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A B S T R A C T

The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which
provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species.
Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and
anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite
imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands.
By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal
(2009–2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at
watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery
with additional spectral indices to extract potential wetland inundation areas, which were further refined using
LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and
Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water
products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a
total area of 16,576 km2 in the Prairie Pothole Region. The results showed that the proposed method can not
only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as
wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical,
reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at
broad geographic scales.

1. Introduction

The Prairie Pothole Region (PPR) of North America is considered to
be one of the most important and productive wetland regions in the
world, providing a range of ecological, hydrological, and economic
benefits (Gascoigne et al., 2011; Gleason et al., 2011; Tiner, 2015). It
covers an area of approximately 750,000 km2, including parts of five
states in the north-central U.S. and three provinces in south-central
Canada (Fig. 1). This post-glacial landscape is characterized by millions
of depressional wetlands, also known as potholes, which are commonly
filled with snowmelt and rainwater in the spring. These temporary to
semi-permanently inundated wetlands provide critical habitats for

globally significant populations of migratory waterfowl and other
wildlife species, supporting>50% of migratory waterfowl in North
America (Gleason et al., 2011). However, it has been reported that
waterfowl populations have declined in the PPR due to wetland drai-
nage resulting from agricultural development and climate-induced
drying of wetlands (Dahl, 2014; Johnson and Poiani, 2016; Niemuth
et al., 2014). It is estimated that U.S. states that comprise the PPR,
including North Dakota, South Dakota, Minnesota, Iowa, and Montana,
lost between 32 and 90% of their wetland area between approximately
1850 and 1980 (Dahl, 2014). Most PPR wetlands are small, shallow,
and hydrologically closed landscape depressions (Wu, 2018; Wu and
Lane, 2016). Therefore, they are highly sensitive to climate variability
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and anthropogenic impacts, and exhibit related changes in water level,
as well as inundated area and distribution. To effectively manage the
remaining wetlands, contemporary information about their location,
extent, inundation dynamics, and drivers of change is needed. The U.S.
Fish and Wildlife Service National Wetlands Inventory (NWI) provides
such detail for wetlands across the conterminous United States. How-
ever, the geospatial data available through the NWI for this region are
outdated, having been largely developed through manual interpretation
and digitization of black-and-white aerial photographs acquired in the
1980s (USFWS, 2018). These data were typically produced using one or
few image dates and do not reflect inter- or intra-annual wetland dy-
namics during the past decades (e.g., Dahl, 2014; Johnston, 2013;
Wright and Wimberly, 2013).

In recent years, various attempts have been made to map wetland
inundation dynamics in the PPR using remotely sensed images from
Earth observation satellites, such as Landsat (DeVries et al., 2017;
Vanderhoof et al., 2017, 2016), Sentinel-1 (Hird et al., 2017; Huang
et al., 2018), Sentinel-2 (Hird et al., 2017), Radarsat-1 (Gala and
Melesse, 2012), and Radarsat-2 (Bolanos et al., 2016). These moderate
spatial resolution satellite images can be used to effectively map PPR
wetlands with relatively large areas of inundation. However, accurate
mapping of the inundation extent of small wetlands remains a chal-
lenge, even using sub-pixel approaches (DeVries et al., 2017; Huang
et al., 2018). The median size of PPR wetlands is only 0.16 ha (Huang
et al., 2011; Wu and Lane, 2017), which is smaller than the size of two
Landsat pixels. Therefore, finer spatial resolution images are essential
to map and monitor the broader array of PPR wetlands and characterize
their hydrological dynamics, thereby informing their landscape func-
tions (e.g., carbon mineralization, nutrient sequestration, amphibian
and waterfowl habitat) (Cheng and Basu, 2017; Downing, 2010;
Vanderhoof and Lane, 2019).

The U.S. Department of Agriculture (USDA) established the National
Agriculture Imagery Program (NAIP) in 2003 to collect fine spatial
resolution aerial imagery over the continental U.S. during the

agricultural growing seasons (USDA, 2018). NAIP images are acquired
at 1-m resolution with full coverage for the U.S. on a 2–3 year cycle.
NAIP imagery is the best freely available data source that offers the
finest spatial resolution with multi-temporal complete coverage at the
national scale. However, due to the massive computational power
needed to process such large-volume datasets, NAIP images have rarely
been used for wetland mapping at large geographic scales.

The advent of Google Earth Engine (GEE) makes it possible to ac-
cess, manipulate, and analyze large volumes of geospatial data on-the-
fly (Gorelick et al., 2017). The GEE data catalog contains a large re-
pository of publicly available datasets acquired from various satellite
platforms and aerial imaging systems (e.g., Landsat, Sentinel, MODIS,
NAIP), which are updated and expanded on a daily basis. To date, GEE-
based applications have primarily focused on mapping land-use/land-
cover change (e.g., Azzari and Lobell, 2017; Clinton et al., 2018;
Hansen et al., 2013; Kennedy et al., 2018; Liu et al., 2018) and surface
water dynamics for large water bodies (e.g., Donchyts et al., 2016;
Pekel et al., 2016; Tang et al., 2016; Yamazaki and Trigg, 2016), pre-
dominantly using Landsat and Sentinel data. Due to the significant
challenges involved in mapping wetlands, which often exhibit dramatic
intra- and inter-annual changes in water levels and vegetation patterns,
large-scale wetland delineation is still an underrepresented component
of most environmental mapping and monitoring programs (Hird et al.,
2017).

In this paper, we present a fully automated and scalable algorithm
for mapping wetland inundation dynamics at the watershed scale using
GEE. Our workflow integrated multiple data sources, including readily
available NAIP images and global surface water products contained
within GEE, publicly available light detection and ranging (LiDAR)
data, and the NWI geospatial dataset. We first used unsupervised ma-
chine learning algorithms to classify multi-temporal 4-band NAIP
images coupled with additional spectral indices (i.e., Normalized
Difference Vegetation Index [NDVI] and Normalized Difference Water
Index [NDWI]). Then we utilized prior permanent water masks

Fig. 1. Map of the study area in the Prairie Pothole Region of central North Dakota, including 26 Hydrologic Unit Code 10-digit (HUC-10) watersheds, which
constitute three HUC-8 subbasins. The shaded relief was created from a 1-m mosaicked LiDAR DEM of the study area.
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extracted from existing moderate-resolution global surface water pro-
ducts to identify and extract water clusters from the unsupervised
classification results of fine spatial resolution NAIP images. We further
refined the initial water-cluster images using LiDAR-derived landform
depressions. We evaluated the performance of the automated algorithm
using NWI geospatial dataset and global surface water products. After
generating multi-temporal wetland inundation maps, we quantified and
characterized inundation dynamics (2009–2017) within 26 watersheds
in the PPR.

2. Materials and methods

2.1. Study area

The study focused on 26 Hydrologic Unit Code 10-digit (HUC-10)
watersheds in the Prairie Pothole Region of central North Dakota
(Fig. 1). Watershed areas range from 31,800 ha to 99,800 ha, with a
total watershed area of 1,657,600 ha. These 26 HUC-10 watersheds
constitute three HUC-8 subbasins: the James Headwaters subbasin
(#10160001), Pipestem subbasin (#10160002), and Apple Creek sub-
basin (#10130103). According to the 2011 National Land Cover Da-
tabase (Homer et al., 2015), the area is dominated by grassland (38%),
cultivated crops (36%), and pasture or hay (11%), along with a sig-
nificant amount of open water (6%) and emergent herbaceous wetlands
(5%). As part of the PPR, the study area is characterized by numerous
depressional wetlands (see Fig. 2), which not only provide critical ha-
bitats for many wildlife species but also have significant impacts on the
physical, chemical, and biological integrity of downstream waters
(Evenson et al., 2018; US EPA, 2015). Several watersheds within the
Pipestem subbasin have recently been used as test sites for various
wetland mapping studies (e.g., DeVries et al., 2017; Huang et al., 2018;
Vanderhoof et al., 2017; Vanderhoof and Alexander, 2016; Wu and
Lane, 2017, 2016) and hydrological modeling (e.g., Brooks et al., 2018;
Evenson et al., 2016; Hay et al., 2018; Rajib et al., 2018).

2.2. Geospatial datasets

The geospatial datasets used in this study include multi-temporal
NAIP imagery, European Commission's Joint Research Centre (JRC)
Global Surface Water products, LiDAR DEMs, and the National
Wetlands Inventory geospatial dataset (Table 1). Additional details
about each dataset are described below.

Multi-temporal NAIP aerial images, which have been pre-processed
to facilitate efficient access, are available for the U.S. in the GEE public
data catalog (Gorelick et al., 2017). The NAIP images were acquired at
a 1-m ground sample distance (GSD) with a horizontal accuracy that

lies within 5-m of ground control points (USDA, 2018). Each NAIP
imagery consists of four bands: red (600–700 nm), green (500–600 nm),
blue (400–500 nm), and near infrared (800–900 nm). In this study, we
selected all available 4-band NAIP images for the study area. These
images span six periods (i.e., 2009, 2010, 2012, 2014, 2015, and 2017),
which were acquired during the agricultural growing season from June
to September (see Table 1). NAIP imagery is available across the entire
study area for these six years. The multi-temporal NAIP images for the
blue zoom-in area in Fig. 2c are presented in Fig. 3, which clearly il-
lustrate the dynamic changes in wetland inundation extent resulting
from fill-merge-spill hydrological processes. Multi-temporal NAIP aerial
images were the primary dataset used for delineating wetland in-
undation dynamics through unsupervised classification.

There are two global scale Landsat-derived surface water products
currently available in the GEE public data catalog. These include the
Global Inland Water dataset from the 2000 epoch (Feng et al., 2016)
and the JRC Global Surface Water products (Pekel et al., 2016). The
JRC products were generated using over 3 million scenes from Landsat
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
Operational Land Imager (OLI) acquired between March 1984 and
October 2015. In this study, we used two JRC Global Surface Water
products, including the Surface Water Occurrence and Monthly Water
History. The Surface Water Occurrence product measures the frequency
of water occurrence on the Earth's surface in monthly time-steps over
the entire 32-year period. To compute surface water occurrence, the
total number of water detections was divided by the total number of
valid observations for the same month (e.g., March 1984, March 1985,
and so on) to represent the frequency of water occurrence in that month
(e.g., March). Averaging the results of all monthly frequencies of water
occurrence gives the long-term overall surface water occurrence (Pekel
et al., 2016). The resulting surface water occurrence product is a global-
scale raster dataset at a 30-m resolution with pixel values ranging from
0% to 100%. Some locations are always classified as water throughout
the entire 32-year period (i.e., frequency= 100%), others are classified
as water for a few months of every year (i.e., 0% < frequency <
100%), and some have never been classified as water (i.e., fre-
quency=0%). In this study, we used the JRC Surface Water Occur-
rence product to select locations with a high frequency (≥ 90%) of
water occurrence as prior water masks, which were further used to
extract water clusters from the NAIP unsupervised classification results.

The JRC Monthly Water History product includes the entire history
of water detection on a monthly basis. The product contains 380
images, one for each month between March 1984 and October 2015
(Pekel et al., 2016). We used the JRC Monthly Water History images
near-coincident with NAIP acquisitions over the study area (see
Table 1) to evaluate the wetland inundation maps.

Fig. 2. Examples of depressional wetlands in the Prairie Pothole Region. (a) The study area of 26 HUC-10 watersheds. (b) The Lower Pipestem Creek watershed
(#1016000205). (c) The 1-m aerial imagery (acquisition date: August 2017) from the National Agriculture Imagery Program (NAIP) shows numerous depressional
wetlands on the landscape. The blue rectangle indicates the areal extent shown in Fig. 3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Since fine spatial resolution LiDAR data for the United States do not
yet exist in the GEE public data catalog, we obtained the 1-m resolution
LiDAR data for our study area from the North Dakota LiDAR
Dissemination Service (https://lidar.swc.nd.gov/, accessed 17
September 2018) and uploaded the data to GEE. The LiDAR data were
acquired through multiple LiDAR data acquisition campaigns in North
Dakota between 2011 and 2015, with a nominal point spacing of 0.7m

and an estimated vertical accuracy of 15 cm. In this study, the LiDAR
data were primarily used to delineate surface depressions, which were
further used to refine water clusters extracted from the NAIP un-
supervised classification results.

The NWI geospatial data for the Prairie Pothole Region were de-
veloped through manual interpretation and digitization of black-and-
white aerial photographs from the 1980s (Cowardin et al., 1979;

Table 1
A summary of geospatial datasets used in this study.

Dataset Acquisition dates Resolution Provider Application

NAIP aerial images Aug 18–Sep 1, 2009 1m Earth Engine data catalog Unsupervised classification
Jun 29–Jul 10, 2010
Jul 14–Jul 31, 2012
Jul 20–Aug 1, 2014
Sep 26–Sep 27, 2015
Aug 7–Aug 28, 2017

JRC Global Surface Water products 1984–2015 30m Earth Engine data catalog Water masks; results comparison
LiDAR DEMs 2011–2015 1m Public domain data Surface depressions
National Wetlands Inventory (NWI) 1980s 1:24,000 Public domain data Results comparison

Fig. 3. Multi-temporal NAIP aerial images (2009–2017), illustrating dynamic changes in wetland inundation extent resulting from fill-merge-spill hydrological
processes in the Prairie Pothole Region. Each image is a false-color composite using the band combination of near-infrared (N), red (R), and green (G). The yellow
arrows in (a) and (d) are pointing at locations where wetland merging occurred. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Automated algorithm for wetland inundation mapping using multi-temporal aerial imagery and LiDAR data within Google Earth Engine.
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USFWS, 2018). Although the NWI data contain information about his-
torical inundation periodicity (i.e., NWI water regimes), this informa-
tion may not be current and were developed using expert interpretation
of single-date imagery. Nevertheless, the NWI dataset is still the most
spatially and categorically detailed wetland inventory for the entire
U.S. In this study, we used the NWI as reference data to evaluate the
changes in wetland inundation extent since the 1980s.

2.3. Automated algorithm for wetland inundation mapping

The fully automated algorithm we developed for wetland inunda-
tion mapping consists of four steps (Fig. 4): (1) preprocessing of multi-
temporal NAIP imagery; (2) unsupervised classification of NAIP ima-
gery and extraction of potential water bodies; (3) refinement of wetland
inundation extent using LiDAR-derived surface depressions; and (4)
comparison of wetland inundation maps using coincident JRC Monthly
Water History product and NWI geospatial dataset.

2.3.1. Data preprocessing
Given the very high level of computational and memory resources

needed to process multi-temporal fine spatial resolution NAIP images
and LiDAR data, we developed the algorithm to run at the HUC-10
watershed scale on the GEE platform. In total, there are 18,487 HUC-10
watersheds in the entire U.S. with watershed areas ranging from
10,100 ha to 100,000 ha. In the GEE Code Editor web interface, the user
can click on the map to select any HUC-10 watershed within the study
area. Our algorithm will then execute automatically to retrieve and clip
all geospatial datasets to the selected watershed for delineating wetland
inundation extent. These datasets include multi-temporal NAIP images,
LiDAR DEMs, JRC Global Surface Water Occurrence, JRC Monthly
Water History, and NWI (see Table 1). Note that NAIP images in GEE
are stored as image tiles - Digital Orthophoto Quarter Quadrangle
(DOQQ), covering an area of 7.5-minute longitude by 7.5-minute lati-
tude. The 4-band NAIP image tiles covering the selected watershed are
obtained to create yearly mosaicked NAIP imagery. On average, 23
NAIP image titles are needed to cover one HUC-10 watershed, with a
total of 590 tiles needed to cover the entire study area. For our 26
studied watersheds in the PPR, there were six years with 4-band NAIP
images available, including 2009, 2010, 2012, 2014, 2015, and 2017.
For each mosaicked NAIP image, two additional indices calculated from
spectral bands are added to the image, including the Normalized Dif-
ference Water Index [NDWI] (McFeeters, 1996) and Normalized Dif-
ference Vegetation Index [NDVI] (Tucker, 1979). This results in multi-
temporal 6-band NAIP images to be used for unsupervised

classification.

2.3.2. Unsupervised classification
Previous studies commonly used unsupervised classification as an

initial step prior to supervised classification, which is called hybrid
classification (e.g., Lane et al., 2014). An unsupervised approach was
used to classify NAIP images, which is transferable and applicable to
other study areas without the need for collecting coincident training
data. We used the k-means unsupervised learning algorithm (Arthur
and Vassilvitskii, 2007) available on GEE. The only required parameter
for the k-means unsupervised learning algorithm is the number of
clusters, which is set to five. The algorithm is applied to classify each
mosaicked watershed-scale NAIP image with six bands, including red,
green, blue, near-infrared, NDWI, and NDVI. This procedure is repeated
until all multi-temporal NAIP images for the selected watershed are
successfully classified.

After generating an output image in which each pixel is assigned to
one of the five clusters using unsupervised classification, we separated
water clusters from non-water clusters. Due to the spectral hetero-
geneity of water in fine spatial resolution aerial imagery, the number of
clusters belonging to water varies from image to image, which poses a
challenge for the automated workflow. This problem can be caused by
various driving factors, such as turbidity, water algae content, the angle
between the sun and the sensor, and sun glint resulting from specular
reflection of solar radiation on non-flat water surfaces (Hedley et al.,
2005). These driving factors can strongly influence the visual appear-
ance and image classification of water. To overcome this challenge and
automatically extract variable water clusters from the unsupervised
classification results, we used the 30-m JRC Global Water Occurrence
product to generate permanent water masks.

The JRC Global Water Occurrence product is a single-band global-
scale raster dataset at 30-m resolution with pixel values ranging from
0% to 100% (see Fig. 5a). Each pixel value represents the percent fre-
quency of that pixel being detected as water during the entire 32-year
period (1984–2015). Following Huang et al. (2018), we applied a
threshold of 90% to the JRC Global Water Occurrence product to derive
a ‘permanent water’ mask (see Fig. 5b). If a location was frequently
(≥ 90%) detected as water between 1984 and 2015, we can reasonably
assume that there is a high probability that it would still be water
during our study period (2009–2017). We performed an overlay ana-
lysis to extract unsupervised classification pixels located within this
‘permanent water’ mask. Based on the extracted subset of the classified
image, we identified which clusters were dominant classes representing
water. Since the extracted subset image might contain some

Fig. 5. An example of the European Commission's Joint Research Centre (JRC) Global Surface Water Occurrence product. (a) The frequency of Landsat-derived water
occurrence over the entire 32-year period (1984–2015) with values ranging from 1% to 100%. Non-water pixels are masked out. (b) Permanent water mask extracted
using a 90% threshold (i.e., occurrence≥ 90%). The background NAIP imagery was acquired in September 2015.
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misclassified pixels, a threshold of 10% was used to eliminate minority
clusters. In other words, if a cluster took up< 10% of the total area of
the image extracted by the JRC ‘permanent water’ mask, it was elimi-
nated. The values of dominant clusters were used to extract pixels from
the NAIP unsupervised classification results, which represent potential
water areas derived from NAIP imagery.

2.3.3. Refining wetland inundation extent
After the automated extraction of water clusters from the un-

supervised classification results, we removed pixels misclassified as
water, such as those that are shadows from trees, buildings, and other
topographic features, using topographic data. Fine spatial resolution
LiDAR data, including LiDAR intensity imagery and LiDAR-derived
DEMs, have proven useful for delineating depressional wetlands, such
as vernal pools (Wu et al., 2014), prairie potholes (Wu, 2018; Wu and
Lane, 2016), and forested wetlands (Lang et al., 2013; Vanderhoof
et al., 2018). In this study, LiDAR data were used to delineate surface
depressions using an efficient depression-filling algorithm (Wu et al.,
2018), which can delineate and quantify nested depressions in DEMs
using a level-set method based on graph theory. By emulating water
level decreasing from the spill point at the depression boundary to the
lowest point within a depression, the level-set method traces dynamic
topological changes (i.e., depression splitting) and constructs a topo-
logical hierarchy for representing nested depressions. Using the deli-
neated surface depressions as a mask, pixels of water clusters located
within the depression mask were extracted. In this way, misclassified
pixels resulting from various sources of shadows (i.e., trees, buildings,
terrain) that are not part of a depression (i.e., without surface water
holding capacity) can be effectively eliminated (Fig. 6).

2.3.4. Comparison of wetland inundation maps
Previous studies on mapping wetland inundation extent based on

moderate-resolution satellites (e.g., Landsat, Sentinel-1, Sentinel-2)
commonly used fine spatial resolution NAIP aerial imagery to validate
mapping results when coincident ground truth reference data were
unavailable (e.g., Huang et al., 2018; Vanderhoof and Alexander,
2016). This study represents one of the first times multi-temporal NAIP
imagery and LiDAR data have been used to map wetland inundation
extent at large geographic scales on the GEE cloud-computing platform.
It is challenging to verify the accuracy of wetland inundation maps
created as part of this study due to the unavailability of coincident field
data and finer resolution (sub-meter) satellite or airborne imagery in
the public domain. In the absence of fine resolution reference inunda-
tion maps and ground truth data, we utilized 30-m resolution JRC
Monthly Water History product to calculate omission error. However, it

was much more challenging to calculate commission error due to the
inability of JRC product to capture small sub-hectare water bodies.
Specifically, each NAIP-derived inundation map was compared to the
coincident JRC Monthly Water History product. For each time period, if
the acquisition dates of NAIP imagery within a watershed spanned
multiple months (see Table 1), the corresponding months of the JRC
Monthly Water History product were combined to generate a single
reference image. In addition, we compared the NAIP-derived inunda-
tion maps to the NWI geospatial dataset to analyze inundation changes
since the 1980s.

2.3.5. Algorithm source code and data access
We implemented the automated workflow for mapping wetland

inundation dynamics using GEE. The source code and documentation
for the GEE implementation can be found at https://gishub.org/2018-
RSE-GEE (accessed 17 September 2018). In addition, we have made all
datasets used in this study available to the public. The nationwide
multi-temporal NAIP aerial imagery and JRC Global Surface Water
products are available in the GEE public data catalog. The National
Wetlands Inventory by HUC-8 watershed for the entire U.S. and LiDAR
data for the 26 studied watersheds in the PPR have been uploaded and
ingested into GEE for rapid access. More information on how to access
these datasets can be found at the URL provided above. Users are en-
couraged to upload their own LiDAR data and utilize the existing na-
tional-scale datasets to test our automated workflow in other study
areas.

3. Results

3.1. Permanent water masks and LiDAR-derived surface depressions

A small subset of the JRC Water Occurrence product for the study
area is shown in Fig. 5a. Each pixel value represents the percent time
inundation was detected for that pixel during the entire 32-year period
with valid Landsat observations. The total area of JRC Water Occur-
rence in our study area was 128,081 ha, covering 7.7% of the total
watershed area. The area composition of the JRC Water Occurrence
within our study area is shown in Fig. 7. This figure illustrates
ephemeral/seasonal inundation dynamics within wetlands in the PPR.
Approximately 35,816 ha (27.9%) of the JRC water pixels had occur-
rence values less than or equal to 20% (see the aggregated area of the
first two bars shown in Fig. 7). In contrast, 25,890 ha (20.2%) of the
JRC water pixels had occurrence values > 90%, which were extracted
as a permanent water mask to facilitate the extraction of water clusters
from the NAIP unsupervised classification results. The frequency of the

Fig. 6. Examples of LiDAR-derived surface depressions in the study area. (a) A shaded relief map created from a 1-m LiDAR DEM. (b) LiDAR-derived surface
depressions overlaid on NAIP imagery (acquisition date: September 2015).
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remaining water occurrence pixels (i.e., 20% < occurrence≤ 90%)
was relatively uniform, with a slight jump in water occurrence within
the 51–70% range.

Using the depression-filling algorithm (Wu et al., 2018), 377,600 ha
of the study area was identified as surface depressions, indicating that
22.8% of the study area is likely to be inundated under a fully flooded
condition. In total, there were 20,287 depressions larger than 1 ha. The
LiDAR-derived surface depressions were used to refine the initial water
clusters extracted from the NAIP unsupervised classification results. By
applying the LiDAR depression mask, the percentage area (i.e., non-
depression pixels) removed from the initial water clusters during the six
time periods ranged from 7.68% to 15.42%, with an average of 11.37%.

3.2. Comparison with JRC Monthly Water History product

There are six dates of 4-band NAIP images available for our study
area between 2009 and 2017 (see Table 1). Each NAIP-derived in-
undation map (2009–2015) at the watershed scale was compared to the
coincident Landsat-derived surface water extent extracted from the JRC
Monthly Water History product. The NAIP-derived inundation map of
2017 was not included in the comparison due to the unavailability of
coincident JRC Monthly Water History product. A comparison of the
inundation maps for a small subset area of the Lower Pipestem Creek
(see the blue rectangle in Fig. 3c) is presented in Fig. 8. Compared with
the inundation map (Fig. 8a) derived from NAIP imagery (September
2015), the coincident Landsat-derived surface water extent (Fig. 8c)
extracted from the JRC Monthly Water History slightly underestimated
the inundation extent due to the limited scale (30-m). The majority of
the omitted inundation pixels were found around the edges of wetland
features. In addition, the JRC product largely failed to capture small
sub-hectare wetland features (see the red arrows in Fig. 8c). The NWI
polygons (Fig. 8d) developed for this region through manual inter-
pretation and digitization of black-and-white aerial photographs do not
reflect contemporary inundation status. NWI polygons were likely
created during a drier period and thus substantially underestimated
current inundation extent. Many previously disjoint NWI wetlands ap-
peared to have merged to form larger wetland complexes (see Fig. 8a
and d). The map of water occurrence (i.e., the number of times of water
detection at each pixel during the six time periods of NAIP imagery)
shown in Fig. 8b further illustrates the dynamic nature of wetland in-
undation in the Prairie Pothole Region (see Fig. 3).

A quantitative comparison of the NAIP-derived inundation maps
from our automated algorithm to the Landsat-derived JRC surface
water extent at the watershed scale is presented in Fig. 9. It can be seen
that most points fall above the diagonal line, indicating that JRC

surface water extent largely underestimated the inundation extent of
each watershed. The aggregated inundation extent in the study area
derived from our algorithm and the coincident JRC surface water extent
for each time period is presented in Table 2. For all the time periods
(2009–2015), the total inundation extent derived from NAIP imagery is
consistently higher than that from the JRC surface water product based
on Landsat data, which can be attributed to the superior capability of
NAIP imagery in capturing small wetland features.

To further assess of the performance of our method, we conducted a
pixel-by-pixel comparison of the inundation maps to identify wetland
features, which were omitted by our method but were captured in the
JRC surface water products. Initially, the total omitted inundation ex-
tent of the study area ranged from 6936 ha to 10,771 ha, with an
average of 8272 ha (see Table 2). By visually assessing these omitted
wetland features, we found that the initial high omission errors were
largely due to the omission of three large lakes (see Fig. 10), which
constituted a total area of 5390 ha. Our method failed to capture these
three large lakes because they spanned across watershed boundaries. As
a result, they were not detected as surface depressions using the de-
pression identification algorithm on the LiDAR DEM of a single wa-
tershed. Despite the fact that they were successfully labeled as water
clusters during the process of unsupervised classification, these three
lakes were later eliminated during the refining process using LiDAR-
derived surface depressions. To avoid large water bodies being cut off at
the watershed boundary and thus not being detected as surface de-
pressions, we re-ran the depression identification algorithm at the HUC-
8 subbasin scale. As a result, the three large lakes initially omitted were
successfully delineated, which substantially reduced the averaged
omitted inundation extent to 2882 ha, with an average omission error
of 3.45%.

3.3. Comparison with JRC Surface Water Occurrence product

The JRC Surface Water Occurrence product measures the percent
frequency of water occurrence over the 32-year period (1984–2015)
with pixel values ranging from 1% to 100%. Similarly, our NAIP-de-
rived water occurrence product measures the frequency of water oc-
currence over the six time periods (2009–2017) with pixel values ran-
ging from 1 to 6. The total area of JRC Water Occurrence in our study
area was 128,081 ha, covering 7.7% of the total watershed area. In
contrast, the total area of NAIP-derived water occurrence in our study
area was 135,271 ha, covering 8.2% of the total watershed area. To
compare these two water occurrence products with a different value
range, we first reclassified the JRC water occurrence map into six in-
undation classes by evenly subdividing the value range (i.e., 1–16%,

Fig. 7. Histogram of JRC Surface Water Occurrence in the study area.
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17–33%, 34–50%, 51–66%, 67–83%, 84–100%). Then, we calculated
the inundation area of each class and compared it to the inundation
area of the corresponding NAIP-derived water occurrence class (see
Fig. 11). Due to the limited temporal frequency, NAIP imagery acquired
during the summer season could not capture temporary water bodies
existing only in the spring season after snowmelt and rainwater, re-
sulting in lower inundation areas in the first four classes compared to
the longer time-series JRC water occurrence product (Fig. 11). Never-
theless, NAIP imagery successfully captured many small sub-hectare
water bodies that the JRC product failed to map due to the limited
spatial resolution of Landsat data. In total, 29,825 ha (22%) of the
NAIP-derived inundation areas in the study area were not captured in
the JRC product (see the yellow bar in Fig. 11). These unmapped areas
by the JRC product were largely composed of small sub-hectare water
bodies and pixels surrounding edges of large water bodies.

3.4. Comparison with NWI geospatial dataset

The NWI geospatial dataset was used for results comparison. The
wetland types in the NWI dataset include palustrine emergent, forested,
scrub-shrub, and pond wetlands, as well as lacustrine and riverine
wetlands, and lacustrine and riverine deepwater habitats. In this study,
we focused on depressional landscape features. Therefore, riverine

features were excluded from subsequent analysis. In total, there were
214,193 NWI wetland polygons within our study area (Table 3). The
total wetland area was 176,286 ha, covering 10.6% of the total area.
Emergent wetland was the predominant wetland type with 206,034
polygons, accounting for 77.0% of total wetland area (see Table 3). In
contrast, there were 674 lake polygons with a median size of 16.18 ha,
which is approximately 135 times the median size of emergent wet-
lands. The median size of all NWI polygons in the study area was only
0.12 ha, which is slightly larger than the size of a single Landsat pixel.

To evaluate the suitability of using 30-m JRC global surface water
products to extract wetland inundation extent in the study area, we
compared the JRC Surface Water Occurrence product to the NWI
geospatial dataset. Strikingly, we found that 172,156 out of the 214,193
(80.4%) NWI polygons in the study area were not captured in the JRC
product. The median size and total area of these uncaptured wetland
polygons were 0.09 ha (i.e., the size of a single Landsat pixel) and
40,188 ha (i.e., 22.8% of the total area of NWI polygons), respectively.
Examples of small wetland features not captured in the JRC product are
shown in Fig. 12a. It can be seen that the JRC products largely failed to
capture sub-hectare wetland features in the PPR due to the moderate
spatial resolution (30-m) of Landsat data. Therefore, fine spatial re-
solution data (e.g., 1-m NAIP imagery) are crucial for mapping sub-
hectare wetland features.

Fig. 8. Comparison of wetland inundation maps. The background NAIP imagery was acquired in September 2015. (a) Wetland inundation extent derived from NAIP
imagery (September 2015) and LiDAR data using our automated algorithm is depicted by the yellow lines. (b) Wetland inundation frequency derived from multi-
temporal NAIP imagery (2009–2017) and LiDAR data using our automated algorithm. (c) JRC Monthly Water History (September 2015) derived from Landsat data is
depicted by the yellow lines. The red arrows are pointing at small wetland features, which the JRC product failed to capture. (d) National Wetlands Inventory (NWI)
geospatial dataset derived from aerial photographs acquired in the 1980s. NWI wetland classification code: palustrine (P), emergent (EM), persistent (1), temporary
flooded (A), seasonally flooded (C), semi-permanently flooded (F), lacustrine (L), littoral (2), aquatic bed (AB), and intermittently exposed (G). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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To examine potential inundation dynamics in the study area since
the 1980s when the NWI dataset was originally developed, we per-
formed an overlay analysis to identify NWI polygons, which were not
located within the inundation extent derived using our method. We
found that 65,517 NWI emergent wetland polygons (i.e., 31.8% of the
original emergent wetland count) (see Table 4) in the study area did not
contain visible water bodies during any of the six time periods of NAIP
imagery (2009–2017). The median size of these wetland polygons was
only 0.06 ha, which is smaller than the size of a single Landsat pixel.
Examples of these small sub-hectare wetland polygons without visible
water bodies are shown in Fig. 12b. In total, 9491 ha (i.e., 5.4% of the
total area of NWI polygons) of NWI wetlands in the study area did not
contain visible water bodies during any of the six time periods of NAIP
imagery. A summary of water regimes of the undetected NWI emergent
wetlands by our method is shown in Table 5. Temporarily and sea-
sonally flooded wetlands constituted approximately 97% of the un-
detected wetland features.

4. Discussion

4.1. Significance of this study

We developed a fully automated and scalable algorithm for mapping
wetland inundation dynamics using multi-temporal 1-m NAIP imagery
and LiDAR data on GEE. The inundation extent of relatively large
wetlands and deepwater habitats can be identified in most existing
regional- to global-scale surface water products derived from moderate-

resolution satellite images (e.g., Landsat, Sentinel-1, Sentinel-2) (e.g.,
Donchyts et al., 2016; Hird et al., 2017; Pekel et al., 2016; Tang et al.,
2016; Yamazaki and Trigg, 2016). However, no current broad-scale
surface water product maps wetlands smaller than a Landsat pixel, and
most Landsat products have difficulty mapping anything much<1 ha.
In addition, previous methods commonly required extensive training
datasets for supervised classification of satellite imagery. This limits
their applicability in regions lacking training data, especially when
those data must be collected in the field. In this study, we applied the k-
means unsupervised learning algorithm to classify multi-temporal NAIP
images and extract inundation extent using prior water masks derived
from the JRC Global Surface Water products, thereby avoiding the time-
consuming process of collecting training datasets. The initial inunda-
tion maps were further refined using surface depressions derived from
LiDAR data.

The fully automated and scalable GEE workflow we developed can
be easily adapted to develop or refine existing fine spatial resolution
surface water products at broad geographic scales where LiDAR data
are available. For example, this approach could be used to help update
NWI maps in areas where land cover change has occurred since initial
dataset production. Our method detects inundation and not soil sa-
turation and therefore could not be used to infer changes in drier-end
(e.g., saturated) wetlands. However, inundation as detected by our
product that is not associated with floods and is not within an NWI
polygon is very likely to indicate gains in wetland or deepwater habitat.
This type of change is evident in Fg. 8d and has been documented by
the NWI Wetlands Status and Trends study (Dahl, 2014). In addition,
the lack of inundation within NWI polygons with water regimes that
would be expected to support inundation during the summer (e.g.,
semi-permanently flooded or intermittently exposed) is likely to in-
dicate wetland loss or change in water regime (e.g., semi-permanently
flooded to temporarily flooded). The aforementioned changes are likely
to indicate necessary NWI dataset updates and our data could be used
within a semi-automated framework to enable more rapid, cost effec-
tive updates to the NWI dataset. Although the NWI dataset is the most
categorically and spatially detailed national wetland dataset in the U.S.
and is therefore critical for parcel level decision support and the
parameterization of wetland functional models, it is not contemporary
in some portions of the U.S. and could therefore benefit from these
types of updates. Such fine-resolution surface water updates and pro-
ducts are especially crucial for managing watersheds with relatively
high wetland densities (Cohen et al., 2016; Creed et al., 2017; Golden
et al., 2017).

4.2. Limitation and potential improvements

The temporal frequency of 1-m wetland inundation products in this
study is limited by the availability of NAIP images in the U.S. The USDA
only started acquiring 4-band (RGB and near-infrared) nationwide
NAIP images annually to biennially since 2009. Recently the NAIP re-
peat cycle was changed to every 3 years. Therefore, the temporal re-
solution of NAIP-derived wetland inundation products is not compar-
able to other regional- to global-scale monthly surface water products
derived from moderate-resolution satellites (e.g., Landsat, Sentinel-2).
However, our study provides inter-annual wetland inundation products
at an unprecedented spatial resolution (1-m) compared to existing 30-m

Fig. 9. Comparison between NAIP-derived and Landsat-derived JRC surface
water extent at the HUC-10 watershed scale in the study area. Each point re-
presents the inundation area of an individual watershed derived from one-time
NAIP imagery (e.g., September 2015) and coincident JRC Monthly Water
History. In the study area, there are five time periods (2009–2015) of NAIP
images with coincident JRC Monthly Water History (see Table 1), resulting in a
total of 130 points being plotted in this figure.

Table 2
Comparison of total inundation area and omission error between NAIP-derived and Landsat-derived surface water extent within the 26 watersheds of the study area.

2009 2010 2012 2014 2015 Average

Landsat-derived JRC surface water extent (ha) 75,052 83,299 79,682 91,120 89,792 83,789
NAIP-derived inundation extent (ha) 79,873 96,416 106,629 111,509 92,546 97,394
Initially omitted inundation extent (ha) 8070 10,771 6936 8338 7245 8272
Refined omitted inundation extent (ha) 2680 5381 1546 2947 1855 2882
Omission error (%) 3.57% 6.46% 1.94% 3.23% 2.07% 3.45%

Q. Wu, et al. Remote Sensing of Environment 228 (2019) 1–13

9



surface water products. Future research to incorporate other fine spatial
resolution commercial satellite imagery with high temporal frequency
could potentially improve the temporal resolution of fine-scale wetland
inundation products. For example, the constellation of CubeSat minia-
ture satellites developed by Planet (https://www.planet.com, accessed
17 September 2018) can capture RGB and near-infrared images at
3–5m resolution with near-daily global coverage (McCabe et al., 2017).
Coupled with the near-annual 1-m wetland inundation products, near-
daily 3–5m surface water products could provide crucial insights re-
garding the response of surface water extent in wetlands to climate
change and anthropogenic activities, especially for small wetlands (i.e.,
area < 0.1 ha) that could not be captured by moderate-resolution

satellites.
Shadows resulting from various sources (e.g., trees, buildings, ter-

rain) can cause false water detections because the underlying spectral
characteristics of the surface may overlap with that of water (DeVries
et al., 2017; Pekel et al., 2016). We used LiDAR-derived surface de-
pressions to effectively remove false water detections resulting from
shadows, which can substantially decrease commission errors. How-
ever, the use of LiDAR data can potentially increase omission errors for
the following reasons. First, topographic LiDAR sensors typically op-
erate in the near-infrared wavelength, which lack water-penetrating
capabilities. Therefore, a LiDAR-derived surface depression based on
the depression-filling algorithm represents the potential water storage
capacity between the water surface during data acquisition (i.e., ex-
isting water storage) and the spill point (i.e., maximum water storage).
In extremely wet conditions, some wetlands might become fully in-
undated, spilling water downstream. In such cases, fully inundated
wetlands no longer have the capacity to hold more water. Therefore,
these fully inundated wetlands might not be detected as depressional
features in a LiDAR DEM acquired during such extremely wet condi-
tions. Bathymetric LiDAR data with water penetration capabilities or
topographic LiDAR data acquired during dry conditions are re-
commended for calculating wetland water storage and simulating in-
undation dynamics (Wu et al., 2018). Second, some large depressional
or riverine wetlands might span across watershed boundaries. This can
cause them not being detected as closed depressions in a LiDAR DEM.
Therefore, valid candidates of wetland inundation areas extracted from
the NAIP unsupervised classification results could be falsely removed in
the refinement step using surface depressions as a criterion. One po-
tential solution to this problem is to increase the watershed scale when
running the depression-filling algorithm to detect surface depressions,
thereby avoiding large depressional or riverine wetlands being cut off at
the watershed boundaries. In addition, LiDAR intensity imagery can aid
in detection of depressional wetlands (Lang et al., 2013; Wu and Lane,
2016).

Fig. 10. The three largest omission errors resulting from the intersection of depression and watershed boundaries. The area of these three omitted features was
3506 ha, 837 ha, and 1047 ha respectively.

Fig. 11. Comparison of inundation frequency derived from 1-m resolution NAIP
imagery (2009–2017) and 30-m resolution JRC Surface Water Occurrence
product (1984–2015) for the study area. The yellow bar presents inundation
area captured by NAIP imagery but not by Landsat-derived JRC product. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Table 3
Summary statistics of the original NWI dataset in our study area.

Wetland type Count Min (ha) Max (ha) Mean (ha) Median (ha) Sum (ha) Area percentage

Emergent wetland 206,034 0.01 488.58 0.66 0.12 135,820 77.0%
Scrub-shrub or forested wetland 888 0.01 22.52 0.43 0.20 381 0.2%
Pond wetland 6597 0.01 141.66 0.68 0.14 4495 2.5%
Lake 674 0.07 4579.32 52.80 16.18 35,590 20.2%
Total (all polygons) 214,193 0.01 4579.32 0.82 0.12 176,286 100.0%
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5. Conclusions

In this study, we developed a fully automated algorithm for deli-
neating wetland inundation dynamics using multi-temporal aerial
imagery (1-m) and LiDAR data on the GEE platform. The automated
algorithm does not require any external training datasets, which are
often time-consuming to collect and subject to human errors. Instead,
the algorithm uses an unsupervised classification approach and water
clusters are extracted by utilizing prior water masks derived from ex-
isting global-scale surface water products based on the long-term
Landsat archive. The initial water clusters are further refined using
LiDAR-derived surface depressions. All computational steps of our
proposed method can be accomplished on the GEE cloud-computing
platform, thereby avoiding the need of excessive desktop computing

power to process tremendous volumes of geospatial datasets (e.g.,
multi-temporal 1-m NAIP imagery, LiDAR data). Results show that the
proposed method can not only delineate current wetland inundation
areas but also characterize “snapshots” of some of their key hydro-
logical dynamics accurately, such as wetland merging and splitting
resulting from filling-spilling-merging and draining-splitting hydro-
logical processes. With the increasing availability of LiDAR data ac-
quired through the USGS's 3D Elevation Program (3DEP) initiative
(Sugarbaker et al., 2014), our GEE-based workflow holds great poten-
tial to efficiently and effectively map wetlands and characterize their
inundation dynamics, improving decision-support for resource and
hydrological, nutrient, and habitat management applications at re-
gional and national scales. Furthermore, inundation maps derived using
our approach could be used to help update fine spatial scale national

Fig. 12. Comparison with NWI geospatial dataset.
(a) Comparing NWI with JRC Landsat-derived max-
imum water extent (1984–2015). (b) Comparing
NWI with NAIP-derived maximum inundation extent
(2009–2017) using our automated algorithm. The
black arrows are pointing at small NWI polygons not
detected by our algorithm, which did not contain
visible water bodies during any of the six dates of
NAIP images (2009–2017). The background NAIP
imagery was acquired in July 2014.

Table 4
Summary statistics of NWI wetland polygons without visible water bodies during any of the six time periods of NAIP imagery (2009–2017).

Wetland type Count Min (ha) Max (ha) Mean (ha) Median (ha) Sum (ha) Area percentage

Emergent wetland 65,517 0.01 41.14 0.14 0.06 9257 97.5%
Scrub-shrub or forested wetland 96 0.01 0.86 0.19 0.13 19 0.2%
Pond wetland 381 0.01 8.32 0.32 0.10 122 1.3%
Lake 6 2.64 31.85 15.56 12.15 93 1.0%
Total (all polygons) 66,000 0.01 41.14 0.14 0.06 9491 100.0%

Table 5
Summary statistics of water regimes of NWI emergent wetlands without visible water bodies during any of the six time periods of NAIP imagery (2009–2017).

Water regime Count Min (ha) Max (ha) Mean (ha) Median (ha) Sum (ha) Area percentage

Temporarily flooded (PEM1A) 28,562 0.01 41.14 0.16 0.06 4651 50.2%
Seasonally flooded (PEM1C) 36,350 0.01 26.39 0.12 0.06 4295 46.4%
Semi-permanently flooded (PEM1F) 600 0.01 22.50 0.52 0.16 310 3.3%
Seasonally saturated (PEM1B) 5 0.07 0.30 0.18 0.17 1 0.01%
Total (all polygons) 65,517 0.01 41.14 0.14 0.06 9257 100.0%
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polygonal datasets, such as the National Wetlands Inventory, which
have traditionally relied on more costly manual interpretation to gen-
erate data. Incorporating approaches like the one described in this ar-
ticle could help provide the public with more contemporary informa-
tion at a lower cost.
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