

    Satellite Image Processing for the Coarse-Scale Investigation of Sandy Coastal Areas

    Get PDF
    In recent years, satellite imagery has shown its potential to support the sustainable management of land, water, and natural resources. In particular, it can provide key information about the properties and behavior of sandy beaches and the surrounding vegetation, improving the ecomorphological understanding and modeling of coastal dynamics. Although satellite image processing usually demands high memory and computational resources, free online platforms such as Google Earth Engine (GEE) have recently enabled their users to leverage cloud-based tools and handle big satellite data. In this technical note, we describe an algorithm to classify the coastal land cover and retrieve relevant information from Sentinel-2 and Landsat image collections at specific times or in a multitemporal way: the extent of the beach and vegetation strips, the statistics of the grass cover, and the position of the shoreline and the vegetation–sand interface. Furthermore, we validate the algorithm through both quantitative and qualitative methods, demonstrating the goodness of the derived classification (accuracy of approximately 90%) and showing some examples about the use of the algorithm’s output to study coastal physical and ecological dynamics. Finally, we discuss the algorithm’s limitations and potentialities in light of its scaling for global analyses
    • …
    corecore