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bPhotogrammetric Computer Vision Laboratory, The Ohio State University, Columbus, OH 43210, USA

cSensors Directorate, Air Force Research Lab, WPAFB, OH 45433, USA

Abstract

This paper presents a novel framework for automatic registration of both the optical and 3D structural information
extracted from oblique aerial imagery to a Light Detection and Ranging (LiDAR) point cloud without prior knowl-
edge of an initial alignment. The framework employs a coarse to fine strategy in the estimation of the registration
parameters. First, a dense 3D point cloud and the associated relative camera parameters are extracted from the optical
aerial imagery using a state-of-the-art 3D reconstruction algorithm. Next, a digital surface model (DSM) is generated
from both the LiDAR and the optical imagery-derived point clouds. Coarse registration parameters are then computed
using geometric invariants of salient regional features extracted from the LiDAR and optical imagery-derived DSMs.
The registration parameters are further refined using the iterative closest point (ICP) algorithm to minimize global er-
ror between the registered point clouds. The registration framework is tested on a simulated scene and aerial datasets
acquired in real urban environments. Results demonstrates the robustness of the framework for registering optical and
3D structural information extracted from aerial imagery to a LiDAR point cloud, when co-existing initial registration
parameters are unavailable.

Keywords: large scale scene modeling, aerial imagery, sensor fusion, 3D registration

1. Introduction

Textured models of large-scale urban environments
are desired in many applications involving scene visu-
alization, analysis and understanding. These applica-
tions include, but are not limited to, urban development
planning, 3D scene classification, obstacle avoidance
for low flying autonomous vehicles, and generation of
3D city maps, such as Google Earth and Microsoft Vir-
tual Earth.

There are several methods for modeling urban en-
vironments including the use of aerial or terrestrial
Light Detection and Ranging (LiDAR), 3D reconstruc-
tion from image sequences, airborne Synthetic Aperture
Radar (SAR) Interferometry, and a combination of these
methods. The combination of aerial LiDAR and aerial
optical imagery is becoming increasingly popular for
modeling urban environments.

Aerial LiDAR provides highly accurate height mea-
surement and direct geo-registration of large regions in a
fast manner. In a conventional LiDAR data collection, a
downward-looking LiDAR sensor is mounted on a air-

borne platform or satellite. The LiDAR sensor sends
short pulses that travel down to the scene surface, some
of which are reflected and detected by the sensor. The
elevation at each surface point is then determined from
the total travel time of the pulses.

The LiDAR point cloud (LPC) generation process
provides very little to no data on vertical surfaces such
as building facades. Moreover, the LiDAR sensor does
not provide color information for the scene. Although,
there are systems that are capable of co-registering im-
ages to the LPC at the time of collection, these systems
have several limitations because they require fixing the
relative position and orientation of the sensors [1].

Detailed structural and optical information are neces-
sary for generating photo-realistic 3D models of urban
environments. High resolution oblique aerial images ef-
ficiently provide optical and structural information com-
plementary to aerial LiDAR with high planimetric accu-
racy. An optical imagery-derived point cloud (OIPC),
representing the structure contained in the optical aerial
imagery, can be obtained through a 3D reconstruction
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process.
Image-based 3D reconstruction is well developed in

computer vision and photogrammetry fields and has
been an active research area for decades. Innova-
tions such as better image quality, improved radiome-
try, advances in multiple-view geometry and emergence
of graphics processing unit (GPU) makes image-based
modeling practical for large scale scenes. [2–5].

Although, OIPCs can provide information on the ver-
tical details of a scene, they are usually noisy. Moreover,
surfaces with weak texture are often removed from the
reconstruction output as they are difficult to model using
image based 3D reconstruction methods. Radiometric
errors, such as sensor sensitivity, illumination changes,
and atmospheric effects may also lead to missing re-
gions and errors in the final 3D model.

Since the information from optical aerial imagery and
aerial LiDAR are complimentary, both sensor types can
be combined to acquire more details than what is obtain-
able by either sensors when used alone. The aerial Li-
DAR and optical aerial imagery have to be transformed
to a common reference frame before a model can be
generated from both data. Earlier methods require co-
existing initial registration parameters such as Global
Positioning System (GPS)/Inertial Measurement Unit
(IMU) metadata for texture mapping the optical infor-
mation extracted from aerial imagery onto the LiDAR
data. Moreover, the majority of the existing algorithms
are directed towards texture mapping the optical infor-
mation extracted from aerial imagery onto the LiDAR
data. In addition to optical information, 3D structure
can be extracted from optical aerial imagery that may
be complementary to the LPC.

In this paper, we present a novel framework for auto-
matic registration of both the optical and 3D structural
information extracted from oblique aerial imagery to a
LPC without prior knowledge of an initial alignment.
The framework employs a coarse to fine strategy in the
estimation of the registration parameters.

In the coarse step, the framework takes advantage of
the advances in image-based 3D reconstruction to ex-
tract a dense OIPC, and the associated relative camera
parameters, from the optical aerial imagery. The ex-
traction of the OIPC reduces the mapping between the
optical aerial imagery and the LPC from a perspective
projection to a 3D similarity transformation. Next, a
LiDAR digital surface model (LDSM) and an optical
imagery-derived digital surface model (OIDSM) is gen-
erated from the LPC and OIPC, respectively. The digital
surface model (DSM) representation enables the extrac-
tion of salient regional features in the scene. Coarse 3D
registration parameters are computed using geometric

invariants of the salient regional features extracted from
the LDSM and OIDSM. In the fine step, the coarse reg-
istration parameters are refined using the iterative clos-
est point algorithm (ICP) to obtain fine estimates of the
registration parameters.

An overview of the proposed registration framework
is shown in Fig. 1. The input to the proposed framework
is a sequence of optical aerial images of the region of
interest to be modeled, and the LPC containing the re-
gion of interest covered by the optical aerial imagery.
The output of the framework are fine estimates of the
3D transformation and the absolute camera poses relat-
ing the OIPC and the optical aerial imagery to the LPC,
respectively.

The remainder of this paper is organized as follows.
We begin with a review of relevant literature in the re-
maining part of Section 1.1. The coarse registration
parameters estimation process is described in Section
2. This includes the extraction of the OIPC and rela-
tive camera parameters from the optical aerial imagery,
LDSM and OIDSM generation, salient regional fea-
ture extraction, and coarse 3D transformation estima-
tion. Section 3 discusses the refinement of the registra-
tion parameters. Finally, results and conclusions follow
in Section 4 and Section 5, respectively.

1.1. Related Work
The problem of registering images to LiDAR have re-

ceived considerable attention in the literature. In [6, 7],
an approach was presented for texturing terrestrial Li-
DAR with ground images using features on building fa-
cades. They extract parallel line segments in the images
using vanishing points. They also extract parallel line
segments in the LiDAR data. The intrinsic and extrin-
sic parameters of the camera are then estimated using
groups of rectangular structures obtained from the par-
allel lines in both sensor types. The camera parameters
are further refined in [8] through sparse point clouds ob-
tained by applying structure from motion techniques on
the images and in [1, 9] by utilizing low level linear fea-
tures. These approaches provides photo-realistic mod-
els of urban environments. However, they are limited
to modeling interior and exteriors of a few buildings.
In [10, 11], the terrestrial LiDAR based modeling ap-
proach is extended to larger scenes.

In [12] Ding et al. presented a texture mapping ap-
proach that is also based on geometric features extracted
from optical images and a LDSM. First they generate an
initial estimate of the camera orientation and position
by utilizing vanishing point information and GPS/IMU
measurements. Next, they refine the rough camera pa-
rameter estimates by extracting and matching features
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Figure 1: An overview of the registration framework.

corresponding to orthogonal structural corners in the
LDSM and optical images. With this approach many
outliers are generated and sometimes sufficient corner
feature cannot be extracted.

A similar approach is presented by Wang and Neu-
mann that does not require the computation of vanish-
ing points and allow for large errors in initial GPS/IMU
registration [13]. They achieve a higher level of accu-
racy in the camera parameters than [12] by using more
robust features computed from connected line segments
in the LDSM and the optical images.

Another approach for registering optical images onto
aerial LIDAR is to exploit the statistical dependence in
these multi-sensor data. Mastin et al. [14] introduced a
registration method that estimates the camera parame-
ters between the LPC and optical images by maximiz-
ing the mutual information between the images, a pro-
jection of the LPC onto the image plane, and an image
representing the number of photon returns for the LPC.

The aforementioned approaches for registering opti-
cal aerial imagery and LiDAR focuses on adding op-
tical detail to the LiDAR model using features com-
mon to both sensor types. However, the scene struc-
ture obtainable from the imagery are not integrated with
the LiDAR. The facade details from these methods are
often inferred from range information obtained from
the LPC, using surface reconstruction algorithms such
as [15, 16]. These modeling methods do not accurately
represent structures elevated above the ground or hid-
den from overhead view such as bridges, elevated roads,

building facades and roof overhangs
In [17], Zhao et al. developed an alignment approach

for registering structure obtained from oblique aerial
images to a nadir-view LPC. The camera position and
orientation parameters for the image sequences are re-
covered by applying the method described in [18] to
matching features in the sequences. A dense model of
the scene is then reconstructed by combining the cam-
era pose and focal length data with a plane-plus-parallax
framework presented in [19, 20]. They use GPS/IMU
measurements for initial alignment of the point cloud
from the two sensor types. The similarity transforma-
tion between the point clouds obtained is then refined
using the Iterative Closest Point (ICP) algorithm [21–
23]. Although this work provides an efficient method
for aligning an OIPC to an LPC, the alignment frame-
work employed requires knowledge of initial registra-
tion parameters. The GPS/IMU measurements required
for initialization may not be available, or they may be
very erroneous.

Registration of the OIPC to the LPC is a 3D-3D regis-
tration problem with vast literature. The ICP algorithm
is the gold standard for solving this registration prob-
lem. However, the algorithm requires a rough registra-
tion estimate close to the true solution in order to con-
verge. Therefore, the point clouds have to be roughly
aligned before ICP can be used to refine the registration
of the point clouds.

Several automatic algorithms have been proposed for
coarse registration of 3D point clouds. However, most
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algorithms are designed for registration of objects with
high density surfaces where local descriptors based on
surface normals, surface geometry and principal curva-
tures can be reliably computed [24–27]. The more ro-
bust approaches, applicable to large-scale urban scenes,
require the point cloud to be recovered from a similar
sensor such as LiDAR where the 3D points are directly
recorded with minimal noise such that the structure of
the point cloud is not lost by subsampling [28, 29].

A surface registration algorithm based on the invari-
ance of intersecting coplanar line segments was intro-
duced in [28]. However, the algorithm is designed for
point clouds that are directly obtained from a similar 3D
sensor. Also, the algorithm requires the point clouds to
be of the same scale.

Existing algorithms for registering optical aerial im-
agery and LiDAR rely on manual correspondence or
GPS/IMU metadata for initial alignment. Manual corre-
spondence is a tedious process and may be impossible
for large scenes. GPS/IMU measurements are not al-
ways available and its accuracy is easily affected by in-
terference such as dropouts. They are also prone to drift
and biases because the accelerometer and gyroscopes of
the IMU are sensitive to temperature fluctuations due to
changes in aircraft altitude. These systematic errors ac-
cumulate overtime and measurements may become un-
reliable for long video sequences. Moreover, highly ac-
curate GPS/IMU systems are very expensive and may
not be available for oblique images collected on an un-
manned aerial vehicle(UAV). GPS/IMU information for
the oblique images and/or the LIDAR data may also be
missing entirely.

2. Coarse Registration Parameters Estimation

This section describes the coarse estimation of the pa-
rameters relating the optical imagery and the OIPC to
the LPC. The mapping between the optical aerial im-
agery and the LPC is reduced from a perspective pro-
jection to a 3D similarity transformation through the re-
covery of the OIPC. A coarse estimate of the 3D trans-
formation between the OIPC and LPC is then computed
using geometric invariants of salient regional features
extracted from the OIDSM and LDSM.

2.1. Relative Camera Parameters and OIPC Recovery
The recovery of the relative camera parameters and

the OIPC is the first step in the registration framework.
Errors in this step will cause the registration framework
to fail. Hence, a robust and accurate system for recov-
ering relative camera parameters and OIPC is necessary
for this step.

The relative camera parameters describe the mapping
of the 3D points in the OIPC to the corresponding points
in an optical image. This mapping is given by

x = POXO, (1)

where XO ∈ <
4xn is the OIPC in homogenous coordi-

nates [30], x ∈ <3xn is the corresponding optical image
points in homogenous coordinates, and PO ∈ <

3x4 is
the relative camera projection matrix. n is the cardinal-
ity of the OIPC. The relative projection matrix can be
decomposed as

PO = KRO [I| − tO] , (2)

where K ∈ <3x3 is the calibration matrix. RO ∈ <
3x3

contains the relative camera orientation, tO ∈ <
3x1 rep-

resents the relative camera position, and I ∈ <3x3 is an
identity matrix. The calibration matrix is given by

K =

 sx κ u0
0 sy v0
0 0 1

 , (3)

where sx and sy are the scale factors in the x− and
y − coordinate directions, [u0, v0]T are the coordinates
of the principal point, and κ is the skew factor.

In this registration framework, the relative camera
parameters and the OIPC are recovered using Visual
Structure from Motion (VisualSFM), an end to end sys-
tem for large scale 3D reconstruction from unordered
image sequences. VisualSFM is selected for recovering
the relative camera parameters and the OIPC because of
its accuracy and robustness for large scale scenes. The
system does not require user intervention after setup and
it is fast and efficient.

In VisualSFM, features and correspondence are first
computed using a GPU implementation of scale invari-
ant feature transform (SIFT) [31]. A multicore bundle
adjustment technique [32] is then used to estimate the
relative camera parameters for each image, as well as a
sparse point cloud recovered from the images.

Bundle adjustment is a collective nonlinear refine-
ment of the relative camera parameters as well as the 3D
locations of matching image points present in a scene.
This process can take a long time for large scenes. Mul-
ticore bundle adjustment significantly reduces the pro-
cessing time for large scenes by exploiting CPU and
GPU parallelism. The camera parameters computed for
each image are the focal length, a single radial distor-
tion parameter, the camera orientation, and the position.
Fig. 2 shows camera positions, orientations and sparse
point cloud recovered by Visual SFM through SiftGPU
and multicore bundle adjustment.
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Figure 2: Camera positions, orientations and sparse point cloud re-
covered by Visual SFM through SiftGPU and multicore bundle ad-
justment.

Figure 3: Textured OIPC recovered by VisualSFM through PMVS.

VisualSFM generates the OIPC from the optical im-
ages using Patch-Based Multi-View Stereo (PMVS) [5].
PMVS follows the stereo triangulation approach to
dense reconstruction. The process starts with sets of
corresponding points which are developed into dense
patches through a match, expand and filter technique.
The sparse points are repeatedly expanded to neigh-
boring points with correspondences, and visibility con-
straints are used to filter out false correspondences.

PMVS reconstructs a dense OIPC of static objects
visible in the images. Non-rigid and moving objects
in the scene are ignored in the reconstruction process.
In our experiments, only image patches that are visible
in at least three views are reconstructed. This reduces
the chances of poor reconstruction in weakly textured
regions. The input to PMVS are the image sequences
and the computed camera parameters corresponding to
each image. Fig. 3 shows textured OIPC recovered by
VisualSFM through PMVS.

2.2. LDSM and OIDSM Generation

The LDSM and OIDSM are image representations
of the earth surface where each location carries a value

based on the relative height of the location with respect
to the ground level. The generation of the LDSM and
the OIDSM enables the extraction of regional features
in the LPC and OIPC.

2.2.1. Statistical Filtering of Outlier Points
The LPC and OIPC contains noise and outliers that

needs to be removed before the LDSM and the OIDSM
can be generated. This filtering step is especially im-
portant for the OIPC as the 3D reconstruction process
usually generate more noisy point cloud compared to
the LPC. A statistical outlier filter [33] is used to reduce
the noise and outliers in the LPC and the OIPC. Let di

be the average distance from each point Xi to its nearest
neighbors. If we assume the resulting di forms a gaus-
sian distribution, the filtered point cloud is defined as

XF = {Xi ∈ X | di < µ + ασ}. (4)

where X is a set representing the original point cloud.
The parameters µ and σ are the mean and standard de-
viation of the vector formed by average distances di, re-
spectively. The parameter α is the multiplier that de-
termines what distances from µ is considered in deter-
mining what points are inliers. The average distance for
each point is computed using using 50 nearest neigh-
bors, and α is set to 1 in our experiments. An exam-
ple of inliers and outliers after filtering of the LPC and
OIPC is shown in Fig. 4 and Fig. 5, respectively. The
inliers are shown as blue dots and outliers as red dots.

As mentioned earlier, aerial LiDAR does not capture
the detail on facade of buildings in the scene. Due to the
sparse nature of these facade points, they are removed as
outliers in the filtering process along with true outliers
such as the region of the scene containing water bod-
ies. The facade information is usually captured in more
detail in the OIPC. However, the OIPC contains more
outliers compared to a LPC. Most of these outliers are
in regions between buildings in the scene, resulting from
errors in stereo correspondence. The removal of the out-
liers from the point clouds help reduce the chances of
erroneous height values in the LDSM and OIDSM gen-
eration process, which leads to better detection of true
regional features in the scene.

2.2.2. Nadir-view Rotation of the OIPC
The point clouds have to be in nadir-view before the

LDSM and OIDSM can be generated. The LDSM can
be directly generated from the LPC since the LPC is
collected in nadir-view. The orientation of the OIPC is
arbitrary; therefore, the point cloud needs to be rotated
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Figure 4: Inliers and outliers in the LPC after statistical outlier filter-
ing. The inliers are shown as blue dots and outliers as red dots.

Figure 5: Inliers and outliers in the OIPC after statistical outlier filter-
ing. The inliers are shown as blue dots and outliers as red dots.

Figure 6: Nadir-view transformation of the OIPC using the eigenvec-
tors of the dominant plane inliers.

so that the orientation of its principal axes corresponds
to nadir-view.

Most scenes have three principal directions. The two
major axes are parallel to the ground plane, and the
minor axis is perpendicular to the ground plane. As-
suming the region of interest represented by the OIPC
is large enough such that the ground plane have mini-
mal variance in the point cloud data, the principal axes
can be extracted using Principal Component Analysis
(PCA) [34].

In some urban environments, the terrain may not be
relatively flat. As a result, direct application of PCA
to the data may not yield principal axes corresponding
to nadir-view. To ensure the selected dominant plane
is representative of the ground plane, an efficient RAn-
dom Sample Consensus (RANSAC) plane extraction
approach is used to search for the dominant plane in
the scene [35]. Following the detection of the dominant
plane, the eigenvectors of the major axes are extracted
from the inliers of the dominant plane using PCA. The
OIPC is then transformed to nadir-view using a rotation
only transformation matrix containing the eigenvectors
of the dominant plane. The transformation is given by

HN =

[
V 0T

0 1

]
, (5)

where V ∈ <3x3 be a matrix whose rows are the eigen-
vectors computed on the dominant plane inliers. An ex-
ample of a nadir-view transformation of the OIPC using
the eigenvectors of the dominant plane inliers is shown
in Fig. 6.

2.2.3. LDSM and OIDSM Resampling
The LPC and the OIPC may have different point spac-

ings and point densities. Therefore, direct generation of
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Figure 7: A LDSM generated from the LPC.

the LDSM and OIDSM my result in large resolution dif-
ferences. To reduce the number of candidate sets in the
feature matching process, the LDSM and OIDSM needs
to have close resolutions. Since the LPC and the OIPC
are obtained from the same scene, the variance along the
minor axis of both point clouds should be similar. The
ratio between the LPC and OIPC minor axis variance
will depend on the level of overlap between the optical
aerial imagery and the LPC coverage.

Let λl and λo represent the average distance between
each point and its nearest neighbors in the LPC and
OIPC, respectively. Also, let σl and σo represent the
standard deviations along the normal direction to the
ground plane for the LPC and OIPC.

The LDSM can be resampled to a new spatial resolu-
tion

λ̂l = τσl. (6)

Similarly, the OIDSM can be resampled to a new
spatial resolution

λ̂o = τσo, (7)

where τ = max( λl
σl
, λo
σo

).
An example of a LDSM generated from the LPC and

a OIDSM generated from the OIPC are shown in Fig. 7
and Fig. 8, respectively.

Figure 8: A OIDSM generated from the OIPC.

2.3. Salient Regional Feature Extraction

Urban scenes usually contain maximal structures el-
evated from the terrain level, such as buildings. These
structures are salient regional features which can be ex-
tracted from the LDSM and OIDSM. A morphological
reconstruction transformation technique is used to ex-
tract the salient regional features. Consider a grayscale
DSM whose pixel values correspond to the height at the
pixel locations. The goal here is to extract regions in the
scene that are distinct from neighboring regions based
on their height. Hence, we define a salient regional
feature as connected components of pixels whose exter-
nal boundary pixels all have a lower height value, and
whose centroid is consistent over a specified range of
morphological reconstruction thresholds.

2.3.1. Regional Feature Extraction by Morphological
Reconstruction

Morphological reconstruction have been proven to be
an effective technique for extracting regional features
from different image types including DSMs [36–39].
One of the advantages of morphological reconstruction
is that unlike classical morphology, the extracted fea-
tures are not dependent on the choice of structuring el-
ement. Instead, the process makes use of a flat struc-
turing element that works for different types of shapes
of interest in an image. The flat structuring element
commonly used assumes a 8-neighborhood connectiv-
ity. i.e. a 3x3 matrix of ones. The structuring element
determines what neighboring pixels are considered in
the morphological filtering of each pixel.
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Morphological reconstruction iteratively transforms a
marker image by geodetic dilation using the flat struc-
turing element until stability is reached. The transfor-
mation is constrained by another image called the mask
image. The marker image is derived from the mask im-
age by subtracting a threshold from the mask image.
The threshold determines what regional features in the
image are detected. The range between the minimum
and the maximum pixel values of a regional feature ex-
tracted at a specified threshold is less than the threshold.
This allows for detection of different regional feature
sets at different thresholds of the mask image.

Furthermore, the same threshold can be applied to ex-
tract regional features of similar heights regardless of
their location in the image. For example, if building A
is on a hill and building B is on a valley. If both building
A and B are of the same height from their surrounding
terrain, they will both be detected as regional features at
the same threshold.

Given a grayscale mask image I and a reconstruction
threshold h. The marker image is given by

J = I − h. (8)

An elementary geodesic dilation of marker image J con-
strained by mask image I using a flat structuring ele-
ment S is given by

R(1)
I (J) = (J ⊕ S ) ∧ I (9)

where ⊕ is the dilation operator and ∧ represents the
point-wise minimum between the dilated marker image
and the mask image. The morphological reconstruction
R(n)

I (J) of the marker image J is obtained by n succes-
sive elementary geodesic dilations of the marker image
as follows

R(n)
I (J) = R(1)

I (J) ◦ R(1)
I (J) ◦ . . .R(1)

I (J)︸                              ︷︷                              ︸
n times

(10)

where n is the iteration number at which stability is
reached. i.e successive elementary geodesic dilations
does not change the image any longer.

An Illustration of the morphological reconstruction
of a one dimensional (1D) signal as described in [39] is
shown in Fig. 9. The marker signal J is obtained from
mask signal I by subtracting threshold h from mask sig-
nal I (top-left). Successive elementary geodesic dila-
tions is then applied to marker image J until the pixel
values does not change any longer (top-right). The re-
gional features signal at threshold h is generated by sub-
tracting the transformed marker image from the mask
image (bottom).

Figure 9: An Illustration of the morphological reconstruction of a one
dimensional (1D) signal.

For large images such as large scale DSMs, succes-
sive elementary geodesic dilations can quickly become
intractable in reasonable time before stability is reached.
To overcome this problem, efficient morphological re-
construction techniques that only consider pixels whose
values will be modified during the geodesic transforma-
tion are often used in practice. The fast hybrid grayscale
reconstruction algorithm proposed in [39] is used for
geodesic dilation of the LDSM and the OIDSM.

An illustration of the regional features images ex-
tracted from the LDSM at different thresholds is shown
in Fig. 10. Fig. 10(a) is the original LDSM image Fig-
ures 10(b), 10(c) and 10(d) are the regional features bi-
nary images generated at thresholds 5, 25 and 50, re-
spectively. At each threshold, the reconstructed image
is subtracted from the LDSM. A binary image is gen-
erated from the resulting image by setting every pixel
greater than zero to one. The regional features of the
binary image are then detected using connected compo-
nent analysis [40]. The white region in Fig. 10(d) is due
to the presence of trees close to the buildings in the re-
gion. The boundary of the region changes with succes-
sive morphological reconstruction thresholds and there-
fore the regional features is unstable. Unstable regional
features are eliminated in the salient regional feature ex-
traction process. The regional features of the OIDSM
are detected in a similar manner. Similar to Fig. 11,
Fig. 11 shows the original OIDSM and regional features
extracted at various thresholds.

2.3.2. Salient Regional Features
The morphological reconstruction transformation

generates numerous regional features, most of which are
not representative of interest objects in the scene. More-
over, other scene objects such as incomplete models in
the OIDSM and trees in both the LDSM and OIDSM are
detected as regional features in the scene. Most of the
false regional features are eliminated from the OIDSM
and LDSM based on their saliency.

The average height of the regional features varies
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Figure 10: An Illustration of the regional features images extracted
from the LDSM at different thresholds: (a) is the original LDSM im-
age (b), (c) and (d) are the regional features binary images generated
at thresholds 5, 25 and 50, respectively.

Figure 11: An Illustration of the regional features images extracted
from the OIDSM at different thresholds: (a) is the original OIDSM
image (b), (c) and (d) are the regional features binary images gener-
ated at thresholds 5, 25 and 50, respectively.

Figure 12: LDSM salient regional features

among different urban environments. In order to capture
true regional features at different heights, regional fea-
tures images are generated for the LDSM and OIDSM
at different morphological reconstruction thresholds. At
each threshold feature points are extracted from the each
detected regional features by computing the centroid of
the regional features across all thresholds. The centroid
of each regional feature is the average coordinate of all
the connected components pixel coordinates belonging
to the regional feature.

It is expected that all true regional features of the
scene will have a consistent centroid regardless of the
morphological reconstruction thresholds at which they
are detected. The range of the morphological recon-
struction thresholds need to be set such that it is higher
than the range between the minimum and maximum
grey values of the true regional features in the scene.
In our experiments, the morphological reconstruction
thresholds ranges from 5 to 100 in steps of 5. These
thresholds ensures that different shapes of interest ob-
jects in the scene are detected. Regional features
whose centroid do not change across a minimum of 10
morphological reconstruction thresholds are considered
salient regional features of the scene.

Fig. 12 and Fig. 13 shows the salient regional fea-
tures extracted from the LDSM and OIDSM, respec-
tively. The salient regional features detected contains
interest objects such as buildings in the scene.
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Figure 13: OIDSM salient regional features

2.4. Coarse 3D Transformation Estimation

The salient regional features extracted from the
OIDSM and LDSM is used to obtain a coarse similarity
transformation that registers the OIPC to the LPC. This
process provides an initial registration similar to what
is obtained through GPS metadata or manual point cor-
respondences. However, the transformation parameters
are automatically computed.

2.4.1. Geometric Invariants of Salient Regional Fea-
tures

In order to register the OIPC to the LPC, we need at
least three point correspondences. Let m and n repre-
sent the cardinality of the 3D points corresponding to
the LDSM and OIDSM salient regional features cen-
troids, respectively. Trying all possible pair of three
point correspondences will require O(n3m3) combina-
tions, which is intractable for large scale urban environ-
ments. To overcome this problem, a subset of the salient
regional features centroids that satisfy certain geomet-
ric invariant constraints are used in the correspondence
search process.

A set of geometric invariant properties are defined on
intersecting line segments computed from the OIDSM
salient feature points. The invariant descriptors of the
intersecting line segments are then used to find cor-
responding segments in the LDSM. While there are
many intersecting line segments that satisfies these con-
straints, the true matching line segments are verified
based on the similarity of overlapping regions in the

Figure 14: Consider a line segment ab and a point e on ab. The ratios
|a−e|
|a−b| and |e−b|

|a−b| are preserved under affine transformations.

OIDSM and LDSM generated by the line segment’s fea-
ture points.

The ratio of lengths on collinear or parallel line seg-
ments in a plane is invariant under affine transforma-
tion [30]. Consider a line segment ab and a point e on
ab as shown in Fig. 14. The ratios |a−e|

|a−b| and |e−b|
|a−b| are

preserved under affine transformations.
The coarse 3D registration algorithm makes use of

salient regional features in urban environments to re-
duce the number of candidate points used for registra-
tion. Moreover, the nadir-view representation of the
LDSM and OIDSM is used to resolve the possible large
scale difference between the LPC and OIPC. Further-
more, the angle between two line segments and the ratio
of intersecting line segments, which are both invariant
under similarity transformation, are used as additional
constraints in the correspondence search. The feature
extraction and constrained correspondence search en-
ables the registration of OIPC of large scale scenes to
a LPC without assumption about initial alignment.

The geometric constraints are used to find a minimum
of four pairs of corresponding salient feature points in
the LDSM and OIDSM that yields maximum Normal-
ized Cross Correlation (NCC) score between overlap-
ping region patches of the DSMs. This is possible
because the relationship between the LDSM and the
OIDSM images is a similarity transformation, which is
a special case of affine transformation consisting of ro-
tation, translation and an isotropic scaling. Although
the DSMs is a 2.5D image, the z dimension is ignored
in this initial transformation. The planar transformation
of the surface models roughly aligns the z axis of the
LDSM and OIDSM.

Let Op be the set of OIDSM salient regional features
centroids and Lp the set of LDSM salient regional fea-
tures centroids. Given two sets A = {a, b, c, d}, A ⊆ Op

and B = {pi, qi, p j, q j}, B ⊆ Lp, i , j, both consisting of
four salient regional features centroids, not all collinear
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Figure 15: Geometric invariants of salient regional features

as shown in Fig. 15. Let e be the intersection point of
line segments ab and cd. The ratios r1 =

|a−e|
|a−b| , r2 =

|c−e|
|c−d| ,

κ =
|c−d|
|a−b| , and the signed angle α defined on set A are in-

variant under similarity transformation. If line segment
piqi corresponds to ab, then a line segment p jq j corre-
sponding to cd must satisfy the following constraints:

i. share a common intersection point e′ such that
e′ = pi + r1(qi − pi) and e′ = p j + r2(q j − p j);

ii. given θ, the signed angle from x-axis to −−→piqi, β, the
signed angle from x-axis to −−−→p jq j can be expressed
as β = θ + α;

iii. the ratio of lengths between piqi and p jq j can be
expressed as ‖p jq j‖ = κ‖piqi‖.

2.4.2. OIDSM Salient Regional Feature Selection
The salient regional feature extraction process is able

to eliminate most of the spurious regional features in
the LDSM. However, several spurious regional features
are detected as salient in the OIDSM due to the noise
and outliers in the OIDSM that cannot be captured by
statistical outlier filtering process. A minimum of four
corresponding pair of regional features centroids in the
LDSM and OIDSM are required for computing the reg-
istration parameters using geometric invariants. A small
subset of the OIDSM salient features are used in search-
ing for the 3D registration parameters. The subset is
selected from a rank ordered list of the OIDSM salient
regional features.

The first ranking criterion is based on the area of the
OIDSM salient regional features. The salient regional
features are ranked in descending order according to the
actual number of pixels in the largest regional feature
detected for each feature centroid across all morpho-
logical reconstruction thresholds. This ranking criteria
ensures large regional features in the scene that corre-
sponds to interest regions such as buildings are highly
ranked.

Figure 16: OIDSM top salient features

The second ranking criterion is based on the local
height of the salient regional features largest areas. A
3x3 window is moved over the boundary pixels of the
largest regional feature detected for each feature cen-
troid. At the boundary locations the minimum and max-
imum values inside the moving window are computed.
The local height is then defined as the difference be-
tween the median of the maximum and the minimum
boundary values. This ranking criteria ensures regional
features that are much higher than surrounding regions
are highly ranked.

The feature point areas and local heights are weighted
equally in the computation of the rank values. The com-
bination of the ranking criteria gives higher ranking val-
ues to regional features that have large areas and are
much higher than surrounding regions. Fig. 16 shows
the top salient features extracted from an OIDSM.

2.4.3. Salient Feature Point Set Matching
Given the top salient OIDSM feature points OpT ⊆

Op and salient LDSM feature points Lp, the best pair of
four point correspondences in the OIDSM and LDSM
are computed iteratively. At each iteration a set of four
salient feature points are selected from OpT and can-
didate sets from Lp satisfying the geometric invariant
ratios and angle are extracted. The closest match for
each OpT subset of four feature points is selected based
on the average NCC score of overlapping patches gen-
erated by transforming the OIDSM to the LDSM coor-
dinates using Lp candidate subsets. The point set pairs
that yields the best average NCC score is selected as the
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best matching salient feature set pairs. The algorithm
terminates when the minimum average NCC score has
been achieved or the maximum number of iterations is
reached. The pseudocode for selection of best matching
salient feature point sets is summarized in Algorithm 1.

There are four possible intersection point locations
on each line segment pq formed by {p, q} ⊆ Lp for each
{a, b, c, d} ⊆ OpT . The possible intersection point loca-
tions are:

• pq = ab⇒ e′ = p + r1(q − p)

• pq = ba⇒ e′ = q + (1 − r1)(p − q)

• pq = cd ⇒ e′ = p + r2(q − p)

• pq = dc⇒ e′ = q + (1 − r2)(p − q)

We only need two equations containing ratios r1 and r2
to obtain all the possible intersection locations.

A tolerance value ε is used to limit the number of can-
didate line segments generated from feature points in Lp

based on their lengths compared to the query line seg-
ments generated from the feature points in RPT . In our
experiments we use ε = 2. This assumes the variation
of points along the normal direction to the LPC ground
plane is less than twice the variation along the OIPC
ground plane or vice versa. In situations where their are
large variations in the terrain and scene content of the
optical aerial imagery compared to that of the LiDAR
coverage area, a larger ε will be required.

Once the possible intersection locations are known, B
candidates that approximately correspond to query set A
are extracted based on geometric invariant constraints in
Section 2.4.1, using a kd-tree nearest neighbor search.
The OIDSM is then transformed to the LDSM coordi-
nates using each of the B candidates with A to create
overlapping regions needed for NCC.

The 2D similarity transformation matrix HB = [u|v]
that transforms the OIDSM to the LDSM coordinates is
computed for each B by minimizing the objective func-
tion

F(HB) =

4∑
k=1

‖Bk − uAT
k − v‖2, (11)

where [u|v] is of the form
[

u1 u2 v1

−u2 u1 v2

]
, a 2D ro-

tation, translation and isotropic scaling.
The average NCC similarity score between the

LDSM and each transformed optical imagery-derived
digital surface model (TOIDSM) is computed from the
dot product of four normalized overlapping patches as

Figure 17: Overlapping NCC patches generated from best matching
point set pairs in the LDSM and TOIDSM. (a) TOIDSM patches. (b)
LDSM patches.

Figure 18: OIDSM and LDSM matching line segments generated
from matching salient feature point sets. (a) OIDSM line segments.
(b) LDSM line segments.

follows

ρB =
1
4

4∑
i=1

〈
L̂i

‖L̂i‖
,

T̂i

‖T̂i‖

〉
, (12)

where L and T are the LDSM and TOIDSM respective
overlapping patches centered at pi, qi, p j and q j. L̂ =

L − L, and T̂ = T − T .
The most likely B corresponding to each A is selected

as the B that generates the maximum NCC score ρB.
The matching pair of A and B that approximately sat-
isfies the geometric invariant constraints and yields that
maximum ρB among all {A, B} pairs is used for the ini-
tial 3D registration of the OIPC to the LPC.

Fig. 17 shows overlapping NCC patches generated
from best matching point set pairs in the LDSM and
TOIDSM. Fig. 18 shows OIDSM and LDSM matching
line segments generated from the matching salient fea-
ture point sets.

The x− and y−coordinates of the 3D locations corre-
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Algorithm 1 Salient feature point set matching
1: while {Iter < MaxIter} & {ρ < ρmin} do
2: for each A = {a, b, c, d} ⊆ OpT do
3: Compute ratios r1, 1 − r1, r2, 1 − r2, κ, and angle α
4: for each {p j, q j} ⊆ Lp,

‖cd‖
ε
≤ ‖p jq j‖ ≤ ε‖cd‖ do

5: Compute possible intersection locations e′ based on ratios r2 and 1 − r2
6: Compute βi, the signed angle from x-axis to −−−→p jq j

7: Compute ‖p jq j‖

8: for each {pi, qi} ⊆ Lp,
‖ab‖
ε
≤ ‖piqi‖ ≤ ε‖ab‖ do

9: Compute possible intersection locations e′ based on ratios r1 and 1 − r1
10: Compute θi, the signed angle from x-axis to −−→piqi

11: Compute ‖piqi‖

12: Find closest {p j, q j} that approximately satisfies invariant constraints in 2.4.1 using a k-d tree search
13: for each candidate feature point set B = {pi, qi, p j, q j} do
14: Compute the 2D similarity transformation matrix HB

15: Transform the OIDSM to LDSM coordinates using HB

16: Extract four overlapping patches in the LDSM and TOIDSM, centered at pi, qi, p j and q j

17: Compute the overlapping patches average NCC ratio ρB

18: Extract B corresponding to A as argmax
B

(ρB)

19: Return best matching salient feature set pairs as argmax
A,B

(ρB)

sponding to the best matching {A, B} can be directly ex-
tracted from the 3D points which are used to determine
pixel locations of the salient feature points in the LDSM
and OIDSM. However, there are no direct mapping be-
tween the height values of the salient feature points in
the DSMs and their corresponding values in the point
clouds.

The z − coordinate of the feature points in 3D are
estimated as the median of the z− coordinate of all
points inside the largest regional features boundary that
is used to generate the respective salient features in the
LDSM and OIDSM. The 3D similarity transformation
HNC ∈ <

4x4 that coarsely map the nadir-view OIPC to
the LPC coordinates is then estimated from the match-
ing 3D points, using the closed-form least-squares solu-
tion approach in [41]. The 3D similarity transformation
that coarsely registers the original OIPC to the LPC can
then be computed from HN and HNC as

HC = HNCHN . (13)

3. Fine Registration Parameters Estimation

This section discuses the refinement of the coarse 3D
registration parameters and the computation of the ab-
solute camera poses that aligns the optical images to the

LPC. The coarse 3D transformation parameters are re-
fined using the ICP. The absolute camera poses for all
the images are jointly computed through the refined 3D
transformation parameters.

3.1. 3D Transformation Refinement

Ideally, the 3D similarity transformation HC should
be sufficient for registration of the OIPC to the LPC.
However, due to errors in the nadir-view rotation of the
OIPC and in the estimation of 3D coordinates of the
matching salient feature points, an additional refinement
process is necessary to obtain an absolute registration
in LiDAR coordinates. The ICP algorithm is used to
complete this registration process.

Given two point clouds, the ICP algorithm attempts
to optimally align an observed point cloud to a refer-
ence point cloud. The ICP algorithm involves three
main step that are iteratively repeated until the change
in the global error between the point cloud falls below
a given threshold. First each point in the observed point
cloud is associated with its nearest neighbor in the ref-
erence point cloud. Next, the orientation and transla-
tion parameters that best align each observed point to
its nearest neighbor is estimated. Finally the observed
point cloud is transformed based on the estimated pa-
rameters.

Let XL be the LPC and XC = HCXO be the coarsely
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registered OIPC, the Mean Squared Error (MSE) objec-
tive function, F(HR), minimized by the ICP algorithm
is given by

F(HR) =
1
N

N∑
i=1

‖HRXC − XL‖
2, (14)

where HR is the refinement transformation matrix that
represents the difference between the coarsely aligned
OIPC and absolute registration to the LPC.

Hence, the absolute transformation matrix H that
transforms the OIPC to the LPC coordinates is given
by

H = HRHC . (15)

The absolute transformation H can be decomposed as

H =

[
sR t
0 1

]
, (16)

where R ∈ <3x3 is the orientation matrix, t ∈ <3x1 is
the translation matrix, s is an isotropic scale, and 0 ∈
<1x3 is a null vector.

The ICP algorithm can be heavily influenced by out-
liers. To reduce the effect of outliers on registration re-
finement process, the algorithm is implemented with re-
jection strategies. The point clouds are winsorized by
rejecting 10% of the point pairs with the largest point to
point distances. The OIPC point matches to the LiDAR
edge vertices are also rejected to avoid incorporation of
poor reconstruction at the edges in MSE estimation.

3.2. Absolute Camera Poses Computation

Once the absolute similarity transformation matrix H
is known, the absolute camera pose for registering the
optical aerial imagery to the LPC can be computed by

P = POH−1. (17)

4. Experimental Results

The registration algorithm is tested on three experi-
mental data sets. These include one simulated scene as
a proof of concept, and two real world environment data
sets. The simulated data set represents optical aerial
imagery collected by an aircraft flying a circular path
around a region of interest, and the corresponding Li-
DAR data sampled from the scene. The second data set
is obtained from the Ohio State University (OSU) Cam-
pus and neighboring area [42, 43]. The third data set
covers the downtown region of Providence, Rhode Is-
land. [44, 45].

In all data sets, the input optical aerial imagery and
the LPC are acquired at different resolutions. However,
the presence of salient regional features in the scene en-
ables the selection of features which are used in the reg-
istration of the data sets. The registration of the optical
information and OIPC from the aerial imagery to the
LiDAR produces a scene model that draws the compli-
mentary characteristics from both sensor types.

The registration results for the three data sets are
shown in Figures 19–21. The results for each data set
show (a) a single frame of optical aerial imagery, (b)
the LPC, (c) the textured OIPC, (d) the textured LPC,
(e) the textured registered model, (f) the zoomed in im-
age of the blue box region of the textured OIPC, (g) the
zoomed in image of the blue box region of the textured
LPC, and (h) the zoomed in image of the blue box re-
gion of the textured registered model.

The density of the OIPC varies significantly across
the scene, especially in the real world data sets as shown
in Fig. 20(c) and Fig. 21(c). This is because of the un-
represented locations in the OIPC reconstruction pro-
cess. The OSU scene contains trees which are difficult
to reconstruct from images. Poor photo-consistency and
imagery matching errors also produce missing recon-
structions. The LPC provides height information for
these missing regions in the OIPC as can been seen in
the registered models shown in Fig. 19(e), Fig. 20(e)
and Fig. 21(e).

When a scene is texture rich and the images acquired
from the scene have little radiometric errors and good
photo-consistency, the 3D structure of the scene can be
recovered in very good detail such as the OIPC model
from simulated data in Fig. 19(c). However, this is not
the case in real world scenarios. Nonetheless, the OIPC
provides optical augmentation to the LPC and structural
addition in regions not captured by LPC.

As shown in Fig. 19(d), Fig. 20(d) and Fig. 21(d), the
LPC does not capture the facade details of the structures
in the scene. Although these vertical details can be in-
ferred from roof boundaries, the true structure will not
be correctly represented. In Fig. 19(e), 20(e), and 21(e),
the missing facade details are filled in with the OIPC.
The optical information are also projected on the LPC
using the computed registration parameters.

Since the LPC only measures the highest point for
each x− and y − coordinate locations, the accuracy of
the registration framework is evaluated based on the dis-
placement error between the LiDAR points and the cor-
responding points from the registered OIPC used to gen-
erate the OIDSM.

The coarse registration process provides registration
parameters, which is sufficient for the ICP refinement
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initialization. The total coarse registration displace-
ment Root Mean Square Error (RMSE) for the simu-
lated scene, the OSU region and Providence downtown
area are 2.4078 meters, 5.7951 meters, and 7.7635 me-
ters, respectively. The RMSEs are below the 25 meters
displacement error required for ICP based on the exper-
iments in [17]. The RMSE is computed from nearest
neighbor correspondences in the point clouds.

A natural neighbor interpolation scheme is also used
to get an estimate of the RMSE between the registered
point cloud and the OIPC taking into account the reso-
lution differences between the point clouds. The inter-
polant is created from the LPC as it has better distribu-
tion of points in each scene. The OIPC is then resam-
pled to a new grid based on the interpolation function
generated from the LPC.

The RMSE after coarse registration, final refinement,
and interpolation for the simulated scene, the OSU re-
gion, and the Providence downtown area are shown in
Tables 1–3, respectively. An histogram of the distribu-
tion of errors for the respective scenes are also shown in
Figures 22–24.

5. Conclusions

A framework for registering oblique aerial imagery
to a LPC is presented. The framework simultaneously
registers both the optical and structural information ex-
tracted from oblique imagery to a LPC without requir-
ing prior knowledge of an initial alignment. More-
over, the ability of the registration framework to register
aerial imagery and LPC at different resolutions has been
demonstrated. Results on a simulated scene and real
world environments shows the robustness of the regis-
tration approach. The final textured model generated
from the registration process shows the complimentary
characteristics of optical aerial imagery and LPC.

In future works it would be interesting to look at
methods for significantly reducing the number of outlier
features in the OIDSM and LDSM as this will reduce
the number of candidate point sets used to search for
coarse registration parameters. Also, since the search
for candidate matches for each OIDSM query point
set are independent of other OIDSM query point sets,
a GPU implementation would take advantage of the
highly parallel nature of the correspondence search pro-
cess. Another interesting direction would be to extend
the algorithm for registration of large-scale multi-modal
aerial imagery and aerial imagery of the same modality
collected at different times.
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Figure 19: Registration of optical aerial imagery and LPC of the simulated scene. (a) single frame of optical aerial imagery, (b) LPC, (c) textured
OIPC, (d) textured LPC, (e) textured registered model, (f) zoomed in region of the OIPC shows varying point cloud densities due to missing
reconstructions, (g) zoomed in region of the LPC shows missing vertical details, (h) zoomed in registered model with optical and structural details
from the oblique aerial imagery and LPC

Table 1: Simulated scene displacement RMSE (meters)
x y z Euclidean distance

Coarse 0.3097 0.3108 2.3675 2.4078
Refined 0.2884 0.2883 0.4634 0.6173
Interp - - 0.5079 0.5079
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Figure 20: Registration of optical aerial imagery and LPC of the OSU region. (a) single frame of optical aerial imagery, (b) LPC, (c) textured
OIPC, (d) textured LPC, (e) textured registered model, (f) zoomed in region of the OIPC shows varying point cloud densities due to missing
reconstructions, (g) zoomed in region of the LPC shows missing vertical details, (h) zoomed in registered model with optical and structural details
from the oblique aerial imagery and LPC

Table 2: OSU region displacement RMSE (meters)
x y z Euclidean distance

Coarse 3.3922 3.1805 3.4584 5.7951
Refined 0.8325 0.7344 1.1302 1.5843
Interp - - 1.3393 1.3393
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Figure 21: Registration of optical aerial imagery and LPC of the Providence downtown region. (a) single frame of optical aerial imagery, (b) LPC,
(c) textured OIPC, (d) textured LPC, (e) textured registered model, (f) zoomed in region of the textured OIPC shows varying point cloud densities
due to missing reconstructions, (g) zoomed in region of the textured LPC shows missing vertical details, (h) zoomed in textured registered model
with optical and structural details from the oblique aerial imagery and LPC

Table 3: Providence downtown displacement RMSE (meters)
x y z Euclidean distance

Coarse 3.7646 2.9488 6.3679 7.9635
Refined 0.4539 0.4773 0.8998 1.1151
Interp - - 0.9539 0.9539
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Figure 22: Simulated scene displacement error distribution

Figure 23: OSU region data displacement error distribution

Figure 24: Providence downtown data displacement error distribution
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