1,407 research outputs found

    Automated texture mapping CityJSON 3D city models from oblique and nadir aerial imagery

    Get PDF
    The incorporation of detailed textures in 3D city models is crucial for enhancing their realism, as it adds depth and authenticity to the visual representation, thereby closely mimicking the surfaces and materials found in actual urban environments. Existing 3D city models can be enriched with energy-related roof and façade details, such as the material type (such as windows, green façades, bricks) and sunlight reflectance which can be derived from texture information. However, a common limitation of these models is their lack of very high resolution textures, which which reduces their realism and detail. Manually mapping textures onto each surface of a building is an exceptionally time-consuming and labor-intensive process, making it unfeasible for large-scale applications involving thousands of buildings. Therefore, an automated method is essential for texture mapping of 3D city models from aerial imagery. In this paper, we present CityJSON texture mapper – a python-based software tool for automated texture mapping of CityJSON-based 3D city models from oblique and nadir aerial imagery. Experimental results demonstrate the effectiveness of our approach in generating high-quality textured 3D city models, showcasing the potential for broader applications in geospatial analysis and decision-making. This research contributes to the ongoing efforts in enhancing the realism and usability of CityJSON-based 3D city models by enhancing them with their real textures from oblique aerial imagery. Texture mapped model can be explored at https://bit.ly/textured3dbag

    An Approach Of Automatic Reconstruction Of Building Models For Virtual Cities From Open Resources

    Get PDF
    Along with the ever-increasing popularity of virtual reality technology in recent years, 3D city models have been used in different applications, such as urban planning, disaster management, tourism, entertainment, and video games. Currently, those models are mainly reconstructed from access-restricted data sources such as LiDAR point clouds, airborne images, satellite images, and UAV (uncrewed air vehicle) images with a focus on structural illustration of buildings’ contours and layouts. To help make 3D models closer to their real-life counterparts, this thesis research proposes a new approach for the automatic reconstruction of building models from open resources. In this approach, first, building shapes are reconstructed by using the structural and geographic information retrievable from the open repository of OpenStreetMap (OSM). Later, images available from the street view of Google maps are used to extract information of the exterior appearance of buildings for texture mapping onto their boundaries. The constructed 3D environment is used as prior knowledge for the navigation purposes in a self-driving car. The static objects from the 3D model are compared with the real-time images of static objects to reduce the computation time by eliminating them from the detection proces

    3-Dimensional Building Details from Aerial Photography for Internet Maps

    Get PDF
    This paper introduces the automated characterization of real estate (real property) for Internet mapping. It proposes a processing framework to achieve this task from vertical aerial photography and associated property information. A demonstration of the feasibility of an automated solution builds on test data from the Austrian City of Graz. Information is extracted from vertical aerial photography and various data products derived from that photography in the form of a true orthophoto, a dense digital surface model and digital terrain model, and a classification of land cover. Maps of cadastral property boundaries aid in defining real properties. Our goal is to develop a table for each property with descriptive numbers about the buildings, their dimensions, number of floors, number of windows, roof shapes, impervious surfaces, garages, sheds, vegetation, presence of a basement floor, and other descriptors of interest for each and every property of a city. From aerial sources, at a pixel size of 10 cm, we show that we have obtained positional accuracies in the range of a single pixel, an accuracy of areas in the 10% range, floor counts at an accuracy of 93% and window counts at 86% accuracy. We also introduce 3D point clouds of facades and their creation from vertical aerial photography, and how these point clouds can support the definition of complex facades

    OBLIQUE MULTI-CAMERA SYSTEMS - ORIENTATION AND DENSE MATCHING ISSUES

    Get PDF
    International audience3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy <rupnik, franex, remondino>@fbk.eu, http://3dom.fbk.eu Commission III-WG4 ABS TRACT: The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, M idas, Pictometry, Vexcel/M icrosoft, VisionM ap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported. Figure 1: Large urban area pictured with an oblique multi-camera system. Once advanced image triangulation methods have retrieved interior and exterior parameters of the cameras, dense point clouds can be deriv ed for 3D city modelling, feature extraction and mapping purposes

    Automatic Registration of Optical Aerial Imagery to a LiDAR Point Cloud for Generation of City Models

    Get PDF
    This paper presents a framework for automatic registration of both the optical and 3D structural information extracted from oblique aerial imagery to a Light Detection and Ranging (LiDAR) point cloud without prior knowledge of an initial alignment. The framework employs a coarse to fine strategy in the estimation of the registration parameters. First, a dense 3D point cloud and the associated relative camera parameters are extracted from the optical aerial imagery using a state-of-the-art 3D reconstruction algorithm. Next, a digital surface model (DSM) is generated from both the LiDAR and the optical imagery-derived point clouds. Coarse registration parameters are then computed from salient features extracted from the LiDAR and optical imagery-derived DSMs. The registration parameters are further refined using the iterative closest point (ICP) algorithm to minimize global error between the registered point clouds. The novelty of the proposed approach is in the computation of salient features from the DSMs, and the selection of matching salient features using geometric invariants coupled with Normalized Cross Correlation (NCC) match validation. The feature extraction and matching process enables the automatic estimation of the coarse registration parameters required for initializing the fine registration process. The registration framework is tested on a simulated scene and aerial datasets acquired in real urban environments. Results demonstrates the robustness of the framework for registering optical and 3D structural information extracted from aerial imagery to a LiDAR point cloud, when co-existing initial registration parameters are unavailable

    From pixel to mesh: accurate and straightforward 3D documentation of cultural heritage from the Cres/Lošinj archipelago

    Get PDF
    Most people like 3D visualizations. Whether it is in movies, holograms or games, 3D (literally) adds an extra dimension to conventional pictures. However, 3D data and their visualizations can also have scientic archaeological benets: they are crucial in removing relief distortions from photographs, facilitate the interpretation of an object or just support the aspiration to document archaeology as exhaustively as possible. Since archaeology is essentially a spatial discipline, the recording of the spatial data component is in most cases of the utmost importance to perform scientic archaeological research. For complex sites and precious artefacts, this can be a di€cult, time-consuming and very expensive operation. In this contribution, it is shown how a straightforward and cost-eective hard- and software combination is used to accurately document and inventory some of the cultural heritage of the Cres/Lošinj archipelago in three or four dimensions. First, standard photographs are acquired from the site or object under study. Secondly, the resulting image collection is processed with some recent advances in computer technology and so-called Structure from Motion (SfM) algorithms, which are known for their ability to reconstruct a sparse point cloud of scenes that were imaged by a series of overlapping photographs. When complemented by multi-view stereo matching algorithms, detailed 3D models can be built from such photo collections in a fully automated way. Moreover, the software packages implementing these tools are available for free or at very low-cost. Using a mixture of archaeological case studies, it will be shown that those computer vision applications produce excellent results from archaeological imagery with little eort needed. Besides serving the purpose of a pleasing 3D visualization for virtual display or publications, the 3D output additionally allows to extract accurate metric information about the archaeology under study (from single artefacts to entire landscapes)

    3D Thermal Mapping of Architectural Heritage

    Get PDF
    The combination of thermographic and geometric recording has always been an issue for architectural heritage diagnostic investigations. Multidisciplinary projects often require integrating multi-sensor information—including metric and temperature data—to extract valid conclusions regarding the state-of-preservation of historical buildings. Towards this direction, recent technological advancements in thermographic cameras and three-dimensional (3D) documentation instrumentation and software have contributed significantly, assisting the rapid creation of detailed 3D thermal-textured results, which can be exploited for non-destructive diagnostical surveys. This paper aims to briefly review and evaluate the current workflows for thermographic architectural 3D modeling, which implement state-of-the-art sensing procedures and processing techniques, while also presenting some applications on case studies of significant heritage value to help discuss current problems and identify topics for relevant future research
    • …
    corecore