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I 

Abstract 

Among natural disasters floods are the most common and widespread hazards worldwide (CRED and UNISDR, 

2018). Thus, making communities more resilient to flood is a priority, particularly in large flood-prone areas 

located in emerging countries, because the effects of extreme events severely setback the development 

process (Wright, 2013). 

In this context, operational flood preparedness requires novel modeling approaches for a fast delineation of 

flooding in riverine environments. Starting from a review of advances in the flood modeling domain and a 

selection of the more suitable open toolsets available in the literature, a new method for the Rapid 

Estimation of FLood EXtent (REFLEX) at multiple scales (Arcorace et al., 2019) is proposed. 

The simplified hydraulic modeling adopted in this method consists of a hydro-geomorphological approach 

based on the Height Above the Nearest Drainage (HAND) model (Nobre et al., 2015). The hydraulic 

component of this method employs a simplified version of fluid mechanic equations for natural river 

channels. The input runoff volume is distributed from channel to hillslope cells of the DEM by using an 

iterative flood volume optimization based on Manning’s equation. The model also includes a GIS-based 

method to expand HAND contours across neighbor watersheds in flat areas, particularly useful in flood 

modeling expansion over coastal zones. 

REFLEX’s flood modeling has been applied in multiple case studies in both surveyed and ungauged river 

basins. The development and the implementation of the whole modeling chain have enabled a rapid 

estimation of flood extent over multiple basins at different scales. When possible, flood modeling results are 

compared with reference flood hazard maps or with detailed flood simulations. 

Despite the limitations of the method due to the employed simplified hydraulic modeling approach, obtained 

results are promising in terms of flood extent and water depth. Given the geomorphological nature of the 

method, it does not require initial and boundary conditions as it is in traditional 1D/2D hydraulic modeling. 

Therefore, its usage fits better in data-poor environments or large-scale flood modeling. An extensive 

employment of this slim method has been adopted by CIMA Research Foundation researchers for flood 

hazard mapping purposes over multiple African countries. 

As collateral research, multiple types of Earth observation (EO) data have been employed in the REFLEX 

modeling chain. Remotely sensed data from the satellites, in fact, are not only a source to obtain input digital 

terrain models but also to map flooded areas. Thus, in this work, different EO data exploitation methods are 

used for estimating water extent and surface height. Preliminary results by using Copernicus’s Sentinel-1 SAR 

and Sentinel-3 radar altimetry data highlighted their potential mainly for model calibration and validation. 

In conclusion, REFLEX combines the advantages of geomorphological models with the ones of traditional 

hydraulic modeling to ensure a simplified steady flow computation of flooding in open channels. This work 

highlights the pros and cons of the method and indicates the way forward for future research in the hydro- 

geomorphological domain.  
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Introduction 

 
An introduction to the topics investigated in this Ph.D. research. 
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Context 

Flooding is the most common and widespread hazard worldwide. Every year, floods cause colossal loss of 

lives and properties, especially in developing states, in which accumulated impacts from multiple events 

delay the development and growth (Wright, 2013). In addition to that, most flood-prone areas in the globe 

are mainly located in emergent countries, where making communities more flood resilient is a priority. A 

priority that has been also clearly highlighted in the Sendai Framework for Disaster Risk Reduction 2015-2030 

(UNISDR, 2015a) where technology is playing a special role. 

Concerning flood crises, satellite-based analysis plays a central role in the enhancement of national strategies 

for disaster risk management and the support of disaster relief operations (ESA, 2015; UNISDR, 2015b). 

During a major disaster, satellite-based flood impact assessments can be estimated by exploiting multi-sensor 

medium and high-resolution images in a Geographic Information System (GIS). This activity is normally 

conducted by rapid mapping services as requested by local authorities or humanitarian actors involved in the 

field (UNOSAT, 2011). When a particular flood event is not represented by any type of analysis, algorithms 

able to extract flood water from both commercial and open EO data (e.g., Sentinel-1, Pleiades, or TerraSAR-

X) can be used to overcome this lack of information. 

However, Earth Observation (EO) based services of flood mapping in rush mode generally suffer from delays 

caused by the time required for their activation, programming acquisitions, and image processing. This 

produces often excessive delays in delivering the first information on flood extent, which arrives several days 

after the events have occurred, while it would be extremely useful to have it in the early stages. 

The use of meteorological, hydrological, and hydraulic models can fill this gap, ensuring data availability and 

information delivery in time. Early Warning Systems (EWS) provides useful information identifying potential 

extreme events even days in advance (Alfieri et al., 2013, 2014a). This helps local authorities to take 

precautions and to better manage the emergency. 

Flood modeling is also crucial for preparedness. As an example, flood hazard modeling provides useful 

delineations of potential water depth in flood-prone areas for multiple magnitudes of the event. Flood hazard 

maps represent strategic assets for civil protection and disaster management because they allow the 

identification of the most vulnerable zones in a river basin and most risky areas through an accurate 

knowledge of exposure. 

Therefore, flood modeling represents a key instrument for both early warning and preparedness. A synergy 

between numerical flood modeling and EO data is crucial. Flood models can complement the limitations of 

flood monitoring based only on satellite imagery and, at the same time, EO-based flood records can be used 

for the calibration and validation of the hydraulics models. 

Background 

Satellite-based flood monitoring services and early warning systems are consolidated practices, however, in 

different developing nations the use of such technologies is often not possible due to a lack of financial 

support. In such scenarios, it arises the need for an open integrated system able to couple the accuracy of 

satellite imagery with the usefulness of forecasting models. Even though different flood forecasting initiatives 

are now available from academia and research centers, such as the GloFAS (Alfieri et al., 2013), the GFMS 

(Wu et al., 2014), or the CREST (Wang et al., 2011) models, what is often missing is the connection between 

the timely hazard detection and the community response to warnings. To bridge the gap between science 
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and decision-makers, UN agencies play a key role in the dissemination of information in the field and capacity-

building for local governments. 

For these reasons since 2012 UNITAR-UNOSAT has been actively involved with partners (USGS, UNEP, CIMA 

Foundation, CERN) in the development of new flood prevention and flood response capacities to boost its 

emergency response in support to developing countries (Arcorace et al., 2015). This intent turned into 

practice through the “Flood Finder” initiative (Arcorace et al., 2016) which aimed to create an integrated 

flood forecasting routine to enable Early Warning services at the country level and support UNOSAT’s 

Emergency mapping service. This initiative was meant to effectively respond to the increasing demand for 

timely and accurate flood information needed by Government agencies, UN entities, NGOs, and vulnerable 

communities. 

For this scope, a complex modeling system has been conceived to improve national, regional, and 

international coordination before and during major flood events through timely access to flood records, 

modeled flood hazard maps, early warning, as well as situation monitoring with remote and in situ 

observations. The Flood Finder system essentially integrates satellite observations, numerical weather 

prediction outputs, and in-situ data and consists of a hydro-meteorological forecasting chain for the 

estimation of modeled inundation scenarios based on streamflow forecasts. Results from pilot cases in 

Thailand, Mozambique, and the Horn of Africa demonstrated the feasibility and the usefulness of this system 

to enable early monitoring of flooded areas for emergency response and rush mapping. This system has been 

used and it is currently adopted by UNOSAT for multiple and slightly different implementations of flood 

forecasting/monitoring applications at the country level in Chad, Yemen, and Guyana. 

Concerning the hydraulic modeling in the Flood Finder system, a simplified 1D model has been employed in 

the prototype, the USGS’s GIS Flood Tool - GFT (Verdin et al., 2016). The GFT model is based on Manning’s 

equations and it estimates water depth by combining the Height Above the Nearest Drainage (Nobre et al., 

2015) and water stages calculated at given cross-sections. Such a tool has been also employed by UNEP and 

CIMA Foundation for the Flood Hazard Mapping of the UNISDR Global Assessment Report (GAR) of 2013 and 

2015 (Herold and Rudari, 2013). This simplified hydraulic model has been improved to consider, for example, 

also backwater effects through the development of an ad-hoc version. The GAR2015 global flood hazard map 

version represents one of the major reference datasets for flood preparedness, given its simplicity and 

consistency at a regional scale. 

Problem statement 

In the context of the above-described flood monitoring, flood forecasting, and flood hazard mapping 

activities, in which CIMA Research Foundation is directly involved, this Ph.D. research aims to enhance the 

existing configuration of operational flood hazard mapping and EWS chains through an assessment of 

limitations and the proposition of new modeling solutions. The choice of this area of research is strategic due 

to its degree of innovation in this domain and its potential application in the field of Disaster Management. 

This Ph.D. research aims to overcome some of the needs collected by the user community (local authorities, 

UN, NGOs, stakeholders, etc.). As an example, there is a need for accurate flood hazard maps, timely flood 

forecasts, and effective EO-based mapping over flood-prone areas of least developed countries. This is a 

priority for different ungauged basins across the world. In addition to that, a slim flood modeling tool could 

be also useful over gauged river basins for a fast delineation of floodplains during preliminary analysis and/or 

emergencies. Many hydraulic models are available in the literature with different numerical implementations 

of fluid mechanics in 1D or 2D approaches. However, it is difficult to find a modeling solution that is both slim 
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to reduce computation time and versatile to allow a rapid flood delineation at multiple scales. A possible 

solution is to combine EO data with simplified flood models, as investigated in this dissertation. 

Therefore, the objective of this Ph.D. research is to integrate remote sensing and numerical modeling to 

enhance rapid flood modeling for flood hazard mapping and EWS. This research aims to: 

1. identify limitations into existing flood modeling chains for flood hazard mapping and EWS and 

propose new solutions, 

2. analyze the model connections between hydrological and hydraulic models and develop new 

methodologies, 

3. design a robust and slim configuration of the hydro-modeling chain to be used for applications at 

multiple scales, 

4. indicate and assess multi-source satellite-based methodologies to improve and calibrate/validate 

flood modeled results over poor data environments. 

This thesis describes in detail the research carried out into this Ph.D. with a focus on these four objectives. 

Thesis outline 

The thesis is structured into 3 chapters: Chapter1 illustrates the material and methodologies needed for this 

research, Chapter 2 describes the method adopted for the fulfillment of the main research objectives, and 

Chapter 3 presents the application of this method over multiple case studies and compares achieved results 

with model benchmarks or in-situ observations. Finally, the last part of the thesis presents the conclusions 

from this research and provides discussion and closing remarks. 

The first chapter includes a detailed review of the state of the art for both data and methods which are 

directly linked to this Ph.D. research. It begins with a description of one of the inputs required for flood 

modeling, which is the temporal evolution of streamflow across the basin. An overview of principal modeling 

and observation techniques is given to estimate water level and discharge from both stream gauges and 

remotely sensed data. This first section ends by presenting inland water mapping techniques using remotely 

sensed data.  

The second section of this chapter presents the second input required for flood modeling, the digital 

elevation model. This second data source, in fact, represents the basis for DEM-based hydro 

geomorphological models, and thus this part of the thesis aims to present the state of the art of the 

estimation of surface terrain elevation and its hydrologically conditioning. After a panorama of the most 

referenced multi-source DEMs, the different techniques for the conditioning, such as filling, filtering, and 

flow enforcement, are shown.  

Once these two essential inputs are effectively introduced, the third section explains the available techniques 

to extract hydrological derivatives and basin characteristics from the DEM. After a classification of multiple 

drainage models among dispersive and non-dispersive methods, an overview of drainage modeling of regular 

gridded elevation data using multiple GIS-hydro tools is given. Later, the traditional hydrological derivatives 

which are commonly derived from the DEM are also listed. Once input DEM and its hydrological derivatives 

are effectively presented, a wide variety of flood models available in the literature is analyzed.  

In the last section of this chapter, after an in-depth overview and classification of hydraulic models, a critical 

analysis of low complexity flood models is presented by focusing on simplified methods built on different 

hydro-geomorphological approaches. Here it is highlighted the role of the Height Above the Nearest Drainage 
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(HAND) in multiple hydro geomorphological models developed in the last few years. The first chapter ends 

with a critical analysis of low complexity flood models and suggests a possible classification of HAND-based 

hydro geomorphological models between level and volume-driven approaches. 

The second chapter of this thesis illustrates the method identified and adopted in this Ph.D. research, 

developed by employing a selection of the datasets, methodologies, or tools described in the first chapter. 

This chapter begins by presenting the novel modeling chain developed in this research for a rapid conversion 

of input discharge into an output flood map. The here presented Rapid Estimation of Flood EXtent - REFLEX 

model consists of a simplified 2D hydro morphological method in which a driven volume approach is 

employed to derive water depth maps from the HAND model.  

After an overview of the whole REFLEX modeling chain, the chapter illustrates in detail all its components. 

The description of the REFLEX method begins by explaining how to collect and preprocess the inputs which 

are DEM, streamlines, and streamflow. After a brief explanation on how to properly gather and prepare input 

discharges, the chapter presents an in-depth overview of the DEM conditioning in REFLEX. The hydrologically 

conditioning in REFLEX is described by detailing the sequential workflow of filtering, filling, and the burning 

of streams into the DEM. Particular attention is reserved to the ad-hoc stream burning methodology 

developed in this Ph.D., which essentially relies on a slope-based filtering of the watercourse elevation profile 

by removing points having significant absolute local difference into river slope. Later, it is explained how to 

prepare the input flow lines required for the modeling in REFLEX.  

After this introductory section, the chapter moves to the description of the core of this model. Thus, the first 

REFLEX module dedicated to the extraction of multiple hydrological derivatives from the hydrologically 

conditioned DEM is presented. Here, it is explained the employed drainage modeling schema and extracted 

derivatives in REFLEX.  

Later, the second REFLEX module is essentially dedicated to the delineation of stream and watersheds, the 

classification of stream branches using multiple hierarchy schemas, the estimation of morphological 

parameters from the DEM for each sub-basin, and the computation of surface runoff volumes from input 

hydrographs across the entire river network.  

Then, the third REFLEX module shows the extraction of HAND contours in the whole basin explaining how 

the HAND mapping is performed for each sub-basin. It is also detailed the novel model approach developed 

in this research for the artificial expansion of HAND contours to adjacent basins in flat areas, particularly 

designed for its application in coastal floodplains.  

After that, the chapter illustrates the last REFLEX module, dedicated to flood modeling through a volume-

driven inundation of HAND contours. At first, it is explained the static volume optimization algorithm, then it 

is shown how the transit time is estimated using a simplified version of the Manning formula, and, finally, 

how output flood maps are created. This portion of the chapter dedicated to REFLEX ends by explaining how 

the binary classification of predicted and observed flood extents is performed in the validation of flood 

modeling results. 

The last section of this chapter describes the integration of external satellite-based observations to gather 

REFLEX auxiliary data. After the explanation of the intended usage in REFLEX of multiple EO-based water 

masks, it is proposed a method to derive water level surface height from radar satellite altimetry and useful 

methodologies for flood impact assessment using SAR data. 
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The third chapter summarizes the major outcomes of this Ph.D. research. The first section shows the results 

from the implementation work of the REFLEX model, which represents a synergy of different open Hydro-GIS 

toolsets, software, and codes from multiple sources. This section describes how to launch the REFLEX code, 

lists all the parameters included in the configuration file, and indicates the software dependencies. 

After this first section dedicated to the REFLEX software, the third chapter includes all major results collected 

under multiple case studies spread among different geographical locations. Such results are obtained by 

using methods described in the second chapter of the thesis and are presented and discussed in the following 

five sections. 

Sections from 3.2 to 3.5 are dedicated to the application of REFLEX using real data (DEM, Hydrographs) at 

multiple scales over different regions of the world. Case studies here described are the following: Magra, 

Entella, Secchia river basins in Italy at medium and local scales, and the one in Southern Africa at a regional 

scale. For each of these REFLEX case studies, the chapter provides a description of the context and the area 

of interest, explains the modeling approach employed, illustrates the flood modeled results obtained, and 

provides a validation of results. In such case studies, the REFLEX validation is performed by comparing 

predicted water extent and water depth with the ones from benchmark hydraulic models (e.g., flood hazard 

maps or flood scenarios from 2D models) using the binary classification metrics explained in the second 

chapter. When this has not been possible due to the scarce data environment or a larger modeling scale, 

such as in the Southern Africa case study, a qualitative assessment of REFLEX results has been made by using 

surface water extents derived from multi-temporal satellite imagery. 

After the analysis of REFLEX results over gauged river basins in Italy and poorly gauged river basins in 

Southern Africa, the last section includes major outcomes from the complementary research activity about 

the integration of secondary data from Earth Observation. Preliminary results from the evaluation of radar 

altimetry and SAR data are shown in two separate case studies. The first one presents water level estimations 

using Copernicus’s Sentinel-3 SRAL altimetry data in the Lake Chad Basin. The second one is about the 

combination of two different sources of information, the Copernicus Sentinel-1 SAR multi-temporal 

acquisitions and the HAND contours from filtered SRTM data to map water surfaces in Iran. 
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Chapter 1 - Material 

 
The first chapter describes the material used in this Ph.D. research. 
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1.1 Introduction 

This chapter provides basics and generalities, state of the art, main contributions, and last novelties in this 

area of research including available toolsets and data used either as input of the modeling or as reference 

for calibration and validation purposes. 

1.2 Different ways to acquire water depth and surface extent observations 

This first section introduces the first input required for the hydraulic modeling, which is the streamflow across 

the basin. An overview of principal modeling and observation techniques is given to estimate the water level 

and mapping the water extent. 

1.2.1 Estimating water level and discharge along the river 

Hereinafter is given a brief overview of multiple techniques commonly used in hydrology to measure or 

estimate water level and discharge along a river. 

1.2.1.1 Field observation at stream gauges 

River water level measurements at gauging stations are used in surveyed basins to monitor the evolution of 

the water stage over the years and to provide near real-time observations of the river over emergencies. In-

situ data are not only essential for Near Real-Time (NRT) monitoring but are also an important source of 

information for calibrating and validating hydrological and hydraulics models. In situ data are also used by 

hydrologists to derive statistical information (e.g., flood river stage for a return period of 25 years) but also 

to calibrate hydrological models by comparing modeled discharges with the ones derived at gauges. 

Field observations of river flow are usually collected by using stream gauges based on the optic, acoustic, 

floating, or radar measuring principles, current meters, and Acoustic Doppler Current Profiler (ADCP). 

Acoustic and radar gauging stations are the most employed techniques in surveying river basins. Most river 

gauging stations are designed to collect NRT measurements with high frequency and at high accuracy for 

flood prevention purposes. Stream gauges are normally installed over strategic points along the river network 

in which the river morphology is likely to remain constant across the years and cross-section geometry can 

be regularly surveyed (e.g., at bridges) also in the aftermath of a flooding event. This ideal configuration 

allows to locally convert river stage measurements into discharges via a calibrated rating curve. 

Streamflow field observations are generally managed, collected, stored, and distributed by National 

Hydrological Departments (NHD). However, thanks to the joint effort of NHDs, international organizations, 

and research institutes, few global repositories of river flow measurements and statistics are also available 

to the public. Examples are the “Long-Term Statistics and Annual Characteristics of GRDC Timeseries Data” 

of WMO, the NASA DAAC’s “Global River Discharge (RivDIS)” that includes monthly averaged discharge 

observations over the 1807-1991 period, and the “Monthly Flow Rates of World Rivers” dataset from NCAR 

UCAR. 

1.2.1.2 Modeled discharge from Hydrological Routines 

Field observations from rain and stream gauges are essential information to employ hydrological routine over 

a surveyed river basin to translate rainfall information into a modeled discharge values over the entire river 

network. In absence of distributed field observations from rain gauges, hydrological modeling can also be 

carried out using satellite-based rainfall estimations. In fact, the forcing of hydrological models with satellite-

derived precipitation products often represents the only possibility to model streamflow due to the lack of 
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near real-time in situ measurements in regions where those infrastructures are not available. Satellite 

observations coupled with meteorological models are capable to provides estimations of multiple physical 

quantities, such as precipitation, temperature, wind, and relative humidity, which are all needed inputs for 

the hydrological model to derive modeled surface runoff volumes. 

An example of a hydrological routine is the Continuum model (Silvestro et al., 2013) developed by CIMA 

Research Foundation. This model is particularly suitable to be used with satellite-derived precipitation 

products, given its flexible applicability at multiple catchment scales and the good level of parameterization 

shown in past studies over data-scarce environments (Silvestro et al., 2015). The main outputs produced by 

the computational system are probabilistic and deterministic discharges in a defined number of outlet 

sections of the regional catchments. Such estimates represent key discharge estimations for flood modeling. 

1.2.1.3 Water surface height and discharge estimation from radar altimetry 

Where in-situ observations are not available, a remote sensing technique can be used to detect the height of 

large inland rivers by using information from satellite altimeters. In remote sensing, the time delay of the 

echoes of the microwave signal emitted from radar altimetry onboard a satellite is used to derive the height 

of the satellite above the earth's surface, and thus to estimate the height of a target point of the earth surface 

from the reference ellipsoid. Historically, this technique has been widely employed to derive sea surface 

height at a global scale, but over the last years, it has shown its potential also in the hydrological application 

for satellite-based monitoring of inland waters and estuaries (Vignudelli et al., 2019). Radar altimetry data is 

now widely employed across different hydrological applications (Crétaux et al., 2018; Abileah et al., 2017). 

As an example, the data acquired from radar altimeters can be used to estimate the level of water bodies 

such as rivers, lakes, reservoirs, and flood plains, which is essential for environmental monitoring and natural 

resource management. The benefit of this remote sensing technique represents a key asset in data-scarce 

environments to track natural phenomena and to derive critical information economically and sustainably 

(Bogning et al., 2018). 

Water surface elevation over large inland rivers can be currently measured by employing different radar 

altimeters onboard multiple satellites: 

• Sentinel-3 A and B (Copernicus, ESA, EUMETSAT), 

• CryoSat-2 (ESA), 

• Sentinel-6 A (Copernicus, ESA, EUMETSAT), 

• Jason-2 and Jason-3 (NASA, CNES, NOAA, EUMETSAT). 

This amount of satellite-based information will be further enriched in the future with new missions partially 

or dedicated to inland water monitoring from space such as: 

• “SWOT” (Surface Water and Ocean Topography) mission of NASA-CNES, 

• “SMASH” (SMall Altimetry Satellites for Hydrology) mission of CNES, 

• “CRISTAL” (Copernicus Polar Ice and Snow Topography Altimeter) mission of Copernicus, ESA. 

The estimation of water surface elevation is generally not provided by the space agencies and an ad-hoc 

preprocessing of radar altimetry data (Level 1) is needed to derive this physical quantity. For this scope, 

multiple processors and tools are now available and open to the public to simplify the exploitation of radar 

altimetry data also to users not experts in remote sensing. 
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An example is the web processing service of the SAR Versatile Altimetric Toolkit for Ocean Research and 

Exploitation (SARvatore) Processor Prototype (Dinardo, 2020; ESA 2021b) available from ESA’s Grid-

Processing On-Demand (G-POD) distributed computing platform (https://gpod.eo.esa.int/). The SARvatore 

service enables simple on-demand processing of Copernicus’s Sentinel-3, or ESA’s Cryosat-2 altimetry data, 

and allows to obtain in output the physical quantities (Level 2 products) necessary to derive surface height 

over inland waters. 

In addition to that, web platforms are also available for a direct visualization in the browser of satellite-based 

time series of water levels (Level 2 products) of rivers and lakes around the globe. Examples are the 

“Hydroweb” platform provided by Theia, LEGOS, and CNES, the “Database for Hydrological Time Series of 

Inland Waters - DAHITI” from Technical University of Munich (TUM), and the “Global River Radar Altimetry 

Time Series - GRRATS” from Ohio State University. 

Over the last few years, particular attention has been reserved to estimate discharge from water surface 

heights derived from satellite altimetry. The methods available in the literature employ different modeling 

techniques by combining data fusion of multi-sensor EO data (Kebede et al., 2020; Tarpanelli et al., 2013, 

2019). A particular interest is given to this application due to its potential in estimating discharge globally 

from multiple radar satellite missions, particularly over data-scarce environments. 

1.2.2 Inland waters mapping using remotely sensed data 

Earth Observation data not only allow to estimate the time evolution of rainfall and river water level but also 

to map the extent of water bodies. 

Spaceborne or aerial optical imagery represents the most intuitive way to monitor a river from above for 

both flooding and water resource management purposes. However, the ground information derivable from 

optical EO data directly depends on the cloud coverage. Cloud coverage can extremely affect the result of 

EO-based inland water mapping in tropical regions or during a flooding event due to a tropical storm. EO 

imagery from Synthetic Aperture Radar (SAR) sensors instead, given their all-weather capabilities, are not 

affected by this limitation. As a result, SAR data are widely employed under multiple flood mapping 

algorithms such as the “Hierarchical Split Based Algorithm” (Chini et al., 2017) of the HASARD on-demand 

flood mapping processing service developed by the Luxembourg Institute of Science and Technology (LIST), 

available in the ESA’s G-POD (ESA, 2021a). 

The exploitation of multi-temporal and multi-source optical EO data is also used to derive from multiple 

satellite imagery a binary classification of land and water, also referred to as water masks. Such masks 

indicate a probability to find permanent water bodies over a given pixel. Examples of global water masks are 

the: 100% Water Occurrence from the Global Surface Water dataset (Pekel et al., 2016; JRC, 2021), and the 

waterbody class from the ESA CCI Land Cover product. In most cases, water masks are derived from the 

classification of multiple mid-resolution optical images acquired over a specific period (e.g., Landsat mission). 

As an example, more than 30 years of observations from Landsat missions have been used in the production 

of the GSW dataset (Pekel et al., 2016). 

Furthermore, in addition to the mapping of permanent water bodies, also river geometry can be derived 

from satellite imagery. Landsat imagery has been also employed in the creation of the “Global River Bankfull 

Width and Depth Database” (Andreadis et al., 2013), also based on the widely employed USGS’s HydroSHEDS 

(USGS, 2008) river delineation from SRTM elevation data, which provides a distribution of the river bankfull 

width and depth for major basins of the globe. 

https://gpod.eo.esa.int/
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1.3 The estimation of surface terrain elevation and its hydrologically 

conditioning 

This section provides state-of-the-art for the second remotely sensed input for the hydraulic modeling, the 

digital elevation model. This source data represents the basis for DEM-based hydrological modeling. 

1.3.1 Multiple sources data for different Digital Elevation Models 

A Digital Elevation Model (DEM) is a geometric representation of the land surface in a digital format. For a 

specific surveyed area, the DEM is conceived using either regular grids or meshes and the elevation values 

are geolocated using a projected or geographic coordinate system. In a Raster, or a Triangular Irregular 

Network (TIN) DEM, the pixel, or the triangular facet, represents an elevation to a reference surface or 

vertical datum (e.g., above the local mean sea level). 

A DEM can be derived from multiple passive or active sensors onboard either satellite or airborne platforms. 

As an example, concerning active sensors, acoustic waves (SONAR) or radio waves (RADAR) measurements 

are used to derive respectively bathymetries over the sea and DEM over the land. Also, passive sensors, that 

measure the Electro-Magnetic (EM) radiation reflected by the Earth's surface, allow deriving a DEM. 

Examples of remotely sensed topography from passive measurements are the 3D terrain models derived 

from stereo pairs of optical images and photogrammetry (e.g., using Very High-Resolution images acquired 

from UAV or airborne topographic survey). Another example is the Light Detection And Ranging (LiDAR) 

sensor which represents one of the most accurate methods for creating high-quality and high-resolution 

DEMs. 

Such remote sensing techniques have been applied to derived multiple global DEMs at different scales. As an 

example, the phase of the radar signal acquired in 2000 from a Synthetic Aperture Radar (SAR) sensor on 

board a space shuttle has been used to derive, using an interferometric SAR (InSAR) technique, a global DEM 

from NASA’s Shuttle Radar Topography Mission (SRTM) data. The USGS’s SRTM DEM is one of the most 

known and employed global DEM (homogeneous near-global coverage from 56°S to 60°N) available at both 

1 -arc-second (~30m) and 3 arc-second (~90m) spatial resolution. Other examples of medium-high resolution 

global DEM are NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

DEM (ASTER GDEM), the ALOS World 3D DEM (AW3D DEM) from the Japan Aerospace Exploration Agency 

(JAXA), and the WorldDEM from the TanDEM-X mission of the German Aerospace Center (DLR). 

Dataset SRTM DEM ASTER GDEM AW3D DEM WorldDEM 

Mission SRTM Terra ALOS TanDEM-X 

Sensor SIR-C/X-SAR ASTER PRISM SAR-X 

Agency NASA-JPL NASA METI JAXA DLR 

Method InSAR 
Stereo-pair 

photogrammetry 
Stereo-pair 

photogrammetry 
InSAR 

Acquired 2000 Since 1999 2006-2011 2011-2015 

Released 
2002, 2014 outside US 
for the 1 arc sec data 

2009 2016 2016 
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Coverage 60°N - 56°S Global Global Global 

Spatial Resolution 
3" ~90m 

or 
1" ~30m 

1" ~30m 
1" ~30m 

or 
0.15" ~5m 

0.4" ~12.4m 
or 

3" ~90m 

Vertical accuracy 6-9m LE90 15-20m LE90 7m LE90 <4m LE90 

Access Open Open 
Commercial 

and 
Open (AWD30) 

Commercial 
and 

Restricted 

Table 1 – Characteristics of a selection of Global Digital Elevation Models (Source: NASA, USGS, DLR, JAXA, Copernicus). 

These sources of global elevation data differ in terms of accessibility, acquisition time, spatial resolution, 

coverage, vertical accuracy, and access (see Table 1). Thus, the employment of one of these datasets as input 

raw DEM for the hydrological modeling requires a complete evaluation of all these characteristics. As an 

example, the SRTM 1 arc-second and the AW3D30 datasets are valuable options for hydrological and 

hydraulic modeling at a regional/local scale given their spatial resolution, and vertical accuracy. Instead, 

LiDAR data represents the optimal option for flood modeling at a local scale because of the high-quality data 

at the 1-meter spatial resolution, which is needed to represent in detail the geometry of the river and 

infrastructures. 

Often the DEM is used as a general term to represents two different types of digital surfaces, the Digital 

Surface Model (DSM) and the Digital Terrain Model (DTM). A DSM represents the elevation of the surface as 

seen from above by the sensor and thus includes the elevation of Top Of Canopy (TOC), building roofs, 

bridges. Instead, the DTM represents the elevation of the bare land surface and is the one often employed 

in hydrology for surface runoff modeling. In most of the remote sensing techniques, the product is a DSM 

and the DTM is derived after processing the elevation data using different conditioning and filtering methods. 

1.3.2 DEM conditioning 

A pre-processing of the input elevation grid is necessary while handling raw DEM. Hereinafter are described 

some of the techniques often employed in this domain. 

1.3.2.1 Filtering 

The problem of filtering noisy DEM can be addressed by using multiple interpolations and filtering procedures 

(Sithole and Vosselman, 2003; Wang et al., 2019; Meng et al., 2010). Vosselman (2000), Roggero (2001), 

Sithole (2003), and Wang and Tseng (2010) used slope-based filters to identify ground elevation. To remove 

non-ground measurement from High Resolution (HR) elevation data Zhang et al. (2003) and Pingel et al. 

(2013) employed morphological filters. Other methods adopt linear regression, cluster/segmentation, or 

iterative interpolating techniques. However, for hydrological applications, the DEM filter must maintain small 

drainage features in the output ground elevation which is not often possible in most of these methods. Thus, 

the methods often employed for the filtering of DEM in slope-sensitive applications are the feature-

preserving denoising algorithms (Sun et al., 2007; Gallant, 2011; Lindsay et al., 2019; Chen et al., 2019). As 

an example, Stevenson et al. (2010) employed a feature-preserving denoising algorithm (Sun et al., 2007) to 

remove speckle noise from medium resolution interferometric SRTM data. The adaptive smoothing filter for 

speckle noise removal proposed by Gallant (2011) has been used instead to smooth SRTM data over the 

entire Australian continent in the DEM-S (Geoscience Australia, 2021) and the entire globe in the Multi-Error-

Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017). 
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Concerning the filtering of HR elevation data, Lindsay et al. published in 2019 a method that can be efficiently 

used to denoise high-resolution DEM such as the LiDAR data. Some of them are directly integrated into GIS 

software such as the “MDenoise” program (Sun et al., 2007) available in both GRASS GIS and SAGA GIS. 

MDenoise is the one chosen for this research. Despite its limitations in processing LiDAR data (Lindsay et al., 

2019), it is a valuable solution for filtering InSAR-derived DEM which are often the only ones available at 

global or regional scales. Limitations in the application of the smoothing method proposed by Sun et al. with 

large DEM, such as the LiDAR ones, have been highlighted due to a not efficient triangular-based iterative 

algorithm (Lindsay et al., 2019). 

1.3.2.2 Filling 

The “Filling” of the DEM is another necessary technique to remove depressions from the filtered elevation 

grid. A depression, also commonly referred to as pit or sink, is a cell that is surrounded by higher terrain. This 

happens to a cell when all the eight neighbor cells have higher elevation. Thus, a drainage direction cannot 

be computed since it is not possible to identify a surrounding cell having lower elevation, and consecutively 

the modeled flow path is interrupted. A detailed mapping of the principal typologies of features to be 

considered in the DEM flow enforcement (Figure 1), such as pits, depressions, flats, and sinks, is the one 

proposed by Lindsay (Lindsay, 2016). 

 

Figure 1 - typology of features in DEM flow enforcement (Source: Lindsay, 2016). 

Not all the sinks, that can be derived from topography, need to be processed during the hydrological 

conditioning of a DEM. A depression can either represent a natural sink or a spurious topographic error. Thus, 

the drainage enforcement of the DEM should be focused only on such spurious errors. Natural sinks must be 

preserved in the DEM (Verdin and Jenson, 1996) because they characterize watersheds with no outlet, also 

referred to as endorheic basins. 

The creation of a depression-less DEM is an iterative process in which each of the identified sinks is filled to 

its pour point elevation. In the upslope contributing area of a sink, the pour point is the cell having the lowest 

elevation of the ones that belong to the border of the watershed. An iterative filling process is needed 

because, once the first depression is filled, new sinks may result at the boundary of the filled area which then 
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needs to be processed again in the following iteration. Therefore, this process can be as time-consuming as 

the spatial resolution, the coverage, or the level of bias of the DEM is increasing. 

Multiple methods to deal with sinks are available in the literature (Wang et al., 2019). Some of them, named 

depression-filling, solve the problem by raising the elevation of the depressed area (Jenson and Domingue, 

1988; Planchon and Darboux, 2002; Wang and Liu, 2006). In other methods, also referred to as depression-

breaching, the removal of the downstream obstacle that creates the sink is overpassed by carving a 

descending path from the identified depression (Soille P. et al., 2003). Some others employ a hybrid approach 

that combines filling with carving (Soille P., 2004; Barnes et al., 2014). 

Particular attention should be deserved while employing a pit removal method in the hydrological 

conditioning of High-Resolution DEM. As an example, depression-filling methods in some cases can destroy 

all traces of the original DEM by filling large areas of the river environment. Alternatively, the depression-

breaching approach can sensitively change local hydraulics due to an artificial change into infrastructure 

topography, with effects like a breach into the dykes or the opening of a culvert in a dam. Hybrid approaches 

represent a good compromise for this application due to a balance of these two effects. 

Concerning applications, numerical implementations of the above-mentioned filling methods are available 

via GIS software, hydrological specialized software, or GIT repositories. Examples of such tools are the 

“r.hydrodem” add-on of GRASS GIS (Lindsay and Creed, 2005; GRASS Development Team, 2021j), the “Fill” 

tool from the Spatial Analyst extension of ArcGIS (Planchon and Darboux, 2002), the module “Fill Sinks” of 

SAGA GIS (Wang and Liu, 2006) the “Pit Removal” tool in TauDEM software (Tarboton, 1997; Tesfa et al., 

2011), and the “richdem” software (Barnes et al., 2014; Zhou et al., 2016). 

If plateaus are produced because of the complete filling of depressions, artificial flat areas need to be solved 

while computing flow direction. This problem can be solved by filling with a not flat surface driven by a small 

artificial gradient or by employing ad-hoc iterative procedures to resolve flats. In richdem, both these 

approaches are implemented using respectively the epsilon filling and the flat resolution tools (Barnes, 2016). 

1.3.2.3 Flow enforcement for hydrologically adjusted elevation 

Flow enforcement is necessary to correct misleading flow paths derived from DEM flow directions. This is 

often caused by flow obstacles due to residual artifacts not properly removed from the DEM after the filtering 

and the filling steps. Furthermore, a wrong delineation of streams from the DEM often occurs in very low 

elevation gradient water tables such as lakes and major rivers. In such areas, the flow enforcement is often 

employed by “burning streamlines into the DEM”. This technique aims to overcome the problems described 

above by artificially deepening the DEM elevation along a line and, thus, forcing flowlines to follow real 

streams derived from field observations, water masks, or visual interpretation of high-resolution imagery. 

1.3.3 Examples of multi-source DEM datasets. 

Examples of semi-global hydrologically conditioned DEM are the HYDROlogical data and maps based on 

SHuttle Elevation Derivatives at multiple Scales - HydroSHEDS (USGS, 2008; Lehner et al., 2008), and the 

SRTM-FM (Arcorace et al., 2015). Instead, concerning global hydrologically adjusted elevation datasets, an 

example is the Hydrologically Adjusted Elevation of the Multi Error Removed Improved Terrain - MERIT-hydro 

(Yamazaki et al., 2017) datasets at 3 Arc-Seconds derived from different iterative correction process of SRTM3 

and AW3D-30m data. Another global hydrologically conditioned DEM is the one available within the 

Hydrologic Derivatives for Modeling and Analysis - HDMA database (Verdin, 2017) which combines elevation 

data from the HydroSHEDS (Lehner et al., 2008), Global multi-resolution terrain elevation data - GMTED2010 
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(Danielson and Gesch, 2011) and the CGIAR-CSI Void Filled SRTM data (CIAT-CSI, 2004; Reuter et al., 2007; 

Jarvis et al., 2008). 

The DEM of HydroSHEDS, the GMTED2010, and the MERIT-hydro DEM from the University of Tokyo are freely 

available to the public. Instead, the SRTM-FM, made by UNITAR-UNOSAT from SRTM data using the ANUDEM 

method (Hutchinson, 1989, 2011), has restricted access. Both HydroSHEDS and SRTM-FM have been derived 

from filtered SRTM data which has been then conditioned by burning the streams into the DEM. In all these 

conditioned DEMs the original elevation of terrain is artificially altered to be used for extracting coherent 

hydrological derivatives for flood mapping purposes. DEM-based hydrological derivatives are further 

described in the following sections of this chapter. 

Finally, an overview of multi-source DEM products that provide void-filled, filtered, and hydrologically 

conditioned elevations is shown in Table 2. 

Dataset Type Source Producer Horizontal resolution 

HydroSHEDS DSM-hydro SRTM3 WWF 90m 

CGIAR-CSI DEM DSM SRTM3 CGIAR-CSI 90m 

SRTM-FM DSM-hydro SRTM3 UNOSAT, USGS 90m 

MERIT DEM DSM-hydro SRTM3, AW3D30 IIS University of Tokyo 90m 

HDMA DSM-hydro SRTM3, GMTED2010 USGS, NASA GSFC 

3 arc-sec for SRTM3 
coverage, 7.5 arc-sec for 
areas north to 60°, and 
20 arc-sec for Antarctica. 

EU-DEM DSM SRTM, ASTER, ICESat EEA/Copernicus 25m 

COP-DEM DSM 
Tandem-X, ASTER, SRTM, 
AW3D30, and others 

Copernicus 
10m (EEA-10), 30m(GLO-
30), and 90m (GLO-90) 

NASADEM DSM 
SRTM, ASTER, and other 
sources 

NASA 30m 

Table 2 – Examples of Multi-source Digital Elevation Models products. 

SRTM data is widely employed in most of these products given its consolidated usage over the last 20 years 

and the multiple reviews and enhancements made to this data across the years (Jarvis et al., 2008). 

1.4 Extract hydrological derivatives and basin characteristics from the DEM 

This section explains what are the derivatives that can be extracted from a conditioned DEM to be used for 

hydrology by illustrating the state-of-the-art methods retrieved from the literature. 

1.4.1 Drainage modeling 

Most of the drainage direction methods available in the literature for a grid-based DEM can be classified into 

two groups: Single Flow Direction (SFD), or non-dispersive algorithms, and Multiple Flow Direction (MFD), or 

dispersive algorithms. The differences among these methods can be summarized by the following statement 

extracted from the paper of Wolock and McCabe: “An SFD algorithm assumes that subsurface flow occurs 

only in the steepest downslope direction from any given point; an MFD algorithm assumes that subsurface 

flow occurs in all downslope directions from any given point” (Wolock and McCabe, 1995). Hereinafter a 
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review of the state of the art is given by including a critical analysis of the most referenced methods to define 

local drain directions at the surface available in the literature. 

1.4.1.1 Single Flow Direction (SFD) – Non-dispersive methods 

A list of local non-dispersive or SFD methods are reported below: 

• Deterministic Eight-Node (D8) (O’Callaghan and Mark, 1984), 

• Rho4 and Rho8 (Fairfield and Leymarie, 1991), 

• Lea’s Method (Lea, 1992). 

An example of the Path-Based non-dispersive method is the Deterministic Eight‐Node Least Transversal 

Deviation -D8‐LTD (Orlandini et al., 2003; Orlandini and Moretti, 2009). 

Many SFD methods discretize drainage directions into eight cardinal points of the compass (Fairfield and 

Leymarie, 1991; Lea, 1992; O’Callaghan and Mark, 1984; Orlandini et al., 2003). The Deterministic Eight-Node 

(D8) method is a classic example of a non-dispersive method. While applying this SFD method over divergent 

hillslope, the surface flow does not diverge but converge by flowing on a single flow path. The D8 developed 

by O’Callaghan and Mark in 1984 has been widely employed in multiple following studies and applications 

(Jenson and Domingue, 1988; Mark, 1984; Martz and Garbrecht, 1992). Other alternatives to the D8 method 

have been also proposed a few years later (Fairfield and Leymarie, 1991; Lea, 1992), however, a significant 

extension to the D8 algorithm has been only introduced in the early 2000s with the publication of a path-

based non-dispersive D8‐LTD method (Orlandini et al., 2003). 

1.4.1.2 Multiple Flow Direction (MFD) – Non-dispersive methods 

SFD algorithms have shown intrinsic modeling limitations, particularly over flat areas, because water does 

not drain only in eight directions. Attempts to overcome the limits of SFD algorithms resulted in the 

identification of multiple flow directions (MFD) drainage models. Therefore, different MFD algorithms have 

been developed across the years by following different approaches. The most referenced MFD algorithms 

are listed below: 

• Freeman Multiple Flow Direction (FMFD) (Freeman, 1991), 

• Holmgren Multiple Flow Direction (Holmgren, 1994), 

• Quinn Multiple Flow Direction (QMFD) (Quinn et al., 1991), 

• DEMON (Costa‐Cabral and Burges, 1994), 

• Pilesjö/Zhou algorithm (Pilesjö and Zhou, 1996), 

• Deterministic Infinite‐Node (DINF) (Tarboton, 1997), 

• MFD based on maximum downslope gradient (MFD-md) (Qin et al., 2007), 

• Triangular Multiple Flow Direction (TMFD) (Seibert and McGlynn, 2007), 

• Triangular Facet Network (TFN) (Zhou et al., 2011). 

Some methods estimate flow directions in each direction by looking at slope gradients (Freeman, 1991; 

Holmgren, 1994; Quinn et al., 1991; Wolock and McCabe, 1995) and with improvements in letting drainage 

converging over concave surfaces (Pilesjö and Zhou, 1996). In later studies, other authors revisited the 

concept of centroid-based modeling flow movement within a DEM by following a vector-based approach 

derived from a partition of cells into triangular facets. The aim was to reduce the impact of a grid data 

structure into derived flow patterns. Examples of such MFD based on triangular facets are the D-infinity 

drainage method (Tarboton, 1997), the Triangular Multiple Flow Direction (Seibert and McGlynn, 2007), and 

the Triangular Facet Network algorithm (Zhou et al., 2011). 
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1.4.1.3 Drainage modeling using GIS-hydro tools 

Most of the drainage methods described in the previous section have been implemented within a various 

range of GIS-Hydro software such as: 

1) ArcGIS (ArcINFO; ArcMap, ArcGIS Pro), 

2) Geographic Resources Analysis Support System (GRASS), 

3) Terrain Analysis Using Digital Elevation Models (TauDEM), 

4) System for Automated GeoScientific Analysis (SAGA), 

5) RichDEM Terrain Analysis Software. 

Hereinafter an overview of widely used GIS/Hydrological software is presented to highlight the pro and cons 

of each tool and to identify the more suitable solution for a flood modeling chain based on open-source 

software and deployable into Linux OS. 

1.4.1.3.1 ArcGIS 

“ArcGIS” is a licensed GIS software developed by ESRI, the Environmental System Research Institute, (ESRI, 

2021a). ArcGIS is Windows-only compatible program. The ARC/INFO hydrological modeling functions are 

retrievable from the Hydrology section of the Spatial Analyst extension (ESRI, 2021b). In particular, the 

ArcGIS’s Flow Direction tool offers to the users three different drainage methods: 

1) D8, 

2) MFD, 

3) DINF. 

Such drainage methods have been included in the “Flow direction”, “Flow Accumulation”, and “Flow 

Distance” toolsets. The implementation of the D8 algorithm (ESRI, 2021b; O’Callaghan and Mark, 1984) 

follows the approach presented by Jenson and Domingue (Jenson and Domingue, 1988) and the encoding of 

topological surrounds presented by Greenlee (Greenlee, 1987). In addition to the D8, other two dispersive 

methods are available in this toolset: the MFD-md algorithm (Qin et al., 2007) and the D-infinity one 

(Tarboton, 1997). 

While using the D8 in ArcGIS, the resulting Flow Direction raster is an integer raster in which values follow a 

pre-defined direction coding for each of the eight directions from the center cell. Such codes (Figure 2) are 

defined in a clockwise rotation with a 2 power N geometrical progression from 1 (east) to 128 (north-east). 

 

Figure 2 – ArcGIS D8 Flow Direction encoding 

The output of the Flow direction tool using the D-infinity algorithm is a floating-point raster which represents 

the distribution of flow direction angles in degrees across the domain by following a counterclockwise 

rotation from 0 (due east) to 360 (again due east). 
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Figure 3 - Schema of D-inf flow direction (Image credits: TauDEM) 

1.4.1.3.2 GRASS 

The “Geographic Resources Analysis Support System - GRASS” software (GRASS Development Team, 2021a) 

is part of the Software Projects of the Open Source Geospatial Foundation (OSGeo). GRASS GIS is free and 

open-source software licensed by GNU General Public License. GRASS supports multiple Operating Systems 

(OS) such as Mac OSX, Microsoft Windows, and GNU/Linux. In GRASS the estimation of flow direction raster 

can be addressed by using different add-ons repositories such as: 

1. MFD and D8 in “r.watershed” (GRASS Development Team, 2021b), 

2. MFD and D8 in “r. terraflow” (GRASS Development Team, 2021c), 

3. SFD in “r.flow” (GRASS Development Team, 2021d). 

The r.watershed add-on (Ehlschlaeger, 1989; Metz et al., 2011) adopts a MFD algorithm  (Holmgren, 1994) 

as default drainage method. However, the D8 algorithm is also integrated into this repository and can be 

employed by using a dedicated flag. A MFD method (D-inf) and an SFD one (D8) are also available in GRASS 

through the r.terraflow  add-on (Toma et al., 2001) from Duke University. Finally, another similar toolset is 

the one provided by the r.flow add-on (Mitasova et al., 1995) which employs a vector-driven SFD. 

GRASS drainage encoding is different from the one adopted by ArcGIS and ranges from 1 (north-east) to 8 

(east) in a counterclockwise rotation (Figure 4). Negative values in output flow direction obtained with GRASS 

GIS indicates that the flow from the cell is leaving domain boundaries. 

 

Figure 4 - GRASS GIS drainage encoding for D8 and MFD algorithms 
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1.4.1.3.3 TAUDEM 

The “Terrain Analysis Using Digital Elevation Models - TauDEM” software from the Utah State University 

Hydrology Research Group (Tarboton, 2021) provides a wide range of tools (a total of 34 executables from 

Basic, Stream Network, and Specialized Analysis algorithms) for the extraction of hydrological information 

from the DEM (Tarboton, 1997; Tarboton and Baker, 2008; Tesfa et al., 2011). TauDEM represents an 

evolution of its predecessor TARboton Digital Elevation Models - TARDEM. This software is meant to be used 

on Windows OS and it can be integrated into both QGIS (QGIS Development Team, 2021) and ArcGIS via a 

dedicated QGIS add-on and ArcGIS toolbox. For Linux OS, the source code available in GitHub must be 

compiled through the given UNIX make files. Concerning flow direction algorithms, TauDEM offers: 

1) D8, 

2) DINF. 

Such methods can be used to derive drainage grids using the “D8 Flow Direction” (O’Callaghan and Mark, 

1984) and the “D-infinity Flow Direction” tools (Tarboton, 1997). In the implementation of the D8 algorithm, 

TauDEM employs the method presented by Garbrecht and Martz for assigning flow directions over flat areas 

(Garbrecht and Martz, 1997). While estimating drainage from a not hydrologically conditioned DEM, the 

execution of “Pit remove” from TauDEM is essential before deriving the flow directions raster. Flow 

accumulation raster can be derived using the “D8 Contributing Area” or the “D-infinity Contributing Area” 

tools. A grid containing the distance to stream can also be derived from the DEM by using the “D8 Distance 

to Streams” or the “D-infinity Distance Down” tools. Algorithm performance in TauDEM is achieved through 

parallel processing of domain partitions by using the Message Passing Interface (MPI). 

1.4.1.3.4 RichDEM 

The “RichDEM High-Performance Terrain Analysis” software (Barnes, 2020) allows to pre-process DEM (e.g. 

depressions filling and breaching) and to derive its hydrological derivatives using a range of eight different 

drainage methods: D8, D4, Rho8, Rho4, Quinn, Freeman, Holmgren, and D-inf. To have an aesthetically 

pleasing drainage pattern over flats the Barnes Flat Resolution algorithm or the Epsilon Filling methods are 

available (Barnes, 2016; Barnes et al., 2014a, 2014b). This toolset has been developed by Richard Barnes from 

Energy and Resources Group, Berkeley, USA. 

1.4.2 Hydrological derivatives 

Multiple hydrological derivatives can be extracted from a conditioned DEM: 

• DEM slope, 

• Flow direction grid, 

• Flow accumulation grid (number of cells), 

• Sink points, 

• Drainage area (square km), 

• Streamlines, 

• Watershed of the whole basin, 

• Watersheds divide for each sub-basin, 

• Sub-outlets for each branch of the river network. 

All these products can be derived by using various GIS software like the ones mentioned in section 1.4.1.3. 
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An example of the hydrological derivatives of the UNOSAT’s SRTM-FM dataset (Arcorace et al., 2015) for an 

entire African Hydrologic Region (Zambezi river basin) is shown in Figure 5. Similar derivatives are also 

provided into the WWF’s HydroSHEDS and the USGS’s HDMA datasets. 

 
Figure 5 – Example of derivatives from hydrologically conditioned DEM (Arcorace et al., 2015). 

 

Concerning the delineation of flowlines, the streamlines derived from the DEM are often classified by 

assigning a different order to each branch of the network. In geomorphology, a topological ordering is, in 

fact, necessary to define the hierarchical position of each branch within the river network. Multiple methods 

are available in the literature for the computation of stream hierarchy: 

• Horton (1945), 

• Strahler (1952), 

• Hack (1957), 

• Pfafstetter (1989), 

• Shreve (1996). 

All these stream coding systems can be directly derived from input streamlines by using various GIS toolsets 

dedicated to hydrology. 

Finally, the hydrologically conditioned DEM can also be used to derive some essential geomorphic 

characteristics of the basin such as the length and the slope of each river branch, the slope of the main stem, 

as well as the time of concentration for each watershed. 
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1.5 Low-complexity flood models 

This section provides a panorama of existing 1D/2D hydraulic models and geomorphological ones. It aims to 

introduce the state of the art concerning the numerical modeling topic of this Ph.D. thesis. 

1.5.1 Simplified 2D hydrodynamic models 

Multiple hydraulic models are available in the literature (Afshari et al., 2017) which are essentially based on 

different numerical implementations of mathematical simplification taken from basic fluid mechanics such 

as the backwater and Navier-Stokes equations. 

Most of these tools rely on a one-dimensional (1D) hydraulic modeling approach based on the momentum 

equation of Saint-Venant equations (differential conservation equations of mass and momentum of flow). 

In particular, the various 1D hydraulic modeling approaches, such as the one adopted in HEC-RAS or MIKE11, 

are based on finite-difference solutions of the full Saint-Venant equations. These models represent river 

floodplains as a sequence of cross-sections along the Thalweg and perpendicular to the direction of flow. 

Consequently, 1D modeling is widely employed with the combination of traditional field surveying in which 

cross-sections are derived in the field during the dry season. One of the challenges in using this approach is 

the choice of appropriate cross-section locations along the river. 

The cross-section domain discretization of the 1D models does not allow a continuous representation of 

topography. The output flood inundation extent in a 1D model is approximated by interpolating the water 

depths calculated at each cross-section. 

More advanced models, such as the ones based on two-dimensional (2D) hydrodynamic modeling 

approaches allow a better representation of real river hydrodynamics by solving Navier-Stokes equations and 

the depth-averaged continuity using finite difference (FDM), finite-volume (FVM), or finite-element (FEM) 

methods. 

The adoption of a high-resolution DEM coupled with a 2D hydraulic model can overcome these limitations 

through more consistent modeling of river hydraulics. However, 2D models are employed for floodplain 

modeling only under certain conditions. Most of these 2D hydraulic models require, in fact, a high number 

of initial tide heights and inflow/outflow boundary conditions which are not easy to determine in data-poor 

environments. Furthermore, the computational effort to run these models remains an important parameter 

to be taken while integrating a 2D model in an operational modeling system. As a result, traditional 2D 

hydraulic models are often replaced with simplified DEM-based hydrodynamic approaches for flood hazard 

assessments at medium-large scales. 

Model Developer Type Method Reference License 

HEC-RAS 1D 
United States Army Corps 
of Engineers (USACE) 

1D Cross-section FDM Brunner, 2016 
Public 
domain 

MIKE 11 
Danish Hydraulic Institute 
(DHI) 

1D Cross-section FDM DHI, 2017 Commercial 

SOBEK 1D TU-Delft Deltares 1D Cross-section FDM Deltares, 2019 Commercial 

AutoRoute 
United States Army Corps 
of Engineers (USACE) 

1D/2D Cross-section FDM 
Follum et al., 
2012 

Public 
domain 

LISFLOOD-FP Bristol University 1D/2D Simplified FVM 
Bates and De Roo, 
2000  

Free (non-
comm. use) 
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MIKE Flood 
Danish Hydraulic Institute 
(DHI) 

1D/2D 
Cross-section and 
Regular/nested grid 
FDM 

DHI, 2017 Commercial 

TUFLOW BMT WBM 1D/2D Structured grid FDM Syme, 2001, GS Commercial 

ANUGA 
Australian National 
University (ANU) 

2D Triangular mesh FVM 
Mungkasi and 
Roberts, 2012, 
DOI 

Open 
Source 

BASEMENT ETH Zurich 2D Flexible mesh FVM 
Vetsch et al., 
2005 

Free 

FESWMS-2DH USGS 2D Irregular mesh FEM Froehlich (1989) Free 

FLO-2D FLO-2D Software Inc 2D 
Structured grid FDM 
and FVM 

FLO-2D Software 
Inc, 2020 

Commercial 

HEC-RAS 2D 
United States Army Corps 
of Engineers (USACE) 

2D 
hybrid discretization 
of FDM and FVM 

Brunner, 2016 
Public 
domain 

IBER 

Universitat Politècnica de 
Catalunya (UPC), 
Universidade da Coruña 
(UdC) 

2D 
Structured and not 
structured mesh FVM 

Bladè et al., 2014, 
DOI 

Public 
domain 

iRIC 
Nays2DFlood 

Hokkaido University 2D Regular grid FVM 
Shokory et al., 
2016, DOI 

Public 
domain 

JFLOW JBA Consulting 2D Regular grid FDM 
Bradbrook et al., 
2004, DOI 

Commercial 

CCHE2D-Flow 

National Center for 
Computational 
Hydroscience and 
Engineering (NCCHE) 

2D Irregular mesh FEM 
Jia and Wang, 
1999, DOI 

Public 
domain 

MIKE 21 
Danish Hydraulic Institute 
(DHI) 

2D 
Regular/nested grid 
FDM or flexible mesh 
FVM 

DHI, 2017 Commercial 

RiverFlow2D Hydronia 2D Flexible mesh FVM 
Hydronia LLC, 
2018 

Commercial 

SOBEK 2D TU-Delft Deltares 1D/2D Structured grid FDM Deltares, 2019 Commercial 

SRH-2D 
US Bureau of Reclamation 
(USBR) 

2d Flexible mesh FVM 
Lai, 2008, 2009, 
DOI 

Public 
domain 

TELEMAC-2D Electricite De France (EDF) 2D 
Grids of prismatic 
elements FEM 

Hervouet, 2000 
Open-
source 

TUFLOW-FV BMT WBM 2D Flexible mesh FVM BMT, 2019 Commercial 

Table 3 - A review of hydrodynamic models for river modeling available in the literature. 

From the list of models shown in Table 3, only AutoRoute, JFLOW, LISFLOOD-FP, and a few commercial 

software with GPU processing enabled can be considered as candidates for large-scale modeling. Some of 

the capabilities of most of these hydraulic models, such as solving the Saint-Venant equations as well as 

modeling hydraulic structures bridges, are not a priority in the rapid estimation of flood extent required by 

large-scale flood hazard or in early warning applications. Furthermore, while considering only tools with no 

commercial license to be used under a regular grid DEM, the LISFLOOD-FP and the AutoRoute models become 

valuable solutions. Below a brief description for each of the two selected models is given. 

https://scholar.google.com/scholar?q=TUFLOW:%20Two%20%20one-dimensional%20unsteady%20flow%20software%20for%20rivers,%20estuaries%20and%20coastal%20waters
https://doi.org/10.21609/jiki.v5i1.180
https://doi.org/10.1016/j.rimni.2012.07.004
https://doi.org/10.1051/E3SCONF%2F20160704003
https://doi.org/10.1080/15715124.2004.9635233
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(924)
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000134
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1.5.2 LISFLOOD-FP 

An example of a robust and slim 2D numerical flood model is the raster-based 2D hydrodynamic modeling 

approach of the LISFLOOD-FP model. This model relies on a 2D numerical implementation of the 

hydrodynamic equations (Bates and De Roo, 2000; Horritt and Bates 2001). In particular, the kinematic 

routing model of LISFLOOD-FP is based on an approximation of full Saint-Venant equations which is applied 

at each channel cell. The 2D wave representation of floodplain flow is triggered at the inflow channel cell and 

therefore it requires as input only an upstream inflow hydrograph. The flood modeling is based on a storage 

cell approach in which the flow rate from a given channel cell into its four adjacent cells is calculated using 

uniform flow formula. In this model, the continuity equation is solved by evaluating the volume stored in 

each channel cell. Given the simplicity of the numerical method, LISFLOOD-FP has been applied in multiple 

flood forecasting and hazard assessment scenarios at multiple scales (Neal et al., 2012; Schumann et al., 

2013; Alfieri et al., 2013, 2014b). 

1.5.3 AutoRoute 

The AutoRoute model of USACE (Follum, 2012) creates a raster-based flow depth by estimating flow depth 

raster at multiple cross-sections using Manning’s equation for a given discharge value. This approach faces 

the problem of having not flooded patches, being not perpendicular to the stream, between cross-sections. 

In later studies, the orientation of each cross-section along each cell of the streams is made by averaging 

upstream and downstream flow directions. Furthermore, the adoption of multiple cross-sections per stream 

cell has shown a better representation of the floodplain domain as shown in the Mississippi case study 

(Follum et al., 2017). The approach is suitable for massive flooding with the channelized flow not affected by 

backwater, however, it shows limitations for events with low magnitude or in flat areas and urban 

environments. Some of these limitations have been partly solved by simulating riverbed with artificial 

depressions of river cross-sections with exponential shape areas, and by considering the role of topography 

in the post-processing of resulted flood extent through IDW interpolation of water depths over stream cell 

surroundings (Follum et al., 2020). 

1.5.4 Hydrogeomorphic approaches 

In hydrology, hydrogeomorphic approaches rely on the gradient of potential energy derived from topography 

as the main physical driver for the spatialization of surface runoff within a 2D domain. Given this strong 

relationship with the input elevation grid, those approaches, in hydrology, are also referred to as DEM-based 

methods (Samela et al., 2017). The concept of the relative gradient of potential energy along a watercourse 

is one of the easiest approaches to identify the relationship between the channel and its surrounding 

floodplain. One of the most adopted methods for the delineation of relative elevation contours from regular 

grid topography of rivers is the Height Above the Nearest Drainage (HAND) method (Nobre et al., 2015). 

1.5.4.1 Scaling relations geomorphic models 

Most immediate approaches to estimate flood-prone areas from the geomorphic analysis are based on 

empirical laws. Since the publishing of the work about hydraulic geometry for stream channel of Leopold and 

Maddock in 1953 and their recent generalization in 2004 (Dodov and Foufoula-Georgiou, 2004), the 

hydrogeomorphic analysis at cross-section level became a reference in the field. In such analysis, multiple 

empirical relationships between the discharge and the hydraulic characteristics of a stream channel, such as 

the river depth, width, water velocity, or suspended load are used (Leopold and Maddock, 1953). In this way, 

water depth at a given channel cell can be expressed as a power of the contributing area at the cell via ad-

hoc calibration of expression coefficients. 
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Therefore, many empirical models become available in the literature. In some, the water depth is expressed 

as a function of the power of the contributing area via a parameterization of downstream river geometry. 

This is the case of the contributing area models, also referred to as “scaling relations”, in which power-law 

exponents and coefficients are derived via a linear regression of the expression by knowing the water stage 

and contributing area at multiple gauges. 

Examples of contributing areas hydro-geomorphic models are the Variable Contributing Area Model 

presented by Beven and Kirkby in 1979, the hydro-geomorphic delineation method proposed by Nardi et al. 

in 2006, or the Geomorphic Flood Index -GFI published by Samela et al. in 2017. 

1.5.4.2 Geomorphic Flood Index 

Manfreda and Samela proposed a DEM-based method to estimate flood extent and water depth based on 

the Geomorphic Flood Index (GFI) (Samela et al., 2017). This geomorphic approach performs a binary 

classification of the DEM to depict flood-prone areas by looking at multiple geomorphological descriptors 

such as the upslope drainage area, surface curvature, slope, flow distance, and elevation difference from 

nearest drainage. This is accomplished by estimating the river depth along the drainage using an exponential 

scaling relationship with the local contributing area. The GFI geomorphic index is then computed as the 

logarithm of the ratio between the river depth and the elevation difference to the nearest drainage. Once 

the flood extent is defined as binary classification, the water depth is then derived from geomorphic analysis 

of the elevation difference of areas near the river. 

This approach is based only on topography and the estimation of water depth relies on the upslope 

contributing area. Thus, the method is not capable to simulate flood wave propagation (Manfreda and 

Samela, 2019). However, given the simplicity and the geomorphic nature of this method, it is suitable for 

large-scale flood risk mapping in data-scarce environments (Manfreda and Samela, 2019). The Geomorphic 

Flood Area tool (GFA tool) is available as a QGIS plugin as open-source software (Samela et al., 2018). 

1.5.4.3 HAND-based hydrogeomorphic models 

1.5.4.3.1 Height Above the Nearest Drainage 

The Height Above the Nearest Drainage - HAND model (Rennó et al., 2008; Nobre et al., 2011; Nobre et al., 

2015) allows deriving from the DEM a map of river-based relative elevations from a given river network. In 

the HAND model, the absolute height of a hillslope cell is then re-classified by considering as its new vertical 

reference the elevation of the closest channel cell. For a general pixel, the nearest channel cell is identified 

by looking at the relative vertical flow path distances derived from the flow direction grid (Nobre et al., 2011). 

As a result, in the HAND map, all cells do not represent anymore the absolute elevation height of the DEM 

but are set to zero for channel cells and to differences in elevation heights above the nearest drainage for all 

channel cells (Figure 6). 

The concept of elevation above streams of the HAND approach has been extensively adopted under multiple 

DEM-based flood mapping tools. In such systems, the derived HAND maps become key products to be 

extracted from the DEM. For this reason, many mapping initiatives using multisource DEMs have been 

undertaken after the publication of the HAND method to create reference relative elevation maps at a global 

or continental scale to be employed in multiple hydrological applications. 
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Figure 6 - Concept of “relative elevation”. The surface elevation of a generic Hillslope Cell (HC), such as 15m above a vertical datum 
(e.g., MSL), can be expressed as relative elevation by calculating the vertical distance from the nearest Channel Cell (CC) of drainage, 
having an elevation of 10m (figure a). As a result, in the HAND map the hillslope cell of interest has a relative elevation of 5m, and its 
nearest channel cell, being a vertical reference, a value of 0m (figure b). 

Examples of these datasets are the HAND maps for the continental US at 10m resolution (Liu et al., 2016) and 

the global HAND maps at 90m resolution (Yamazaki et al., 2019) derived from the MERIT-DEM dataset 

(Yamazaki et al., 2017). In most of these HAND mapping efforts, the D8 (O’Callaghan and Mark, 1984) or the 

D-infinity (Tarboton, 1997), via its parallelized implementation in the TauDEM software (Tarboton, 2021; 

Tesfa et al., 2011), drainage methods are often employed. 

1.5.4.3.2 An expansion of HAND for flood delineation 

An extension of the HAND approach is possible with the combination of river stages derived from simplified 

hydraulic modeling. Thus, a water depth map can be derived by filling a HAND map. This static filling is made 

by imposing a column of water along the entire flow line having a vertical distance equal to zero. In this way, 

all the neighbor pixels along the flowline are “flooded” in case the elevation above the drainage is minor or 

equal to the imposed water column. 

The static inundation of a HAND map can be accomplished in two possible ways by following a: 

1. “height-driven approach” (HDA), 

2. or a “volume-driven approach” (VDA). 

The first HDA method can model the water stage closer to the 1D hydraulic modeling only near the cross-

section. In this first modeling approach, it is necessary to dynamically update the stage-discharge rating curve 

along the watercourse or to assume a synthetic stage-discharge rating curve for the entire river branch. An 

alternative to HDA is the volume-driven approach. In VDA the driver of the forcing for the static inundation 
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of HAND contours is not the river stage derived from input discharge using a local rating curve, but the runoff 

volume, obtained via the time integral of the discharge. Such volume is then used to derive a flood extent 

that can store the same mass of water for each river branch. 

Hereinafter are presented brief descriptions of the most referenced models that extend the HAND approach. 

1.5.4.3.3 GIS Flood Tool 

A first example of a hydro-geomorphological method is the one developed by USGS, the “GIS Flood Tool – 

GFT” (Verdin et al., 2016). The GFT model is based on Manning’s equations to estimate the water stage at a 

given cross-section and on the HAND model to spread over the 2D domain the resulting water depth 

calculated at each cross-section via the relative heights to the watercourse. This method automatically 

extracts a river cross-section centered at the centroid of each river branch and oriented perpendicularly to 

the flow using the input D8 flow direction grid. The river stage at each DEM-based cross-section is derived 

from the rating curve using the input discharge given by the user. This GIS-based model is built with ESRI’s 

ArcPy libraries and it is meant to be primarily used via the ArcMap GUI. This method relies on the user’s 

sensitivity and experience in defining reaches and in placing a well-located cross-section for each reach 

(Verdin et al., 2016). A validation of the method is presented in Verdin et al 2016 by comparing GFT flood 

maps near gauges with national flood hazard/scenarios benchmarks made with HEC-RAS. A similar 

methodology presented by Verdin et al. in 2016 has been also employed by the United Nations 

Environmental Program (UNEP-GRID) and the CIMA Research Foundation for the development of the global 

flood hazard maps of the GAR (Herold and Rudari, 2013). In this context, the authors presented an extension 

of this DEM-based method via ad-hoc modeling solutions to increase the number of cross-sections and to 

simulate the backwater effect. 

1.5.4.3.4 Continental Flood Inundation Mapping 

Another example of low complexity flood model is the one presented by Liu et al. in 2018, within the 

Continental Flood Inundation Mapping - CFIM. This work presented a “CyberGIS” workflow that has been 

applied at a continental scale over the entire territory of the United States via high-performance computing. 

In such a method, the HAND dataset for the US at 10m is coupled with streamflow values from the NOAA 

National Weather Model (NWM). Flood maps are then derived through a “static mapping solution” by 

inundating HAND maps using stage height at multiple river stations (Liu et al., 2018). 

1.5.4.3.5 GeoFlood 

The “GeoFlood” model (Zheng et al., 2018b) is another hydro-geomorphological method that extends the 

HAND model with simplified 1D modeling to estimate flood extent and water depth along the watercourse. 

River stages for multiple river segments are computed from input discharges using synthetic channel 

hydraulic parameters and synthetic rating curves derived from the DEM (Zheng et al., 2018b). In such 

computation, the authors subdivided each river branch of the network into segments having a length of 1.5 

Km. Inundation maps are then derived for each river segment using an expression of Manning’s formula 

tailored for the HAND relative topography (Zheng et al., 2018a). The strength of this method lies in its 

innovative high-fidelity river network extraction routine, named “GeoNet”, which is designed to handle high-

resolution DEM (e.g., LiDAR data). The authors have already shown the potential application of GeoFlood for 

flood modeling using either approximated or calibrated roughness coefficients into Manning’s formula. 

Despite the key role of the Manning coefficient in water depth calculation, modeled results using raw 

Manning coefficients have shown acceptable estimation of the flood extent (Zheng et al., 2018b). The 

GeoFlood software is distributed via a dedicated GitHub repository. 
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1.5.4.3.6 NWM-HAND Flood Mapping 

In a similar manner to the already presented models, also the NWM-HAND Flood Mapping model (Johnson 

et al., 2019) extends the HAND model using Manning’s formula over averaged geometry of river channel. 

Water depth is calculated at each river branch by adopting the approach proposed by Zheng et al. in 2018 

for the estimation of the synthetic rating curve (Zheng et al., 2018a). Validation of the model is performed 

nearby water gauges using observed water levels and EO-based flood maps (Landsat 5, 7, 8, and Sentinel 1). 

According to the authors, the application of the NWM-HAND model at catchment scale using a default 

Manning’s coefficient tends to underestimate flooding areas in lower-order reaches and to overestimate at 

higher-order reaches (Johnson et al., 2019). To mitigate this unbalance in flood extent prediction, the authors 

suggest a systematic increase and decrease of the Manning coefficient respectively in low and high order 

reaches (Johnson et al., 2019). The software developed from NWM-HAND is available at the FloodMapping 

repository in GitHub. 

1.6 Discussion 

In this last section of the chapter, it is given a summary of remarks and recommendations of best practices 

identified in this research. The following outcomes and assumptions are the ones used for building the 

method described in the next chapter. 

1.6.1 About input datasets 

Concerning the input DEM, hydrologically conditioned SRTM data at medium scale and LiDAR data at local 

scale are considered as reference sources for terrain elevation. Input streamflow estimations are either taken 

from local stream gauges, published hydrological studies or eventually modeled values derived from the 

Continuum model by CIMA Foundation. Finally concerning the multiple types of remote sensing products, 

only open access products derived from freely available EO data, such as the ones from NASA and Copernicus 

missions (Landsat-8 for optical imagery, Sentinel 1 for SAR, and Sentinel-3 for altimetry data), are considered 

for this research. 

1.6.2 Critical analysis of drainage methods 

Different qualitative and quantitative algorithm analyses as well as inter-comparison of several drainage 

methods can be found in the literature. The D8 drainage algorithm represents the most simple and slim flow 

direction method available. For this reason, it is widely employed in many applications, particularly for river 

network extraction. However, the assumption of the one-dimensional flow routing shows its limit in the D8 

drainage modeling for planar convergent and divergent topography (Costa‐Cabral and Burges, 1994). 

Furthermore, while comparing MFD with SFD over the same topography most of the authors have shown a 

more realistic output drainage grid with a reasonable estimation of stream network (Pilesjö and Zhou, 1996). 

The innovation given by the introduction of the vector-based approach raised new questions on drainage 

modeling and offered a significant alternative to consolidated grid-based methodologies. As an example in 

1997 Tarboton, while comparing D-infinity with other MFD methods, highlighted an over-dispersion of 

drainage in such methods given by their distribution of flow which is proportioned to the slope (Tarboton, 

1997). Furthermore resulting flow directions appear to be too coarsely described in centroid-based drainage 

modeling given the introduction of grid bias into drainage estimation (Tarboton, 1997). 

The introduction of dispersive methods based on triangular facets has been recognized to solve some of the 

issues of non-dispersive methods. In 2011 Zhou et al. also presented a qualitative and quantitative 

comparison between its own TFN algorithm and seven selected methods (D8, D8-LTD, DINF, MDINF, FMFD, 
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QMFD, and DEMON) by comparing the error with respect to theoretical Specific Catchment Area (SCA) values 

(Costa‐Cabral and Burges, 1994) over mathematical surfaces and real digital elevation models. The accuracy 

assessment of this vector-based approach has shown advantages to the other methods. However, the TFN 

algorithm still must be parallelized before any applications over large DEMs (Zhou et al., 2011). 

Based on the above considerations and the state of the art of their numerical implementation in open source 

software the drainage models adopted in this research are: the Deterministic Eight-Node - D8 (O’Callaghan 

and Mark, 1984), Holmgren’s MFD (Holmgren, 1994), and the D-Infinity (Tarboton, 1997, 2021). All these 

methods are employed in this research by using only open-source toolsets to simplify the sharing of the 

method. 

1.6.3 Critical analysis of low complexity flood model 

The review of the literature has shown the advantages and disadvantages of multiple numerical methods for 

flood modeling. Simplified 1D/2D hydraulic models still require an effort to be automatized and to be easily 

deployed in an unsupervised manner and at multiple scales. On the other hand, geomorphic methods do not 

often satisfy some of the basic principles of fluid mechanics. In this research, it has been chosen to employ a 

different expansion of the HAND geomorphic model and to build a novel hydro-geomorphic modeling chain 

for a quick estimation of flood extent with the inclusion of simplified hydraulics. 

As explained in section 1.5.4.3.2 the expansion of HAND maps can be performed by using either a height-

driven (HDA) or a volume-driven (VDA) approach. 

In HDA a synthetic stage-discharge rating curve is derived to convert input discharge into a water stage. 

However, it must be effectively representative of the entire portion of the river. This may be not immediate 

for irregular topography, man-made river environments, and river branches having rapid changes in river 

slope. Furthermore, while extracting the water depth map by filling the HAND map with a calculated river 

stage it is not always possible to fulfill the conservation of mass requirement at nodes. As an example, if we 

consider a simple “Y” confluence, a false loss of mass may occur due to an underestimation of the water 

stage after the junction derived from a synthetic stage-discharge rating curve which is not representative of 

the downstream river environment. On the contrary, a false increase of mass at the confluence may happen 

if tributaries are not properly modeled, with an underestimation of flood extent due to low river stage values. 

In general, a not-representative synthetic rating curve causes an inaccurate estimation of flood extent. 

Moreover, intrinsic limitations of the method persist on the river stage estimation at cross-sections in 

floodplains with small relief. 

In VDA the expansion of HAND contours is not driven by the river water stage but directly by the source, the 

input discharge. In this way, no further errors are introduced into the VDA by using as forcing a derived 

variable of the discharge, the river stage. Furthermore, the adoption of multiple input runoff volumes for 

each river branch aims to fulfill the conservation of mass at nodes. As an example, this is possible if all input 

runoff volumes are derived from a distributed hydrological simulation of the entire basin. Alternatively, in 

case of flood hydrographs not available from hydrological simulations, the runoff volume can be also 

approximated via simplified hydrographs built from the statistical peak of historical discharges. The resulting 

water depth map is the one obtained by filling the HAND map with an unknown water stage that identifies 

an underlying water volume that is close to the input runoff one. 

The above analysis led to adopt a Volume-Driven Approach in this research, also to propose an alternative 

method to the different multiple HDA recently published over the last 4 years. 
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Chapter 2 - Method 

 
The second chapter Illustrates the method identified and adopted in this Ph.D. research. 
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2.1 Introduction 

This chapter aims to Illustrate a novel modeling chain developed for quickly converting input discharge into 

output flood map. This method employs data and methodology described in Chapter 1. Hereinafter is 

described in detail the whole modeling chain and how each component has been implemented. 

2.2 A simplified 2D hydro-morphological modeling approach: REFLEX 

The Rapid Estimation of Flood Extent - REFLEX model (Arcorace et al., 2019) is an expansion of the Height 

Above the Nearest Drainage (HAND) approach (Nobre et al., 2015), designed as a slim tool able to provide 

rapid inundation mapping, constraining the possible geo-morphological flood extent with the available flood 

volume. A high-level schema of the entire REFLEX modeling chain is shown in Figure 7. This workflow also 

highlights the connections between the four modules. 

 
Figure 7 - REFLEX model flowchart. 

Inputs of the REFLEX modeling chains are a Digital Elevation Model (DEM), flowlines, and the streamflow or 

surface runoff (given as discharge value). The output is a flood map that includes water extent and depth. 

The representation of terrain elevation is based on a hydrologically conditioned Digital Elevation Model 

(DEM). Output hydrological derivatives extracted from the input DEM are obtained following the D-infinity 

approach to increase the level of dispersion of flow direction over flat areas. Concerning the floodplain 

delineation, the HAND methodology is adopted to derive from topography the relative soil gravitational 

potentials. Stream hierarchy is computed using multiple stream ordering methods, which are necessary for 

an organized combination of DEM derivatives under the multiple REFLEX modules. Therefore, a different 

HAND map is created for each river order, starting from headwaters. Finally, flood extent and depth 

information are derived for each sub-basin by sequentially “filling” the HAND maps using input runoff 

volumes. An optimum flood map is derived from a water balance between the volume underlying the HAND 

map and the observed one. A detailed description of each sub-component is given in the following sections. 
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2.3 Collecting and pre-processing of REFLEX inputs 

This section describes all necessary pre-processing of the inputs required in the REFLEX modeling chain. 

2.3.1 Input discharge values 

The hydro-geomorphic method identified and developed in this research to build REFLEX relies on a Volume 

Driven Approach to expand the HAND delineation and obtain a flood scenario. Thus, the input runoff volume 

is an essential source of information. This quantity is derived from the time integration of an input 

hydrograph over each branch of the river network (more details in section 2.5). 

Input flood hydrograph can be either derived from hydrological models or in-situ observations. In REFLEX, 

the collection of the input discharge values requires a pre-processing of this data. This is often needed to 

ensure that a discharge value is properly assigned for each branch of the input flowlines. Moreover, in this 

process, it is important to use the same grid of the source hydrologically conditioned DEM to avoid data 

shifting. In this research, this pre-processing has been performed case by case using GIS software and has 

not been fully automated for REFLEX. 

2.3.2 DEM conditioning in REFLEX 

The representation of terrain elevation is based on a hydrologically conditioned DEM. Given the nature of 

REFLEX as a hydro-geomorphological model, good quality conditioned DEM needs to be chosen as input. For 

this purpose, the role of filtering and conditioning of raw DEM is essential. 

The employment of already pre-processed global DEM datasets, such as the ones from the SRTM-FM, the 

HDMA, or the MERIT datasets (Arcorace et al., 2015; Yamazaki et al., 2017; Verdin, 2017), represents a 

valuable input for this method at medium scales. When available and for application of the method at local 

scales, conditioned LiDAR data is advisable given its resolution and spatial and vertical accuracy. 

In case a raw DEM needs to be used as input for this hydro-geomorphic model, a DEM conditioning chain has 

been developed in REFLEX to handle this type of source elevation data. The identified workflow for the 

hydrologically conditioning of the DEM in REFLEX can be summarized in the following steps: 

1) Filtering, 

2) Filling, 

3) and burning streams into DEM. 

2.3.2.1 DEM noise filtering 

The first step, filtering, is necessary to remove noise from input raw DEM such as absolute bias, stripe and 

speckle noise, and canopy height bias (Yamazaki et al., 2017). This is mandatory if input raw DEM is affected 

by elevation artifacts. If required, in REFLEX it is possible to perform a filtering of this input by employing the 

filtering routine of the “MDenoise” program (Sun et al., 2007). 

2.3.2.2 DEM filling 

Once the DEM is efficiently smoothed and the four different types of bias are filtered out, it is possible to 

begin the hydrologically part of the conditioning of the DEM. The second step of the DEM conditioning in 

REFLEX consists of “Filling” the DEM to remove depressions from the filtered elevation grid. In REFLEX the 

filling of the DEM is made using the epsilon filling approach (Barnes, 2016). This approach has been chosen 

due to its simplicity and effectiveness in filling depressions with a not flat surface having a small artificial 

elevation gradient. 
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This choice has been crucial to boost the iterative procedures to resolve flats in the computation of flow 

directions in REFLEX (more details in section 2.4). As an example, while employing the D-infinity flow direction 

method of TauDEM (Tarboton, 1997) over LiDAR data, the implementation of the epsilon filling approach in 

REFLEX has shown a drastic reduction of the computation time required to resolve the flats. 

2.3.2.3 Stream burning 

After the filtering and the filling of the raw DEM, an artificial depression of the elevation along the input 

flowlines, and the surrounding cells, is often required to artificially force the drainage over the desired path 

and to ensure a coherent decreasing of terrain elevation along the watercourse. In REFLEX the flow 

enforcement of filtered and filled data is made possible by burning input streamlines into the DEM. The 

stream burning methodology adopted in this research essentially relies on a slope-based filtering of the 

watercourse elevation profile by removing points having significant absolute local difference into river slope. 

In particular, the filtering of raw elevation along the flowline is performed using the formula: 

 

 |(
(𝑧𝑖+1 − 𝑧𝑖)

𝑑
−

(𝑧𝑖 − 𝑧𝑖−1)

𝑑
)| <

𝑖�̂�

𝐶
 (1)  

 
where 𝑖𝑠 = (𝑧𝑖𝑛𝑙𝑒𝑡 − 𝑧𝑜𝑢𝑡𝑙𝑒𝑡)/𝑑𝑠𝑡𝑟𝑒𝑎𝑚 , 𝑑𝑠𝑡𝑟𝑒𝑎𝑚 is the stream length in pixels, 𝐶 is a scalar representing the 

filtering magnitude (c<1 for a light and c>1 for heavy filtering), and 𝑑 is the distance in pixels (𝑑 = 1). The 

equation (1) is applied to each elevation of the channel cell of the river branch by looking at the closest 

upstream and downstream channel cell elevations. A stream point having elevation that does not satisfy the 

equation (1) is deleted from the river profile (Figure 8). 

 
Figure 8 - Schema of the stream elevation filtering 

In a later stage, all river point elevations deleted by the filter are then replaced with artificial elevations 

computed from linear interpolation of the elevations in the remaining upstream and the downstream points. 

Once the entire river profile is filtered, an artificial depression of the bed of the river is employed by 

deepening the DEM along the flowline with a certain which represents the Simulated River Depth (𝑆𝑅𝐷). In 

particular, the DEM is carved by lowering the elevation of the channel cell of the scalar 𝑆𝑅𝐷 and the closest 

right and left hillslope cells with half of 𝑆𝑅𝐷. In this way, the stream burning for a generic channel cell is 

accomplished by deepening the water table with an elementary triangle having a height equal to the 

simulated river depth and a base equal to five times the DEM spacing resolution. 
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In this method, for each branch of the river network, the stream burning is employed by following two 

possible scenarios in which 𝑆𝑅𝐷 is defined as either incremental or constant along the branch. 

In the first scenario, the DEM is incrementally carved from zero to the chosen 𝑆𝑅𝐷 scalar for the river branch. 

The min-max normalization is employed to normalize elevations 𝑧𝐹𝐶𝐶,𝑎𝑑𝑖𝑚over channel cells from the filtered 

river profile using the equation (2), 

 

 𝑧𝐹𝐶𝐶,𝑎𝑑𝑖𝑚 = (𝑧𝐹𝐶𝐶  − 𝑧𝑜𝑢𝑡𝑙𝑒𝑡) / (𝑧𝑖𝑛𝑙𝑒𝑡  − 𝑧𝑜𝑢𝑡𝑙𝑒𝑡) (2)  

 

in which 𝑧𝐹𝐶𝐶 is the filtered elevation at the channel cell, 𝑧𝑖𝑛𝑙𝑒𝑡 and 𝑧𝑜𝑢𝑡𝑙𝑒𝑡 are respectively filtered elevation 

at inlet and outlet cells. The conditioned elevation after stream burning is then derived by incrementally 

lowering 𝑧𝐹𝐶𝐶 using the equation, 

 

 𝑧𝐹𝐶𝐶,𝑏𝑢𝑟𝑛𝑒𝑑 = 𝑧𝐹𝐶𝐶  − (𝑆𝑅𝐷 ∙ (1 −  𝑧𝐹𝐶𝐶,𝑎𝑑𝑖𝑚)) (3)  

 
in which 𝑧𝐹𝐶𝐶,𝑏𝑢𝑟𝑛𝑒𝑑 ranges from 0 at the inlet to SRD at the outlet. A schema for this scenario is shown in 

Figure 9. 

 
Figure 9 - Schema of SRD incremental stream burning. 

In the second scenario, the elevation of the output conditioned DEM is equally deepened along the branch 

using: 

 

 𝑧𝐹𝐶𝐶,𝑏𝑢𝑟𝑛𝑒𝑑 = 𝑧𝐹𝐶𝐶  −  𝑆𝑅𝐷 (4)  

 
The result of the second scenario is a vertical translation of the river profile as shown in Figure 10. 
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Figure 10 - Schema of constant SRD stream burning. 

The choice of having two different carving scenarios is meant to condition the filtered DEM in REFLEX 

differently according to the hierarchy of the river network. In particular, the incremental stream burning of 

filtered DEM elevation (first scenario) is employed for all river branches having no tributaries (e.g., 

headwaters) and for the ending branch of the network connected to the basin outlet. Instead, the constant 

stream burning (second scenario) is employed for all other connected branches. 

The application of this method is automated via a simple GIS-based classification of each segment of the river 

network using “-1” for the outlet branch, “0” for inlet branches, and “1” for the connector ones (Figure 11). 

 

Figure 11 - The usage of constant and incremental stream burning scenarios over a simple basin. Figure (a) shows a sample 
classification of the river network between the inlet, connector, and outlet branches. Figure(b) presents an application of the method 
with sample SRD at nodes. SRD is constant only for connector branches while it is incremental for all the others. 

The combination of the above-mentioned scenarios allows the creation of a map of values to be used for 

digging the DEM over the entire river network of the basin (Figure 11). Caution needs to be taken at nodes 

in which the conditioning of multiple tributaries must not create scaling effects at the confluence. This 

condition can be guaranteed by imposing the same SRD at the outlets of all the tributaries of a generic node. 
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After the conditioning of the entire river network, the SRD map is calculated by merging all obtained SRD 

values along the channel cells. The SRD map is then extended by adding half of the SRD values over all the 

hillslope cells included in the buffer zone of the river having a radius equal to the dimension of a cell grid. At 

the end of this process, the output conditioned DEM is obtained by subtracting the elevation of the filled 

DEM with the SRD map. If observed river networks are used as input of this process, the hydrologically 

conditioned DEM contains the corrections along real river paths. This is crucial for the extraction of more 

realistic flowlines from the conditioned DEM in REFLEX’s flood modeling. 

The entire DEM conditioning approach described in this section has been implemented in the REFLEX Module 

0 by using multiple Python libraries, such as geopandas, rasterio, numpy, scipy, pysheds, and by integrating 

the following software: GDAL, GRASS GIS, TauDEM, richdem, and mdenoise. Not all the three steps of the 

DEM conditioning are mandatory in REFLEX. In case the source DEM is already noise filtered and the stream 

burning is not necessary, the only mandatory step of this workflow is the filling one. 

2.3.3 Define flowlines 

The third input of REFLEX is represented by the reference flowlines. Input flowlines or streamlines are meant 

to describe the river network of the basin and are composed of the cells of the DEM classified as a channel. 

Such cells identify where surface runoff is collected from hillslope cells. Channel cells are often represented 

by centerlines of permanent water bodies and can be derived from river delineation datasets or EO-based 

water masks. Flowlines can be also derived from thresholding of the flow accumulation extracted from the 

hydrologically conditioned DEM. The widely employed HydroSHEDS streamlines are an example dataset 

often used for this scope. This input static river network is needed to define and spatially assign the input 

discharge values over the entire basin. Thus, each branch of this input river network will be used in the REFLEX 

modeling to assign a discharge value and distribute a potential flood surface runoff over the sub-basin. 

2.4 Module 1: Extracting Hydrological Derivatives from Conditioned DEM 

The first REFLEX module aims to extract all necessary hydrological derivatives from the conditioned DEM. 

This module requires the hydrologically conditioned DEM as input. Outputs are hill-shaded DEM, flow 

direction, flow accumulation and sinks raster files. 

2.4.1 Drainage modeling and extraction of derivatives 

The review of drainage models allowed the design of this first REFLEX module which is needed to extract 

hydrological derivatives from the DEM. In this process, the first and most important step is the computation 

of the flow direction raster from the Conditioned DEM. This step is crucial because it sets the ground for the 

two following steps: the delineation of the stream network and the extraction of relative HAND maps. In 

particular, the flow direction grid is meant to be used in REFLEX for two distinct purposes (see Table 4). 

Purpose Drainage model Hydrological Derivatives 

Basin delineation D8 Contributing Area, Streams, Sinks, Watersheds. 

HAND mapping MFD, DINF HAND 

Table 4 – The multi-purpose usage of different flow direction models in REFLEX. 

The first one is required to extract all necessary hydrological derivatives which are needed as input in all 

following REFLEX modules. In the second usage, the flow direction is derived from the DEM and stored as a 

raster for the computation, in the third REFLEX module, of multiple HAND maps across the entire basin. 
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Modeled streams are efficiently derived in this module with thresholding on the contributing area (e.g., 1000 

cells) using the D8 drainage model. Also, watershed and sub-watershed raster files are derived by using the 

conditioned DEM, and D8 flow direction and of the flow accumulation grids. The extracted river network and 

associated watersheds depend on the flow accumulation threshold (area or number of pixels) specified at 

this stage of the modeling. As an example, a low value of threshold drainage area implies a dense delineation 

of the network with multiple ramifications. Such threshold in REFLEX is defined as a parameter to allow 

tailored applications under multiple contexts. 

Also, in the REFLEX Module 1, Holmgren’s MFD or the D-infinity models are employed to derive flow direction 

and flow accumulated grids. Such products are needed in REFLEX’s Module 3 to extract relative elevation 

contours to the D8 streams using the HAND approach. The adoption of the MFD and the D-infinity approaches 

to compute flow direction from the DEM is meant to increase the level of dispersion of drainage over flat 

areas, as shown in Figure 12. 

(a) 

D8 

(b) 

MFD (Holmgren) 

(c) 

D-Infinity 

 

Figure 12 - Flow directions obtained by using D8 (a), Holmgren’s MFD (b), and D-infinity (c) flow directions over the Lake Maga in 
Chad. Flatwater surface highlights the increasing level of flow direction dispersion of the three methods respectively from (a) to (b) 
and to (c). Flow directions are obtained by using hydrologically conditioned SRTM data from the SRTM-FM dataset (source: UNOSAT). 

The computation of flow directions in REFLEX is achieved using the “r.watershed” function of GRASS  

(Ehlschlaeger, 1989; GRASS Development Team, 2021e; Metz et al., 2011) and the D-infinity Flow Direction 

tool of TauDEM (Tarboton, 1997, 2021). Flow accumulation, Sink, Stream, Catchment, and Sub-catchments 

are then derived as raster files from the D8 flow direction raster using and the GRASS GIS’s “r.accumulate” 

(GRASS Development Team, 2021f) and “r.stream.basins” (GRASS Development Team, 2021g) add-ons. 

2.5 Module 2: Streams Hierarchy and Surface Runoff Estimation 

The second REFLEX module aims to extract and classify streams with multiple hierarchy methods using 

hydrological derivatives obtained at the precedent steps. Later, all necessary morphologic parameters are 

derived from the conditioned DEM, and the surface runoff volume is estimated from input discharge values 

collected from observations or hydrological models. This module requires input discharge values for the 

entire river network, the Filled DEM, and its hydrological derivatives from the first REFLEX module. Outputs 

are hierarchically ordered streams, and surface runoff volumes distributed at the nodes of the network. 

2.5.1 Stream network and watersheds delineation 

In the REFLEX Module 1 streams, watershed and sub-watersheds are derived from the DEM as raster files. 

Therefore, in this second module, obtained streams, basin, and sub-basins raster files are firstly converted to 

polylines and polygons. Streamline vectors are essential hydrological derivatives in REFLEX which are 

employed for multiple purposes in the modeling chain, such as: assigning single feature ID while relating 

rivers and watersheds vectors, distributing the runoff volume at nodes, and storing essential hydrological 

and morphological attributes of each sub-basin. On the other hand, watershed vectors are primarily used in 



Mauro Arcorace |  Chapter 2   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  37 

REFLEX to mask out the DEM and its derivatives over a sub-basin or its neighbor pixels. As an example, 

watershed vectors are used to derive morphological parameters and HAND contours for each sub-catchment. 

Furthermore, the same polygons are used to build buffered drainage area masks required in REFLEX’s flood 

modeling to simulate backwater effects at confluences and the expansion of HAND maps near the coast. 

2.5.2 Stream hierarchy 

Once the stream network is derived, all branches are then classified using hierarchical methods. Multiple 

stream hierarchy methods are employed in REFLEX for the modeling of the whole basin. Hereinafter are listed 

the chosen methods, including a description of their different applications in the REFLEX modeling chain. 

The first one is the Hack stream order (Hack, 1957) which is a bottom-up stream hierarchy method where 

the main watercourse is identified with the value 1 and higher orders are assigned to all the tributaries. This 

method is employed in REFLEX to easily identify and compute the length of the longest watercourse also 

referred to as “main stem” (Figure 13). 

 
Figure 13 - Hack stream order for the Magra river basin. The thickest blue line, having Hack order equal to one, identifies the main 
stem. 

Another method to assign stream hierarchy in REFLEX is the “top-down” method proposed by Strahler 

(Strahler, 1954) which allows the classification of streams from the source to the outlet (Figure 14). 

Headwaters are the first-order river branches in the Strahler hierarchy. A higher order is then assigned 

downstream at each confluence until the mouth of the basin is reached where river branches have the 

highest values. 
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The network encoding with Strahler stream order is used in REFLEX to differentiate and organize the creation 

of the HAND map library for the whole basin. Thus, the delineation of HAND contours in REFLEX begins from 

all headwaters which are identified by selecting the branches having the lowest order. On the other hand, 

the highest Strahler orders intersect the portion of the basin near the mouth where floodplains are often 

located. The calculation of both Hack and Strahler's streams hierarchy is performed in REFLEX using the 

GRASS GIS “r.stream.order” (GRASS Development Team, 2021h) add-on. 

 
Figure 14 - Strahler stream hierarchy for the Magra river basin. All headwaters can be identified with Strahler order equal to one. The 
thickest blue line represents the downstream part of the river network that collects the flow of all upstream tributaries and that drains 
to the river mouth. 

The last stream hierarchy method included in REFLEX is the Pfafstetter coding system proposed by Otto 

Pfafstetter (Pfafstetter, 1989). This system relies on the topology of the river network and on considerations 

on the drainage area to classify sub-basins and consecutively river branches. In this coding system, ordinal 

values from 1 to 10 are assigned from the mouth upstream by using even numbers for “basins” and odd digits 

for “interbasins” (Verdin and Verdin, 1999). 

In this system, intervening areas that drain to the main stem are classified with odd values, from 1 (outlet) 

to 9 (source) and their tributaries are classified with even numbers in four basins, from 2 to 8 (Figure 15). 

This approach is suitable for the coding of large river networks at continental and global scales. As an 

example, this method has been applied at multiple continental scales for the classification of the river 

network in all hydrological regions of the entire globe (Verdin and Verdin, 1999). Extended and modified 

Pfafstetter stream hierarchy has been also recently applied over the whole Australian continent with 

enhancements in ordering distributaries drainage networks and endorheic basins (Stein, 2018). 



Mauro Arcorace |  Chapter 2   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  39 

 

Figure 15 - Pfafstetter stream order for the Magra river basin. Interbasins 1, 3, 5, 9 are the ones along the main stem (having HACK 
order equal to one). Even orders 2-8 are used for basins of main stem tributaries. Coding of sub-basins, as shown for Basin 4, follows 
again an upstream incremental 1-10 ordering at multiple levels from outlet to divide (e.g., from 4100 to 4930). 

Pfafstetter stream hierarchy is computed in REFLEX using a dedicated chain developed in Python and the 

obtained orders are tagged with additional attributes to the ones already included in the stream vector 

obtained after Hack and Strahler stream classification in GRASS. 

The Pfafstetter coded river network is used in REFLEX to build multiple vector masks (Figure 16): 

1. Sub-basin mask: obtained by selecting the current sub-basin. 

2. Drainage area mask: obtained by computing drainage area at the outlet of the sub-basin. 

3. Headwater mask: obtained by merging the current sub-basin with its six headwater ones. 

4. Downstream mask: obtained by merging headwater mask with two downstream sub-basins. 
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The downstream mask is also buffered of a distance to be used for HAND expansion in coastal areas. 

 

Figure 16 - Drainage area, headwater, and downstream masks for a generic sub-basin derived by identifying 6 headwater branches 
and 2 downstream river branches from the entire Pfafstetter coded river network. 

The headwater mask is needed to consider the backwater effect in REFLEX (Figure 17). Six above Pfafstetter 

orders have been chosen to effectively simulate backwaters also in large and flat basins with low values in 

headwaters riverbed slopes. This is important while employing this method at continental scales. 

 

Figure 17 - Backwater effect in REFLEX. 
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Downstream mask instead is configured in this manner to expand HAND downstream from the outlet of the 

sub-basin (see coastal expansion in section 2.6). 

2.5.3 Morphologic parameters from the DEM 

After the delineation of both watersheds and streamlines, morphological parameters are then derived from 

the DEM. This is required to estimate the time of concentration (𝑡𝑐) for each sub-basin of the region. The time 

of concentration (𝑡𝑐) can be derived from various empirical methods (Almeida et al., 2016; Salimi et al., 2017) 

that are based on multiple morphologic parameters such as: divide (𝐻𝑚𝑎𝑥), average (�̅�), and outlet (𝐻𝑚𝑖𝑛) 

elevations, basin area (𝐴), length (𝐿), average basin slope (𝑆𝑏), and average slope (𝑆) of the longest 

watercourse. 

Model Formula Notes Application Reference 

Kirpich 𝑡𝑐,𝐾 = 𝑘 ∙ 𝐿0.77 ∙ 𝑆−0.385 

𝑘 = 0.000325, length of the longest 
watercourse (L) in [m], dimensionless 
average slope of the longest 
hydraulic way (𝑆) in [m/m]. 

Small basins in Tennessee 
and Pennsylvania with A 
within 0.004 ÷
0.453 𝑘𝑚2. 

Kirpich 
(1940) 

California 
Culvert 
Practice 

𝑡𝑐,𝐶𝐶𝑃 = (
𝑘 ∙ 𝐿3

𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛
)

0.385

 

𝑘 = 11.9, length of the longest 
watercourse (L) in [mi], elevation 
difference between divide (𝐻𝑚𝑎𝑥) 
and outlet (𝐻𝑚𝑖𝑛) in [ft]. 

Small mountainous basins 

California 
Culvert 
Practice 
(1955) 

Giandotti 𝑡𝑐,𝐺𝑖 =
𝑘1 ∙ √𝐴 + 𝑘2 ∙ 𝐿

𝑘3 ∙ √�̅� − 𝐻𝑚𝑖𝑛

 

𝑘1 = 4, 𝑘2 = 1.5, 𝑘3 = 0.8, basin 
area (𝐴) in [𝑘𝑚2], length of longest 
watercourse (L) in [mi], mean basin 
elevation (�̅�) and outlet elevation 
(𝐻𝑚𝑖𝑛) in [m]. 

Medium-large basins in 
central-north Italy with A 
within 170 ÷ 70000 𝑘𝑚2 

Giandotti 
(1934) 

Pasini 𝑡𝑐,𝑃𝑎 = 𝑘 ∙
(𝐴 ∙ 𝐿)0.333

√𝑆
 

𝑘 = 0.108, length of the longest 
watercourse (L) in [m], basin area (𝐴) 
in [𝑘𝑚2], dimensionless average 
slope of the longest hydraulic way (𝑆) 
in [m/m]. 

Developed for rural 
catchments 

Pasini 
(1914) 

Pezzoli 𝑡𝑐,𝑃𝑒 = 𝑘 ∙
𝐿

√𝑆
 

𝑘 = 0.055, length of the longest 
watercourse (L) in [km], 
dimensionless average slope of the 
longest hydraulic way (𝑆) in [m/m]. 

Small alpine drainage 
basins with A within 5 ÷
50 𝑘𝑚2 

Pezzoli 
(1970) 

Siccardi 𝑡𝑐,𝑆𝑖 = 𝑘1 ∙ √𝐴 + 𝑘2 
𝑘1 = 0.27, 𝑘2 = 0.25, basin area (𝐴) 

in [𝑘𝑚2]. 
Small basins with A within 
2 ÷ 10 𝑘𝑚2 

CIMA 
(1999) 

Tournon 𝑡𝑐,𝑇 = 𝑘 ∙
𝐿

√𝑆
∙ (

𝐴

𝐿2 ∙ √
𝑆

𝑆𝑏
)

0.72

 

𝑘 = 0.396, basin area (𝐴) in [𝑘𝑚2], 
length of the longest watercourse (L) 
in [m], dimensionless average slope 
of the longest hydraulic way (𝑆) in 
[m/m], and average basin slope (𝑆𝑏) 
in [m/m]. 

Small alpine basins with A 
within 30 ÷ 170 km2 

Merlo 
(1973) 

Ventura 𝑡𝑐,𝑉 = 𝑘 ∙ (
𝐴

𝑆
)

0.5

 

𝑘 = 0.1272, basin area (𝐴) in [𝑘𝑚2], 
dimensionless average slope of the 
longest hydraulic way (𝑆) in [m/m]. 

Developed for rural 
catchments 

Ventura 
(1905) 

Table 5 – List of empirical methods integrated into REFLEX to estimate the time of concentration. All formulas are expressed with an 
output time of concentration in hours. 

For this purpose, the area of the basin in square km (𝐴) is derived from the projected polygon of the drainage 

area. Basin slope (𝑆𝑏) is derived as the mean slope of the elevation grid, length (𝐿), and average slope (𝑆) of 

the main stem are derived by dissolving the Hack stream hierarchy at the first order. Finally, the elevation of 

divide (�̅�) and outlet (𝐻𝑚𝑖𝑛) are derived from the DEM respectively as 98th and 2nd percentiles. Once all the 

above morphologic parameters are collected the time of concentration is computed in REFLEX by using all 

the methods listed in Table 5. Finally, obtained 𝑡𝑐 values are converted from hours to seconds. 
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2.5.4 Computation and distribution of runoff volume across the network 

The last step of the second module of REFLEX consists of assigning a surface runoff flood volume across the 

identified river network. 

The flood component of the surface runoff volume for a generic river branch can be either derived from 

overtopping outflow (e.g., estimated via hydrological modeling of the basin) or from the time integral of the 

observed flood hydrograph. In the first case, an appropriate linkage with the hydrological chain (e.g., CIMA’s 

Continuum model) is needed to associate the multi-temporal modeled river flow with the DEM grid and thus 

the river network used in REFLEX. In the second case input flood hydrographs, derived from either time series 

of observations at gauges or regionalization techniques for discharge quantiles estimation, are simply 

assigned to the closest river branch that intersects the gauge location. 

Once modeled or observed discharge values along the river network are collected, an analysis of input 

hydrograms is required before their use in flood modeling. 

 

Figure 18 - Schema of a temporal evolution of the flow for a generic cross-section of a river (flood hydrograph). The flood volume is 

defined as the time integral of the surface runoff component of the hydrograph above the bankfull discharge (�̂�𝑃). 

The surface runoff flood volume is derived by removing baseflow and the portion of surface runoff below the 

bankfull discharge (𝑄0) from the time integral of the hydrograph (Figure 18). Thus, flood volume can be 

derived as follows, 

 

 𝑉𝑓𝑙𝑜𝑜𝑑 = ∫ �̂�𝑃

𝑡𝑓

0

𝑑𝑡 (5)  

 

where, �̂�𝑃 = 𝑄𝑃 − 𝑄0, and ∆𝑡𝑓 = 𝑡1 − 𝑡0 is the duration of the event for which �̂�𝑃 ≥ 0. 

A distributed temporal evolution of flood discharge is not always available across the river network except 

for basins with a dense stream gauging system coupled with a hydrological model. 
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In most cases, only peak discharges derived from historical observations are available over few point 

locations. In this context, the shape of the hydrograph is unknown and is constructed with an artificial one 

having the same peak discharge. In hydrology, the surface runoff component of a hydrograph is generally 

approximated with triangular shapes equivalent to the surface runoff hydrograph. 

The standard isosceles triangle with height equal to the peak discharge and centered at the time of 

concentration 𝑡𝑐 is generally assumed in hydrology for the Rational Method. Thus, the equation (5) in first 

approximation can be simplified as follows: 

 

 𝑉𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑢𝑛𝑜𝑓𝑓 =  
1

2
 ∙  𝑄𝑃 ∙  𝑡𝑏 (6)  

 
where the time base 𝑡𝑏 represent the base of the isosceles triangle and is equal to the double of 𝑡𝑐.  
 
Another example is the Equivalent Triangular Unit Hydrograph - ETUH derived from the dimensionless Unit 

Hydrograph - UH of the US Soil Conservation Service (Mockus, 1972). In this second example, the triangle 

maintains the same height, but the base is different (Figure 19). 

 
Figure 19 - Hydrograph shapes for dimensionless time and discharge. 

 

In ETUH, the time base 𝑡𝑏 is expressed as the sum of time of the peak discharge (𝑡𝑝) and the recession time 

(𝑡𝑟𝑒𝑐) and can be calculated with 

 

 𝑡𝑏  =  𝑡𝑝 + 𝑡𝑟𝑒𝑐 = 2.67 ∙ 𝑡𝑝 = 1.78 ∙ 𝑡𝑐  , (7)  

 
in which 𝑡𝑝 is approximated with the following empirical formula, 

 

 𝑡𝑝 =
(0.133 ∙ 𝑡𝑐)

2
+ 0.6 ∙ 𝑡𝑐 = 0.667 ∙ 𝑡𝑐  , (8)  
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and the recession time is estimated as, 

 

 𝑡𝑟𝑒𝑐 = 1.67 ∙  𝑡𝑝 . (9)  

 
In both these ways of defining the time base 𝑡𝑏, triangular hydrographs can be easily constructed in REFLEX 

by knowing only 𝑡𝑐 and 𝑄P and the surface runoff volume is derived using equation (6). 

Later, assuming the flood hydrograph is either gathered or reconstructed, the surface runoff (𝑉𝑓𝑙𝑜𝑜𝑑) is 

derived in REFLEX from the 𝑉𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑢𝑛𝑜𝑓𝑓 using a numerical approximation of equation (5). Once this step 

is accomplished, flood surface runoff volume, drainage area, stream ID, Strahler order of each sub-basins are 

then stored into a tabular and vector file at the location of each sub-outlet. 

2.5.5 Discussion 

Artificial triangular shapes hydrographs allow REFLEX to estimate surface runoff volume where only peak 

discharge values of different return periods are available. This is crucial while employing REFLEX in regional-

scale modeling, in which input discharge information is often derived from regional hydrological studies 

based on a statistical analysis of historical extreme events. In this context, the estimation of the time of 

concentration is not straightforward, being often large basins having not homogenous topography. To tackle 

this issue, in REFLEX it is possible to either choose a single time of concentration method (e.g., where an 

empirical formula fits with the geomorphic characteristics of the basin of interest) or to use a statistic value 

(𝑡�̅�) derived from all formulas reported in Table 5,  

 

 𝑡�̅� = 𝑓 (𝑡𝑐,𝐾 , 𝑡𝑐,𝐶𝐶𝑃, 𝑡𝑐,𝑃𝑎 , 𝑡𝑐,𝑃𝑒 , 𝑡𝑐,𝑆𝑖, 𝑡𝑐,𝑇 , 𝑡𝑐,𝑉) , (10)  

 

where the function 𝑓 stands for average, maximum, or minimum. 

Furthermore, while comparing the two triangular shapes available in REFLEX, the dimensionless volume from 

ETUH is 89% less than the one of Standard Isosceles hydrograph. Despite the simplicity of the Standard 

Isosceles approach, the difference in the triangular area led to assume the ETUH as the default method in 

REFLEX also in large-scale deployments given its better approximation of the hydrograph. 
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2.6  Module 3: HAND Mapping and Coastal Expansion 

In the third REFLEX module, a GIS-based methodology is employed to derive all HAND maps from the filled 

DEM over the domain of interest. This module also includes an extension of the HAND method dedicated to 

coastal areas by using artificial expansion of the relative contours near the mouth of the river. This module 

requires as input the Filled DEM, the hydrological derivatives from module 1, and the hierarchically ordered 

streams from REFLEX Module 2. The output of this module is a library of multiple raster files of HAND maps 

and river binary masks. 

2.6.1 HAND mapping for each sub-basin 

Concerning the potential floodplain delineation, the geomorphic HAND method (Nobre et al., 2015) is 

adopted in REFLEX to derive from topography the relative soil gravitational potentials for each sub-basin 

(Figure 20). This method is coupled with Strahler’s stream hierarchy which is necessary for a different and 

organized combination of HAND maps. Therefore, a different HAND map is created for each sub-basin, 

starting from headwaters having the lowest Strahler order. 

 

Figure 20 - Schema of the HAND map for the sub-basin of a generic branch of the input river network. All channel cells have values 
equal to zero. Pixel values for Hillslope cells are elevation differences from the nearest drainage expressed in meters. 

The calculation of elevation difference above near drainage grids is performed in REFLEX, in case the MFD is 

employed, with the GRASS GIS “r.streams.distance” toolset (GRASS Development Team, 2021e), or in case 

the D-infinity is chosen, with the “D-Infinity Distance Down” function of TauDEM (Tarboton, 2021; Tesfa et 

al., 2011). Hand maps for each sub-basin are derived using the sub-basins mask derived in the REFLEX Module 

2 as described in section 2.5.2. 
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2.6.2 Coastal expansion 

This method consists of a novel GIS-based procedure which aims to solve a typical intrinsic problem of the 

HAND-based hydrogeomorphic models which is the constraint of the divide in the delineation of HAND 

contours near the mouth of the river. 

2.6.2.1 A need to expand HAND contours 

Watershed delineation near the coast depends on the way ridges are identified from the drainage modeling 

of input DEM. Ridges represent divides between a basin of interest from its adjacent ones. While delineating 

watershed downstream from the highest to the lowest elevation of the basin, it is important to consider that 

its boundaries are sensitive to the resolution, spatial and vertical accuracy of the DEM. Thus, a low level of 

accuracy in the delineation of watershed divides generally occurs near the mouth due to the flat terrain. 

However, once a watershed is derived from the drainage modeling of the DEM, the resulting shape of the 

downstream part of the watershed near the mouth may change from one basin to another one. The case 

limit is when this shape is like a long bottom of a funnel when only a few hillslope cells are draining water 

from the left and right sides of the channel. 

Both these aspects represent a limit for a hydro-geomorphological model since the HAND map can be 

computed only within watershed boundaries. As a result, flood water depth derived from such HAND 

contours often shows extent having a similar bottom-funnel shape in coastal environments (Figure 21). 

 

Figure 21 - Schema of a watershed having funnel-like shape. Flood extent is constrained within watershed boundary only. 

In addition to that, a water wall effect along the divide often occurs since flood extent is constrained within 

watershed boundary only. These border effects in modeled flood depth maps are due to the impossibility to 

expand flood surface runoff volume from the boundary to the adjacent basins. 
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2.6.2.2 A general method to expand a HAND map to adjacent basins 

The above-described limitations can be mitigated for a watershed (basin 1 in Figure 21) through an artificial 

expansion near the coast of the HAND contours from the divide towards the terrain of the adjacent ones 

(basins 2 and 3 in Figure 21). In REFLEX a “coastal expansion” GIS-based methodology has been developed 

for this purpose. The method is based on a cumulative cost of moving between a generic channel cell (CC) of 

the river and the neighbor’s hillslope cells (HC) of the DEM. 

First, the domain of calculus for the generic river branch 𝑟𝑛 is defined by considering the subset of the whole 

DEM, called “domain” matrix 𝐷. This domain matrix represents a wider portion of the DEM to the one 

covered by only the watershed of the river branch 𝑟𝑛, and it is required for the HAND expansion from the 

divide to the neighbor watersheds. 𝐷 is defined in REFLEX by considering the minimum between a pre-

defined distance from the divide 𝑏 and a maximum distance from the stream 𝑑𝑚𝑎𝑥, 

 

 𝐷(𝑟𝑛) =  𝑚𝑖𝑛(𝑏, 𝑑𝑚𝑎𝑥) . (11)  

 
where 𝑏 is defined as the number of cells outside the watershed of river branch 𝑟𝑛, and 𝑑𝑚𝑎𝑥 is the lateral 

distance from the stream in meters. In REFLEX 𝑏 is constant and is defined a priori, while 𝑑𝑚𝑎𝑥 is obtained 

for a generic river branch by using the following empirical formula: 

 

 𝑑𝑚𝑎𝑥 =  𝑚𝑖𝑛(15000, 2000 + 0.13 ∙ 𝐴) (12)  

 
where 𝐴 is the drainage area in square km of the river branch sub-basin. This empirical expression has been 

derived with CIMA Research Foundation during the application of this method over multiple types of basins 

in the African Continent. 

The subdomain 𝐷 is then used to derive the “price” matrix 𝑃, which is a binary mask with values equal to 

one, for CC and HC within the river buffered zone 𝐷, or equal to zero, for HC outside this buffer. 

 

 
𝑃 = 1        𝑖𝑓  𝐻𝐶, 𝐶𝐶 ∈ 𝐷, 𝑒𝑙𝑠𝑒       𝑃 = 0 

 
(13)  

Later, the “cost” matrix 𝐶, which is equal to pixel distance from the stream, is derived from 𝑃 using the 
“r.cost” toolset available in GRASS GIS software (GRASS Development Team, 2021i). A “loss” matrix 𝐿 is then 
derived by multiplying an a-priori negative dimensionless hydraulic gradient with the cost matrix: 
 

 𝐿 = 𝐽 ∙ 𝐶 (14)  

 
where the hydraulic gradient in the x-direction 𝐽 is expressed as follows 
 

 𝐽 =  −
𝑑ℎ

𝑑𝑥
 (15)  

 
in which − 𝑑ℎ is the head loss and 𝑑𝑥 is the unit distance (pixel spacing). The loss matrix is meant to represent 

a distribution within the DEM grid equal to the pixel distance from the stream. 
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Once 𝐿 is computed, the expansion of the HAND map is obtained by using the following expression: 

 

 𝐻𝐴𝑁𝐷𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 =  𝐷𝐸𝑀 − 𝑧25 +  𝐿 (16)  

 
where 𝑧25 is the first quartile (or 25th percentile) of DEM elevation derived by using only elevation values 

extracted from channel cells of the river branch. 

The above-described method has been also tailored for the flat topography of the coastal zone employing 

the buffered downstream mask (Figure 16) and by masking out the sea. An example of the application of this 

method near the mouth of a river basin is shown in Figure 22. 

 

Figure 22 – Schema of the coastal expansion in REFLEX. 
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2.7 Module 4: Flood Inundation 

The fourth module in REFLEX is about flood inundation. In this module, the library of HAND maps, obtained 

in the third module for each catchment of the whole basin, is combined with input runoff volumes, 

distributed across the river network, to estimate flood scenarios as water depth and extent maps (Figure 23). 

 

Figure 23 - high-level description of the REFLEX Flood module. 

In this REFLEX Flood Module, the output water depth array 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 is derived by filling the HAND maps with 

a certain volume of water at each river branch. In particular, the hydro-geomorphic method here 

implemented follows a volume-driven approach that employs an iterative static volume optimization. In this 

iteration, the runoff volume is updated by using a simplified version of Manning’s equation. Thus, the output 

water depth array 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 of this simplified flood model can be expressed as a function of the DEM, the 

HAND contours, the Manning roughness coefficient, and the runoff volume: 

 

 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 = 𝑓(𝐷𝐸𝑀, 𝐻𝐴𝑁𝐷, 𝐾𝑠, 𝑉) (17)  
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At the first step of this iteration, the input runoff volume 𝑉𝑜𝑏𝑗 is taken from the time integral of the flood 

hydrograph as derived from Module 2 and explained in section 2.5.4. Assuming a triangular flood hydrograph 

the initial value of 𝑉𝑜𝑏𝑗 is the total surface runoff volume for a duration equal to the time base, as derived 

from equation (6). The obtained value is then used to trigger a static volume optimization. 

2.7.1 Static volume optimization 

A water depth map 𝑊𝐷𝑓𝑙𝑜𝑜𝑑, can be derived via a static distribution of this input volume 𝑉𝑜𝑏𝑗 over the input 

𝐻𝐴𝑁𝐷 map of the correspondent catchment. This static distribution of the volume can be expressed with a 

simplified version of the function (17) expressed as: 

 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 = 𝑓(𝐻𝐴𝑁𝐷, 𝑉𝑜𝑝𝑡) (18)  

where 𝑉𝑜𝑝𝑡 = 𝑉𝑜𝑏𝑗 ±  ∆𝑉 represents the unknown volume included between the surface elevation and the 

flooded area resulted from the water level ℎ over the river centerline. 

The unknown 𝑉𝑜𝑝𝑡 correspond to a numerical approximation of the input 𝑉𝑜𝑏𝑗 and ∆𝑉 = 𝑉𝑜𝑝𝑡 ± 𝑉𝑜𝑏𝑗 

represents the volume difference that needs to be minimized. To solve this function a numerical method for 

its optimization is necessary. For this scope, a volume optimization routine has been developed for the 

REFLEX Flood Module, as shown in Figure 24. 

 

Figure 24 - REFLEX's static volume optimization. 
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Inputs of this volume optimization routine are the 𝐻𝐴𝑁𝐷 raster file and four scalars which are: 

• the runoff volume 𝑉𝑜𝑏𝑗 in cubic meters, 

• the area of the pixel 𝐴𝑖  in square meters, 

• and minimum ℎ𝑚𝑖𝑛 and maximum ℎ𝑚𝑎𝑥 admissible values for channel cells of the water stage ℎ 

which is unknown. 

The outputs of the volume optimization routine are the optimized water stage hopt and the 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 raster. 

This volume optimization routine of REFLEX has been developed in R language (R Core Team, 2021a) and has 

been integrated into the entire modeling chain as a single module callable with Python. This optimization 

module relies on the One-dimensional Optimization package of the R software available via the “optimize” 

command (R Core Team, 2021b). This command allows the optimization of a given function by searching for 

its minimum or maximum in the range between the lower and the upper value of a specified interval. 

In REFLEX, the optimize algorithm is used to minimize the function 𝑓𝑜𝑝𝑡 by passing its arguments, which are 

the input runoff volume 𝑉𝑜𝑏𝑗, the area of the pixel 𝐴𝑖  and a searching interval of river water stage [ℎ𝑚𝑖𝑛 ,

ℎ𝑚𝑎𝑥], in which ℎ𝑚𝑖𝑛 = 0.1 m and ℎ𝑚𝑎𝑥 = 15 𝑚. Such interval values have been defined thanks to the 

experience acquired in the large-scale modeling of REFLEX in Africa (see section 3.6). However, ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥 

can be tailored to the specific application by simply editing the default values in REFLEX’s configuration file. 

As a result, the optimization process can be defined as follow: 

 

 ℎ𝑜𝑝𝑡 =  𝐚𝐫𝐠𝐦𝐢𝐧
𝑉𝑜𝑏𝑗

𝑓𝑜𝑝𝑡([ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥], 𝑉𝑜𝑏𝑗, 𝐴𝑖) (19)  

 
The water depth array 𝑊𝐷(ℎ) can be derived from the 𝐻𝐴𝑁𝐷 map by filling the relative elevation with a 

value ℎ along the flowline: 

 

 𝑊𝐷(ℎ) = −(𝐻𝐴𝑁𝐷 − ℎ) (20)  

 
The corresponding static volume of water in the catchment, derived by filling the DEM with a value ℎ over its 
flowline, can be then calculated as follow: 
 

 𝑉𝐻𝐴𝑁𝐷(ℎ) = 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙(ℎ) + 𝑉ℎ𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒(ℎ) . (21)  

 
In which 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙(ℎ) is the standing water volume over the channel and 𝑉ℎ𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒(ℎ) the analog component 

over flooded hillslope areas. The first term is the result of the sum of all elementary volumes over all the 

channel cells, 

 

 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙(ℎ) = ∑ 𝑊𝐷(ℎ)𝑖 ∙ 𝐴𝑖

𝑖∈𝐶ℎ𝑎𝑛𝑛𝑒𝑙

 , (22)  
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and the second one over all the hillslope cells having 𝑊𝐷(ℎ)𝑖 > 0, 

 𝑉ℎ𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒(ℎ) = ∑ 𝑊𝐷(ℎ)𝑖 ∙ 𝐴𝑖

𝑖∈𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒

 . (23)  

 

The difference of volumes ∆𝑉 is then calculated as, 

 ∆𝑉(ℎ) = 𝑉𝐻𝐴𝑁𝐷(ℎ) − 𝑉𝑜𝑏𝑗 (24)  

 

and returned by the function 𝑓𝑜𝑝𝑡 in the iterative optimization process. 

Once the minimum of ∆𝑉 is found and the water stage optimized ℎ𝑜𝑝𝑡 is identified, the resulting water depth 

raster is then simply calculated with: 

 

 𝑊𝐷𝑓𝑙𝑜𝑜𝑑 = −(𝐻𝐴𝑁𝐷 − ℎ𝑜𝑝𝑡) (25)  

 
and the output of the static volume optimization, 𝑊𝐷𝑓𝑙𝑜𝑜𝑑, is then saved as a raster file in GeoTIFF format 

for the following steps of the iteration. 
 

 
Figure 25 - Schema of the REFLEX computation of water depth raster for a generic sub-basin. 
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2.7.2 Estimating transit time via a simplified version of the Manning equation 

Water depth and extent derived from the first step of this iterative Manning-based volume optimization are 

then used in REFLEX to estimate the transit time using an average stream water velocity derived from 

Manning’s formula: 

 𝑣 = 𝑘𝑆𝑅
2
3√𝑆 (26)  

 
where 𝑘𝑆 is the Manning roughness coefficient, 𝑅 is the hydraulic radius, which is a function of the cross-

sectional area of the flow and the wetted perimeter, and 𝑆 is the linear hydraulic head loss. This formula 

allows estimating cross-sectional average water velocity for uniform open channel flow. River geometry for 

a generic cross-section A-A’ of the river is shown in Figure 26. 

 

Figure 26 - Planar view of a cross-section along a river branch of length L (figure a). Principal hydraulic variables are shown in the 
sample cross-section A-A’ (figure b):  the river stage (h), the cross-sectional area of the flow (𝐴𝑤), and the wetted perimeter (𝑃𝑤). 

In this hydraulic simplification, the river cross-section is considered large and rectangular (Figure 27). As a 

result, the hydraulic radius 𝑅 can be approximated with the water stage ℎ: 

 

 𝑅 ≈
𝑏 ∙ ℎ

𝑏 + 2ℎ
≈ ℎ      (2ℎ ≈ 0 if b ≫ ℎ). (27)  

 
Furthermore, the water stage ℎ is assumed to be constant along the river branch. Thus, the hydraulic grade 

line can be approximated with the slope of the riverbed 𝑆 ≅ 𝑖𝑓. Thus, equation (26) is simplified as follows: 

 𝑣 = 𝑘𝑆ℎ
2
3√𝑖𝑓 (28)  

 
which is employed in REFLEX to estimate the average flow velocity as a function of the water stage ℎ.  
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Riverbed slope 𝑖𝑓 is known for each branch of the river network, as calculated in REFLEX Module 3, and the 

roughness coefficient is defined a priori by employing nominal values available in the literature (e.g., 0.045 

for natural channels). 

 

Figure 27 - Rectangular approximation of river geometry with river stage (h) rescaled to the average water depth (ℎ̅) derived from the 
ratio between the flood volume and the flooded area. 

These assumptions enable estimating an average water stage ℎ̅ for the generic river branch (Figure 27), which 

is computed by dividing the optimized runoff volume 𝑉𝐸
∗  with the water extent 𝐴 derived at the first step of 

this iterative Manning-based volume optimization: 

 

 ℎ̅ =
𝑉𝐸

∗

𝐴
 (29)  

 

The obtained average water stage ℎ̅ is then used with Equation (28) to estimate an average velocity 𝑣𝑇 and 

the transit time 𝑡𝑇 is computed as follows: 

 

 𝑡𝑇 =
𝐿

𝑣𝑇
 (30)  

 
where 𝐿 is the length of the river branch. 

Once the transit time is known, the runoff volume is computing again in REFLEX via the time integral of the 

flood hydrograph up to the transit time.  

Assuming a triangular surface runoff hydrograph the updated runoff volume 𝑉𝐸
∗ is derived from: 

 

 
𝑉𝐸

∗ =
(�̂�𝑃 + (�̂�𝑃 − 𝑡𝑇 𝑡𝑎𝑛(𝛽))) 𝑡𝑇

2
 

(31)  

 

where 𝛽 = arctan(�̂�𝑃 𝑡𝐶⁄ ) and �̂�𝑃 = 𝑄𝑃 − 𝑄0. 
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Being the transit time lower than the time of concentration, this update will result in a reduction of the runoff 

volume. As a result, also a reduction will happen in the resulted updated water extent 𝐴∗ and water depth 

𝑊𝐷∗
𝑓𝑙𝑜𝑜𝑑 as shown in Figure 28. 

 

Figure 28 - Runoff volume as a function of the transit time 

This process is repeated for multiple iterations by triggering the static volume optimization at each cycle and 

updating the transit time, 𝐴∗, and 𝑊𝐷∗
𝑓𝑙𝑜𝑜𝑑 until it converges. 

2.7.3 Creating output flood map 

The whole method, described in sections 2.7.1 and 2.7.2, is applied for each branch of the river network and 

the flood maps are merged into one for the entire basin. Following a precautionary approach, the maximum 

of overlapping values is taken while merging the water depth of multiple sub-basins near the confluences. 

The outputs of this REFLEX module are water depth and flood binary mask raster files given in GeoTIFF 

formats. 
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2.7.4 Binary classification in REFLEX flood extent validation 

To assess the performance of flood modeling results of REFLEX, multiple indexes are employed to assess the 

accuracy of the flood extent predicted by the model. The indexes are derived from the usual binary 

classification of predicted and reference flood maps, which allow the construction of a confusion matrix like 

the one described in Table 6. 

Total pixels 

Predicted 
(REFLEX) 

P 
(predicted positive) 

N 
(predicted negative) 

Reference 
(benchmark 
flood map) 

P 
(real positive cases) 

TP FN 

N 
(real negative cases) 

FP TN 

Table 6 – Schema of confusion matrix employed to test the performance of the REFLEX model. 

 

The comparison between predicted and reference flood extents performed within a given simulation domain 

allows the classification of all pixels of the grid in the following four classes: True Positive (TP), False Negative 

(FN), False Positive (FP), and True Negative (TN) as shown in Figure 29. 

 
Figure 29 – Schema for the linear binary classification of flood-prone areas. 

Once the number of pixels is derived for all the four classes, a selection of popular indexes, widely employed 

in assessing the performance of model-based predictions (Santos et al., 2019; Rahmati et al., 2020; Albano 

et al., 2020; Esfandiari et al., 2020), are then computed: Overall accuracy (ACC), True Positive Rate (TPR), 

Positive Predicted Value (PPV), Matthews Correlation Coefficient (MCC) and Cohen's kappa coefficient (K). 
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The first of these statistics, the overall accuracy (ACC), is defined as: 

 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 . (32)  

 
The True Positive Rate (TPR), or sensitivity, which indicates the probability of correctly predicted flooded 

pixels into the domain, is then computed as follows: 

 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (33)  

 
Instead, the Positive Predicted Value (PPV), which indicates the probability that a pixel classified as positive 

is true, is chosen to indicate the precision of the model prediction. Thus, PPV is derived with: 

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (34)  

 
In addition to that, two additional statistics are here employed to estimate the correlation rate between 

observed and predicted flood extent values. Therefore, the chance agreement probability is computed by 

using the Matthews Correlation Coefficient (Matthew, 1975), defined as: 

 

 𝑀𝐶𝐶 =
(𝑇𝑃 ∙ 𝑇𝑁) −  (𝐹𝑃 ∙ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 , (35)  

 
and by using the Cohen's kappa coefficient (Cohen, 1960), which also provide a measurement of agreement 

and that is derived using the expression: 

 

 𝐾 =
𝑝𝑎  − 𝑝𝑒

1 −  𝑝𝑒
 (36)  

 
where 𝑝a is the proportion of observations in agreement, and 𝑝𝑒  is equal to the hypothetical probability of 

chance agreement. 

Concerning MCC and K measures of agreement, these statistics can be interpreted by using the interpretation 

scales and scores available in the literature. The MCC coefficient ranges from -1 (complete disagreement 

TP=TN=0) to 1 (total agreement FP=FN=0). Instead, the K index ranges from 0 to 1 and its score can be 

evaluated as follows: None (K<0.20), Minimal (K<0.4), Weak (K<0.6), Moderate (K<0.8), Strong (K<0.9) and 

Almost Perfect (K>0.9). 
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2.8 The integration of external satellite-based observation 

This section illustrates different earth observations data exploitation methods identified in this research to 

enhance the REFLEX modeling by collecting additional observations for calibration and validation purposes. 

2.8.1 EO-based water mask 

EO-based water masks and other derived products from optical images can be used to better define input 

flowlines for REFLEX. If streamlines are derived from an unsupervised extraction from the DEM, a post-

processing of this hydrological derivative is often needed to remove some of the not representative branches. 

As an example, the 100% of Water Occurrence from the Global Surface Water dataset (Pekel et al., 2016; 

JRC, 2021) can be used to identify suitable flow accumulation threshold by feature matching or to exclude 

dry stream branches from the source dataset. Furthermore, an additional dataset, also based on the Landsat 

mission, can also indicate the river width and depth which can be useful for DEM conditioning (Andreadis et 

al., 2013). 

2.8.2 Water level surface height from radar altimetry 

In this Ph.D. research, an application of a remote sensing technique has been identified for the water surface 

height detection of large inland rivers by using Sentinel-3 Synthetic Aperture Radar Altimeter (SRAL) data. 

This proposed approach enables the use of Radar Altimetry data to enable a systematic ingestion of satellite-

based river level estimations also in data-scarce environments or ungauged river basins. 

Obtained products from the SARvatore for Sentinel-3 service can then be post-processed to extract the time 

series of relative water levels from the seasonal average as well as to estimate discharge. 

The extraction of surface water height estimations by radar altimetry is accomplished starting from the 

identification, based on Sentinel-3A ground tracks, of virtual stations along the river network (see Figure 30). 

 

Figure 30 - Workflow for water level estimation using Sentinel-3 SAR altimeter 
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Once the virtual stations are identified all required Sentinel-3 SRAL L1A data products available over the 

desired period need to be harvested from the catalog (via Copernicus Open Access Hub or the DIAS). 

Later, the gathered radar altimetry observations need to be processed to obtain the L2 products which are 

necessary to extract power echoes waveforms and along-track surface height profiles (see Figure 31). 

 

Figure 31 – A general workflow for the computation and the validation of water level estimations from radar altimetry and its 
exploitation in hydrology for flood modeling purposes. 

For this scope, the on-demand exploitation of Sentinel-3 SRAL L1A data products in SAR mode (high-

resolution) over these targets is achieved using a web processing service, based on the SARvatore (SAR 

Versatile Altimetric Toolkit for Ocean Research and Exploitation) processor, available within ESA’s G-POD 

(Grid-Processing On-Demand) computing platform. 

After that, SAR echoes from the obtained L2 products needs to be evaluated to derive consistent water 

surface elevation for the entire river and to avoid the inclusion of “polluted” estimations. 

Once noisy waveforms are filtered, it is then possible to compute the absolute and relative height of water 

surface relative to EGM2008 geoid at virtual stations. Such water height estimates are then spatially densified 

via a spatial interpolation based on mean river level slope. 

Finally, the validation of satellite-based estimates to in-situ stage records is made by comparing relative water 

level changes from the average over the observed period. 

This information can be exploited to derive discharge estimation using one of the methods available in the 

literature (Kebede et al., 2020; Tarpanelli et al., 2013, 2019) or to be used as complementary data in 

hydrological modeling at a basin scale. 
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2.8.3 Flood impact assessment using SAR data 

SAR missions are the reference for the mapping of water from space due to their advantages to detect 

standing water in all weather conditions. Satellite-based flood impact assessments derived from freely 

available mid-resolution SAR data, such as the one of Copernicus Sentinel-1 data, which can be used to 

validate REFLEX flood modeled extents where no field observations are available. 

Flood map products available from the Copernicus Emergency Management Service (EMS), UNITAR-

UNOSAT’s Flood Portal and cartographic products (UNOSAT, 2011), and Dartmouth Flood Observatory (DFO) 

are key sources of flood extent records globally, which are obtained under major disasters using both optical 

and SAR data. This flood record repository can be expanded by using unsupervised flood change detection 

methods over new locations. 

Different types of flood mapping algorithms are available in the literature. However, most of them are only 

accessible to a restricted group of users or are provided via a semi-automatic procedure. A valuable tool for 

flood mapping is the HASARD processing service developed by LIST which is open to the scientific community. 

Such service is built on the Hierarchical Split-Based Approach - HSBA algorithm (Chini et al., 2017) and is 

accessible within the ESA’s grid processing on-demand (G-POD) environment. The current version of the 

HASARD service enables the user to obtain EO-based flood maps from ENVISAT and Sentinel-1 SAR images. 

In this Ph.D. research, the LIST’s HASARD service in ESA G-POD (ESA, 2021a) has been chosen for the on-

demand processing of Sentinel-1 GRD data. 
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Chapter 3 - Results 

 
The third chapter summarized major results obtained by using the method identified under this 
Ph.D. research, including a general discussion. 
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3.1 Introduction 

The third chapter of this thesis summarizes major results from the research carried out in this Ph.D. research. 

This chapter begins with the description of the complex modeling system, named REFLEX, which represents 

a synergy of multiple open tools and codes.  

After a detailed description of the developed tool, the chapter presents the application of REFLEX using real 

data (DEM, Hydrographs) at multiple scales over different regions of the world. Case studies here described 

are the following: Magra, Entella, Secchia, and Southern Africa. Each REFLEX case study describes the area of 

interest, the modeling approach employed, obtained flood modeled results, and a validation of REFLEX by 

comparing its water extent and depth estimations with the ones retrieved from reference Flood Hazard 

maps, flood scenarios from benchmark hydraulic models, or satellite detected waters. 

The last part of this chapter also includes major outcomes from the complementary research activity about 

the integration of secondary data from Earth Observation. Preliminary results from the evaluation of radar 

altimetry and SAR data are shown respectively for a case study in Chad and another one in Iran. 
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3.2 The implementation of the REFLEX modeling chain 

This section aims to provide all related details about the numerical implementation of the REFLEX method, 

described in Chapter 2 of this Ph.D. thesis, into an automated chain. It includes an overview of the REFLEX 

modules, the list of employed tools (e.g., software dependencies and source code libraries), the description 

of the configuration file, and a quick presentation of the GIT repository. 

3.2.1 The REFLEX development 

Hereinafter is described how the entire method described in Chapter 2 about the REFLEX flood modeling 

approach has turned into software. This development activity has been crucial to implement the entire chain 

and to test if all the necessary components to build REFLEX can be merged into a single modeling system. 

This applied research work represents one of the major outcomes of this Ph.D. research, given the complexity 

in building the REFLEX modeling chain. Such a result has been obtained from a synergy of multiple software, 

tools, and different methods available in the literature, as presented in Chapter 1 of this Ph.D. thesis. 

With the goal to build a robust and stable repository for the REFLEX prototype, multiple research activities 
have been conducted to:  

• harmonize the chain by linking multiple open-source software, 

• develop code under modules to facilitate future modifications, 

• contain computation time by using parallelized routines. 

After a preliminary development phase conducted in the first year of the Ph.D., the tool has continuously 

improved with the inclusion, when possible, of parallel or optimized versions of external tools (e.g., the 

TauDEM D-infinity). In particular, the REFLEX code has been consolidated during the third year of the Ph.D. 

In this period, the entire code has been restructured to ensure a harmonized modeling chain that is able to 

respect in a Linux OS (Ubuntu or Centos7 OS) all dependencies of different software, such as GRASS, GDAL, 

TauDEM, MPICH, and R. As an example, the inclusion of most recent TauDEM GitHub version of the code, 

developed from the team of Prof. Tarboton, has allowed the estimation of HAND maps based on the D-infinity 

drainage approach (Tarboton, 1997) also in medium high-resolution DEMs, given its stable and parallelized 

implementation of the C++ code. All this reengineering work on the REFLEX code has also included the 

development of an ad-hoc setup script to ensure portability (e.g., to set up the code in CIMA and ESA servers) 

as well as the preparation of a setup script for the installation of REFLEX and the configuration of Linux OS. 

The applied research behind the development of the REFLEX chain has been challenging and time-consuming. 

However, this activity was necessary to allow a simple, stable, and automatic deployment of the REFLEX 

under multiple case studies. 

3.2.2 The REFLEX modeling chain 

The entire REFLEX chain is built using Python 3 and is subdivided into five modules: 

• REFLEX Module 0 - The “DEM conditioning”, 

• REFLEX Module 1 - “The drainage module, 

• REFLEX Module 2 - “The streams module”, 

• REFLEX Module 3 - “The HAND module”, 

• REFLEX Module 4 - “The Flood Inundation module. 
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A wrapper code in bash allows the activation of the Anaconda environment and the submission of the module 

in sequence. 

REFLEX input files are: 

• A configuration text file that contains all REFLEX parameters, 

• A DEM raster in GeoTIFF format, 

• Average discharge raster in GeoTIFF format, 

• Flood discharge raster in GeoTIFF format, 

• Reflex output directory path, 

• Stream vector for burning streams into DEM in shapefile format (OPTIONAL). 

REFLEX output files are: 

• multiple hydrological derivatives (e.g., drainage, watershed, Pfafstetter streams, subbasins 

characteristics), 

• water depth raster for the given flood return period, 

• water extent raster for the given flood return period. 

The first module (REFLEX Module 0) allows the “hydrologically conditioning” of the source DEM. It 

implements the method explained in Chapter 2 (see section 2.3.2). This step is particularly important if source 

DEM is given as raw elevation data. In case the input DEM is already hydrologically conditioned, this module 

simply employs the filling of the DEM using the epsilon filling algorithm of RichDEM. Outputs of this module 

are a Conditioned and Filled DEM given as GeoTIFF files. 

The REFLEX Module 1, the “DEM Conditioning Module”, extracts all necessary hydro derivatives from the 

filled DEM by employing multiple drainage methods (D8, MFD, DINF). Outputs are multiple derivatives (flow 

direction, flow accumulation, streams, watersheds) provided as raster files in GeoTIFF format and vector files 

in Shapefile format. 

The following REFLEX Module 2, the “Streams Module”, extracts essential geomorphic information from the 

Conditioned DEM, calculates streams hierarchy (Hack, Strahler, Pfafstetter), produces multiple masks (Sub-

basin mask, Drainage area mask, Headwater mask, Downstream mask), and derives runoff volumes from 

input discharge values. Outputs are multiple files given as raster, in GeoTIFF format, vector files (classified 

streamlines and dissolved watersheds), in Shapefile format, and tabular files in CSV format (table with a 

summary of geomorphic information and runoff volume at each sub-outlet of the river network). 

In REFLEX Module 3, “The HAND module”, a python code collects different output from the previous steps 

(e.g., the Filled DEM and the flow directions grids) to derive HAND maps with gradient-based extension for 

flat areas (e.g., to deal with the coastal zone). Outputs of this module are stream and HAND maps given as 

raster files in GeoTIFF format. 

Finally, in the last and fourth “Flood Inundation module” (REFLEX Module 4) flood maps are derived by 

combining all the HAND maps into a 2D Flood scenario using the runoff volumes derived at step 2. Output 

files are water extent and water depth flood maps given as raster file given in GeoTIFF format. 

 

 



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  65 

3.2.3 The REFLEX dependencies 

REFLEX is built by integrating multiple software and its dependencies are shown in Table 7. 

Name Type Version Release Distribution 

 

IT 4.8.2 Miniconda anaconda 

 

IT 3.8.2 - conda-forge 

CMAKE IT - - - 

GCC IT 7 - - 

MPICH IT 3.2.1 21/01/2020 mpich.org 

 

Geospatial 3.0.4 28/01/2020 OSGEO 

 

Statistical computing 3.6.3 29/02/2020 bionic-cran35 

 

GIS 7.8.2 12/12/2019 ubuntugis-unstable 

pysheds Terrain analysis software 0.2.7 01/11/2020 conda-forge 

 

Terrain analysis software 5 
TauDEM "update-
version" 
repository 

GitHub 

RichDEM Terrain analysis software 0.3.4 13/07/2018 pypi anaconda 

mdenoise Terrain analysis software - mdsource www.cs.cf.ac.uk 

Table 7 – Overview of REFLEX dependencies. 

Concerning the GRASS GIS software, the default set of tools has been enriched in this research by installing 

multiple Add-ons, available from the GRASS OSGEO community. This was needed to satisfy a need of 

particular terrain analysis processing (e.g. Hack and Strahler stream hierarchy through the “r.stream.order” 

Add-on) required in the REFLEX modules. The full list of these Add-ons together with their usage in REFLEX is 

reported in Table 8. 

Name Usage in REFLEX Manual webpage 

r.stream.basins 
Used to delineate 
basins from input 
stream raster 

https://grass.osgeo.org/grass78/manuals/addons/r.stream.basins.html 

r.stream.order 
Used to compute 
Strahler, and Hack 
streams hierarchy. 

https://grass.osgeo.org/grass78/manuals/addons/r.stream.order.html 

https://grass.osgeo.org/grass78/manuals/addons/r.stream.basins.html
https://grass.osgeo.org/grass78/manuals/addons/r.stream.order.html
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r.stream.distance 

Used to compute 
elevation above 
streams from a 
flow direction map 

https://grass.osgeo.org/grass78/manuals/addons/r.stream.distance.html 

r.accumulate 

Used to compute 
weighted flow 
accumulation and 
other derivatives 
from a flow 
direction map 

https://grass.osgeo.org/grass78/manuals/addons/r.accumulate.html 

r.stream.extract 
Used to extract 
stream network. 

https://grass.osgeo.org/grass78/manuals/r.stream.extract.html 

r.clip Used to clip raster https://grass.osgeo.org/grass78/manuals/addons/r.clip.html 

r.hydrodem 

Used in the DEM 
conditioning to 
remove spurious 
sinks from raw 
DEM 

https://grass.osgeo.org/grass78/manuals/addons/r.hydrodem.html 

Table 8 – Overview of all GRASS GIS Add-ons employed in REFLEX. 

3.2.4 REFLEX parameters 

All the necessary information about the parameters of the REFLEX modeling chain is reported in Table 9. This 

information is included within the REFLEX configuration file, which is meant to be edited by the user to deploy 

REFLEX under multiple applications at different scales by tuning all essential parameters. 

Parameter 
Name 

Description REFLEX 
module 

Usage Default value 

CONDADIR Path to the Anaconda directory All String 
/PATH/Reflex_mod
el/bin/anaconda/mi
niconda3 

TAUDEM_BUILD_PATH Path to the TauDEM directory All String 

/PATH/Reflex_mod
el/bin/taudem/Tau
DEM-update-
version/src/build 

RSCRIPT_VOL_OPT_PATH 
/path/filename.extension of the 
static volume optimization R code 

All String 
/PATH/Reflex_mod
el/reflex/src/optimi
ze_volume.R 

CONDAENV 
Name of python environment in 
Anaconda 

All String reflex_py38 

GRASSBIN Name of GRASS executable All String grass78 

SVER Version of the REFLEX code All String v15 

ST0OUTDIRN Name of step 0 output directory All String DEM_conditioning 

ST1OUTDIRN Name of step 1 output directory All String hydro_derivatives 

ST2OUTDIRN Name of step 2 output directory All String streams 

ST3OUTDIRN Name of step 3 output directory All String hand 

ST4OUTDIRN Name of step 4 output directory All String flood 

ACPX Name of hydrological region All String APP_SETT 

DOMAIN Name of domain All String magra 

RRS_M DEM spatial resolution in m All Integer 90 

https://grass.osgeo.org/grass78/manuals/addons/r.stream.distance.html
https://grass.osgeo.org/grass78/manuals/addons/r.accumulate.html
https://grass.osgeo.org/grass78/manuals/r.stream.extract.html
https://grass.osgeo.org/grass78/manuals/addons/r.clip.html
https://grass.osgeo.org/grass78/manuals/addons/r.hydrodem.html
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RRS_DD 
DEM spatial resolution in decimal 
degrees 

All Float 0.00083333333 

NANDEMVAL 
Value defined as not a number in 
the source DEM 

All Signed float -9999 

EPSG_CRS 
Geographic coordinate system 
EPSG code 

All Integer 4326 

EPSG_PRJ 
Projected coordinate system EPSG 
code 

All 
Integer. Set local 
projection or 
UTM zone 

32632 

STR_BURNING_ENABLED 
Flag to enable stream burning in 
REFLEX 

Step 0 True or False False 

TARGET_EPSG EPSG of output conditioned DEM. Step 0 Integer 4326 

DCOND_BUFFER_CELLS 

Buffer zone along a branch as the 
number of cells used as input 
domain for stream burning. 

Step 0 Integer 20 

DCOND_FILTERING_MAG
NITUDE 

Magnitude of filtering used in the 
stream burning. See §3.3.2. Ref. 
scalar 𝐶 in equation 1 of Chapter 
2. 

Step 0 

Float number (<1 
for light and >1 
for heavy 
filtering). 

1 

REMOVE_SINK_ENABLED 

Flag to enable removing of sinks 
(‘hydrodem’ GRASS Add-on) in 
REFLEX. 

Step 0 True or False False 

PIT_REMOVAL_ENABLED 
Flag to enable DEM pit removal 
(TauDEM) in REFLEX. 

Step 0 

It generates filled 
areas with a small 
artificial gradient. 
True or False. 

False 

EPS_FILLING_ENABLED 

Flag to enable DEM epsilon filling 
(richdem) (Barnes, 2016) in 
REFLEX. 

Step 0 
It generates filled 
flats. True or False 

True 

SOLVE_FLATS_ENABLED 

Flag to enable DEM flat resolving 
(‘pysheds’, Matt Bartos, UT Austin) 
in REFLEX. 

Step 0 True or False False 

FD_METHOD_STREAMS 

Drainage method to be used for 
extracting flowlines and 
watersheds from the DEM. 

Step 1 

String. Set ‘D8’ for 
the D8 
(O’Callaghan and 
Mark, 1984), or 
‘MFD’ for the 
Holmgren MFD 
(Holmgren, 1994). 

D8 

FD_METHOD_HAND 

Drainage method to be used for 
deriving HAND contours from the 
DEM. 

Step 1 

String. Set ‘D8’ for 
the D8 
(O’Callaghan and 
Mark, 1984), 
‘MFD’ for the 
Holmgren MFD 
(Holmgren, 1994), 
or ‘DINF’ for D-
infinity (Tarboton, 
1997). 

DINF 

DRAINAGE_THRSLD 

Threshold as the number of cells 
used to extract multiple 
hydrological derivatives and to 
define the level of detail in the 

Step 1 Integer 3000 
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output stream raster map (from 
D8 or MFD) in the GRASS 
‘r.watershed’ tool. 

BUFFER_DISTANCE_CELL 

Buffered distance is the number of 
cells to be used for creating a 
downstream mask for the REFLEX 
downstream expansion of HAND 
maps. 

Step 2 Integer 50 

COASTEXP 
Flag to enable coastal expansion in 
REFLEX. 

Step 3 
Flag 0 (disabled) 
or 1 (enabled) 

1 

HAND_TRSHLD_ELEV 

The maximum value of Height 
Above the Nearest Drainage l of 
REFLEX’s HAND maps. 

Step 3 Integer 2000 

HAND_MASK_BUFF_DIST_
M 

Distance in meters used for buffer 
HAND map masked. 

Step 3 Integer 300 

GRADIENT_LIMIT 
Gradient limit (m/m) to identify 
flat river branches. 

Step 3 Float 0.0003 

STR_ELEV_PERCENTILE 

Define percentile (e.g., 25th) of 
the population for stream 
elevation of a branch where HAND 
expansion is triggered. Ref. 𝑧25 in 
equation 16 of Chapter 2. 

Step 3 Integer 25 

HEAD_LOSS 

Head loss per pixel distance in cm 
(-JL). E.g., if equal to 1 cm and 
pixel spacing of 5 m, Hydraulic 
gradient (-J=dh/dx) is equal to -
J=dh/dx = 0.2%. Ref. J in equation 
15 of Chapter 2. 

Step 3 Float 20 

VOLMIN 

Minimum runoff volume in cubic 
meters of a river branch for which 
the Flood Inundation is triggered. 

Step 4 Integer 1000 

WDMIN 

Minimum water depth in meters 
to be used for initializing static 
volume optimization. Ref. ℎ𝑚𝑖𝑛 in 
equation 19 of Chapter 2. 

Step 4 Float 0.1 

WDMAX 

Maximum water depth in meters 
to be used for initializing static 
volume optimization. Ref. ℎ𝑚𝑎𝑥  in 
equation 19 of Chapter 2. 

Step 4 Integer 15 

ITERATIONS_MAX_VOL_O
PT 

The maximum number of 
iterations in Manning-based 
volume optimization. 

Step 4 Integer 5 

ROUGHNESS_COEFF 

Value of roughness coefficient N in 
Manning Formula (e.g., 0.045 for 
natural channels). Ref. 𝑘𝑆 in 
equation 26 of Chapter 2. 

Step 4 Float 0.045 

TOLERANCE_VOL_OPT_M 

Tolerance in volume difference, 
used under the Manning-based 
volume optimization iteration. 

Step 4 Float 0.1 

RP 
Flood Return Period in years of 
input peak discharge 

Step 4 Integer 50 

Table 9 – Overview of all REFLEX parameters. 
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3.2.5 The REFLEX GIT repository 

The REFLEX code has been organized into a GitHub repository to take advantage of versioning and other 

tools. A GIT documentation is crucial to have a reliable, slim, and robust model that can be easily shared also 

with not IT expert end-users. 

 

Figure 32 – Organization and upload of all REFLEX source codes and their setup into a GIT repository. All related documentation is also 
given together with a reference result to better explain REFLEX installation and usage to the end-user. 

The development of this GIT repository (https://github.com/mauroarcorace/Reflex_model) has been 

necessary to maintain the master version of the REFLEX code (e.g. in sharing with CIMA hydrologists for 

systematic computation over multiple African basins) as well as to ensure effective usage and installation 

documentation to future REFLEX users. 

The REFLEX model will be open to the research community. A stable version of the code is also foreseen to 

be published in the GitHub repository of the CIMA Research Foundation Department of Hydrology and 

Hydraulics (https://github.com/c-hydro). 

  

https://github.com/mauroarcorace/Reflex_model
https://github.com/c-hydro
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3.3 REFLEX Case study – The Magra river basin in Northern Italy 

This section described the results obtained from the application of REFLEX over a surveyed river basin in 
northern Italy. 

3.3.1 Case study description 

The area of interest for this REFLEX case study is the Magra river basin, which is part of the Northern 

Apennines District in northern Italy. The Magra river basin is in the eastern part of this hydrological region, 

and it covers the territory between the regions Liguria and Tuscany. The Magra river basin has an extension 

of about 1715 square kilometers and comprises mainly mountain and hilly areas. A map of the Magra river 

basin is shown in Figure 33. 

 
Figure 33 – The Magra river basin in Northern Italy. 

The watershed of the Magra river can be subdivided into three principal sub-basins, the Vara, the Upper, and 

the Lower Magra catchments. The Vara river is the principal tributary of the Magra main stem. The Vara 

catchment essentially covers the Ligurian part of the whole Magra river basin. The Upper Magra catchment 
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collects the waters from the divide, in the northwestern part of the entire basin, and drains them until the 

confluence with the Vara. After the confluence, the Magra river basin is then composed of a third catchment, 

located in the south near the mouth in the Ligurian Sea. This downstream part of the basin is characterized 

by the presence of a coastal floodplain, the lower Magra River valley. This floodplain is part of an urban 

context and is characterized by the presence of multiple infrastructures (motorways, railways bridges). Thus, 

in this area, the Magra river environment, and the streamflow as well, are artificially confined within only a 

portion of the entire floodplain which is defended by embankments and floodwalls from the confluence until 

the mouth of the river. In addition to these intersections, local hydraulics is also characterized by the 

presence of multiple minor streams and channels that drain water from the hillslope parts of the lower Magra 

river valley. The ending part of the main stem of Magra near the mouth presents a channel-like morphology. 

In this area, the mouth is constrained on the right by steep riverbanks due to the presence of Monte Marcello 

and on the left by levee dikes. Thus, in case of flood events due to overflow of the existing embankment 

system, the resulting flood extent can interest only a portion of the Ligurian-Tuscan coastal plateau between 

the Magra mouth and the Parmignola stream catchment in the territory of Carrara, in Tuscany. 

3.3.2 Input data 

To employ REFLEX over the Magra river basin a preliminary data collection activity has been performed, 

tailored to the specific application of the method for flood hazard mapping purposes. 

3.3.2.1 Digital Elevation Model 

Input elevation data for this case study are represented by two different DEMs at 90 and 10m spatial 

resolution that covers the entire territory of the Magra river basin. The first DEM is derived from the MERIT 

DEM dataset (Yamazaki et al., 2017). The second one at higher resolution is obtained by data fusion of multi-

resolution DEMs derived from multiple sources. This second DEM merges elevation data from the LiDAR DTM 

at 1m spatial resolution from the Italian Ministry for the Environment Land and Sea (MATTM), the “DTM 

Liguria ed. 2016” at 5m spatial resolution from the Liguria Region (Regione Liguria, 2021a), and the “DTM 

10m Idrologico” from the Tuscany Region (Regione Toscana, 2021). LiDAR data has been retrieved under a 

collection of tiles that cover only a portion of the whole basin, along the Magra main stem and its principal 

tributaries. This data has been accessed via the CIMA foundation repository for the Ligurian tiles and from 

the “GEOscopio” web portal of the Tuscany Region for the Tuscan ones (Regione Toscana, 2021). The 

harvesting of MATTM LiDAR DTM resulted in a collection of about 600 tiles, mainly obtained from the 

MATTM’s DEM dataset of 2008 and complemented in only a few cases with LiDAR data derived from 

MATTM’s campaigns of 2010 and 2012 (see Figure 34). More information about this LiDAR data can be 

retrieved from the MATTM Geoportale Nazionale (http://www.pcn.minambiente.it/mattm/tag/dati-lidar/). 

This dataset at 1m resolution can cover most of the valleys and flood-prone areas of the basins, but it cannot 

fully cover the plateau near the coast between the Magra mouth and the Parmignola stream. 

It is worth noticing that MATTM’s LiDAR 2008 1m is provided by Liguria Region as tiles in Monte Mario (Italy 

Zone 1) projected coordinate system (EPSG: 3003), while the same LiDAR data for Tuscany obtained from the 

GEOscopio portal is given in WGS 84 geographic coordinate system (EPSG: 4326). Thus, a projection of half 

of this dataset has been necessary to merge this data into a single mosaic. Tiles have been projected in their 

native resolution using bilinear interpolation in GIS. Later, all these tiles have been merged using a GDAL-

based virtual mosaic and resampled at 10m resolution. Finally, this dataset has been extended in hillslope 

regions by merging it with the DTM Liguria ed. 2016 resampled at 10m from the Liguria Region and the DTM 

10m Idrologico from the Tuscany Region. 

http://www.pcn.minambiente.it/mattm/tag/dati-lidar/
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As a result, the final DEM includes surface elevation for hillslope areas from medium-high quality DEM 

combined with resampled LiDAR data with higher accuracy over most of the floodplain areas. 

 
Figure 34 – Coverage of MATTM LiDAR data for the Magra river basin. Hill shaded DEM from mosaicking of all available tiles is shown 
in graded grayscale. 

 

3.3.2.2 Flowlines 

Input flowlines are assumed as streamlines in a vector file (shapefile) derived from the D8 drainage modeling 

of the Filled DEM through thresholding based on the drainage area (600000 cells for DEM at 10m resolution 

and 3000 cells for DEM at 90m resolution). Obtained streamlines are then manually edited in the lower Magra 

valley by following river and channel center lines derived from visual interpretation in GIS of Very High 

Resolution (VHR) optical imagery from Bing open layer base map. 

  



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  73 

3.3.2.3 Runoff peak discharge 

Input runoff peak discharge estimations at different return periods are derived from drainage area empirical 

expressions retrieved from the table 2.9.3.1 of the “Relazione generale variante al Piano Stralcio Assetto 

Idrogeologico del fiume Magra e del torrente Parmignola” report made by the Magra interregional river 

authority (AdB Magra, 2016). Thus, input gross peak discharge values (𝑄𝑅𝑃) for each branch of the Magra 

sub-basins are computed by using the following formula: 

 

 𝑄𝑅𝑃 = 𝑘1 ∙ 𝐴𝑘2, (4.37)  

 

where 𝐴 is the drainage area in square kilometers and 𝑘1, 𝑘2 are the coefficients defined in the following 

tables. 

Return period (RP) 30 years 

Coefficient A k1 k2 Q (mcs) 

Vara A<15skm 16 0.85  

Vara A>=15skm 24 0.7  

Upper Magra A<39skm 15 0.85  

Upper Magra A>=39skm 26 0.7  

Confluence    4393 

Lower Magra  12 0.9  
Table 10 - Discharge values for the Magra river basin at 30 years RP (AdB Magra, 2016). 

 

Return period (RP) 200 years 

Coefficient A k1 k2 Q (mcs) 

Vara A<23skm 25 0.85  

Vara A>=23skm 40 0.7  

Upper Magra A<65skm 23 0.85  

Upper Magra A>=65skm 43 0.7  

Confluence    6700 

Lower Magra  18 0.9  
Table 11 - Discharge values for the Magra river basin at 200 years RP (AdB Magra, 2016). 

Discharge values for a 30-year and 200-year return period (medium and high magnitude of flood hazard) 

derived from these drainage-area-based empirical formulas have been then distributed across the entire 

river network of the Magra basin within a grid (discharge raster files in GeoTIFF format) coherent with the 

input flowlines. 

3.3.3 Modeling 

Hereinafter it is explained how REFLEX has been used for the flood modeling of the Magra river basin by 

highlighting all the assumptions employed in this case study. 

3.3.3.1 DEM conditioning 

The conditioning of the DEM has been the first activity carried out in this case study. The DEM at 10 m 

obtained from data fusion of multiple sources elevation did not require noise filtering due to the nature of 

the input source datasets. The DEM-DTM 10m data from Tuscany Region is already a hydrologically 
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conditioned DEM, and the other two source elevation data, resampled at the 10-meter resolution, already 

presented a good level of smoothness due to the bilinear interpolation employed in this resampling. In 

addition to that, it is worth considering that the here employed LiDAR data are extracted from a filtered and 

conditioned DTM product at 1m resolution derived from the LiDAR DSM. Also, the DTM at 5m spatial 

resolution from the Liguria region is obtained from an interpolation of elevation contours. 

For these reasons, the filtering of input raw elevation mosaic for the Magra basin has not been employed in 

the REFLEX DEM conditioning. However, the burning of the streams into the DEM has been necessary for the 

lower Magra valley to ensure a flow enforcement coherent to the real river network of the area. Thus, a 

subset of the input flowlines has been derived to represent only the complex network in this valley. For each 

of the branches, a representative depression in meters has been then assigned in GIS. Higher depression 

values to be used for the depression of DEM surface elevation are assigned along the main stem and the 

tributaries having riverbanks affected by elevation artifacts due to dense canopy still present in LiDAR DSM. 

All the values assigned for burning the streams into this portion of the Magra DEM are shown in Figure 35. 

 

Figure 35 – Streamlines used in the stream burning of the 10m DEM in the Lower Magra valley. Labeled numbers indicate the artificial 
depression in meters used in the stream burning of the river branches. 

Later, all these depression values have been defined as attributes into this vector file which has been then 

used as input for the DEM conditioning in the REFLEX Module 0. 
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After this manual pre-processing of input flowlines, Module 0 of the REFLEX model has been executed by 

giving as input the raw DEM at 10m resolution and the obtained flowlines with enriched metadata. This 

allowed the conditioning of the DEM in the whole basin. In REFLEX’s Module 0 the DEM has been firstly filled 

using the epsilon filling algorithm of RichdDEM. The result of the filling of depressed areas is shown in Figure 

36. 

 
Figure 36 – Result of Epsilon filling over the lower Magra river basin. The Artificial gradient ensures a hydrologically consistent 
drainage of the area, also visually highlighted by estimated HAND contours only overfilled terrain elevation. 

The epsilon filling is employed to do not affect the computation time required for the extraction of 

hydrological derivatives from both Holmgren’s MFD and the D-Infinity flow directions algorithm in GRASS GIS 

and TauDEM software. As an example, while employing the TauDEM’s D-infinity flow direction method 

(Tarboton, 1997) over LiDAR data, the implementation of the epsilon filling approach (Barnes, 2016) in 

REFLEX has shown a drastic reduction of the computation time required for TauDEM’s D-Infinity Flow 

Direction model to resolve flats. This demonstrated the benefit of using the epsilon filling as the default 

method in the REFLEX DEM conditioning chain. 

After the filling of the DEM, the burning of the streams into the filled DEM has been performed. As explained 

in Chapter 2 (see section 2.3.2), the DEM conditioning of REFLEX employs a different schema while deepening 

the DEM along the flowline with a certain value of SRD. Thus, in the river network shown in Figure 35, SRD is 

constant only for the connector branches while it is incremental for all the inlet branches. 

Once the DEM conditioning of the REFLEX’s Module 0 is accomplished, obtained outputs are: 

1. a Filled DEM (only epsilon filling), 

2. and a Conditioned DEM (epsilon filling and stream burning). 

Figure 37 shows the hill-shaded digital elevations before and after the DEM conditioning of REFLEX. Resulted 

artificial depressions can be noticed in the Conditioned DEM along the input streamlines. 
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Raw DEM 

 
Conditioned DEM 

 
Figure 37 – Before and after the DEM Conditioning of the multi-source digital elevation model for Magra at 10m spatial resolution 
obtained with the REFLEX model. 



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  77 

An example of the elevation profiles for both raw and conditioned riverbed, obtained by using constant SRD 

values along a representative inlet river branch, is shown in Figure 38. 

 

Figure 38 – A comparison of multiple elevation profiles for a river branch in the Magra river basin derived from resampled LiDAR high-
resolution DEM. The dotted black line shows the input raw DEM, the blue line the filtered one, and the red line the burned one using 
incremental SRD values. 

Instead, sample river profiles obtained by using incremental SRD value in a sample connector branch are 

shown in Figure 39. 

 

Figure 39 - A comparison of multiple elevation profiles for a river branch in the Magra river basin derived from resampled LiDAR high-
resolution DEM. The dotted black line shows the input raw DEM, the blue line the filtered one, and the red line the burned one using 
constant SRD values. 
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In this case study, the magnitude of the filtering used for the stream burning (see scalar C in equation 1 of 

section 2.3.2.3) is assumed as unitary. The choice of C=1 represented, in fact, a fair balance in the filtering of 

filled DEM elevation along the streamlines. For this reason, this value has been defined as standard in the 

REFLEX configuration file. 

Finally, to better assess the accuracy of the obtained Conditioned DEM, hydrological derivatives have been 

obtained in GIS from D8 by using both the Filled and the Conditioned DEM. Obtained flowlines derived from 

both these hydrologically conditioned DEMs are shown in Figure 40. 

 
Figure 40 - A comparison between the DEM-based flowlines (lines in purple) derived from burned, on the left, and filled, on the right, 
LiDAR DEM over the Magra river basin. Artificial depressions introduced into the DEM along real river paths, allow the extraction of 
more realistic flowlines which are necessary as input for the REFLEX flood modeling. 

As expected, flowlines derived from the only filled elevation data (output “Filled DEM” from REFLEX Module 

0) cannot represent correct paths of the drainage from hillslope areas to the mouth of the river. Instead, 

stream vectors derived from the conditioned elevation data (output “Conditioned DEM” from REFLEX 

Module 0) truly represent the real path of the main stem and its tributaries in the lower Magra valley. 

Results obtained in this analysis have demonstrated the advantages of burning the streams into the DEM 

over an urban river environment characterized by a complex river network. This application has shown the 

potential of the hydrologically conditioning method developed and integrated into the REFLEX chain. 

 

3.3.3.2 Drainage modeling 

The drainage modeling methodology implemented in REFLEX allows the employment of different HAND 

delineations from D8, Holmgren’s MFD, or D-infinity methods. All these drainage approaches have been 

evaluated in this case study over the Magra river basin. This preliminary assessment aimed to identify the 

most suitable drainage approach to be employed in REFLEX as the default drainage method for the creation 

of HAND maps. 
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The creation of HAND maps for a generic river branch requires a Hydrologically conditioned DEM and, ideally, 

the flowlines derived from it. As an example, to produce HAND maps by using the D8 drainage method the 

ideal approach is to compute heights above the nearest drainage by using channel cells over a flowline raster 

derived from the same D8 flow direction grid. The same applies to the MFD method. However, this is not 

always possible because input streamlines may be extracted from D8 flow direction (e.g. streamlines from 

WWF’s HydroSHEDS) and HAND delineation may be derived by using a different flow drainage model (e.g. D-

infinity) or even another pre-processed version of the same input DEM. 

To simulate this potential configuration input, flowlines are not derived in REFLEX from the same flow 

direction grid employed in HAND contours delineation. This assumption is taken to decorrelate the 

relationship between flowlines and flow directions into the HAND extraction and to better evaluate the 

behavior of HAND delineation using multiple drainage methods. 

Therefore, two different pre-processing levels of LiDAR filtered data, resampled at the 5-meter spatial 

resolution, are employed for this scope: an only filled DEM and another one in which the elevation has been 

also artificially depressed along the streamlines. The first one is obtained by only filling the source filtered 

LiDAR data while the second one is derived by burning the input stream vector, used in this case study, into 

the same input elevation data. 

The first hydrologically conditioned DEM, the burned DEM, is used to extract high-fidelity flowlines which 

better represents the river centerline of lower Magra valley inland waters. As shown in Chapter 2 (see section 

2.3.2), the D8 method is defined as the default drainage model in REFLEX for general basin delineation of 

hydrological features such as contributing Area, Streams, Sinks, Watersheds. Thus, channel cells in this HAND 

delineation (see section 2.6) are identified from flowlines derived from D8. Instead, the second one, the filled 

DEM, is used to derive flow direction grids for the D8, MFD, and D-infinity. 

Flowlines derived from the burned DEM combined with D8, MFD, and D-infinity flow direction from filled 

DEM are then used to create three HAND maps dataset, one for each drainage method. Obtained results 

near the confluence between the Upper Magra and the Vara rivers are shown in Figure 41. 

From an overall perspective, at basin scale, no major difference can be noted among the different methods. 

However, at small scales, differences in the three drainage methods can be recognized in terms of water 

extent and depth by looking at the HAND contours above 10m from the nearest drainage (see parts 

highlighted with yellow circles in Figure 41). 

While the D8 method appears to do not effectively delineate flat areas due to the limitations of the 8-

direction schema, both Holmgren’s MFD and D-infinity drainage models have shown a better delineation 

over river surroundings areas with a gentle slope. Furthermore, the implementation of Holmgren’s MFD in 

GRASS GIS has shown limitations near river junctions with zones of no data that were not present in the 

results obtained from the D-infinity algorithm of TauDEM. 

Therefore, this analysis is confirming the on-paper advantage in using the D-infinity drainage models for the 

HAND delineation in REFLEX given its successful application also over complex LiDAR data of the lower Magra 

valley. As a result, the D-Infinity drainage model has been defined as the default method in the REFLEX 

configuration file. 
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Figure 41 – Evaluation of HAND contours using multiple drainage algorithms for the Magra river basin, near the junction between 
Magra and Vara rivers. Only pixels having a height above the nearest drainage values below 10 m are considered. HAND contours are 
derived from the Filled resampled LIDAR data at 5m from MATTM. Input flowlines are derived from the burned DEM. The vertical 
distance from flowlines is shown in a blue graded color scale for D8, Holmgren’s MFD, and D-infinity drainage methods. Input flowlines 
are shown in purple. HAND maps are derived from the Filled DEM and not from the burned one to avoid artifacts caused by the burning 
of streams into the DEM. From an overall perspective, the DINF method shows a continuous delineation of relative vertical distances. 
Areas of discontinuity encountered in the other methods are highlighted with circles in yellow. 

 

3.3.3.3 REFLEX simulation and employed parameters 

After the conditioning of the DEM in the REFLEX Module 0, epsilon filled and conditioned DEMs are obtained. 

The conditioned DEM is obtained by burning the streams into the DEM. Later, in the REFLEX Module 1, D8 

flow direction and multiple hydrological derivatives are extracted from the Conditioned DEM obtained in the 

previous step. Based on the results of the analysis shown in the previous section, in REFLEX Module 1 the D-

infinity drainage method is also used to derive from the Filled DEM a second flow direction grid, necessary 

for the estimation of HAND contours in REFLEX Module 3. Input discharge values, extracted at each sub outlet 

of all reaches, are then used in REFLEX Module 2 to derive ETUH shape flood hydrographs using the formulas 

(from 6 to 9) expressed in Chapter 2 (see section 2.5.4). In the estimation of the ETUH of each river branch, 

the time base 𝑡𝑏 is computed by assuming as the time of concentration the centered mean of the values 

derived from the eight empirical formulas listed in Table 5. In this estimation, the centered mean is derived 

by excluding 𝑡𝑐,   𝑚𝑖𝑛 and 𝑡𝑐,   𝑚𝑎𝑥 of the series. This allowed the estimation of the surface runoff volumes 𝑉𝑜𝑏𝑗 

at multiple return periods across the entire basin. Surface runoff volumes from the Module 2 and a library of 

154 HAND maps obtained from the Module 3 are then used as input in the REFLEX Flood Inundation module 

for its Manning-based volume optimization over all the reaches. In this fourth module, a constant value of 

0.06 [m
1

3⁄  ∙ s] has been assumed for the roughness coefficient over all the basin, and therefore used in the 

flood modeling of all reaches. This representative value is obtained by averaging the three most 
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representative manning coefficients often employed in the hydraulic modeling of the Ligurian basins 

(Regione Liguria, 2020b): 

• 0.035 for channel-bed roughness in low-medium stream flow, 

• 0.05 for natural or scarcely urbanized floodplains, 

• and 0.1 for densely urbanized floodplains. 

This approach has been used for both the input DEM at 90m and 10m spatial resolution. The full list of the 

REFLEX parameters employed in the flood simulations at multiple return periods is reported in Table 12. 

Parameter Value 

ACPX APP_SETT 

DOMAIN magra 

RRS_M 10 

RRS_DD 0.0001 (0.0008333 for 90m DEM) 

NANDEMVAL -9999 

EPSG_CRS 4326 

EPSG_PRJ 32632 

STR_BURNING_ENABLED True 

TARGET_EPSG 4326 

DCOND_BUFFER_CELLS 20 

DCOND_FILTERING_MAGNITUDE 1 

REMOVE_SINK_ENABLED False 

PIT_REMOVAL_ENABLED False 

EPS_FILLING_ENABLED True 

SOLVE_FLATS_ENABLED False 

FD_METHOD_STREAMS D8 

FD_METHOD_HAND DINF 

DRAINAGE_THRSLD 3000 (600000 for 90m DEM) 

BUFFER_DISTANCE_CELL 50 

COASTEXP 1 

HAND_TRSHLD_ELEV 2000 

HAND_MASK_BUFF_DIST_M 300 

GRADIENT_LIMIT 0.0003 

STR_ELEV_PERCENTILE 25 

HEAD_LOSS 20 

VOLMIN 1000 

WDMIN 0.1 

WDMAX 15 

ITERATIONS_MAX_VOL_OPT 5 

ROUGHNESS_COEFF 0.06 

TOLERANCE_VOL_OPT_M 0.1 

RP 30 (200 for simulation at 200-year RP) 

Table 12 – List of parameters used in the application of REFLEX in the Magra river basin at 30- and 200-year return periods. 
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3.3.4 Results 

In this section are summarized major results obtained in the REFLEX case study for the Magra river basin. 

After a description of the benchmark flood maps, a validation of the flood extent is performed at different 

return periods using both the DEM at 10m and 90m resolutions. 

3.3.4.1 Benchmark flood maps used for validation 

In this case study, the benchmark flood maps to which the REFLEX model outputs are compared are the Flood 

Hazard Map retrieved from the Piano di Gestione del Rischio Alluvioni - PGRA dataset of the Northern 

Apennine Interregional River Basin Authority (AdB Distrettuale Appennino Settentrionale, 2021). 

Figure 42, and Figure 43 show respectively the flood extent for a 30-year and a 200-year return period used 

as a reference in this analysis. 

 
Figure 42 – Flood hazard map for the Magra river basin from “Piano di Gestione del Rischio Alluvioni” of the Northern Apennine 

Interregional River Basin Authority. Areas in red show flood extent at the 30-year return period used as a reference in this case study. 
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Flood extent obtained from REFLEX at multiple return periods and multiple resolutions are compared with 

the ones of the PGRA flood hazard maps by employing a confusion matrix as explained in section 2.7.4. 

In this binary classification, statistics are calculated by considering only the areas contained within the 

coverage of LiDAR tiles, which is highlighted in Figure 42 with a dashed black line. The choice of this domain 

is here assumed for two main reasons: 

• it includes all the floodplains of the Magra river basin, 

• the input DEM has a higher vertical and spatial accuracy given from the source raw LiDAR data. 

 

 
Figure 43 – Flood hazard map for the Magra river basin from “Piano di Gestione del Rischio Alluvioni” of the Northern Apennine 

Interregional River Basin Authority. Areas in red show flood extent at the 200-year return period used as a reference in this case study. 
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3.3.4.2 The importance of the Manning correction into REFLEX volume optimization 

To better assess the role of the iterative Manning-based volume optimization described in Chapter 2, the 

REFLEX model has been deployed without and with this option. In the first configuration, the REFLEX Flood 

Module performs only a static volume optimization which is performed by computing flood extent at each 

reach by using the total surface runoff volume drained by the in the input hydrograph at the base time 

(parameter “ITERATIONS_MAX_VOL_OPT=0”). In the second configuration, instead REFLEX performs an 

iterative volume optimization (default method) in which flood maps are derived by using as surface runoff 

volume the one derived at the transit time. 

To reduce computation time, the input DEM employed in this analysis is the one at 90m spatial resolution 

derived from the MERIT DEM dataset. Obtained results at a 30-year return period for both these 

configurations are shown in Figure 44, in which REFLEX extents are compared to the PGRA flood hazard maps. 

Static volume optimization Manning-based iterative volume optimization 

  

Figure 44 -A comparison between the validation of REFLEX flood extents against the reference flood hazard map (PGRA) for the same 
flood return period (RP 30 years) using MERIT DEM over the Magra river basin. Areas of exclusions are shown in red, areas of omissions 
in green, and the matched areas in blue. On the left and the right are shown REFLEX modeling results respectively without and with 
the volume optimization routine based on Manning’s formula. 

From an overall perspective, flood extents derived from the static volume optimization are generally 

overestimated in the whole basin. On the contrary, a better agreement is depicted from REFLEX’s flood maps 

derived from the Manning-based iterative volume optimization. 

This experiment demonstrates the on-paper advantages in using the iterative runoff volume optimization, 

based on the transit time and Manning’s formula, which seems to solve the over-estimation of flood extent 

of the REFLEX flood module that occurs when this option is disabled. 

Furthermore, this analysis has also shown, on average, that five iterations are enough to reach the 

convergence of the Manning-based iterative volume optimization. As a result, the number of five iterations 

has been assumed as default in the REFLEX configuration file (parameter “ITERATIONS_MAX_VOL_OPT”). 
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3.3.4.3 Flood extent and water depth for the 30-year return period at 10m resolution 

The water depth map at 10 m spatial resolution derived from the REFLEX model for the return period of 30 

years is shown in Figure 45. 

 

 
Figure 45 – Water depth at 10 spatial resolution from the REFLEX flood modeling at 30-year return period for the Magra basin. 
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3.3.4.4 Flood extent and water depth for the 200-year return period at 10m resolution 

The water depth map at 10 m spatial resolution derived from the REFLEX model for the return period of 

200 years is shown in Figure 46. 

 

 
Figure 46 – Water depth at 10 spatial resolution from the REFLEX flood modeling at 200-year return period for the Magra basin. 
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3.3.4.5 Flood extent validation for the 30-year REFLEX map at 10m resolution 

The output from the validation of REFLEX flood extent is depicted in Figure 47, which shows agreement, 

errors of exclusion, and inclusion of flood hazard at 30-year return period. 

 
Figure 47 –The figure shows a comparison between the flood extent delineation from the REFLEX model at the 30-year return period 

and the PGRA Flood Hazard map at the same return period for the Magra river basin in Northern Italy. Areas in blue, green, and red 

show respectively agreement (TP), error of inclusion (FP), and error of exclusion (FN). 

 

For a better visual interpretation of the obtained binary classification of pixels within the domain, a series of 

more detailed maps over multiple portions of the basins are also presented in the following pages. In such 

maps, areas in blue, green, red, and light yellow represent respectively True Positive (TP), False Positive (FP), 

False Negative (FN), and True Negative (TN) pixels. 
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Figure 48 – Detail of binary classification at 30-year return period in the low Magra valley. 
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Figure 49 – Detail of binary classification at 30-year return period at the junction between Vara and Magra rivers. 
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Figure 50 – Detail of binary classification at 30-year return period in the Vara Magra river. 
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Figure 51 – Detail of binary classification at 30-year return period in the Lower Magra river. 
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This binary classification allowed the estimation of multiple indexes which are summarized in Table 13. 

At the basin scale, the REFLEX model shows a very high overall accuracy of 0.93. However, the 0.66 of 

sensitivity, or true positive rate (TPR), highlights that a certain number of pixels classified as False Positive 

(FP) are present in the REFLEX flood extent. Significant FP pixels have been encountered mainly in both the 

Lower Magra valley and in the upstream part of the Higher Magra river basin. Despite that, it is worth 

highlighting that a precision value of 0.84 demonstrates that the REFLEX modeled flood extent includes a low 

number of false positives pixels. 

From an overall perspective, these outcomes can also be effectively summarized by looking at both Cohen’s 

Kappa and Matthews Correlation coefficients which show respectively a good K value of 0.7 and a moderate 

MCC value of 0.7 for all the Magra river basin. 

Statistics Description 
RP 30 years 

Magra Vara Lower Magra Higher Magra 

ACC Overall accuracy 0.93 0.96 0.82 0.91 

TPR Sensitivity 0.66 0.69 0.63 0.58 

PPV Precision 0.84 0.86 0.80 0.87 

K Cohen's kappa coefficient 0.70 0.74 0.64 0.65 

MCC Matthews Correlation Coefficient 0.70 0.75 0.68 0.67 

Table 13 – Results from the binary classification of flood extent at 30-year return period. 

Instead, while looking at each of the three macro sub-basins the highest value of MCC (0.75) has been 

registered over the Vara river basin and the lowest (0.67) in the Higher Magra. This analysis highlighted a 

better performance of REFLEX in the Vara river basin, probably caused by the less urbanized nature of this 

river environment. 

 
Figure 52 – Bar chart showing accuracy, Cohen's kappa coefficient, and index, and Matthews Correlation Coefficient of the binary 
classification of the 30-year return period flood map from REFLEX at different scales. 
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3.3.4.6 Flood extent validation for the 200-year REFLEX map at 10m resolution 

The output from the validation of REFLEX flood extent is depicted in Figure 53, which shows agreement, 

errors of exclusion, and inclusion of flood hazard at the 200-year return period. 

 
Figure 53 – The figure shows a comparison between the flood extent delineation from the REFLEX model at the 200-year return period 

and the PGRA Flood Hazard map at the same return period for the Magra river basin in Northern Italy. Areas in blue, green, and red 

show respectively agreement (TP), error of inclusion (FP), and error of exclusion (FN). 

 

Again, for a better visual interpretation of the obtained binary classification of pixels within the domain, a 

series of more detailed maps over multiple portions of the basins are also presented in the following pages. 

In such maps, areas in blue, green, red, and light yellow represent respectively True Positive (TP), False 

Positive (FP), False Negative (FN), and True Negative (TN) pixels. 
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Figure 54 – Detail of binary classification at 200-year return period in the low Magra valley. 
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Figure 55 – Detail of binary classification at 200-year return period at the junction between Vara and Magra rivers. 
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Figure 56 – Detail of binary classification at 200-year return period in the Vara Magra river. 
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Figure 57 – Detail of binary classification at 200-year return period in the Lower Magra river. 

 

  



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  99 

This binary classification allowed the estimation of multiple indexes which are summarized in Table 14. 

Statistics Description 
RP 200 years 

Magra Vara Lower Magra Higher Magra 

ACC Overall accuracy 0.91 0.95 0.87 0.93 

TPR Sensitivity 0.64 0.74 0.68 0.60 

PPV Precision 0.92 0.89 0.88 0.99 

K Cohen's kappa coefficient 0.70 0.78 0.67 0.64 

MCC Matthews Correlation Coefficient 0.72 0.78 0.68 0.65 

Table 14 – Results from the binary classification of flood extent at 200-year return period. 

 
Similar statistics to the one obtained in the REFLEX flood maps at 30-year return period have resulted also 

in the flood modeling at 200 years (Figure 58). 

 
Figure 58 – Bar chart showing accuracy, Cohen's kappa coefficient, and index, and Matthews Correlation Coefficient of the binary 
classification of the 200-year return period flood map from REFLEX at different scales. 
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3.3.4.7 Discussion 

Results obtained from this case study have first shown the importance of an accurate hydrologically 

conditioning of the source raw DEM, which is crucial in deploying REFLEX. Also, the advantages in using the 

D-infinity drainage model as the default schema to derive HAND contours from the conditioned elevation 

data have been proven useful in the REFLEX flood modeling. Furthermore, this case study has demonstrated 

the potential of the iterative runoff volume optimization based on the transit time derived from a simplified 

version of Manning’s formula. This novel iterative approach dramatically reduces the overestimation of flood 

extent in REFLEX when the surface runoff volumes are derived from the time integral of the whole triangular 

hydrograph. As also explained in Chapter 2, obtained results confirmed that the estimation of the transit time 

is needed to encounter the streamflow average velocity into this hydro-geomorphological approach. 

Input discharge values at multiple return periods allowed the estimation of flood hazard maps from REFLEX 

at 10m spatial resolutions. These maps have been validated in terms of the flood extent by using official 

reference flood hazard maps retrieved from local authorities. The binary classification over the basin has 

shown high values of the REFLEX overall accuracy, with moderate values of Kappa and Matthews Correlation 

coefficients due to the presence of false negatives over a certain portion of the basin. In particular, the 

presence of false-negative pixels in REFLEX hand maps has been registered mostly in defended floodplains of 

the Magra river basins where multiple secondary tributaries join the main stem. Instead, concerning the false 

positives, it is worth noticing that few pixels have been classified as FP in the REFLEX flood maps, as also 

demonstrated by high precision values registered in the whole basin. 

Similar confusion matrices and then associate statistics have been derived from both REFLEX scenarios at 30 

and 200 years return periods. Despite small differences at the basin scale, the performance of REFLEX is 

almost identical also while looking at the scales of Vara, Higher, and Lower Magra basins. This result highlights 

the coherence of the REFLEX method, which seems to provide flood modeled results independently from the 

magnitude of the flood event. 
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3.4 REFLEX Case study – The Entella river basin in Northern Italy 

Hereinafter are shown results obtained from the application of REFLEX into a second basin in Northern Italy. 

3.4.1 Case study description 

The second case study where REFLEX has been applied is the Entella river basin, which is also part of the 

Northern Apennines District in northern Italy. The Entella river basin is located in the central east of this 

hydrological region, and it covers most of the eastern territory of the province of Genoa in the Liguria Region. 

The Entella river basin extends for about 375 square kilometers, has a maximum elevation of 1969 meters m 

above the mean sea level, and comprises multiple high relief areas belonging to Lavagna (east), Sturla (north), 

and Graveglia (west) tributaries (see map in Figure 59). Before reaching the mouth in the Ligurian Sea the 

Entella river intersects the alluvial coastal floodplain of Chiavari and Lavagna municipalities, located between 

the Rupinaro (north-west) and Fravega (south-east) small coastal catchments. This floodplain is densely 

urbanized and is frequently affected by flooding (Roccati et al., 2020). 

 
Figure 59 – The Entella river basin in Northern Italy investigated in this REFLEX case study. 
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3.4.2 Input data 

The initialization of REFLEX over the Entella river basin required a similar data collection activity to the one 

presented for the Magra river basin. All these inputs are described below. 

3.4.2.1 Digital Elevation Model 

The input digital elevation models employed in this case study are retrieved from two different conditioned 

elevation data at 90 and 1m spatial resolutions. The first DEM is derived from the MERIT DEM dataset 

(Yamazaki et al., 2017), while the second one is obtained from the LiDAR DTM of the Italian Ministry for the 

Environment Land and Sea (MATTM) and accessed via CIMA Research Foundation. The multiple LiDAR DTM 

tiles required to cover the area of interest have been processed in GIS before their use in REFLEX. This pre-

processing required merging all the tiles and resampling the output mosaic into a 5m spatial resolution DEM. 

3.4.2.2 Flowlines 

Input flowlines are assumed as (shapefile) derived from the Filled DEM at 5m resolution with thresholding 

on the drainage area from the D8. The resulting stream network used in REFLEX is shown in Figure 60. 

 
Figure 60 - streamlines employed in REFLEX modeling of the Entella river basin. 
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Obtained streamlines in a vector file have been then manually edited only in the final portion of the river 

network within the coastal floodplain (branch no.2). This vector editing in QGIS has been made by following 

the Entella river centerline derived from a visual interpretation of VHR optical imagery (Bing base map). 

3.4.2.3 Runoff peak discharge 

Input runoff peak discharge estimations at different return periods are derived from the “Piano di Bacino 

Stralcio Sul Rischio Idrogeologico” report of the Ligurian Region and the Northern Apennine Interregional 

River Authority (Regione Liguria, 2020b). The discharge values extracted from “Table 1.16” of the report 

published in May 2020 are included in Table 15 for all five branches of the input streamlines. 

Stream Entella river basin Runoff peak discharge 

ID River branch 50 years 200 years 500 years 

6 Higher Lavagna stream (near confluence with Sturla) 916 1614 2343 

8 
Sturla stream (near the junction with the Lavagna 
stream) 

474 839 1223 

4 
Lower Lavagna stream (from the confluence with 
Sturla river to the junction with Graveglia river) 

1307 2300 3337 

10 
Graveglia stream (near confluence with the Lavagna 
stream) 

331 584 849 

2 
Entella river (from the confluence with Graveglia river 
to the sea mouth) 

1559 2739 3971 

Table 15 - Discharge values for the Entella river basin at 50-, 200-, and 500-year RP (Regione Liguria, 2020b). 

The above listed discharge values for 50-, 200-, and 500-year return period (medium, high, and very high 

magnitude of flood hazard) derived from this report have been then distributed across the entire river 

network of the Entella basin within a grid (discharge raster files in GeoTIFF format) coherent with the input 

flowlines. Furthermore, values for the 150-year RP have been also derived from the rating curves given in the 

same report. Obtained values are the following: 1430 (branch 6), 745 (branch 8), 2044 (branch 4), 519 (branch 

10), and 2436 (branch 2) cubic meters per seconds. 

3.4.3 Modeling 

Hereinafter is explained the flood modeling approach adopted for this second REFLEX case study over the 

Entella river basin. 

3.4.3.1 DEM conditioning 

As described in the first case study, a conditioning of the DEM has been carried out also in this second basin. 

Both the DEMs have not been filtered due to the low amount of noise in both MERIT DEM and LiDAR DTM 

source products. Input DEMs derived from either the MERIT dataset or the LiDAR data have been first filed 

in REFLEX Module 0 using the epsilon filling. Later, the stream burning has been performed only on the Entella 

river branch being the only one intersecting a dense urban floodplain. 

3.4.3.2 Coastal expansion 

The REFLEX coastal expansion of HAND maps has been particularly useful for this case study. As widely 

explained in Chapter 2, in REFLEX the HAND contours are expanded over a buffer zone of the catchment by 

using a GIS-based method. Such a method relies on an a priori hydraulic head loss and the Euclidean distance 

of hillslope pixels from the river centerline (see section 2.6.2.2). In such HAND expansion vertical distances 
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from nearest drainage are artificially constructed (see equation 16), for each riverbank pixel within a 

searching zone 𝐷(𝑟𝑛) by assuming the hydraulic head loss −𝐽𝐿 constant. The domain 𝐷(𝑟𝑛) used for the 

computation of this HAND expansion is built as a function of a maximum distance from the river 𝑑𝑚𝑎𝑥 and a 

buffer 𝑏 of the watershed. Thus, three parameters drive the coastal expansion of HAND in REFLEX Module 3 

which are 𝑏, 𝑑𝑚𝑎𝑥, and 𝐽𝐿. 

The a priori buffer distance 𝑏 depends on the pixel spacing of the DEM. In the flood modeling of the whole 

Entella river, this buffer has been defined as 50 cells to ensure a buffer of the watershed of at least 250m. 

Given the higher slopes of the other reaches, the HAND costal expansion is triggered in REFLEX only in the 

river branch number 2 of the Entella stream network. The application of equation 12 resulted into 𝑑𝑚𝑎𝑥 =

2739 𝑚. Therefore, as shown in Figure 61, the searching domain for the expansion of HAND in this river 

branch are made mostly on a 250 meters buffer zone of the sub-catchment being 𝑑𝑚𝑎𝑥 particularly higher 

than 𝑏. 

 
Figure 61 – Watershed, sub-outlet, not expanded HAND map, and search areas (b and dmax) for the Entella river branch. 
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After these assumptions on the distances, the remaining parameter to be defined before employing REFLEX 

is the head loss in meter per pixel 𝐽𝐿. The role of this parameter has been evaluated by using multiple values. 

This has been first evaluated by using a 𝐽𝐿 = 0.2 𝑚. The planar view of the resulting expanded HAND map 

and the cross-section in the riverbank highlighted a strong discontinuity in the relative vertical elevation 

between the original HAND map and the expanded one. This expansion cannot ensure a proper delineation 

of water depth in the floodplain, as shown by the slope of HAND over the expansion (see the red curve shown 

in Figure 62). Therefore, the same evaluation has been then repeated using lower values of 𝐽𝐿. 

 
Figure 62 – Planar view in shaded gray and cross-section of expanded HAND in Entella’s floodplain using a head loss of 20cm per pixel. 

 
Figure 63 – Planar view in shaded gray and cross-section of expanded HAND in Entella’s floodplain using a head loss of 5cm per pixel. 
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A head loss of 0.05 meters has sensitively reduced the discontinuity in the expansion of HAND (Figure 62). 

However, artifacts in relative elevation delineation are still persistent, particularly over pixels having a higher 

distance from the nearest drainage. After other iterations, the optimum value has been then found for 𝐽𝐿 

equal to 0.01 meter, which essentially consists of a rising 0.2% elevation slope being the DEM pixel spacing 

equal to 5 meters. The obtained expanded HAND is shown in Figure 64, in which no significant artifacts in 

relative heights delineation are depictable. 

 
Figure 64 – Planar view in shaded gray and cross-section of expanded HAND in the Entella floodplain using a head loss of 1cm per 

pixel. 

The here described assumptions allowed the definition of REFLEX coastal expansion parameters to be used 

for the flood modeling of the Entella river basin. 

3.4.3.3 Manning-based iterative volume optimization 

REFLEX has been deployed in the Entella river basin by using the same configuration of the one used in the 

Magra river basin, being both these basins similar and located in the same hydrological region. Concerning 

the parametrization of the Flood module, the experience acquired in the first case study led to assume five 

iterations also in the flood modeling with REFLEX over the Entella. This assumption is also taken to better 

assess whether the iterative volume optimization routine can similarly converge also into this second basin. 

Figure 65 shows an evolution of the 200-year flood extent derived from this iterative process in the Entella 

river branch number 2. As already noticed in the Magra case study, the obtained flood extents converged 

after only 5 iterations with no significant differences in the results of the following iterations. Thus, the 

truncation at 5 iterations represents a good balance to both ensure good model accuracy and to minimize 

computation time. Similar behaviors have been registered in all other river branches. 
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Figure 65 – Iterative Evolution of water extent for a sample Entella subbasin in the REFLEX Manning-based volume optimization. 
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3.4.3.4 REFLEX simulation and employed parameters 

The full list of the REFLEX parameters employed in the flood simulations of the Entella at multiple return 

periods is reported in the table below. 

Parameter Value 

ACPX APP_SETT 

DOMAIN Entella 

RRS_M 5 

RRS_DD 0.00005 (0.0008333 for 90m DEM) 

NANDEMVAL -9999 

EPSG_CRS 4326 

EPSG_PRJ 32632 

STR_BURNING_ENABLED True 

TARGET_EPSG 4326 

DCOND_BUFFER_CELLS 20 

DCOND_FILTERING_MAGNITUDE 1 

REMOVE_SINK_ENABLED False 

PIT_REMOVAL_ENABLED False 

EPS_FILLING_ENABLED True 

SOLVE_FLATS_ENABLED False 

FD_METHOD_STREAMS D8 

FD_METHOD_HAND DINF 

DRAINAGE_THRSLD 60000 (for 5m DEM) 

BUFFER_DISTANCE_CELL 50 

COASTEXP 1 

HAND_TRSHLD_ELEV 2000 

HAND_MASK_BUFF_DIST_M 300 

GRADIENT_LIMIT 0.0003 

STR_ELEV_PERCENTILE 25 

HEAD_LOSS 20 

VOLMIN 1000 

WDMIN 0.1 

WDMAX 15 

ITERATIONS_MAX_VOL_OPT 5 

ROUGHNESS_COEFF 0.06 

TOLERANCE_VOL_OPT_M 0.1 

RP 50 (150, 200, 500) 

Table 16 – List of parameters used in the application of REFLEX in the Magra river basin at 30- and 200-year return periods. 
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3.4.4 Results 

Hereinafter are summarized major results obtained in this REFLEX case study over the Entella river basin. 

After a description of the benchmark flood maps, a validation of the flood extent derived using DEMs at 

multiple spatial resolutions is performed for different return periods. 

3.4.4.1 Benchmark flood maps used for validation 

In this case study, Flood Hazard Maps of the PGRA of the Northern Apennine Interregional River Basin 

Authority (AdB Distrettuale Appennino Settentrionale, 2021) are used to validate the REFLEX modeled flood 

extent. PGRA flood extents for 50-, 200- and 500-year return periods are shown in Figure 66. 

 

 

Figure 66 – Flood hazard map for the Entella river basin from “Piano di Gestione del Rischio Alluvioni” of the Northern Apennine 

Interregional River Basin Authority. Areas in light red, red, and dark red show flood extent at 50-, 200- and 500-year return periods, 

respectively. 
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In addition to the PGRA dataset, the flood hazard maps at 50-, 150-, and 500-years RP derived from the CIMA 

Research Foundation via 2D hydraulic modeling have been also used as a reference for this REFLEX case study. 

An example of the CIMA’s hazard map obtained with the TELEMAC-2D hydraulic model at the 500-year return 

period is shown in Figure 67. CIMA’s flood hazard maps have been derived using the same LiDAR DTM of the 

Italian Ministry for the Environment Land and Sea (MATTM) employed in this case study. 

 

 

Figure 67 – Flood hazard map at 500-year return period for the Entella river basin from CIMA Research Foundation. 
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3.4.4.2 Flood extent and water depth for multiple-year return periods at 5m resolution 

The floodwater extent maps at 5 m spatial resolution derived from the REFLEX model for return periods of 

50, 200, and 500 years are shown in Figure 68. 

 

 
Figure 68 – Water extent over the Entella river basin derived from the REFLEX flood model at different flood magnitudes. Hill shaded 
LiDAR data from MATTM is shown in graded grayscale. Reflex flood extent at 5m resolution for 50, 150, 200, and 500 years return 
periods are shown in dark blue, blue, light blue, and very light blue respectively. 
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The water depth map at 5 m spatial resolution derived from the REFLEX model for a return period of 50 

years is shown in Figure 69. 

 

 

Figure 69 – Water depth over the Entella river basin derived from the REFLEX flood model at 50 years return periods. Water depths in 
meters are shown in a blue scale graded color bar. 
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The water depth map at 5 m spatial resolution derived from the REFLEX model for a return period of 150 

years is shown in Figure 70. 

 

 

Figure 70 – Water depth over the Entella river basin derived from the REFLEX flood model at 150 years return periods. Water depths 
in meters are shown in a blue scale graded color bar. 
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The water depth map at 5 m spatial resolution derived from the REFLEX model for a return period of 200 

years is shown in Figure 71. 

 

 

Figure 71 – Water depth over the Entella river basin derived from the REFLEX flood model at 200 years return periods. Water depths 
in meters are shown in a blue scale graded color bar. 
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The water depth map at 5 m spatial resolution derived from the REFLEX model for a return period of 500 

years is shown in Figure 72. 

 

 

Figure 72 – Water depth over the Entella river basin derived from the REFLEX flood model at 500 years return periods. Water depths 
in meters are shown in a blue scale graded color bar. 

 
  



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  116 

3.4.4.3 Flood extent validation for the 50-year REFLEX map at 5m resolution 

The output from the validation of REFLEX flood extent using the PGRA hazard maps is shown in Figure 73, 

which shows agreement, errors of exclusion, and inclusion of flood hazard at 50-year return period. 

 

 

Figure 73 - Comparison between the flood extent delineation from the REFLEX model at the 50-year return period and the PGRA Flood 
Hazard map at the same return period for the Entella river basin in Northern Italy. Areas in blue, green, and red show respectively 
agreement (TP), error of inclusion (FP), and error of exclusion (FN). 
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3.4.4.4 Flood extent validation for the 200-year REFLEX map at 5m resolution 

The output from the validation of REFLEX flood extent using the PGRA hazard maps is depicted in Figure 74, 

which shows agreement, errors of exclusion, and inclusion of flood hazard at 200-year return period. 

 

 
 
Figure 74 - Comparison between the flood extent delineation from the REFLEX model at the 200-year return period and the PGRA 
Flood Hazard map at the same return period for the Entella river basin in Northern Italy. Areas in blue, green, and red show respectively 
agreement (TP), error of inclusion (FP), and error of exclusion (FN). 
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3.4.4.5 Flood extent validation for the 500-year REFLEX map at 5m resolution 

The output from the validation of REFLEX flood extent using the PGRA hazard maps is depicted in Figure 75, 

which shows agreement, errors of exclusion, and inclusion of flood hazard at 500-year return period. 

 

 

Figure 75 - Comparison between the flood extent delineation from the REFLEX model at the 500-year return period and the PGRA 
Flood Hazard map at the same return period for the Entella river basin in Northern Italy. Areas in blue, green, and red show respectively 
agreement (TP), error of inclusion (FP), and error of exclusion (FN). 
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3.4.4.6 Outcomes from flood extent validation using the PGRA flood hazard maps 

This binary classification allowed the estimation of multiple indexes which are summarized in Table 17. 

Statistics Description 
Return period 

50 years 200 years 500 years 

ACC Overall accuracy 0.94 0.95 0.96 

TPR Sensitivity 0.82 0.85 0.87 

PPV Precision 0.78 0.89 0.94 

K Cohen's kappa coefficient 0.76 0.84 0.88 

MCC Matthews Correlation Coefficient 0.76 0.84 0.88 

Table 17 - Results from the binary classification of flood extent in the Entella at 50-, 200-, and 500-year return periods using the 
PGRA flood hazard map as a benchmark. 

At the basin scale, the REFLEX model shows very high accuracy (e.g., ACC=0.95 at 200-year return period), 

high precision (e.g., K=0.89 at 200-year return period), and strong agreement (e.g., MCC=K=0.84 at 200-year 

return period) in all three modeled flood magnitudes. Higher FN and FP pixels have been encountered mainly 

in the Lower Entella, where low relief topography does not simplify the flood delineation of this hydro 

geomorphological method. A complete overview of all obtained metrics obtained at multiple return periods 

over the Entella is shown in the bar chart of Figure 76. 

 

Figure 76 - Bar chart showing accuracy, Cohen's kappa coefficient, and index, and Matthews Correlation Coefficient of REFLEX 
binary classification in the Entella at multiple return periods using the PGRA flood hazard map as a benchmark. 

It is evident from the above bar chart that, intuitively, the fit between predicted and reference flood extents 

increases while flood magnitude is also increasing. As expected, such metrics confirmed REFLEX’s strengths 

in modeling events of medium-high flood magnitudes. 
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3.4.4.7 REFLEX water depth validation using CIMA flood hazard maps 

The validation of the REFLEX model accuracy has been also accomplished by taking as second benchmark 

detailed flood hazard maps at multiple return periods derived from the TELEMAC-2D hydraulic model. This 

second reference flood hazard map represents, in fact, an accurate output from a 2D hydrodynamic model 

that allows to better highlight the strengths and limitations of the REFLEX model. Furthermore, being the 

CIMA’s flood hazard map provided as a water depth map derived by using the same LiDAR data, it also allows 

an evaluation of the flood depth estimated by REFLEX. Figure 77 shows the output from this second validation 

of the REFLEX flood extent at the 500-year return period. 

 

 

Figure 77 - Comparison between the flood extent delineation from the REFLEX model at the 500-year return period and the CIMA 
Flood Hazard map at the same return period for the Entella river basin in Northern Italy. Areas in blue, green, and red show respectively 
agreement (TP), error of inclusion (FP), and error of exclusion (FN). 

 

This binary classification allowed the estimation of multiple indexes which are summarized in Table 18. 
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Statistics Description 
Return period 

500 years 

ACC Overall accuracy 0.97 

TPR Sensitivity 0.93 

PPV Precision 0.92 

K Cohen's kappa coefficient 0.91 

MCC Matthews Correlation Coefficient 0.91 

Table 18 – Metrics from the binary classification of flood extent in the Entella at 500-years using the CIMA flood hazard maps. 

This very good match between REFLEX and TELEMAC flood extent at the same return period allowed a 

comprehensive comparison of water depth over the area of matching, which is shown in Figure 78. A water 

depth difference raster is derived as  WDdifference = WDREFLEX  −  WDreference over the area of agreement. 

 
 
Figure 78 – Water depth difference in meters between the REFLEX water depth map at the 500-year return period and the one from 
the CIMA water depth map at the same return period for the Entella river basin in Northern Italy. Areas in red, yellow, and blue show 
respectively underestimate (0 < WD difference <-5), match (WD difference = 0), and overestimate (5 < WD difference < 0). 
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From an overall perspective, the differences in water depth over the Entella floodplains ranges between a 

minimum of -6.26 meter to a maximum of 5.95 meters. Most of these values are comprised within a range 

of |WDdifference| < 2 m, as shown in the raster histogram in Figure 79. 

 
Figure 79 - Distribution of Water depth differences between the REFLEX water depth and the benchmark one derived by CIMA 
Foundation using TELEMAC 2D model. 

 
Despite a satisfactory agreement between REFLEX and TELEMAC water depths, this quantitative analysis 

highlights an expected limitation of this hydro-geomorphological model in estimating flood depth. 
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3.4.4.8 Discussion 

This second REFLEX case study confirmed the role of filtered and conditioned elevation data in the rapid flood 

modeling at medium-small scales. Resampled LiDAR elevations have shown their strengths in delineating 

flood extent also while comparing REFLEX results with detailed flood hazard maps at 1m spatial resolution 

from PGRA and CIMA Research Foundation. 

The application of REFLEX in this second Ligurian river basin has been particularly useful to evaluate the 

strengths and limitations of the coastal expansion method developed for this hydro geomorphological model. 

In fact, HAND expansion has been necessary to effectively simulate floodwaters near the coast. The artificial 

extension of HAND contours from the watershed boundary to the neighbor coastal basins has ensured a 

coherent mapping of the flood. No significant gaps have been encountered in the REFLEX flood extent near 

the coast. This method allowed to solve the “water wall” effect in flooded areas constrained by the 

watershed, previously observed while employing not expanded HAND contours. However, when extending 

this method in different locations and at different scales, some of the parameters employed in this research 

may be redefined. A fine-tuning of these parameters may be undertaken by extensively employing REFLEX in 

multiple hydrological regions and by comparing modeled results with different flood records. 

Furthermore, the Manning-based iterative volume optimization has shown a satisfactory application also 

within this application of REFLEX in the Entella. This routine, which is necessary to estimate surface runoff 

volume at transit time, allowed to effectively delineate flood hazard at multiple return periods in the main 

stem and its tributaries basins. Furthermore, this case study has also confirmed the suitable number of 

iterations to ensure the convergence of the Manning-based volume update. Five iterations represented a 

good balance to both ensure good model accuracy and minimize computation time.  

Concerning the validation of modeling results at multiple return periods, the obtained REFLEX water extent 

and water depth maps have been validated by using multiple reference flood hazard maps. The validation of 

the extent has been first performed by using the same reference dataset employed in the Magra case study, 

the PGRA flood hazard maps. Obtained metrics have shown a very good agreement between predicted and 

reference flood extents, with a strong agreement demonstrated by values of the Kappa index and of the 

Matthews Correlation Coefficient above 0.75 in all return periods. 

REFLEX flood maps have been validated by using also accurate flood modeled results from 2D hydraulic 

modeling shared from CIMA Research Foundation. In this second validation, water depth and extent 

differences to the reference CIMA’s hazard map in both inclusion and exclusion errors are more significant 

near the coastal floodplains. This is probably related to a single distribution of the runoff volume in the Entella 

river branch. In fact, the water stage along each stream branch is assumed as constant in REFLEX, while in 

the reference 2D hydraulic simulation the same variable changes along the river due to modeled local 

hydrodynamics (e.g., lower water level due to local rapid change in velocity). This limitation may be overcome 

in future REFLEX developments with the definition of different weights in Manning’s based volume 

optimization of multiple segments of the Entella streamline. Such segments may be identified by subdividing 

a river branch into sub-branches having similar averaged riverbed slopes. 
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3.5 REFLEX Case study – The Secchia river basin in Northern Italy 

This section summarized the outcomes of the application of REFLEX over the Secchia river basin, in Northern 

Italy. 

3.5.1 Case study description 

This REFLEX case study aims to simulate a scenario event for levee breaking in the Secchia river basin in Emilia 

Romagna, Italy. This scenario is based on a real event that occurred on the 18th of January 2014 in a portion 

of the Secchia river basin in the north of Modena (Figure 80). After four days of intense rainfall over the area, 

a levee breach occurred along the Secchia which resulted in severe flooding in Albareto di Modena, Bastiglia, 

and Sorbara municipalities. 

 

Figure 80 – A portion of the Secchia river basin in Northern Italy investigated in this REFLEX case study (Image credits: Ferrari, 
Protezione Civile Modena, Aeroclub Marzaglia). 
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3.5.2 Input data 

The input high-resolution DEM at 1m spatial resolution and flood hydrograph at levee breaking have been 

derived from a hydraulic study performed by CIMA Research Foundation. Both these sources of information 

have been employed by CIMA to derive post-disaster flood delineation using an accurate 2D hydrodynamic 

modeling of the domain (Figure 81). In this study, the obtained flood extent has been also validated using 

satellite imagery. 

 

Figure 81 - Flood scenario from a 2D hydraulic model used as benchmarking (Source CIMA Foundation). 

This modeled water depth map of the event has been used to assess the impact of the event over this portion 

of the Secchia river basin in the upstream and downstream areas near Bastiglia. Therefore, this CIMA’s flood 

scenario represents the reference for this REFLEX case study. 

3.5.3 Modeling and results 

The REFLEX model has been applied over the entire domain of the area and, after the filling of input DEM, all 

hydrological derivatives have been obtained. The flowlines derived from the DEM, in the upstream part of 

the domain near the levee break, present a Y-shaped confluence that drains waters of the defended 

riverbanks of Secchia into another canal close to the Bastiglia municipality. Furthermore, by looking at the 

HAND maps derived from REFLEX (Figure 82), it is evident that the downstream part of the basin is not 

connected to the one directly interested by the levee break. Also, the portion of the domain in the north of 

Bastiglia belongs to another subbasin and thus the input hydrograph at the levee break is not sufficient for 

the REFLEX hydro-geomorphological approach. Discharge values need to be defined a priori in all the 

branches of the input streamlines and REFLEX cannot propagate the discharge into the river network of 
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neighbor watersheds. In this configuration, the REFLEX coastal expansion method is not sufficient to replace 

the flood modeling of another complete watershed. 

 

Figure 82 – HAND contours from REFLEX over the Secchia case study area. 

3.5.4 Discussion 

This third case study has highlighted an intrinsic limit of the REFLEX model. The failure of REFLEX in modeling 

the flooding due to a levee breaking in the Secchia river is driven by the geomorphological nature of the 

model. The REFLEX hydro geomorphological model is, in fact, developed for the rapid flood estimation of 

riverine flooding and therefore such a complex water hydrodynamic modeling becomes difficult to be 

simulated. Due to catchment boundary constraints, the simulation of this flooding scenario with REFLEX 

should require a priori distribution of surface runoff volumes which is difficult to assume. Furthermore, given 

the high values of vertical distances from the nearest drainage around the Secchia levee, the local flooding 

due to overtopping cannot be represented in REFLEX. Traditional fully 2D hydraulic models remain the only 

effective solutions for the numerical modeling of this type of flood event. 
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3.6 REFLEX Case study – Hazard Mapping in southern African countries 

This section is about an extensive application of REFLEX in multiple southern African countries. 

3.6.1 Case study description 

The REFLEX model has been first tested and used in the context of a large-scale flood hazard assessment 

performed at CIMA research Foundation over multiple African Countries (e.g., Angola, Zambia) including also 

major islands of Western and Eastern Africa (e.g., Tanzania). 

3.6.2 Input data 

The input DEM employed in this case study was acquired from the USGS’s HDMA dataset (Verdin, 2017). This 

was then conditioned according to the streams obtained from the flow direction included in the HDMA 

dataset. 

Input flood discharge at multiple return periods was obtained from the modeled streamflow derived with 

the “Continuum” hydrological model (Silvestro et al., 2015). Continuum’s simulations over the region have 

been forced with precipitation estimates from a global meteorological model and have been calibrated by 

using field streamflow observations at gauges when available. 

3.6.3 Modeling 

The discharge estimates obtained from Continuum have been used as input for REFLEX to estimate surface 

runoff volume across the entire river network. In the flood modeling of the southern African region, the 

REFLEX chain has been systematically employed over multiple basins across the Zambezi hydrological region, 

as well as its neighbor basins including the islands. 

 

Figure 83 – An example of REFLEX flood mapping applied for the Zanzibar Island. 
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The resulting REFLEX flood maps results have been then merged to derive flood maps at 90m spatial 

resolution at different return periods over the entire region. This output dataset allowed to carry out multiple 

flood hazard assessments at the country level, for example for the entire Angola and Zambia administrative 

boundaries. 

3.6.4 Results 

The output results obtained from the application of REFLEX in Western and Eastern Africa are flood hazard 

maps at different return periods (e.g., from 5, 10, 15, 25, 50, 100, 250, and 500 years). 

An example of a flood hazard map obtained in one of the Tanzania islands is shown in the figure below. 

 

Figure 84 – Flood scenario 50 years Return Period derived from REFLEX over the Tanzania islands 

An extraction of the large-scale flood mapping results obtained from REFLEX by CIMA over the entire Zambezi 

river basin is shown in the following hazard maps at the 50-year return period for Angola and Zambia. 

As flood extent reference, the Maximum Water Extent derived from 37 years of Landsat observations by the 

JRC’s GSW dataset (Pekel et al., 2016) are shown as an indication of similar flood magnitude. 
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Figure 85 – Flood scenario 50 years Return Period derived from REFLEX in Northern Zambia near Lakes Kampolombo and Kangwena. 
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Figure 86 – Maximum Water Extent (1984-2020) from the Global Surface Water dataset (Pekel et al., 2016) in Northern Zambia near 
Lakes Kampolombo and Kangwena. This satellite-based water extent is derived from 37 years of Landsat observations (Source: EC 
JRC/Google). 
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Figure 87 – Flood scenario 50 years Return Period derived from REFLEX in the south-west of Zambia along the Zambezi River in the 
Caprivi region near Katima Mulilo. 
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Figure 88 – Maximum Water Extent (1984-2020) from the Global Surface Water dataset (Pekel et al., 2016) in the southwest of Zambia 
along the Zambezi River in the Caprivi region near Katima Mulilo. This satellite-based water extent is derived from 37 years of Landsat 
observations (Source: EC JRC/Google). 
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Figure 89 – Flood scenario 50 years Return Period derived from REFLEX in western Zambia along the Zambezi river in the Mongu 
region. 
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Figure 90 – Maximum Water Extent (1984-2020) from the Global Surface Water dataset (Pekel et al., 2016) in western Zambia along 
the Zambezi river in the Mongu region. This satellite-based water extent is derived from 37 years of Landsat observations (Source: EC 
JRC/Google). 
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Figure 91 – Flood scenario 50 years Return Period derived from REFLEX in eastern Angola and north-west of Zambia in the Higher 
Zambezi. 
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Figure 92 – Maximum Water Extent (1984-2020) from the Global Surface Water dataset (Pekel et al., 2016) in eastern Angola and 
north-west of Zambia in the Higher Zambezi. This satellite-based water extent is derived from 37 years of Landsat observations 
(Source: EC JRC/Google). 
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3.6.5 Discussion 

The results obtained in this fourth case study illustrate a sample application of REFLEX at a large scale. Due 

to the hydro geomorphological nature of this model, the model developed in this Ph.D. research allows an 

extensive application of the method over multiple African basins without the definition of hydraulic boundary 

conditions and with a limited effort in terms of input data preparation. 

A preliminary visual assessment of flood extent at 50-year return period to the Maximum Water Extent of 

the GSW dataset (Pekel et al., 2016) has shown a good overall agreement across multiple floodplains. The 

Maximum Water Extent is derived from JRC’s Water Occurrence of satellite-detected water observed over 

37 years (1984-2020) of observations from multiple Landsat missions (JRC, 2021). This reference is here 

employed to visually assess the performance of the REFLEX flood hazard maps due to the absence of a 

reference at this scale and for the same 50-year flood magnitude. 

The first obtained results are showing good quality analysis in terms of floodwater delineation across the 

basin, however, further validation work is needed to better assess REFLEX model accuracy. This can be 

accomplished by comparing predicted and reference flood extent using local flood hazard maps over critical 

portions of the region or by employing SAR or optical satellite-based assessment of multiple historical events 

of the same magnitude. 

Finally, it is worth highlighting that limitations in these flood hazard maps may be locally encountered due to 

poor calibration of modeled discharge values caused by the scarcity of streamflow observations from gauges. 
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3.7 Earth Observation data integration case studies 

As collateral research, this Ph.D. has also investigated the exploitation of different types of Earth observation 

(EO) data to establish additional links with the REFLEX modeling chain. 

This section includes preliminary results obtained in the estimation of water extent and surface height by 

using Copernicus’s Sentinel-1 and Sentinel-3 data. Furthermore, the potential employment of this auxiliary 

data in this flood modeling method is presented. 

3.7.1 An approach to detect water level from satellite altimetry 

The second current major research activity consists of a hydrological application of a remote sensing 

technique to detect the height of large inland rivers by using information from satellite altimeter. 

Over the last few years, radar altimetry data have been employed across different hydrological applications 

and the benefit of this Remote Sensing technique is becoming crucial over poor in situ data to derive critical 

information economically and sustainably. 

In this case study, an application of a remote sensing technique is presented for height detection of large 

inland rivers by using Satellite SAR Altimetry data. This work is aimed at evaluating the use of the satellite 

altimeter to enable systematic ingestion of satellite-based river level estimations into hydrological modeling 

over poorly gauged river basins. An expected advantage of using such an approach is to better evaluate 

hydrological modeling outputs along the river network to improve the modeling of the discharge. 

3.7.1.1 Case study description 

The study area consists of the Chari river basin in the southern part of Chad. In this area, the Chari and the 

Logone rivers drain their surface waters to a confluence near the capital, N’Djamena, before reaching lake 

Chad (see Figure 93). 

In this context, the benefits of exploiting satellite altimetry data for flood inundation purposes have been 

already demonstrated in previous studies through a combination of both gauge and radar altimetry data 

(Birkett, 2000; Crétaux and Birkett, 2006). As an example, Coe and Birkett in 2005 have demonstrated that it 

is possible to predict river discharge at N’Djamena 10 days in advance by extracting water level estimations 

from altimetry data in the upstream part of the basin along Chari and Ouham rivers (Coe and Birkett, 2005). 

Since 2015 UNITAR-UNOSAT and CIMA Foundation have been working together to support flood awareness 

and flood forecasting capacity in this portion of the country for humanitarian assistance purposes. For this 

scope, an integrated flood forecasting routine (‘Flood Finder Chad’) has been developed from these 

organizations to monitor the most vulnerable areas along the Chari and Logone rivers. The Flood Finder Chad 

modeling chain is essentially composed of a hydrological routine and a dedicated 1D flood model, which can 

cover the most vulnerable areas along the two rivers. 

During 2016 and 2017 flood monitoring campaigns modeled discharges have been calibrated by using in situ 

river level measurements. However, in-situ data are often unavailable or available with limitations in 

acquisition frequency and spatial coverage. In this context and to increase the number of river level 

estimations along the Chari and Logone rivers, an extraction of height estimations by radar altimetry is 

investigated in this case study. Later, a validation of the obtained altimetry-based water level is performed 

through a comparison with gauge records collected in the field. 
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Figure 93 - The portion of the Chad basin in Southern Chad along the Logone and the Chari rivers investigated in this radar altimetry 
case study. 

 

3.7.1.2 Input data 

The first essential input for this research is field observation of water level to be used as a reference for the 

satellite-based estimation of water surface height. Water level records along the Chari and Logone rivers 

employed in this case study are the ones collected at multiple gauging stations and provided by the 

“Ministère de l’Eau et de l’Assainissement du Tchad”. This collection of water level field observations covers 

the 2016 and 2017 seasons, and it has been shared by UNOSAT for this research. Gauge records are available 

at the following gauging stations: N’Djamena, Bongor, Lai, Sarh, and Moundou (Figure 94). 
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Figure 94 - Map of gauging station including an example of instrumentation and collected water level time series (Credits: Ministry 
of Environment, Water, and Fisheries Chad, Google). 

After the collection of field data, the second necessary input dataset is composed of the retrieval of 

Copernicus Sentinel-3 altimetry products acquired in the basin over the same period 2016-2017. 

This is accomplished starting from the identification, based on Sentinel-3A ground tracks, of “virtual stations” 

along the rivers. A virtual station is a representative point identified from the intersection between the 

satellite nominal track and the river centerline. Multiple virtual stations may be resulted by intersecting all 

Sentinel-3 tracks with the basin streamlines. In this case study, it has been considered only the virtual stations 

located near one of the five existing gauging stations. This data collection approach resulted in the creation 

of a collection of Sentinel-3 SRAL L1A data products in SAR mode (high-resolution) to be processed over only 

these targets. 
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3.7.1.3 Modeling 

After the collection of all necessary inputs, the on-demand exploitation of Sentinel-3 SRAL L1A data products 

over the selected virtual stations is then achieved using the SARvatore for Sentinel-3 web processing service, 

provided within ESA’s G-POD (Grid-Processing On-Demand) distributed computing platform (ESA, 2021b). 

The employment of the SAR Versatile Altimetric Toolkit for Ocean Research and Exploitation - SARvatore 

processor allowed the obtaining of Sentinel-3 SRAL L2 products at an 80Hz posting rate at each virtual station. 

 

Figure 95 - The identified workflow to derive water level estimation from Sentinel-3 radar altimeter 

Thanks to the SARvatore for Sentinel-3 software in G-POD, several S3 L2 products near the selected virtual 

stations for 2017 and 2016 have been obtained. Such L2 products have been then used to extract power 

echoes waveforms and along-track surface height profiles. After that, a semi-automated evaluation 

procedure of Altimeter SAR echoes has been developed in Python to derive consistent water surface 

elevation for the entire river and to avoid the inclusion of “polluted” estimations. 

To do that, a python code has been developed to automatically read all obtained Sentinel-3 L2 products, 

extrapolate required information (e.g., Orbit, Range, Power Waveforms plots and statistics, etc.), and 

compute the height of water surface relative to EGM2008 geoid. This tool has allowed a coherent pre-

processing of all the Sentinel-3 SRAL L1A data products retrieved over the two seasons in a virtual 

environment (ESA RSS Cloud Toolbox). 

After that, a manual procedure has been adopted to filter noisy waveforms by visual inspection and to 

compute the absolute height of water surface height at virtual stations near Lai and Moundou stations. At 

this stage of development, a quick and dirty densification method based on water level slope has been used 

to interpolate the spatial distribution of S3A altimeter observations along the river. However linear regression 

methods should be explored. In principle, most of these manual steps should be automatized. 
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Finally, a first qualitative validation of altimetry-based water level has been performed by comparing 

satellite-based estimates to the river stage records from Logone and Chari gauges acquired during the 2016 

and 2017 rainy seasons. 

3.7.1.4 Results 

Obtained satellite-based water surface height derived from the Sentinel-3 altimeter for Logone and Chari 

rivers have been compared with water levels observed in the 2016 and 2017 seasons. 

In the satellite-based river stage estimation, heights of water surface are related to the EGM2008 geoid. Due 

to the lack of knowledge of the gauge height of zero flow, it has been considered as a reference minimum of 

surface heights on water points derived from the altimeter. 

The resulting relative water level time series obtained at Lai station is shown in Figure 96. 

 

River Logone at Lai station, Chad 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 96 - Preliminary results about the validation of altimetry-based water estimations at Lai gauge, Logone River, Chad. Contains 
modified Copernicus sentinel-3 data (2016, 2017) accessed via the ESA G-POD. (Credits: ESA, Google). 
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The same results are also obtained for the Moundou station, as shown in Figure 97. 

 

River Logone at Moundou station, Chad 

 

 
 

 

 

 
 

 

Figure 97 - Preliminary results about the validation of altimetry-based water estimations at Moundou gauge, Logone River, Chad. 
Contains modified Copernicus sentinel-3 data (2016, 2017) accessed via the ESA G-POD (Credits: ESA, Google). 

 

3.7.1.5 Discussion 

Despite these promising preliminary results about surface height comparisons at Lai and Moundou, further 

quantitative analysis (e.g., the performance of surface height measurement accuracy) is required. 

In this case study, the exploitation of Sentinel-3 satellite altimetry data is not ideal due to the North-South 

extension of the Chad river basin. This orientation of the basin causes, in fact, a not-dense spatial distribution 

of virtual stations in the catchment. As a result, Se3A virtual stations are quite far from gauges Ndjamena, 
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Sarh gauges located nearby confluences, and are close enough to stream gauges only in few virtual stations 

(Lai and Moundou). 

Furthermore, the intrinsic limitations of this EO data source also need to be considered. The Sentinel-3A 

revisit time of 27 days does not allow a detailed representation of water level evolution across the season. 

Also, in this case study, the first part of the 2016 season has not been evaluated because the S3 SRAL L1 

products are available only since June 2016. Furthermore, it is still unknown what is a good bias to be added 

to the surface height measured by satellite to allow a direct comparison to the in-situ one. 

Also, other limitations encountered in this analysis were due to the nature of water level records observed 

at gauges. These time series, in fact, are acquired with different frequencies in time and are not able to 

continuously represent water level across the entire season. Furthermore, this field data has not been fully 

exploited due to a lack of knowledge about the gage height of zero flow and control cross-section. As a result, 

only a comparison of a relative, and not absolute, level change has been possible while comparing water 

levels from altimetry and field observations. 

The results obtained in this case study sets the ground for future work in this domain. However, further work 

is needed to obtain rating curves at gauges and convert satellite-derived water levels into discharge 

(assuming changes to the rating curves are small). In this processing, it may be useful to explore the use of 

different methods for densification such as linear regressions methods available in the literature. 

Future research may also assess the assimilation of satellite-derived discharges to better calibrate 

hydrological models (e.g., CIMA’s Continuum). In this case study, a hydrological routine may be employed to 

estimate again 2016-2017 modeled discharges (see Figure 98) and then to compare the results with the one 

released by UNITAR-UNOSAT within the 2016 and 2017 flood bulletins (UNOSAT, 2017). 

 

Figure 98 – Observed, estimated, and forecast discharge values at Lai station for 2017 in the Logone river (Credits: UNOSAT). 

 

However, for this ambitious scope, the exploitation of other radar altimetry missions is foreseen to increase 

the amount of satellite-based water surface heights. In this regard, Sentinel-3 B data shall be also considered 

to further expand this analysis due to a better location of relative virtual stations across the basin (see Figure 
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99). As an example, by looking at Sentinel-3B ground tracks, new virtual stations may be located near Bongor 

Ndjamena gauges. Furthermore, the S3A virtual station downstream the station at Moundou can be 

complemented with two additional virtual stations upstream. This configuration near the Moundou stream 

gauge facilitates the validation of radar altimetry data and allows crossover analysis between ascending and 

descending passes. 

 

Figure 99 - Stream gauges, Sentinel-3 A and B ground tracks, and the identification of additional virtual stations, highlighted with 
circles in green, for the Chari and Logone river basins (Credits: ESA, Google). 

Also, the water level estimations from the Sentinel-3 mission can be complemented by using the 

measurements from other radar altimeters, such as the ones from the Jason-3 mission. Having more is 

necessary to complement field observations and enhance hydrological modeling in the region. 

  



Mauro Arcorace |  Chapter 3   | PhD Thesis 

PhD in Systems Engineering, DIBRIS, University of Genoa, XXXIII Cycle  |  146 

3.7.2 HAND maps to reduce false alarms in SAR-based unsupervised flood mapping 

Satellite images from both optical and SAR imagery are key assets to map inland waters. Thus, this EO data 

is widely employed to monitor disasters (e.g., International Charter Space Major Disaster, UNOSAT, 

Copernicus EMS, etc.). SAR missions are the reference for the satellite-based detection of water from space 

due to their advantages to detect standing water in all weather conditions. 

In this case study, we evaluate the usage of a SAR flood mapping service to derive satellite-detected water 

extent. The chosen area of interest is located in the province of Khuzestan in Iran (Figure 100). 

 

Figure 100 – A portion of the Karun river basin in the Khuzestan province in Iran investigated in this SAR flood mapping case study. 
Image footprints are also shown of SAR Ground Range Detected data acquired in March and April 2019 from Copernicus Sentinel-1 A 
and B satellites in Interferometric Wide mode and VV polarization. 

In late March 2019, a state of emergency was declared in the South Western of this province which was 

affected by severe flood events due to heavy rainfall combined with the snow cover melting of the season. 

Different floodplains in the zones of the Higher and Lower Karun river basin were affected. 
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3.7.2.1 Input 

Input SAR imagery is acquired from the Copernicus Sentinel-1 mission. Details are reported in Table 19. 

Zone Satellite Product Mode Polarization Acquisition date Role 

Higher Karun river S1 B GRDH IW VV 
14-MAR-2019 
T 14:42:29 

Pre-event 

Higher Karun river S1 B GRDH IW VV 
26-MAR-2019 
T14:42:29 

Post-event 

Lower Karun river S1 A GRDH IW VV 
09-MAR-2019 
T 02:46:29 

Pre-event 

Lower Karun river S1 A GRDH IW VV 
02-APR-2019 
T 02:46:30 

Post-event 

Table 19 - Input satellite imagery employed in this case study 

The second input is the Water Occurrence from the GSW dataset (Pekel et al., 2016) derived from 37 years 

of optical imagery observations from the Landsat mission. The GSW Water Occurrence dataset indicates 

where surface water occurred between 1984 and 2020 (JRC, 2021). 

3.7.2.2 Flood mapping 

To obtain satellite-based water observations from Copernicus’s Sentinel-1 data over this area, the HSBA 

change detection algorithm (Chini et al., 2017) available within the LIST’s HASARD service in the ESA G-POD 

processing on-demand platform (ESA, 2021b) has been used. HASARD Flood map in the Higher Karun river 

basin from S1B SAR GRD data acquired on the 26th of March 2019 is reported in Figure 101 

 

Figure 101 - HASARD flood map from Copernicus Sentinel-1B data acquired on 26 March 2019 over the southwest of the Khuzestan 
province, Iran. Contains modified Copernicus Sentinel-1 data (2019) accessed and processed in ESA G-POD (Credits: ESA, LIST). 
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Concerning the lower part of the Karun river basin, the Flood map for 2nd of April 2019 in Figure 102, derived 

again with the HASARD for Sentinel-1 service in G-POD, from S1A SAR GRD data, shows satellite-based flood-

affected areas. 

 

Figure 102 - HASARD flood map from Copernicus Sentinel-1 A data acquired on 2 April 2019 over the southwest of the Khuzestan 
province in Iran. Contains modified Copernicus Sentinel-1 data (2019) accessed and processed in ESA G-POD (Credits: ESA, LIST). 

Binary flood masks are shown in blue in both these maps which highlights standing water along the higher 

and lower Karun river basin. 
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3.7.2.3 Results 

A qualitative comparison between SAR-based flood estimates with the water occurrence (1984-2020) and 

the JRC’s GSW dataset has been firstly done in the Sentinel-1 acquisitions in the lower Karun river (Figure 

102). The binary flood mask from the HASARD service is shown in purple in Figure 103. 

 

Figure 103 - HASARD Flood binary mask from Sentinel-1 data for the 2nd of April 2019 in the lower Karun river basin in Iran. 

Permanent water surfaces with 100% occurrence appear in blue while not permanent waters with values 

minor than 100% occurrence (e.g., floods) are shown in graded colors from purple to white. The comparison 

of these sources of information allows a better interpretation of the event that occurred in April 2019. 

Floodwaters derived from HASARD along the Dez river before the junction with the Karun river are significant. 

However few areas along the lower Dez river have been classified as water in the 37 years of observations 

from the Landsat missions. This highlights a low occurrence of this event at the beginning of April over the 

Dez river. These first analyses are crucial in the post-assessment of the flood event because allow to focus 

the attention on singular events of interest across the basin and interpret the magnitude of the flooding 

through more in-depth studies on the area. 
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Figure 104 - Water Occurrence (1984-2020) from the Global Surface Water dataset (Pekel et al., 2016) over the lower Karun river 
basin in Iran. This satellite-based water extent is derived from 37 years of Landsat observations (Source: EC JRC/Google). 

HASARD flood binary masks have also been analyzed in the higher Karun river basin. As shown in Figure 101, 

apart from the small flooding in the valley downstream of the Dez dam lake, most of the areas which are 

mapped as flood are located near the mountains. In these zones, false alarms are present due to the 

interpretation of radar backscatter from ground snow coverage which has been wrongly interpreted as water 

by the HSBA algorithm. Therefore, false alarms due to snow coverage need to be removed from this Sentinel-

1 record before employing it in further analysis. To reduce the false positive on HASARD maps due to snow 

coverage in this region, the HAND model has been used. For this purpose, multiple HAND maps at 90m 

derived from the MERIT Hydro dataset (Yamazaki et al., 2019) have been extracted over this area. The 

thresholding of relative vertical distances with HAND minor than 10 m from the nearest drainage allowed to 

quickly classify potential floodplains over the entire Sentinel-1 scene. This classification has been then used 

to filter out false positives from the HASARD flood binary mask and maintain only the pixel classified as water 

from Sentinel-1. The result of before and after the HAND-based filtering of the SAR flood mapping output is 

shown in Figure 105. This provides evidence for the post-processing of these records to reduce false alarms. 
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Figure 105 – Before (top) and after (bottom) the HAND-based filtering of HASARD flood binary mask with HAND from MERIT Hydro. 
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3.7.3 Discussion 

This case study highlighted the potential of the LIST’s HASARD flood mapping service to obtain on-demand 

SAR-based flood maps via a web platform within an area of the world. Obtained flood maps from HASARD 

can be used to collect flood records in areas not previously monitored and to enrich existing flood record 

repositories. 

A collection of satellite-based flood records is crucial for the calibration and validation of flood models. Thus, 

HASARD SAR-based flood inundation extents may be used in future research to further validate existing or 

future REFLEX case studies. This satellite-based validation will be particularly useful over a scarce data 

environment such as the one investigated in the Southern Africa case study. 

The preliminary analysis shown in this case study has also highlighted the potential in enhancing some 

limitations of the HSBA SAR-based flood detection algorithm (Chini et al., 2017) implemented into the 

HASARD service. It has been proven that the integration of SRTM-based HAND maps before/after the flood 

detection algorithm can remove some of the false alarms of this flood mapping service existing over land 

(e.g., snow coverage). 

In this framework, the REFLEX modeling chain can be partially linked with the HASARD service to derive on 

the fly HAND maps from the D-infinity model using streamlines derived from the conditioned DEM. However, 

if streams are derived from an unsupervised extraction from the DEM, a post-processing of this hydrological 

derivative may be considered to remove some unrepresentative branches by extracting a permanent water 

mask from the GSW dataset (Pekel et al., 2016). 
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Conclusions 

 

Low complexity flood models represent a new frontier in large-scale flood modeling. This is evident while 

considering the recent advances in hardware resources and cloud computing, the maturity of multiple open 

geospatial and hydrological software as well as the availability of a wide range of freely available terrain 

elevation at medium and high resolution. This trend is demonstrated by the number of hydro 

geomorphological models recently published in the literature (Verdin et al., 2016; Afshari et al., 2017; Liu et 

al., 2018; Zheng et al., 2018b; Johnson et al., 2019; Manfreda and Samela, 2019) which denotes the degree 

of innovation of this topic (Hocini et al., 2020). 

An in-depth review of the state of the art of flood modeling performed in this thesis highlighted some of the 

limitations of existing numerical models. Traditional 1D/2D hydraulic models are still not suitable for flood 

modeling at medium-large scales. Despite the recent computation boost due to the enabling of GPU 

processing (Crossley et al., 2010) in some commercial software, 2D hydraulic models still require a significant 

modeling effort for extensive uses over multiple river basins. Moreover, the implementation of such models 

demands a high number of initial water heights and inflow boundary conditions which are not easy to 

determine in data-scarce environments. This explains the importance of low complexity flood models and 

why multiple of these models are still currently under development. 

The review of this category of flood models has shown both their huge potential but also some limits. 

Those currently available in the literature do not often satisfy some of the basic principles of fluid mechanics. 

Some of them are not able to simulate flood wave propagation (Manfreda and Samela, 2019). In others, the 

employment of shallow water equations depends on the arbitrary placement of single (Verdin et al., 2016) 

or multiple (Follum et al., 2017) cross-sections per stream, or synthetic rate curves derived from an a-priori 

segmentation of the river (Zheng et al., 2018a), with intrinsic limitations in coastal zones due to infinitely thin 

cross-sectional areas. 

Similar limitations have been encountered also in the research and development activities carried out by 

institutions that employed similar approaches in operational chains for rapid estimation of extreme events 

and large-scale flood hazard modeling (see e.g., Arcorace et al., 2015, 2016; Herold and Rudari, 2013). 

The outcomes from these studies as well as the review of the state of the art highlighted that there is still 

room for improvement in low complexity flood modeling chains, particularly for flood hazard mapping and 

early warning applications. In this context, new methodologies of low complexity flood modeling chains need 

to be developed by also considering the modeling connections between hydrological and hydraulic models. 

For this purpose, a novel low complexity flood model, named Rapid Estimation of FLood EXtent – REFLEX, has 

been proposed in this Ph.D. thesis as a robust and slim low tool to be used in operational hydro-modeling 

chains for applications at different scales (Arcorace et al., 2019). 

REFLEX is a 2D hydro-morphological model which combines the advantages of geomorphological models with 

the ones of traditional hydraulic modeling. Its geomorphological nature allows in fact to sensitively reduce 

the computation time required for the flood modeling of an entire river basin. In addition to that, four simple 

hydraulic considerations are introduced in the method to ensure a simplified steady flow computation of 

flooding in open channels. 
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Firstly, assuming that input discharge is properly assigned in the river network (e.g., from stream gauges or 

a hydrological model), the choice in the REFLEX flood modeling of using the surface runoff volume to fill 

Height Above the Nearest Drainage contours (Nobre et al., 2015) allows fulfilling the conservation of mass at 

nodes. This volume-driven approach also reduces the propagation of error since it does not rely on a derived 

quantity, such as the river water stage, to simulate floods but directly on the input discharge. Therefore, scale 

effects in modeled water depth and extent are expected to be reduced at nodes, as shown in REFLEX flood 

modeling results in the Ligurian case studies. 

Secondly, the introduction of Manning’s equation (Manning R., 1891) allows a fast estimation of the transit 

time, coherently with flood wave propagation across all river branches, which is crucial in the estimation of 

the inundation flood volume in each sub-basin. Instead, in case the time integration of the input flood 

hydrograph is done by using the time of concentration (e.g., the longest runoff traveling time to the basin 

outlet), a general overestimation in water extent is foreseen over the entire basin. As demonstrated in detail 

in the Magra and Entella case studies (see sections 3.3 and 3.4 in Chapter 3), the travel time is a simple and 

reliable quantity to encounter the effect of flood wave propagation in low complexity flood models, 

particularly in short river branches having limited water storage capacity. This highlights the potential in flood 

modeling of the REFLEX’s iterative runoff volume optimization based on simplified Manning’s formula. 

Thirdly, in REFLEX the backwater effect in a generic river branch is simulated by deriving HAND from the DEM 

also outside the sub-basin boundaries. Elevation data is extracted within a mask obtained by merging the 

watershed of a generic river branch with the ones from its tributaries identified from the Pfafstetter stream 

hierarchy (Pfafstetter, 1989). As a result, terrain elevations from upstream areas (e.g., in the six upstream 

watersheds) are considered as hillslope cells of the inlet channel pixel of the generic branch. This allows a 

static filling of water upstream, which is driven by the water depth of the branch and by the DEM slope of 

upstream areas. This simple estimation of the backwater effect has been particularly useful in the flood 

modeling of flat areas in large river basins such as the one encountered in the REFLEX case study in the 

Southern African countries. 

Last but not the least, another innovative element is the artificial expansion of HAND contours across the 

divide into neighbor watersheds. Such expansion allows REFLEX to overcome the typical “water wall” effects 

along the divides that often happen in the lower parts of watersheds having shapes like a long bottom of a 

funnel. This GIS-based method based on both the a priori hydraulic head loss and the Euclidean distance from 

the stream has been proven useful in the flood modeling near the coast, as widely demonstrated in the 

Entella coastal floodplain (see section 3.4 in Chapter 3). 

These four aspects highlight the principal hydraulic modeling features of this low complexity flood model 

which aspires to introduce a degree of novelty in the domain of hydro-geomorphology. 

After the design of the whole method, a huge effort has been reserved into the development of the REFLEX 

tool, to harmonize the chain by linking multiple open-source software, to develop the code under modules 

for facilitating future modifications, and to contain computation time by using parallelized routines (e.g., the 

D-Infinity drainage algorithm in TauDEM as described in Tarboton, 1997 and Tesfa et al., 2011). In this 

process, it is worth highlighting that the REFLEX automated chain has been built by relying only on open 

software to simplify the sharing and the adoption of the method under different contexts. 

After the release of a stable repository of the code, the REFLEX model has been applied to multiple case 

studies under different configurations and parametrizations. 
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First, the performance of REFLEX has been assessed over well-known river contexts, in different surveyed 

river basins in northern Italy. The first three case studies investigated the application of REFLEX within the 

Magra and the Entella river basins, in the Liguria region, and the Secchia river basin, in Emilia Romagna. These 

three locations have been selected due to the access of multiple discharges and flood hazard maps from 

detailed hydrological studies as well as very detailed DEM, having high spatial and vertical accuracy. 

In the Magra case study, the extent of REFLEX flood maps at multiple return periods, from resampled LiDAR 

data of the Italian Ministry of the Environment and Protection of Land and Sea, has been validated by using 

official PGRA flood hazard maps from the Northern Apennine Interregional River Basin Authority. The binary 

classification over the whole basin has registered moderate values of Kappa and Matthews Correlation 

coefficients (K=MCC=0.7), mostly affected by false negatives in defended floodplains where the Magra river 

is intersected by multiple secondary tributaries, which are difficult to model with simplified hydraulics. The 

low percentage of false positives in REFLEX flood maps indicated the precision, or Positive Predictive Value, 

of the model (PPV=0.9). Results obtained from this first case study in the Magra basin also highlighted the 

advantages of using the D-infinity drainage model and demonstrated the potential in employing the 

developed DEM conditioning approach which relies on novel slope-based filtering of elevation data. 

In the second case study in the Entella river basin, REFLEX has shown an overall better accuracy with respect 

to the one obtained in the Magra floodplains. Water extent and depth maps at multiple return periods have 

been validated by using multiple reference flood hazard maps. Obtained results highlighted a strong 

agreement between predicted and reference flood extents, as demonstrated by the K and MCC values above 

0.75 for all return periods. Very good performance in the validation of REFLEX water extent is justified, first, 

by the effectiveness of the REFLEX coastal expansion which allowed a more realistic flood extent delineation 

near the sea. Secondly, a better performance can also be explained by the lower complexity of the Entella 

river network having fewer intersections along the major stem in flat areas. 

This case study in the Entella river also allowed the validation of modeled water depths. In the comparison 

of REFLEX flood depths to the ones of the hazard map produced by the CIMA Research Foundation (see 

section 3.6 in Chapter 3), the water level differences have shown a satisfactory agreement between REFLEX 

and TELEMAC-2D (Hervouet, 2000), despite the intrinsic limitation of this hydro-geomorphological model. 

However, this water depth validation highlighted the limits in assuming the water stage constant along each 

river branch, which can significantly change along the branch due to local hydrodynamics. 

This second case study not only allowed to assess the usage of the artificial coastal expansion in REFLEX with 

real data, but it also provided further evidence about the usefulness of the Manning-based iterative volume 

optimization as well as the convergence of this method. 

The third REFLEX case study has focused the attention on a flat area of the Po valley along the Secchia river. 

Obtained results highlighted an intrinsic limit of the REFLEX model which cannot simulate the complex 

hydrodynamics of local flooding due to levee breaking. Even if this hydro geomorphological model is, in fact, 

developed for the rapid flood estimation of riverine flooding, such a complex flood scenario has been chosen 

to evaluate the performance of REFLEX by pushing it also in a scenario out of its scope. Expected outcomes 

have been helpful to better recognize and confirm the on-paper limitations of this model which are crucial in 

guiding the usage of this tool for other users. 

After the experience acquired over these three case studies, the application of REFLEX has also been 

extended to data-scarce environments. Further case studies were needed to assess the feasibility of 

deploying REFLEX also at larger scales for extensive flood hazard mapping across multiple river basins. 
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Therefore, the method has been applied for a large-scale flood hazard mapping over multiple African 

Countries in Western and Eastern Africa. Flood hazard maps obtained for Angola, Zambia, and Tanzania 

demonstrated a valuable and reliable application of REFLEX at a large scale. In such applications, the hydro 

geomorphological nature of the method developed in this Ph.D. allowed an extensive application of this flood 

model with a limited effort in terms of input data preparation and the definition of hydraulic boundary 

conditions. Despite the calibration limits due to a scarcity of streamflow observations from gauges, a 

qualitative evaluation of these flood hazard maps obtained from REFLEX has shown a good overall agreement 

with the water extent records observed from 37 years (1984-2020) of Landsat observations across multiple 

floodplains. A further CAL/VAL work in this REFLEX modeling at a large scale can be extended with additional 

exploitation of remotely sensed estimations. 

In this regard, this Ph.D. research has also proposed additional methods for the pre-processing of REFLEX 

inputs as well as for gathering additional observations which are particularly useful in situations where no 

field observations are available. As collateral research, some preliminary analysis has indicated and evaluated 

multi-source satellite-based methodologies to improve and calibrate/validate REFLEX flood modeling results 

over data-scarce environments. 

The results obtained in the case study in Chad along the Logone and Chari rivers have shown how to estimate 

river water level estimations from the Sentinel-3 radar altimeter using the ESA’s SARvatore processor in G-

POD (Dinardo, 2020; ESA 2021b) across multiple locations of this African endorheic basin (see section 3.7.1 

in Chapter 3). This preliminary work sets the ground for the following conversion of water surface heights 

into discharge estimates. Altimetry-based discharge estimations would be extremely useful if combined with 

existing observations at Lai, Moundou, and N'djamena stream gauges to obtain a more continuous time 

series of water levels. 

Furthermore, the case study of the Karun river basin in southwestern Iran demonstrated the potential of the 

LIST’s HASARD on-demand flood mapping service in G-POD (ESA 2021a) to map inland waters extent. This 

processor, based on the HSBA SAR-based flood detection algorithm (Chini et al., 2017), allowed to easily 

derive multiple satellite-detected water extent from Sentinel-1 SAR images over this basin. This case study 

highlighted how HASARD flood binary masks can be combined with HAND maps and the Water Occurrence 

from 35-years of Landsat observations (Pekel et al., 2016; JRC, 2021) to reduce false alarms and to better 

interpret flood records (see section 3.7.2 in Chapter 3). A collection of reliable satellite-based flood estimates 

is in fact crucial in the calibration and validation of REFLEX, particularly over data-scarce environments. 

The lesson learned from these case studies highlighted the pro and cons of the usage of the hydro 

geomorphological method implemented in this Ph.D. research. 

The REFLEX flood model requires few inputs to simulate flooding: the DEM and the surface runoff volumes 

over pre-defined flow lines. This low complexity flood model is not only a geomorphologic model but also 

integrates simplified numerical implementation of flow mechanics. The modeling chain is scalable as 

demonstrated in the successful employment of REFLEX in both local flood hazard applications, using high-

resolution LiDAR data, and regional/continental scale flood modeling, using global mid resolution DEM. Also, 

the modeling of the flood extent is coherent to the given amount of surface runoff volume, and thus it can 

simulate flood modeled results under different magnitudes of the events, as demonstrated in the flood 

hazard maps for Magra, Entella, and multiple Southern African countries. 

The last implementation of the code is stable and allows the employment of the whole processing chain 

without supervision under multiple basins with different model parameterizations. Concerning the 
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performance of this model, REFLEX allows a fast delineation of the flood extent. To have an estimation of 

REFLEX computation time, 29 minutes have been necessary for a complete REFLEX simulation of the whole 

Entella basin using a DEM at 5m spatial resolution (7.5k X 3.5k pixels) in a machine with Linux OS (Ubuntu), 8 

CPU, and 32 GB of RAM. A similar simulation using a traditional 2D hydraulic model can require many hours 

of simulation. All these features become significantly important while considering that REFLEX is meant to be 

employed in regional-scale flood modeling and deployed in a cluster processing environment to allow a scale-

up of resources for massive processing. Finally, the REFLEX code is easy to share because it relies only on 

freely accessible and open-source software. 

Concerning the application of REFLEX, this low complexity flood model is particularly useful over a riverine 

environment given the simplified hydraulics available in the method. Being its morphological nature, REFLEX 

relies mostly on the DEM. As a result, a better performance of this model has been shown overall while 

validating REFLEX in hilly topography and by using high-resolution DEMs having high vertical and spatial 

accuracy (e.g., LiDAR data). Furthermore, the assumption of a constant water stage along each branch of the 

river represents a limit of this model. In addition to that, this model does not allow to simulate flood 

overtopping with overflow across multiple watersheds, as seen in the case study in the Secchia river. 

Future works after this Ph.D. research may further explore the application over ungauged river basins. 

When applying REFLEX in different locations and at different scales, some of the parameters employed in this 

thesis may be revisited. Future research may provide a fine-tuning of REFLEX coastal expansion parameters 

through the extensive employment of REFLEX in multiple hydrological regions of the world. Also, in the 

application of the current DEM conditioning chain over large areas, good quality input flow lines may not be 

always available. Therefore, in case REFLEX input streamlines are derived from an unsupervised extraction 

from the DEM, a post-processing of this hydrological derivative may be considered to remove some not 

representative branches. As an example, the 100% Water Occurrence of the Global Surface Water dataset 

(Pekel et al., 2016; JRC, 2021) can be used to identify suitable flow accumulation threshold by feature 

matching with permanent waters or to exclude dry stream branches from the source dataset. 

Furthermore, in the application of REFLEX over multiple data-scarce environments, the model validation is 

often possible only by comparing modeled extents to available flood records derived from EO data. As an 

example, this is possible by exploiting SAR-based flood inundation extents, which have not been fully 

employed in the validation work of present case studies. In this domain, SAR missions are a key source of 

information given their advantages in detecting standing water in all weather conditions. Thus, flood binary 

masks from the Sentinel-1 mission, like the ones derivable from the LIST’s HASARD flood mapping service, 

can be effectively employed to extend, as an example, available flood records from UNOSAT, or the 

Dartmouth Flood Observatory. 

Preliminary results by using Copernicus’s Sentinel-3 radar altimetry data in Chad have shown a potential 

usage of this data in this flood modeling method, mainly for streamflow calibration purposes. Future research 

may also assess the assimilation of satellite-derived discharges to better calibrate hydrological models. In the 

Chadian case study, the Continuum (Silvestro et al., 2013, 2015) hydrological routine may be employed, for 

example, to estimate again 2016-2017 modeled discharges and successively compare the results with the 

one released by UNITAR-UNOSAT within the 2016 and 2017 flood bulletins (UNOSAT, 2017). However, for 

this ambitious scope, the exploitation of also other radar altimetry missions in the Chad basin is foreseen to 

increase the amount of satellite-based water surface heights (e.g., Sentinel-3 B data due to a better location 

of relative virtual stations across the basin, Jason-3, etc.). Having more satellite overpasses along the river is 

necessary to complement field observations and enhance hydrological modeling in the region. 
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Finally, concerning the status of REFLEX’s code, it is also advisable to further enhance the performance of the 

existing version of the whole chain developed in this Ph.D. This can be carried out by parallelizing some of its 

steps, such as the REFLEX Module 2, and by doing an advanced optimization of the most time-consuming 

processes, as the iterative volume optimization routine in the fourth module. Also, it is advisable to develop 

software portability as well as to ensure a continuous development of each REFLEX module, also from 

external contributors. Being this chain built on only open source or freely accessible software the REFLEX 

model is suitable to be shared among the user community via a GIT repository. 
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