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ABSTRACT 

Along with the ever-increasing popularity of virtual reality technology in recent 

years, 3D city models have been used in different applications, such as urban 

planning, disaster management, tourism, entertainment, and video 

games.  Currently, those models are mainly reconstructed from access-restricted 

data sources such as LiDAR point clouds, airborne images, satellite images, and 

UAV (uncrewed air vehicle) images with a focus on structural illustration of 

buildings’ contours and layouts. To help make 3D models closer to their real-life 

counterparts, this thesis research proposes a new approach for the automatic 

reconstruction of building models from open resources. In this approach, first, 

building shapes are reconstructed by using the structural and geographic information 

retrievable from the open repository of OpenStreetMap (OSM). Later, images 

available from the street view of Google maps are used to extract information of the 

exterior appearance of buildings for texture mapping onto their boundaries. The 

constructed 3D environment is used as prior knowledge for the navigation purposes 

in a self-driving car. The static objects from the 3D model are compared with the 

real-time images of static objects to reduce the computation time by eliminating 

them from detection process.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

We have come to an era where self-driving cars are practically feasible. In recent years 

self-driving cars have gone from “maybe possible” to “definitely possible” to “inevitable” 

to “how did anyone ever think this wasn’t inevitable?” to “now commercially available” 

[53]. Besides Google, Uber, and Tesla, there are many other companies who have invested 

large sums of money into the research of this system. With such a huge amount of 

investment and interest in the development of self-driving systems, we can understand that 

self-driving automobiles are an inevitable future. But at their current stage, they are far 

from being viable [51]. With the levels of sophistication involved, a high cadre of expertise 

is required to ensure the smooth functioning of the conventional self-driving car.  

Awareness of the nearby environment is necessary to ensure the perfect functioning of a 

self-driving car. To help the car familiarize itself with its surroundings, a virtual 

environment can be constructed. It would comprise of static objects that the car may 

interact with while driving. Several companies are working towards the construction of a 

3D or HD map for self-driving cars. The sole purpose of these maps is to familiarize the 

car with ever-existing objects on the road, which are classified as static objects. Darms et 

al. [49] and Hu et al. [50] have defined static objects as those that do not move when the 

car is on the road. These include buildings and roadside amenities such as benches, poles, 

etc. We shall use the same definition for the extent of this thesis.  

The main aim of our work is to construct a virtual environment consisting of most of the 

static objects that a car interacts with, when it is on the road. 
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1.2 Working of a self-driving car 

A self-driving car is a vehicle which can sense the surroundings and can navigate without 

human input [53]. Self-driving cars can detect the environment with the help of a variety 

of sensors, such as LiDAR, RADAR, Camera, GPS, and IMU.  

1) Camera: It functions as the eyes of a self-driving car. It helps detect objects found on 

the road. 

2) RADAR: RAdio Detection And Ranging uses radio waves to find the range, angle, and 

velocity of objects. 

3) LiDAR: Light Detection And Ranging measures the distance to the target by penetrating 

a laser beam towards the object. LiDAR is used to generate a 3D map of the surroundings. 

4) IMU-enabled GPS: IMU stands for Inertial Measurement Unit, which provides the 

angular rate and orientation of a body. IMU-enabled GPS is used when GPS is unavailable. 

5) Others: Other sensors used are infrared cameras, 360-degree cameras 

 

 

Figure 1.1. Working of self-driving car [53] 

The work system of a self-driving car has been divided into five different components. 

These components use the information provided by the above-mentioned sensors to control 

the car. 
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Computer Vision 

Computer vision relates to how cameras are used to see the road and detect objects on the 

road. With the help of camera images, object identification is performed, and the pose of 

the detected object is estimated. Once identified, the objects are classified and tracked for 

better understating of the surroundings.  

 

Figure 1.2. Computer vision through camera sensor 

Sensor Fusion 

Sensor fusion is the process of integrating the data received from different sensors to build 

a detailed understanding of the car’s nearby environment [55]. 

 

Figure 1.3. Sensor fusion [53] 
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Sensor fusion is required because data received from a single sensor is of little use when 

compared to the combined data [53].  Data received from cameras are better for object 

detection, but to measure the distance between the objects and the car, radar sensor gives 

better results than a camera. Radar provides better results due to the waves penetrating 

through the Radar sensor. This function helps it outperform the camera even in bad weather 

conditions.  

All data received from different sensors is fused. It is then used to help the car understand 

better. As seen in Figure 1.3, the sensors mentioned in the line of sight module consist of 

LiDAR, RADAR, camera, and ultrasonic sensors, which are all fused together in the sensor 

fusion module.  

Localization 

Localization is to know the position of the car in the real world. This information can be 

obtained once the environment is known. GPS sensor is used to acquire the real-world 

location of the car; also, mathematical algorithms such as Kalman Filter, Extended Kalman 

Filter, and Unscented Kalman Filter are used to make the GPS information more accurate.  

Path Planning 

Path planning enables a self-driving car to find the fastest, the safest, and the most 

convenient route from the start point to the endpoint [54]. The car needs to detect all the 

static and dynamic objects (maneuverable) to bypass them. This makes path finding 

complicated.  

 

Figure 1.4. Path planning [54] 
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Major approaches for path planning are predictive control model, behavior-based model, 

and feasible model. Before crafting the trajectory plan, the path of the car, the path 

planning, the car maneuver, and the maneuver planning of the car is considered. Any 

dynamic object is referred to as a maneuver. 

Control 

Control is the final step in the working system of the self-driving car. Once the trajectory 

for the start point to the end point is defined, vehicle control such as turning the steering 

wheel, hitting the throttle or brakes, is controlled.  

 

Figure 1.5. Control in self-driving car [56] 

There are different types of controllers which are used in the system; some of them are, 

Proportional Integral Derivative (PID), Model Predictive Control (MPC), kinematic model, 

and dynamic model [56]. All these controllers take angle (yaw) and speed (v) into account 

while defining the trajectory. 

As seen in Section 1.2, there are many different types of sensors used in a self-driving car. 

Also, with the addition of every sensor, the cost of the self-driving car increases. The total 

sensor cost of Google’s self-driving car is around $150,000, of which the cost of the LiDAR 

sensor alone is around $70,000 [57]. The main function of the LiDAR sensor is to generate 

a 3D map of the surroundings. Later, this is combined with the information of other sensors, 

and the functioning is controlled.  
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This research mainly concentrates on the construction of a virtual 3D environment which 

can serve as prior information to the car, particularly, to use the VGI (Volunteered 

geographic information) data, which is open source. The construction and use of the 3D 

environment also reduce the overall cost of the self-driving car as it eliminates the use of 

the LiDAR sensor, which makes up half the cost of all the sensors combined. 

1.3 Virtual 3D city model 

Virtual 3D city models are used in an increasing number of applications, including 

landscape planning, disaster management, location-based services, tourism industry, and 

urban planning. Virtual 3D city models are an important visualization of urban geospatial 

and georeferenced information. The 3D model enables the visual representation of past and 

existing cities. It also provides a decision on whether a redevelopment of existing cities is 

required. Virtual 3D city models are not only restricted with visualization purposes but also 

provide data basis for spatial querying of thematic data, for computational models in urban 

security, and for noise propagation models [60]. 

In general, the term virtual 3D city models refers to a digital representation of different 

entities of the city and their geometric and topologic structures. A virtual 3D city model 

comprises of: 

• Buildings, 

• Vegetation objects such as trees and hedges, 

• City furniture such as benches, night lamps, 

• Water bodies such as rivers or lakes, 

• Terrain surface 

The usage of the information provided by the 3D model depends on the application domain. 

 ‘Every second producer has requests to provide other objects or information than 

he is presently producing, and three out of four users would like to have other city 

data than already available.’ [59] 

For instance, in urban planning, realistic texture is required on 3D models as visual details 

are essential in urban redevelopment. Whereas, the tourism industry requires 3D models 

with thematic details such as the description of a historic monument, a popular landmark, 
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or a restaurant. Hence, the question regarding the detailing of a 3D model remains not fully 

answered. 

In general, a 3D city model is called ‘virtual environment’, ‘virtual 3D model’, ‘virtual 3D 

environment’, ‘3D model’, and ‘virtual city.’ All these names have been used in this thesis 

to refer to the 3D city model.  

The construction of the 3D city model is carried out with the use of different types of data 

including sensory information, GIS data, CAD data, Building Information Model data, and 

VGI data. Sensors used in the construction of the 3D model are primarily LiDAR and 

cameras. LiDAR captures the 3D geometric information. Cameras capture the façade 

textures. The data captured with LiDAR sensor is visualized as 3D point cloud. Then, pre-

processed to find the planar facades in point cloud. GIS data is a type of thematic data. It 

contains all the information in textual format. Building Information Model are pre-

constructed models of existing buildings from the city. They are accurate with the complex 

construction. VGI data is crowdsourced data which is mapped by public. VGI data is 

mainly available in thematic format or visual format.  

When integrated, there are two ways in which 3D models supports different applications. 

For some scenarios, 3D model provides the context for spatial information. For others, it 

works as a base model or prior information on which different applications perform.  

1.4 Texture mapping 3D city model 

‘Texture mapping is a powerful and flexible low-level graphics drawing primitive’ [58]. 

Texture provides means to store visual and thematic information for the 3D models of 

buildings and other components existing in the virtual environment. Particularly, textures 

allow the specification of the visual appearances of the facades of models.  
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Figure 1.6. Texture mapping importance [58] 

Mapping the texture is essential in the construction of the 3D city model that can be seen 

in Figure 1.6. The image on the left side contains actual textures, whereas the image on the 

right does not have any textures mapped.  

Textures are constructed by either capturing from real sources or by digitally creating them. 

Textures captured from the real location are known as photorealistic textures. 

Photorealistic textures are captured with Airborne cameras and Airborne LiDAR sensors. 

Also, GPS sensor is combined with the whole setup, which helps geo-reference the 

captured images.  

 

Figure 1.7: A UAV for texture extraction 

As seen in Figure 1.7, a UAV is mounted with a camera and a LiDAR sensor with GPS, to 

capture the façade and roof textures. The other main approaches are Pictometry based 

texture mapping and Photorealistic texture approach, which are discussed in detail in 

Chapter 2. 
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1.5 OpenStreetMap – VGI data 

OpenStreetMap is a crowdsourced mapping technology started in 2004 as a university 

project. The structure of OSM data is XML based, also, it uses tag information for mapping 

real-world locations. The structure of XML data is based on three primitives [61]. 

1. Node: a point in real-world with latitude and longitude 

2. Way: an ordered list of nodes, such as a line; it represents linear features such as a 

stream or a railway 

3. Relations: refers to an ordered sequence of way or nodes 

In Figure 1.8, nodes, ways, and relations are shown, from left to right respectively. 

 

Figure 1.8. Node, Way, Relation (left to right order) [61] 

 

 

Figure 1.9: Representation of OSM data [61] 

In Figure 1.9, in the left-side is the visual representation of OSM data on 

openstreetmap.org, and the right-side image is an actual mapping of the data [61]. 

Some of the important tags in OSM structure 

height Describes the Height of a feature 

length Describes the Length of a feature 

width Width of a feature, not used in ways 

material Material of which the feature is made of 

surface Surface material of the feature 

building To mark the feature as a building; the value is set to yes or some 

specific type of building as hut or a garage 

building:part To model different areas of a building 
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height To mention the height of the feature 

building:levels To mention the number of floors in the building 

Table 1.1: Tags used in OSM data structure 

In Table 1.1, tags used to map an entity are shown. Similarly, elevation, building:material, 

building:entrance, building:amenities, and sidewalk are also used in some specific cases. 

1.6 Thesis Contribution 

Major contributions of this research work can be summarized as follows: 

• 3D city model constructed with the proposed system helps reduce computation time 

of object detection by eliminating static objects (objects that do not move while the 

car is on the road) 

• Self-driving car can be geo-localized in real environment by comparing real-time 

images with rendered images of the virtual world 

• Proposed research work does not include the use of any sensors (mentioned in 

Section 1.2) to extract 3D structural information or to construct the environment. 

• Once detected, all the dynamic objects can be updated into the virtual environment 

and can be used for better navigation of the self-driving car. 

1.7 Structure of the thesis 

The remainder of the thesis is structured as follows. 

Chapter 2 provides technical details of construction of the 3D city model, texture extraction 

for the façade of the 3D model, and reconstruction of the texture image. 

Chapter 3 discusses the proposed system for the construction of the 3D model, and texture 

extraction with mapping, details of the overall system and connection of this thesis work 

with the overall system. 

Chapter 4 gives a detailed description of the implementation setup, experiments conducted, 

and the usage of the 3D model in the overall system. 

Chapter 5 provides summary concluding the thesis with the direction of possible future 

work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter discusses the relevant background of recent works in the construction of the 

3D city model and texture mapping. This section also covers the technical background of 

3D city models and texture extraction and mapping using different data sources. 

2.1 Construction of 3D city model 

Nowadays, 3D city modeling has become an important issue for researchers in the area of 

geomatics. Geomatical techniques play a key role in the construction of a 3D city model. 

For mapping technologies geomatics is an umbrella which consists of technologies like 

Photogrammetry, Geographical Information System, Remote sensing, Lasergrammetry, 

Global Positioning System, and Radargrammetry. Mainly in the construction of 3D 

environment, laser techniques and Photogrammetry are used. Singh S.P. et al. [1] 

conducted a review related to the usage of 3D city models in various applications. They 

presented the most representative geomatical technique for 3D city modeling and other 

related works of researchers.  

2.1.1 Methods for 3D city modelling 

Current methods are mainly categorized in the following approaches. 

• Based on Automation 

1. Automatic 

2. Semi-automatic 

3. Manual 

• Based on Data Input 

1. Photogrammetry based technique 

2. Laser scanning based technique 

3. VGI (Volunteered Geographic Information) based technique 

4. Hybrid data input-based technique 
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A further categorization of the methods based on data input is as follows. 

• Photogrammetry based technique 

1. Aerial Photogrammetry based technique 

2. Aerial image and cadastral map based technique 

3. Computer vision based techniques 

4. GIS data based techniques 

5. Satellite Photogrammetry based technique 

6. Single satellite images based technique 

7. Panorama image based technique 

8. Video based technique 

9. TLS data based technique 

• Laser scanning based technique 

1. Terrestrial Laser-based technique 

2. Aerial Laser-based technique 

3. Mobile mapping system based technique 

• VGI data-based technique 

1. With the use of Government open data 

2. With the use of OpenStreetMap data  

• Hybrid data input-based method 

1. Aerial Laser and Terrestrial Laser 

2. Laser and Photogrammetry 

3. Laser and Videogrammetry 

2.1.2 Photogrammetry based 3D city models 

2.1.2.1 Aerial photogrammetry-based model  

Nowadays, airborne data is mostly used to collect 3D structural information. Aerial photos 

are mostly used as raw data. With the help of stereo-pair images, a 3D point cloud is 

constructed. This type of semi-automatic method for the acquisition of 3D structural data 

from 2D aerial stereo images is presented in [2]. In the approach, digital photogrammetric 

workstation (Traster T10) was used alongside Microstation CAD package, and Consob (in-
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house developed software); researchers used digital aerial images of Netherlands in the 

scale of 1:2200.  

Data acquisition, superimposition, processing, updating, and visualization are the main 

processes in this work. Figure 2.1 demonstrates the reconstructed 3D objects and buildings 

developed with the approach in [2].  

The relation between Photogrammetry and 3D city modeling was provided by Kobayashi 

[3]. 

 

Figure 2.1. 3D objects and buildings [2] 

The author also recommended a method to construct a 3D city model with the use of 

Photogrammetric processing. Along with Photogrammetry techniques, the author used 

aerial images for the construction of 3D city model and discussed the effectiveness and 

efficiency of the 3D model in terms of labor and reusability. The 3D construction model 

was based at Phoenix, USA. 

Shashi and Jain [4] explored the use of Photogrammetry in scene visualization and in the 

construction of a 3D city model. A digital camera was used in the construction. In their 

approach, they perform close-range photogrammetric processing for better accuracy. The 

usage of digital camera instead of aerial or high-resolution cameras reduces the cost of the 

approach. This stands out as the chief benefit of their work. The authors also conclude that 

close-range photogrammetry gives the best solution for the construction of a 3D city model. 
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Leberl et al. [5] compared the point cloud generated from an image and point cloud 

generated with a laser system. They discuss the advantages and disadvantages of both the 

methods and conclude that the accuracy of the 3D point cloud is better when generated 

with photogrammetric methods. 

Amat et al. [6] discussed a methodology to construct a 3D city model with the help of aerial 

images and close-range photography. In this method, the authors suggest that small 3D 

buildings, doors, windows are not visible from aerial photography, so close-range images 

are used to extract façade of the buildings. Certainly, with the combination of close-range 

photography and aerial photogrammetric techniques, 3D city model can be constructed. 

Hammoudi and Dornaika [7] also provided a method for the construction of a 3D city 

model with aerial images. For this approach, geometric and photometric properties are used 

in perspective projection. The main advantage of the method is its use of direct raw images 

(without any pre-processing) and featurelessness. As a part of pre-processing, feature 

extraction and feature matching are avoided. An objective function is used to combine the 

dissimilarity between the captured images. 

2.1.2.2 3D city model with aerial images and cadastral map 

Flamanc et al. [8] constructed a 3D city model by using the aerial images and cadastral 

maps. They also tested the approach with model-driven and test-driven systems. They used 

the cadastral map to extract information such as positions of existing structures of 

buildings, adjoining or adjacent streets, and dimensions.  

 

Figure 2.2. 3D model with aerial images and a cadastral map [8] 
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Figure 2.2 presents the 3D model constructed with the help of aerial images and a cadastral 

map. 

2.1.2.3 3D city model with computer vision techniques 

Lang and Forstner [9] suggested a semi-automatic technique for the acquisition of the 3D 

shape of buildings. Stereo cameras are used for extraction. The acquired information of 3D 

shapes is topographical. Figure 2.3 describes a 3D model constructed with a stereo camera. 

 

Figure 2.3. 3D model with a stereo camera [9] 

Pollefeys et al. [10] provided an automated method to construct a textured 3D model from 

a sequence of images. Computer vision algorithms are used to construct the 3D city model. 

The accuracy of the model is not the best due to the use of computer vision algorithms. 

Hence, this approach is mainly used in archaeology and not in metrology. Authors tested 

this approach on the Roman site, Sagalassos, Turkey. 

Jang and Jung [11] used ground images to construct a 3D city model. To capture ground 

images, they used a digital camera mounted with a compass and GPS sensor. All the 

captured images are referenced to the real-world coordinates with the help of Global 

Positioning System. To correct the pose of the images, they use Structure from Motion-

based algorithm; they also register the 3D model with real coordinates with GPS.  

Jurgen Dollner el al. [12] presented a pipeline to construct a virtual 3D city model handling 

tasks such as integration, managing, presenting, and distributing urban information. As 

input to the pipeline, Geo-referenced thematic data, Cadastral data, Digital Aerial photos, 
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Digital Terrain Model, and 3D Geodata is passed. At the end of the process, the virtual 3D 

city model is constructed. 

Cornelis et al. [13] discussed a method for constructing a 3D city model in real-time. Two 

cameras are used to record the calibrated videos, which work as an input to the system. 

They used Structure from Motion algorithm concept. They also use object detection 

algorithms for video recordings. The main feature of this method is that it constructs a 

virtual 3D city model in real-time. 

Snavely Noah et al. [14] created a new method for the construction of a 3D city model by 

using the images available on the internet and introduced a new concept of photo-tourism. 

Authors use unordered images of the real-world site and construct the 3D model from the 

downloaded images. This method also uses Structure from Motion algorithms along with 

image-based rendering. This approach was tested on Google images of Notre Dame, Mount 

Rushmore, South Dakota, Sphinx (Giza), Colosseum located in Rome, and Great Wall of 

China.  

Jianxiong Xiao et al. [15] provided an approach for automatic reconstruction of 3D models 

from street-side photos. Street-side photos are captured with a ground-level digital camera. 

To regularize the noisy and missing data, inverse-patch based composition method is used. 

Due to ground-level image capturing, skyscraper buildings are not modeled in this 

approach. 

2.1.2.4 3D city models with GIS 

Gruen A. and Xinhua W. [16] developed a software named CyberCity Modeler, for 

automatic generation of a 3D point cloud. It has been developed in such a way that it 

generates structured data for city modeling from photogrammetrically measured points. 

This has been mainly designed to handle GIS data and to integrate raster images and vector 

data as hybrid GIS. 

Nedal Al-Hanbali et al. [17] worked on constructing a 3D model of Artemis temple and 

Jerash City. Authors used photogrammetry principles and GIS data for the construction of 

the 3D model. The 3D GIS model was accurate in measurement, therefore used for 

visualization, preservation, and reconstruction of the temple in the city.  
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Nedal Al-Hanbali et al. [18] created a 3D model for Yarmouk University with the help of 

GIS Data and Photogrammetric techniques. 

 

Figure 2.4. 3D model with GIS data [18] 

Malumpong C. and Chen X. [19] used interoperable 3D GIS data with a 3D modeling 

software named Google Sketchup. The aim of the work was to integrate 3D GIS 

information with 3D modeling software to construct the virtual 3D city model and other 

objects of the city. 

Razzak A. et al. [20] also proposed a technique for the construction of a 3D city model 

from 3D GIS data. Authors followed the GIS techniques for the virtual environment, and 

the final result contained all the objects visualized for users. 

Thompson and Horne [21] worked on a VNG project, which focused on data exchange, 

CityGML, interoperability, and data accessibility issues in Autodesk LandXplorer 

software. 

 

Figure 2.5. VNG model in Autodesk LandXplorer [21] 
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2.1.2.5 3D City modelling from satellite photogrammetry 

Tao and Young Hu [22] evaluated the concept of RFM in 3D reconstruction, due to which 

the generation of Digital Elevation Model is possible without physical sensor model. In the 

evaluation, authors studied two methods: forward RFM, and inverse RFM. They concluded 

that reconstruction accuracy is better with forward RFM. The approach was tested with 

real IKONOS stereo pairs to construct the 3D model. 

Fraser et al. [23] discussed the use of IKONOS imagery for the extraction of buildings and 

positioning. They assessed the model with qualitative and quantitative approaches to 

construct the 3D model of the campus of the University of Melbourne. 

Kocaman et al. [24] tested an approach for 3D city modeling with the use of high-resolution 

satellite images in SAT-PP software and CyberCity Modeler [16]. They extracted buildings 

and DSMs to construct 3D city model with IKONOS and stereo images. 

Tack et al. [25] introduced and tested an approach for semi-automatic construction of 3D 

city model with tri-stereoscopic high-resolution satellite images. They also studied 

IKONOS triplet data with photogrammetry software named SAT-PP for Istanbul.  

2.1.2.6 3D city modelling from single satellite image 

Huang et al. [26] developed a method for reconstruction of 3D objects from a single high-

resolution satellite image. The geometry was constructed with the help of Rational 

Polynomial Coefficient method by using one high-resolution satellite image and Digital 

Elevation Model. The satellite ray determines the polynomials and shadows on the ground 

determines the azimuth of the object. Height of the objects is determined from the shadow 

size and its angle with the Sun. Authors tested the method on IKONOS image data and 

designed software for real-time reconstruction, extraction, and visualization.  

Izadi and Saeedi [27] discussed a method for 3D building model with data input as a single 

satellite image. They designed a method for automatic building detection and height 

estimation with the shape of the roofs with the help of a single satellite image. The system 

detects multiple buildings without angular constraints, with the accuracy of 94% and a 

height error of 0.53 m on satellite image dataset. 
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2.1.2.7 3D city model from panorama images 

Luhmann and Tecklenburg [28] suggested a method for 3D objects reconstruction by using 

multiple panorama images. In this work, they also discussed frame by frame panorama 

generation, image acquisition, calibration, and control point measurement. Each of the 

panorama images is oriented with the global coordinate system. By following an object 

reconstruction method such as space intersection and moving floating mark, the 3D model 

is constructed. Authors tested the approach by constructing the entrance hall of the 

University of Applied Sciences in Oldenburg. 

Koseck and Micusik [29] designed an approach of 3D modeling by using street-view 

panoramic images with piecewise planar methodology. The images are captured with a 

camera calibrated in a car. The images are mapped one after one, and the 3D model is 

constructed.  

 

Figure 2.6. 3D model form car image sequences [29] 

2.1.2.8 3D city model from video 

The concept of constructing a 3D city model with videos is known as Videogrammetry. 

Videos are captured with a still digital camera or a camera recorder.  

Clip et al. [30] designed a system for 3D city modeling; the scene capturing is mobile in 

the system. The setup can be used with backpack or mounted on a car. The setup also 
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consists of GPS and IMU to geo-reference the captured scenes. After capturing, computer 

vision techniques are used to construct the final 3D city model from the videos. 

Zhang et al. [31] provided a concept for Depth Map Recovery from a sequence of videos. 

In the process, each frame is divided into images, and a Depth Map is constructed. To 

recover the camera parameters, bundle optimization, and disparity initialization Structure-

from-motion is used; space-time fusion techniques are used to generate depth maps. Figure 

2.7 shows the results of the approach in depth map format. 

 

Figure 2.7. 3D Environment from video with depth map [31] 

2.1.2.9 3D city model from TLS data 

The TLS is an aerial multispectral digital sensor system by STARLABO, Tokyo. Three-

Line-Scanner is a principle which is used to capture image triplets. It captures very high-

resolution images of three points, forward, backward, and nadir.  

Gruen et al. [32] used the TLS sensor to construct a 3D city model. Authors imported the 

TLS data in CC Modeler [16] and produced two datasets for Yokohama city. In Figure 2.8, 

the left image shows the area captured with the TLS sensor, and image in the right shows 

the detailed view of the same area. After importing the data in CC Modeler, the point cloud 

is generated for the TLS data. With the combination of CC Modeler and TLS stereoscopic 

measurement, 3D environment is constructed. In Figure 2.9, both views present the 

constructed 3D city with TLS sensor data and CC Modeler. 
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Figure 2.8. Data captured with the TLS sensor [32] 

 

Figure 2.9. 3D city model with TLS data and CC Modeler [32] 

2.1.3 Laser scanning based 3D models 

2.1.3.1 Terrestrial laser-based approach 

Vosselman and Dijkman [33] proposed a method for construction of a 3D model with the 

use of 3d point cloud and ground plan. In this work, Hough transform method is used to 

extract planar surfaces from irregular point clouds. The algorithm has two faces; first, the 

intersection between lines and height jump edges is detected. In the second, models are 

refined by fitting the point cloud. Figure 2.10 shows the constructed model with this 

approach. 

Ming et al. [34] proposed a method for automatic reconstruction of 3D city model by using 

LiDAR data and images from ground level. 
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Figure 2.10. A 3D model based on laser scanning [33] 

A 3D point cloud is generated with the help of LiDAR. Automatic plane detection is 

performed for the detection of a planar surface. Target recognition is performed for geo-

referencing the model. This approach is used to construct the 3D city model with LiDAR 

data and digital imagery. 

 

Figure 2.11. A 3D model with LiDAR and image [34] 

2.1.3.2 Aerial laser-based approach 

Dorninger and Pfeifer [35] designed an approach to determine 3D city models from the 

airborne laser-generated point cloud, from which they extracted building models and 

reconstructed them. An important aspect of this work is the detection of planar faces in the 

point cloud, which is used to detect the faces of 3D objects. Thus, primarily, this approach 

is based on 3D segmentation. In Figure 2.12, the left image shows the 3D model 
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constructed with the point cloud, and image in the right shows the final construction with 

textures, extracted with an airborne camera.  

 

Figure 2.12. 3D model with point cloud (left); 3D city model with textures (right) [35] 

2.1.3.3 3D city model with mobile mapping system 

Mobile Mapping System (MMS) is the setup of a camera, LiDAR, RADAR, and GPS 

mounted on a vehicle. Once calibrated, street recordings are captured from the POV of the 

vehicle. After capturing the data, it is visualized, and a 3D city model is obtained. Google 

Street View uses the same concept to capture the street and visualize them from ground 

level. 

Blaer and Allen [36] developed a system for the automatic reconstruction of the 3D city 

model by using a robot mounted with a laser scanner to capture the data. By visualizing 

the captured data, they create a 3D model.  

 

Figure 2.13. Setup for MMS (left); Simulation of captured data (right) [36] 
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In their work, they also developed a simulator to test the designed algorithm. With this 

approach, they created Uris hall at Columbia University and Fort Jay on Governors Island, 

New York. 

2.1.4 VGI data-based 3D city models 

In the last decade, research in the area of Volunteered Geographic Information has been at 

its best, resulting in an increase in the amount of 3D city development. One of the most 

used and popular projects established in 2004 is OpenStreetMap. Until now, there are more 

than 2 million active users and contributors with OpenStreetMap [45]. Research by Over 

et al. [46] introduced the possibility of constructing the 3D city model with the help of 

OpenStreetMap data, with extension to the research Groger et al. [47] conducted, which 

concluded that OpenStreetMap has the potential of creating LoD1 CityGML model.   

 

Figure 2.14. Level of Detail [48] 

Figure 2.14 shows the information of Level of Detail. LoD is a 3D construction concept 

that checks the quantity of real-world details that have been acquired into the virtual 

environment. Moreover, as 3D models are constructed with different purposes that may 

not satisfy the universal criteria, the concept of LoD has been strongly criticized in the area 

of 3D reconstruction [48]. The main idea behind the construction of 3D environment with 

OSM data was to integrate OpenStreetMap and CityGML concepts. This concluded that it 

is possible to construct LoD1 and LoD2 3D models with OpenStreetMap but not with 

LoD3 and LoD4. Research work by Goetz M. et al. [44] provided a flowchart for highly 

detailed 3D city model with the use of OpenStreetMap data.  
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The earliest example of crowd generated 3D information is Google 3D Warehouse, started 

in 2006. The Warehouse contains geo-referenced real-world objects as well as non-

referenced prototype models of different complex objects. In recent times, the development 

of Google SketchUp and ESRI Engine has increased the amount of production in 3D 

modeling. In 2007, Google and Microsoft included VGI data in their 3D modeling projects. 

Goetz M. and Zipf A. [44] provided a method to construct a 3D city model by using 

OpenStreetMap data. OSM data is the tagged information of every place with geo-locations 

and height and area information. Authors developed a method to extrude the height 

parameter and convert the 2D mapped data into a 3D model.  

 

 

Figure 2.15. OSM tags [44] 

Figure 2.15 shows the information about how the data is mapped in OpenStreetMap 

architecture.  

 

Figure 2.16. Extruded buildings from OSM [44] 
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Result of the work is shown in Figure 2.16 with extrusion of 2D features. 

2.1.5 Hybrid data-based 3D modeling 

In this method, multiple types of sensors are used to capture data for the construction of a 

3D city model. Sensor combination such as Aerial Laser and Terrestrial Laser, Laser and 

Camera Images or VGI data and Laser, are used in 3D reconstruction. 

2.1.5.1 3D modelling with aerial laser and terrestrial laser 

Bohm and Haala [37] designed a methodology for the construction of a 3D city model with 

a combination of Aerial Laser and Terrestrial Laser. The setup consisted of Leica HDS 

3000 Terrestrial Laser and OPTECH ALTM 1225 Airborne Laser. Terrestrial Lasers 

collected façade information and geometry of the 3D model, and Aerial Laser collected 

information of roof shapes. A 3D point cloud is generated with a combination of both 

lasers. The combined data is visualized to construct a 3D environment.  

 

Figure 2.17. Combination of both lasers (left); Virtual model (center); Virtual model after 

alignment (right) [37] 

In Figure 2.17, different phases of the methodology are shown; the image on the left is a 

combination of both lasers and image on the right is the final output of the approach. 

 2.1.5.2 3D modelling with laser and photogrammetry 

Habib et al. [38] designed a methodology to construct a 3D model with a combination of 

LiDAR data and aerial images. Point cloud generated with LiDAR is referenced with 

images to construct the final 3D environment. Conjugate features are used to geo-reference 

the images relative to LiDAR frames. 
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Figure 2.18. 3D environment with laser and aerial images [38] 

The final output of the approach is shown in Figure 2.18, with textures mapped on 3D point 

cloud faces. 

Frueh and Zakhor [39] developed a technique to construct a 3D textured model with the 

use of ground laser and camera. A truck was mounted with two lasers (one vertical and one 

horizontal) and one camera to capture recordings.  

In this work, Markov Carlo Localization and correlation techniques are used for the final 

construction of the model. In 2003, the work was extended with the use of aerial laser and 

aerial imagery.  

 

Figure 2.19. 3D model of Berkley University [39] 
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Data received from sensors is combined and visualized as a 3D model of Berkley 

University. 

2.1.5.3 3D modelling with laser and videogrammetry 

Zhao et al. [40] introduced a concept of alignment of continuous video on point cloud. 

LiDAR data and video data are captured for the same scene. A novel approach of 

registration is used to map the captured video on the 3D point cloud. Before the fusion of 

sensor data, the 3D point cloud is processed to find the planar surfaces.  

 

Figure 2.20. Laser data and videogrammetry [40] 

2.2 Texture mapping 3D city model 

3D city modeling mainly consists of three parts: geometric modeling, semantic modeling, 

and thematic modeling. One of the most important tasks is to texture map the geometric 

model. When texture-mapped, it increases the quality of the 3D model and gives a realistic 

touch to the virtual environment. Also, having realistic textures is necessary when the 

model is used for purposes like urban development, navigation system, virtual tour, or for 

this research work as prior information provided to the self-driving car. 
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Texture mapping the 3D model consists of following processes 

• Texture Extraction 

Texture extraction is the process of capturing a real-world image from the building 

or constructing a computer-based graphical image to map onto the 3D building 

model. To capture images real-world scenes, a setup with the combination of 

camera and GPS is used. The camera captures the images from the façade and the 

GPS sensor geo-locates the image with global coordinates. 

• Texture Reconstruction 

Texture reconstruction is the process of cleaning the objects which are in occlusion 

with the building façade. Objects which occlude with buildings are trees, vehicle, 

night lamps, benches, humans, and electricity wires. 

• Texture Mapping 

Texture mapping is the process of applying an image onto the relative building 

façade.  

Texture extraction, texture reconstruction, and texture mapping will be discussed in detail 

in upcoming chapters. 

Methods for texture mapping 3D city model 

1. Photorealistic method 

2. Pictometry based method 

3. Laser scanning based method 

4. Dynamic pulse function-based method 

2.2.1 Photorealistic method 

Façade texture is required to give building models a realistic view. Texturing can be 

achieved with images, shaded polygons, or solid color. If the texture is an image, then the 

image must be rectified as a façade. In Figure 2.21, the rectification can be seen. The 

rectified image is mapped onto the relative façade side. Yang B. et al. [43] proposed a 

method to extract façade texture from the real buildings and processes the images to rectify 

them and to remove the occlusion.  
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Figure 2.21. Rectified image [43] 

 

Figure 2.22. Real-life object removal [43] 

As shown in Figure 2.22, the objects in occlusion are removed from the final image. 

2.2.2 Pictometry based approach 

In Pictometry, front and side elevated images are acquired along with the location of the 

buildings by using an Uncrewed Aerial Vehicle (UAV). Wang Y. et al. [41] proposed this 

system of using Pictometry to capture images for façade and roof. In this approach, five 

cameras capture five geo-referenced images for each side (one top and four sides).  

 

Figure 2.23. Flight path for Pictometry [41] 
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In the low flying airplane, the camera angle is set 40-degree, which gives oblique angle 

images. Once the images are captured, the mesh is unfolded, and each image is mapped 

with the respective side. As shown in Figure 2.23, the low flying airplane captures five 

images of different sides. 

One of the problems with this approach is that image capturing being at an oblique angle; 

some parts of the buildings are not captured in the cameras. 

 

 

Figure 2.24. Hidden angles in Pictometry [41] 

In Figure 2.24, it can be seen that while capturing from one side, the other building part is 

not visible. 

2.2.3 Laser scanning based approach 

In this method, a laser scanner is used at an oblique angle to generate 3D data of the 

buildings. To capture texture data, a camera is used at an oblique angle [39]. The data 

received from the camera is superimposed onto the data received from the laser scanner. 

To match the respective side with the image, 3D line segments from the laser scanner are 

matched with the 2D line segments of the aerial image.  
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Figure 2.25. Laser scanned data (left); texture image (right) [39] 

2.2.4 Dynamic pulse function-based method 

Alizadehasharfi et al. [42] introduced a technique for texture construction named Dynamic 

pulse function. The system is a computer-based texture reconstruction. This method is 

applicable only to those facades which have repetitive objects such as air-conditioners, or 

windows. The output from this system is of high quality. As shown in Figure 2.26, the left 

side image contains all parts of the image. The image on the right is the final output 

constructed with the approach. 

 

Figure 2.26. Dynamic pulse function [42] 

For testing purposes, the 3D model of Karabuk University is modeled in SketchUp, and 

textures are created with Dynamic pulse function method.  
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Figure 2.27. Final model of Karabuk University [42] 

Summary of the methods discussed in Section 2.1 and 2.2 is provided in Table 2.1. Table 

consists information of method, input to the system, hardware sensors used, acquisition of 

building shapes, process involved in construction, texture extraction and output of the 

method. 

Method Input Sensors Building 

Shape 

Process Texture Output 

Aerial 

Images + 

Close 

Range 

Images 

Stereo 

paired 

Aerial 

Images 

Airborne 

Sensor 

Aerial 

images + 

CAD 

Package 

Image 

processing 

based method 

Close 

range 

images 

3D 

object 

model 

Aerial 

Images + 

Cadastra

l maps 

Aerial 

images 

Airborne 

Sensor 

Cadastral 

Information 

Image 

processing 

based method 

Not used 

 

 

3D 

object 

model + 

No 

texture 

Compute

r vision 

Image 

sequences 

Stereo 

camera + 

GPS + 

Compass 

Camera 

Images 

Structure-

from-motion 

Camera 

images 

with GPS 

3D 

model 

with 

texture 
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GIS Raster 

images + 

Vector 

data 

 

N/A 

 

N/A 

Image 

processing, 

Point based 

method 

 

N/A 

3D 

Point 

cloud 

GIS + 

Digital 

Image 

Raster 

images + 

Vector 

data + 

Digital 

image 

Digital 

camera 

Model 

constructed 

in Google 

SketchUp 

Image 

processing 

based method 

Close 

range 

digital 

images 

3D 

model 

with 

texture 

Satellite 

Images 

IKONOS 

satellite 

images 

Not used IKONOS 

images 

Rational 

Functional 

model 

method 

 

N/A 

3D 

object 

model + 

No 

texture 

Single 

satellite 

image 

IKONOS 

satellite 

image 

Not used Rational 

Polynomial 

coefficients 

and DEM 

model 

Monoplotting 

technique and 

shadow of 

building 

 

 

N/A 

3D 

object 

model + 

No 

texture 

Panoram

a Images 

Digital 

panorama 

image 

Camera 

+ GPS 

Digital 

images 

Image 

calibration 

with space 

intersection 

Digital 

panorama 

images 

3D 

object 

model 

with 

texture 

Video Video or 

Image 

sequences 

Camera 

recorder 

+ GPS 

Recorded 

video 

Computer 

vision                 

with Video 

processing 

and SfM 

method 

Video 

footage 

3D 

object 

model 

with 

texture 
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Three-

line-

scanner 

TLS data 

of 

forward, 

backward 

and nadir 

point 

TLS 

sensor + 

GPS 

Stereoscopi

c 

measureme

nt with 

point cloud 

data 

TLS data and 

CC Modeler 

software 

Not used 

 

 

3D 

model 

with 

texture 

UAV 

based 

model 

Oblique 

angle 

aerial 

images 

and 

terrestrial 

images 

UAV 

with 

GPS + 

camera 

Different 

types of 

images 

Image based 

methods and 

camera 

calibration 

with software 

Close 

range 

terrestrial 

images 

3D 

model 

with 

texture 

Laser 

based 

method 

Point 

cloud and 

ground 

plan 

LiDAR From point 

cloud data 

Segmentation 

of point 

cloud 

surfaces 

Not used 3D 

object 

model + 

no 

texture 

Mobile 

mapping 

system 

Point 

cloud  and 

camera 

images  

LiDAR + 

camera + 

GPS  

From point 

cloud data 

and images 

Mapping 

technique 

with point 

cloud and 

camera 

images 

Camera 

mounted 

on MMS 

system 

3D 

model 

with 

texture 

Aerial + 

ground 

laser 

3D point 

cloud of 

aerial and 

ground 

parts 

Airborne 

LiDAR + 

Terrestri

al 

LiDAR 

By 

combining 

the 3D point 

cloud from 

both the 

lasers 

Segmentation 

of point 

cloud 

surfaces 

Not used 3D 

object 

model + 

No 

texture 
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Airborne 

Images + 

Ground 

LiDAR 

Façade 

point 

cloud and 

aerial 

images 

LiDAR + 

UAV 

camera + 

GPS 

LiDAR 3D 

point cloud 

Orthophoto 

generation 

technique to 

combine 

LiDAR and 

images 

Aerial 

images 

3D 

model 

with 

texture 

VGI data 

+ 

Govern

ment 

open 

data 

Vector 

informatio

n and 

building 

models 

Not used Visualizing 

vector data 

Combination 

of building 

information 

models and 

extrusion 

Not used 3D 

object 

model + 

No 

texture 

Our 

approach 

(VGI 

data) 

Vector 

informatio

n from 

OSM 

Not used Vector data 

of OSM  

Extrusion of 

2D footprints 

and Model-

to-image 

comparison 

with 

inpainting 

Street-

view 

imagery 

3D 

model 

with 

texture 

Table 2.1: Summary of 3D reconstruction methods with texture information 

2.3 Related works 

The table below gives the information about the work done so far by researchers in area 

closely related to this research work; also, mentioned are contributions and scope of 

improvements. 

 Research Paper Contributions Scope of Improvement 

Generating 3D city 

models without 

elevation data. Biljecki, 

F., Ledoux, H., & 

Stoter, J. 2017 

Uses OpenStreetMap data for 

the construction of 3D city 

model; also, open government 

data used for extra information 

of buildings 

LiDAR is used for to 

extract the building height 

information, use of sensor 

increases cost; roof 
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information has not been 

used to from OSM 

3D city 

model construction 

based on a 

consumer-grade UAV. 

Zhongdi, Y. U., Hui, L. 

I., Fang, B. A., & 

Zhaoyang, W. A. N. G. 

2018 

3D city model is constructed 

with textures; same sensors are 

used to capture the geometry of 

buildings and texture facades 

UAV is mounted with four 

different cameras so, use of 

UAV increases the cost of 

overall system;  the 

textures are captured at 

oblique angles so need to 

be processed with 

rectification methods. 

Improving accuracy of 

automated 3-D building 

models for smart cities. 

Yang, B., & Lee, J. 2019 

The construction is carried out 

with the use of hardware 

sensors; Airborne LiDAR and 

camera with GPS sensor is used 

Accuracy is better with the 

approach because of all the 

sensors; also, uses already 

existing building information 

 

An airborne LiDAR is used 

in the approach which does 

not give high point density, 

so the geometry of the 

building is not much 

accurate 

Automatic Texture 

Reconstruction of 3D 

City Model from 

Oblique Images. Kang, 

J., Deng, F., Li, X., & 

Wan, F. 2016 

Oblique images are used in the 

construction of 3D city model 

with the use of UAV; Texture 

information is also extracted 

with the same sensors 

Only oblique images have 

been used in the 

construction method; use 

of façade images can help 

improve the accuracy 

which is also easy to 

capture 
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Integration of aerial 

oblique imagery and 

terrestrial imagery for 

optimized 3D modeling 

in urban areas. Wu, B., 

Xie, L., Hu, H., Zhu, Q., 

& Yau, E. 2018 

A database has been used which 

consist aerial and terrestrial 

images of same objects; objects 

matching method has been used 

to combine the aerial and 

terrestrial images 

The matching method uses 

point cloud data created 

from image but not 

LiDAR, that reduces the 

accuracy of the façade 

plane 

Table 2.2: Review of 3D construction and texture mapping techniques 

2.4 Thesis statement 

2.4.1 Problem statement 

Literature survey suggests that there is a need for continued change in the methods with 

which the 3D city model is constructed. 3D city model is used in the self-driving car to 

know its surroundings; it cannot be used until it gives proper results. At the time of writing 

this thesis, most methods use the sensory information as input for the construction of 3D 

city model. The cost parameter is affected with the addition of sensors. Sensors used in the 

self-driving car are LiDAR, RADAR, camera, GPS enabled IMU, and infrared camera.  

On the other hand, in recent years, the amount of research in the field of Volunteered 

Geographic Information has increased. Researchers have also proved that a 3D city model 

can be constructed with crowdsourced data [44] [46]. Also, a tremendous amount of effort 

is exerted in extracting the VGI data with increased accuracy. Also, when a 3D map is 

constructed with sensors (in real-time), it demands for more computation power. Object 

detection from real-time constructed 3D environment also consumes more time. Moreover, 

sensors mounted on the self-driving car need to be changed after two-three years. To solve 

these problems, the proposed method focuses on constructing a 3D environment 

beforehand which can be used to remove static objects resulting in reduced computation 

time. Furthermore, constructing a 3D environment from VGI (also known as crowdsourced 

or open-sourced) data reduces the cost of the overall system. 
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CHAPTER 3 

PROPOSED METHODOLOGY 

 

This chapter discusses about the proposed system to construct a virtual 3D city model and 

processes of texture mapping; including texture extraction, texture reconstruction, and 

texture mapping. This chapter contains the flowchart used for the construction of 3D model 

and detailed methods of texture mapping. Additionally, the chapter discusses about the 

working of the overall system and connection of virtual 3D city model with all other 

modules. 

3.1 Motivation 

In recent years, research in the area of self-driving cars has increased. Despite this, a 

perfectly functioning autonomous car is still not a reality. Also, semi-autonomous cars have 

been made available to the market in the last couple of years; and, they have been involved 

with some pedestrian fatalities [74]. Recently, two deaths involving Uber and Tesla self-

driving systems have raised safety concerns. This has resulted in arriving at a conclusion 

that more computation time is required for dynamic object detection [71].  

In our approach, a 3D environment of a real place is constructed, which helps in reducing 

the computation time for the self-driving system by eliminating static and variable objects 

(buildings, trees). Also, we are aware that the cost of 3D construction is a huge issue 

because of the usage of hardware sensors. Hence, this system proposes a method for the 

construction of a 3D environment with reduced cost and reduction in computation time for 

the self-driving system. 

3.2 Working of the overall system 

The overall system consists of six modules: 

1. Construction on virtual 3D environment 

2. Rendered images of real-time video 
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3. 3D feature and keypoint extraction 

4. Removal of static and variable objects 

5. Dynamic object recognition 

6. Dynamic object detection  

As shown in Figure 3.1, all these modules are interconnected which each other 

 

Figure 3.1. Overall system 

In Figure 3.1, work shown in the red-colored box is the contribution of this thesis work. Its 

connection with all other modules, which are in different colored boxes, is also depicted 

using arrows. 
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The description of the overall system is in reference to Figure 3.1. The overall system 

primarily deals with the construction of a virtual 3D environment with the use of 

OpenStreetMap data (VGI/crowdsourced) and the façade texture from Google street view 

images. The virtual 3D city model consists of static objects, such as buildings, and some 

of the variable objects, such as trees. Apart from this, there is a separate repository which 

contains 3D models of dynamic objects, such as cars. The module marked in the blue-

colored box in Figure 3.1 shows the real-time video (image sequences) passed as input to 

the system. Real-time image is an image received by the self-driving system through the 

camera mounted on car. The virtual environment is rendered, and keypoint features and 3D 

features are stored in a repository; this work is performed in the module colored in green. 

The module marked in pink is the static and variable object elimination module. In this 

module, the keypoint features of the input image (blue module) and keypoint features of 

the virtual environment (pink module) are matched. Matching the keypoint features of the 

virtual environment and real-time image confirms the location of the car in the real-world; 

this solves the problem of geo-localization of the self-driving car. With the matching, 

location of the static objects is also confirmed, and they are eliminated from the object 

identification process; which provides more time for the identification and prediction of 

dynamic objects such as human beings or animals on the road, as those are the ones which 

have impact on the navigation of the self-driving system. The module marked in cyan deals 

with the object recognition and pose estimation of dynamic objects present in the real-time 

input image, such as cars. Additionally, this module tracks the recognized objects from 

multiple frames of the video and calculates the speed of the dynamic object. The recognized 

object with the pose information along with the object speed and location is used to update 

dynamic objects into the 3D virtual environment. The module marked in grey color updates 

the dynamic objects’ information into the virtual environment.  

3.2.1    Working of individual modules 

The modules which are directly associated with this research work are extraction of objects 

features, and dynamic object prediction. The virtual 3D city model and the real-time video 

are the input to the overall system.  
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1. Keypoint extraction and dataset creation: 

In the scope of this module, only cars and humans are considered as dynamic 

objects. In the case of cars, the 3D object models stored in the repository are 

rendered. KeypointNet [62] is used to extract the keypoint features from different 

rendered views of car models. The coordinate information of the identified 

keypoints in the rendered image, orientation details of the keypoint, and the 

direction of the car (left, right, towards, away), are stored in an annotation file. In 

case of humans, the DensePose [63] model is adopted and integrated into the overall 

system for human pose estimation. The DensePose model has its own manually 

collected ground truth dataset, which annotates dense correspondence between the 

image and a 3D surface model by asking the annotators to segment the image into 

semantic regions and to then localize the corresponding surface point for each of 

the sampled points on any of the rendered part images [64]. The surface coordinates 

of the rendered views localize the collected 2D points on the 3D model. The 

dynamic object recognition module uses this repository for matching the keypoint 

features of the dynamic objects in the input image with the keypoint feature 

information of the 3D object models stored in the repository and a suitable 3D 

model corresponding to the object in the input image is retrieved. 

2. Static and variable object removal: 

In this module, static and variable objects in the real-time image are detected with 

the Fast R-CNN approach. Once detected, the keypoint features of a virtual image 

are matched with the keypoint features of a real-time image to verify static and 

variable objects. Once verified, a heat map is generated for the verified images, and 

with the help of the heat map and the contour detection, verified objects are 

eliminated from the image. In this way, static and variable objects are eliminated. 

This helps reduce the object detection time while the car is running. 

3. Dynamic object recognition: 

This module matches keypoint features of the dynamic objects in the input image 

with the keypoint feature information of 3D object models stored in the repository 

to find a suitable matching 3D model for each of the dynamic objects present in the 
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input image. A voting algorithm is used for the matching purpose, which also 

estimates a confidence score that signifies the confidence of object identification. 

This process improves the confidence of recognition and pose estimation of 

dynamic objects in the input image. This module is marked in cyan color in Figure 

3.1. 

4. Dynamic object prediction: 

This module uses the information from the dynamic object recognition module to 

update the virtual city with dynamic objects on the road in real-time. The 

recognized object, with its pose information, speed and location, is used to update 

the virtual city with the identified dynamic objects in real-time. Prior knowledge 

about the dynamic, static and variable objects from the virtual city and IoT is then 

used to determine the appropriate navigation decision of the self-driving car. This 

module is marked in grey color in Figure 3.1. The output of different modules is 

visualized in this module with the use of AirSim Simulator. Also, future prediction 

about the navigation of dynamic objects is calculated in this module. Moreover, 

this module predicts the distance from dynamic objects and visualizes them with 

different indicators.  

3.3 Proposed methodology for construction of virtual environment 

The proposed methodology consists of four processes followed by the sub-processes, 

1) Construction of 3D building models 

I. Extracting 3D structural data 

II. Converting the 2D footprints into 3D models 

2) Geo-locating the 3D environment 

I. Setting the offset between local coordinates and world coordinates 

3) Texture image construction 

I. Extracting Textures from street-level imagery 

II. Reconstructing the texture images 

4) Mapping texture onto building models 

I. Comparing the façade plane with the image  
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With the usage of a virtual 3D environment, the car becomes aware of its surroundings so 

that it can function accordingly. Currently, most methods use hardware sensors to know 

the surroundings. Whereas, this research work aims to use opensource VGI data for the 

construction of the 3D virtual environment. As seen in Chapter 2, research in the area of 

VGI has increased in recent years; latest research proves [44] that VGI can contain the 3D 

structural data of different types in the form of a database. This idea has been exploited in 

our research work to gather 3D structural information. OpenStreetMap data is used in this 

approach as opensource data. The virtual 3D environment constructed with this approach 

reduces the cost of the overall system by eliminating the usage of hardware sensors. 

Flowchart of the proposed system is shown in Figure 3.2. 
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Figure 3.2. Flowchart proposed methodology 

3.3.1      Construction of 3D building models 

As discussed, OpenStreetMap data is used as 3D structural information. This works as a 

base for the building models. Overpass API is used to extract OpenStreetMap data from its 

server; extracted data is a read-only copy of the main OpenStreetMap database, which 

delivers an arbitrary amount of data. To extract data with Overpass API, coordinates of 

four real-world points are supplied; with the use of four locations, it creates a bounding 

box of the region, and that region is extracted in XML data format.  

 

Figure 3.3. Region to extract 

An example depicting the use of Overpass API is shown in Figure 3.3; a region to extract 

is created with the use of bounding boxes. Once the XML file of 3D structures is extracted, 

it is visualized as 2D footprints by using OSM library. 2D footprints is a digital drawing of 

building in 2-dimensions with the height information attached to it. In Figure 3.4, the 

flowchart for the construction of 3D building models is shown. 
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Figure 3.4 Flowchart for 3D building models 

Once the 2D footprints are visualized, the height information is used to extrude the 2D 

footprints into 3D building models. The most commonly used method for converting 2D 

footprints to 3D buildings is extrusion. Starting with the basic planar surface, each edge 

and vertex is selected. They are extended up to their attached height. Pseudocode for the 

extrusion process is described in Figure 3.5. The extrusion process for the OpenStreetMap 

data starts by looking for the tags that are relevant to the extrusion process. Some of these 

tags are building: height, building:levels, building:levels:aboveground, building:color, 

building:colour, building:façade:color, building:façade:colour, building:roof, 

building:roof:shape, and building:roof:type. After checking for the height and roof 

information, separate parts are created for body and roof, which are combined to construct 
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one 3D model. This thesis does not include the roof portion in the process. This is due to 

the limited availability of databases containing roof information. The pseudocode for the 

extraction of OSM:tags and combining the building parts is described in Figure 3.5. 

 

Figure 3.5. Pseudo code for building extrusion [44] 

In this way, 3D building models are constructed from the OSM data with the GIS extrusion 

process. The constructed 3D building model is without textures and geo-locations. 

3.3.2       Geo-locating 3D environment 

Geo-locating the virtual 3D environment is necessary for the virtual environment to work 

as a GIS system. The XML file extracted from OpenStreetMap server contains geo-

locations of all buildings, but when the data is visualized and extruded to be converted into 

a 3D environment, it loses the geo-locations of all buildings. Hence, the virtual 

environment is geo-located. The process of geo-locating the virtual environment starts with 

pre-processing of the XML database file. First, when the 2D footprints are visualized in 

QGIS, only the geo-location layer is extracted and saved in a separate file with .kml 

(Keyhole Markup Language) extension. QGIS is a geographic information system 

software, mainly designed for the analysis of spatial data. As the construction of 3D models 

and extraction of the kml file (geographic location) has been carried out from the same 

database, the kml file contains the geographic location information of each building. Once 

the kml file is extracted, the virtual 3d model and the geographic location (kml) file is 

imported in CAD software and matched with each other. Thus, the virtual 3D model is geo-

located. This process of georeferencing is described in Figure 3.6. 
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Figure 3.6. Georeferencing virtual 3D model 

3.3.3      Texture image construction 

To make the virtual 3D environment look realistic, texture mapping is important. In 

Chapter 2, most of the current methods use photorealistic texture mapping, which is to 

capture texture from real locations. Usually, photorealistic texture mapping uses the 

combination of a camera and a GPS. The camera captures the façade texture information 

and the GPS references the image to geocoordinates. In our research work, a photorealistic 

approach is used for texture mapping; the texture is extracted from the Google street view 

imagery. The texture image construction is a two-part process: first, the extraction of 

texture images and second, the reconstruction of texture images.  

1) Texture image extraction 

Texture images are extracted with the Google street-view static API. By supplying the 

geo-location as an input, the texture image file is fetched from google street view 
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database. The geo-locations file used for geolocating the virtual 3D model, is reused as 

an input. Here, instead of a keyhole Markup Language file, a comma separated value 

(csv) file is used. While querying with the street view static API, these parameters are 

used to fetch the texture image [72]. 

• Location: takes either a string value (such as Niagara Falls, ON) or latitude and 

longitude value. When the address string or coordinates are provided, the API 

sometimes uses different camera location to provide a better picture 

• Pano: is a specific panorama ID 

• Size: specifies the output image size in pixels; specified as {width x height} – for 

example, 400 x 600 provides an image of 400 pixels wide, and 600 pixels high 

Some of the optional parameters are  

• Heading: indicates the compass heading of the camera; input values are from 0 to 

360 (90 indicates East, and 180 indicates South). If the heading is not provided, 

then a value is calculated which directs at the location 

• Fov: stands for Field of View of an image. This represents the zoom level for an 

image, with the default being 90 and maximum 120.  

• Pitch: specifies the up or down angle of the camera relative to the street view 

vehicle. Positive value angles the camera upwards, and negative value angles the 

camera downwards.  

• Radius: sets a radius to search an image, centered on given latitude and longitude, 

input values in meters 

With the combination of default and optional parameters, a query is generated and supplied 

with street view static API to extract an image of a specific location. With the extraction 

of every image, one annotated file gets generated with the pano id and the geolocation of 

that image, which helps to match every image with relative façade plane.  

2) Reconstruction of texture image 

In the reconstruction of texture images, the occluded objects are removed to make 

textures look realistic. In occlusion removal, different objects such as cars, trees, 

humans, and night lamps are removed from texture image [43]. To remove occlusion 
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and not lose the clarity of the image, an inpainting based method is used. Inpainting is 

a technique used to restore missing parts of an image or fill patches in an image. 

 

Figure 3.7 Process of image extraction and reconstruction 

In this approach, a mask-based inpainting approach is used to remove occlusion in the 

image. Figure 3.7 describes the process of image extraction and reconstruction. 

As shown in Figure 3.7, all the four sides of textures are extracted for a building and 

annotated with the pano id and geo-locations. After extracting images for all sides, the 

model-to-image comparison is performed to remove the background of the image. Therein, 

the existing virtual 3d model (without textures) is rendered, and images are obtained for all 

different orientations. Then, the image from the virtual 3D model is projected onto the 

extracted texture image to match the edges of model-image and texture image. Once the 
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edge-match is performed the remaining part of the texture image is masked and removed 

to construct the façade texture image of model size. This texture image still contains the 

occluded objects. To remove them, a mask based inpainting approach is used; which works 

based on two images, the original image and an image with the mask on objects to be 

removed. The masked images are obtained with the help of semantic segmentation. A pre-

trained model of FCN with ResNet 101 is used to detect and mask the real-life objects from 

the image. The pre-trained model is trained to detect 16 different classes, such as 

vegetation, humans, animals, cars, etc. With the help of the masked image and the original 

image, the occluded objects are removed with inpainting method. Therein, the removed 

region is filled with the help of neighboring pixels.  

Algorithm for texture extraction and texture reconstruction, with the use of model-to-image 

comparison and mask-based inpainting method is discussed. 
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Algorithm: Texture image extraction and reconstruction 

 

INPUT: CSV file of Geo-locations  

OUTPUT: Texture Images with model-image comparison and occlusion removal 

 

Step 1: Extract the façade texture images with the use of street-view static API 

Step 2: store the annotation file with pano id and geo-locations for the images 

Step 3: If texture for any of the four sides is not extracted, increase the radius for the image    

            in step 1 and repeat step 2. 

Step 4: get the rendered image for the model-to-image comparison 

Step 5: compare the model image with texture image; if it doesn’t provide significant  

 results, then detect edges and match for both images and repeat step 5             

Step 6: perform FCN based ResNet 101 semantic segmentation to mask the image for  

 inpainting purpose 

Step 7: mask based inpainting to remove the object and neighboring pixels to fill the  

 removed region 

Step 8: texture images for building facades, with background subtracted and occlusion  

 removed 

Step 9: End 
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 3.3.4      Texture image mapping 

For texture mapping, GPS-assisted texture mapping approach is used. As discussed in 

Chapter 2, most methods use a hardware setup of a GPS and a camera to extract façade 

textures. Images captured with this setup are georeferenced by GPS sensor. In this 

approach, the façade texture is extracted from street-view imagery, which is not geo-

referenced. To solve this problem, we use an annotated file to keep track of geolocations 

of each façade image in our approach. To select the façade texture image from the database, 

the geo-location of façade plane in the model, and the geo-location of façade texture image 

from the annotated file is matched. After matching the facade texture with the help of 

geolocations, the texture image is mapped onto the façade plane. If this does not provide a 

significant result, the edges of the 3D model plane and the edges of texture image are 

matched. Thereafter, the façade texture is mapped.  

 

Figure 3.8. Texture mapping process 
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The flowchart of texture image selection for specific façade and texture mapping with edge 

matching algorithm is shown in Figure 3.8.  

With the algorithms used in the proposed system, the final output is a virtual 3D city model 

with texture mapped on the façade planes. The detailed description is of algorithms is 

provided in Section 3.3.1, 3.3.2, 3.3.3, and 3.3.4 

The output of this proposed system is used by the overall system to geo-localize the self-

driving car in the real-world. 3D features and keypoints are extracted from static objects in 

the virtual world. The extracted features are compared with the real-time image to eliminate 

the static objects from the object detection part which reduces the time for object detection. 

This provides more time for the detection of dynamic objects. The results of these processes 

are discussed in Chapter 4 in detail.  
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CHAPTER 4 

IMPLEMENTATION AND EXPERIMENTS 

 

The proposed approach is implemented on Windows OS using Python Programming 

Language, in the implementation, different Python, OpenCV and OpenGL libraries are 

used. The list of software and tools used is given in Table 4.1. 

4.1 Software information 

The implementation of proposed methodology was performed on Alienware 1.5.0 x64-

based Desktop, with NVIDIA 8.1.940.0 and Intel 64 ~ 3192 MHz GPU. 

ITEM DETAILS 

Operating System Windows  

Languages Python 3.7.1 

IDE Spyder, Anaconda Navigator, JOSM 

Python Libraries OpenCV, Scikit, PyOpenGL 

Tools Maya 2019, SketchUp, 3D Viewer, QGIS, 

CAD Software 

Table 4.1: List of tools used for implementation and experiments 

4.2 Data extraction from OSM server 

To perform the experiment, a downtown area from Waterloo Region is selected; all the 

extraction and texture mapping is performed for the specific area. Location of the selected 

region is King St S at Wills Way to King St S at William St E, Waterloo, ON. In the 

proposed system, data extraction is performed with Overpass API by querying into 

OpenStreetMap server.  
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Query: 

<osm-script> 

  <union into="_"> 

    <query into="_" type="Node"> 

      <bbox-query s="43.46456" w="-80.51661" n="43.461" e="-80.52503"/> 

    </query> 

  </union> 

  <print e="" from="_" geometry="skeleton" ids="yes" limit="" 

mode="meta" n="" order="id" s="" w=""/> 

</osm-script> 

 

By running this query on OSM server, the OSM data for the supplied coordinates is 

returned in XML format; which contains the 3D structural information of the selected data.  

 

Fig 4.1. Bounding box query 

The query mentioned above creates a bounding box for the supplied coordinates as shown 

in Figure 4.1. The XML file contains all the information of the buildings in the bounding 

box, such as geo-location, building height, address, type of building, and available facilities 

in the building. Moreover, in some places, the roof information is also available.  

4.3 Visualizing data in vector format 

In Figure 4.2, the XML format of OpenStreetMap data is visualized in vector format in 

Java OpenStreetMap editor to check the available information in the extracted area. JOSM 

is the map editor for OpenStreetMap data. Almost all the tagging of the data is also 

performed with this editor. Hereon, to visualize the footprints of the building, the OSM 
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library is used in Python. The library is able to understand the tags of OSM architecture in 

python. 

 

Figure 4.2 Vector format of XML data 

As shown in Figure 4.3, the buildings and roads are represented as footprints. To visualize 

buildings, flat polygons are used; for roads and crossroads, strings are used; to visualize 

trees and crossing signals, a point has been used. 

 

Figure 4.3. Footprints of OSM data 
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4.4 Extruding footprints to 3D models 

Once the footprints are acquired, the buildings are extruded by using the attached height 

information with pseudo code shown in Figure 3.5. In this process, traffic signals and other 

night poles or benches are not extruded; only the buildings, roads, and some of the trees 

are extruded. The result of building extrusion process is shown in Figure 4.4. 

 

Figure 4.4. Extruded building models 

3D model shown in Figure 4.4 is geo-located with the help of Keyhole Markup Language 

file which contains the geo-locations of all the objects in 3D model.  

 

Figure 4.5. KML file for geo-locations 
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To extract the geo-locations file, the XML file of OpenStreetMap data is visualized in 

QGIS software, from which the geo-location layer is exported in kml file format. Also, 

with the help of CAD software, the kml file is mapped onto the 3D model. Figure 4.5 shows 

the details of two building models from the selected area.  

4.5 Texture image extraction 

After the construction of 3D virtual model, photorealistic textures are extracted from street-

view imagery with street view static API. 

 function initialize() { 

  var fenway = {lat: 43.4634198, lng: - 80.5219242}; 

  var map = new google.maps.Map(document.getElementById('map'), { 

    center: fenway, 

    zoom: 14 

  }); 

  var panorama = new google.maps.StreetViewPanorama( 

      document.getElementById('pano'), { 

        position: fenway, 

        pov: { 

          heading: 34, 

          pitch: 10 

        } 

      }); 

  map.setStreetView(panorama); 

} 

A script with the details of Geo-locations and optional parameters such as zoom, heading, 

pitch, and field of view, extracts the images for texture façade.  

 

Fig 4.6. Façade texture image [72] 
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With the geo-locations {lat: 43.4634198, lng: -80.5219242}, the street view static API 

returns the image shown in Figure 4.6. The image is extracted with the use of optional 

parameters: zoom, heading, and pitch. With the extraction of the texture image, one 

annotated file is created which holds the geo-location records of the image and pano id, 

which helps in mapping the textures onto the model. In the proposed method, texture is a 

specific visual image which is extracted from street-view imagery and mapped onto each 

side of the building.  

4.6 Reconstruction of texture image 

4.6.1    Perspective transform image 

When the texture images are extracted from the street-view, they are captured as a 360-

degree image because when Google MMS captures the image, it uses 360-degree camera. 

To straighten the image, getPerspectiveTransform is used from OpenCV. Therein, the 

corner points of the image are detected, and the image is straightened with respect to those 

corner points. To detect the corner points, contours are detected in the image and the 

intersection of contours is stored as a corner point. Google street-view images are not 

straight as they are captured with a 360-degree camera that creates a panorama or a fisheye 

image.  

In corner detection, if there is no corner detected in the process, then the biggest contour is 

selected as a building. In that, with no corner points in the image, there is no intersection 

of horizontal and vertical axis. With no intersection, there is only one contour detected in 

the contour detection process. The biggest contour area is selected as a building in an 

image. The originally extracted image is shown in Figure 4.6. The perspective transform 

image is shown in Figure 4.7. 

 

Figure 4.7. Perspective transform 
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4.6.2    Model-to-image comparison 

After extracting the façade texture image from street view imagery, the rendered image of 

the model and the façade texture image are compared by projecting them on each other to 

detect the edges, With the projection, the background shades and other connected buildings 

are subtracted. To reconstruct, the image shown in Figure 4.7 is used as the façade texture. 

Also, the same view is fetched from 3D model with the help of geo-locations, which shown 

in Figure 4.8.  

 

Figure 4.8. Rendered image of 3D model 

In the model-to-image comparison, the façade texture image extracted from street-view 

imagery is projected onto the 3D model image. Once projected, the edges of the rendered 

image the façade texture image are compared to match the images. The projection of both 

images is shown in Figure 4.9. 

 

Figure 4.9. Model-to-image comparison 

In Figure 4.9, there is a difference in the 3D model image and the texture image, which is 

removed by matching the edges of both the images. The final reconstructed image is shown 

in Figure 4.10. 
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Figure 4.10. Background subtracted image 

4.6.3    Occlusion removal 

In the process of occlusion removal, a mask-based inpainting method is used. For the 

masking purpose, the texture image is semantically segmented, wherein different objects 

are detected in an image and masked with red. For semantic segmentation, a pre-trained 

model of FCN (Fully Convolutional Network) with ResNet 101 architecture is used. 

Semantic segmentation is the process of defining specific pixel in an image to a class label. 

Generally, these labels include a person, furniture, flower, car, etc., just to mention a few. 

Semantic segmentation is image classification at pixel level. For example, there is an image 

that has many trees, segmentation labels that as a tree or describes it with a different color 

mask. For semantic segmentation, Figure 4.10 works as an input. Objects such as 

vegetation, light poles, electric poles and dynamic objects such as humans, cars, and 

animals are masked to be removed from the original image. Figure 4.11 shows the detected 

and masked objects.  

 

Figure 4.11. Masked objects for removal 

Once the semantically segmented image is masked with the objects to be removed, mask-

based inpainting is performed. Therein, the masked region is removed and tried to be filled 

with the neighboring pixels. The mask-based inpainting is useful when the removed region 
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is small because of the use of neighboring pixels to fill the region. Figure 4.12 shows the 

occlusion removed façade texture image.  

 

Figure 4.12. Occlusion removed façade texture  

4.7 Image stitching 

Herein, the OpenCV library is used with createstitcher class. This takes different images 

as input and combines them as one.  

                                           

Figure 4.13. Three façade images to stitch 

In Figure 4.13, three different images are shown, which are of different facades. All three 

images are stitched as one to wrap onto the 3D model, which is shown in Figure 4.14. 
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Figure 4.14. Stitched images 

4.8 Texture mapping on the 3D model 

In this process, the reconstructed texture image is mapped onto the relative 3D model by 

comparing the geo-locations. For mapping, relative to the geo-location of the façade plane, 

a texture image is acquired with the help of the annotated file. The annotated file has the 

details such as pano id and geo-location of that image. Thus, by comparing the geo-location 

of a specific image and façade plane of a 3D model, the texture is mapped onto the 3D 

model. If this doesn’t provide significant results, then the edges of the façade plane and the 

edges of the texture image are matched, and the texturing process is repeated.  

Roads are mapped as a string on the OSM server. For the coordinates, four different points 

of different locations are tagged as a road. To map the texture on them specific file is 

selected from the reconstructed texture database. Once the file is selected, geo-locations 

are matched for the texture image and string of road. After matching, the texture image is 

mapped onto the façade plane of road structure.  

In the proposed methodology, texture mapping of the 3D building is necessary because of 

the specific usage of the 3D model. The 3D city model is compared with the real-time 

image of buildings. In the comparison process, 3D features are extracted for the virtual 

environment and real-time image and stored in a repository. With the matching of 3D 
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features, location of the building is confirmed, and it is eliminated from the objects 

detection process. In the 3D feature matching process, if 3D features of the virtual 

environment do not match with the 3D features of real-time image, then the building 

location is not confirmed, and that creates a mismatch for the static object elimination 

process. For this specific use of the 3D model, the textures are necessary on the building 

façade.  

In Figure 4.15, 4.16, and 4.17 different views of the 3D model are shown with textures 

mapped on buildings. 

 

Figure 4.15. Textured 3D model (view 1) 

 

Figure 4.16. Textured 3D model (view 2) 
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Figure 4.17. Textured 3D model (view 3) 

4.9 Constructed 3D model in real-world  

To check the geometry size of constructed model, the final model is imported into Google 

SketchUp and mapped onto a digital map. As seen in Figure 4.18, the edges of the 3D 

model match with the digital map layer. 

 

Figure 4.18. 3D model geometry comparison [73] 
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4.10 Use of 3D model in the overall system     

The constructed 3D model is used as prior information in a self-driving car system. From 

the 3D environment buildings are detected. From the detected buildings, 3D features and 

keypoints are extracted. The detected building is shown in Figure 4.19. 

 

Figure 4.19. Building detection 

 Once the building is detected, heat map is generated to remove the buildings connected 

with it. After the heat map is generated, as shown in Figure 4.20 (left side), 3D features are 

detected and saved in a repository.  

Once the 3D features and keypoints are extracted and stored in a repository, 3D features of 

the real-time image are extracted. The real-time image is of same building as building from 

virtual world. In this way, the 3D features of a virtual image and the 3D features of a real-

time image are matched to confirm the location of building. 3D features detected on real-

time image are shown in Figure 4.20 (right side).   
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Figure 4.20. 3D features of buildings (virtual image in left; real-time image in right) 

 

Figure 4.21. 3D features of buildings (virtual image in left; real-time image in right) 

 

Figure 4.22. 3D features of buildings (virtual image in left; real-time image in right) 
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Once confirmed, all the static objects from the virtual environment are eliminated from the 

process of object detection to reduce the computation time for object detection.  

4.11 Result comparisons and discussions 

3D city model constructed with the proposed methodology is primarily used to provide 

information of the static objects present in the city. Aim of the overall system is to use the 

3D city model and eliminate the static objects from the object detection process. The 

elimination reduces the computation time for static object detection and provides extra time 

for the detection of dynamic objects. The methodologies referred in Section 2.3 aim to 

construct a 3D city model from different resources. As [65] uses OpenStreetMap data for 

3D structural information with the combination of LiDAR data for the height of building 

object. With the use of the sensor, the overall cost of the system increases. They also use 

Government provided open data in the construction process. The availability of open-

source Government data is uncertain as that depends on individual city. The approach 

presented by [68] does not use the opensource data for the construction of 3D model. As 

an input, aerial and terrestrial images are provided to the proposed system. The approach 

is based on image matching algorithms. The approach provides significant results, but it is 

mainly based on the usage of the sensors. Approaches suggested in [45] and [46] provide 

good results by using OpenStreetMap data for the 3D construction, but they do not provide 

any information about the texture mapping of building facades. 

To texture map the 3D model, existing approaches use a mobile mapping system or 

computer generated textures to map the building façades. The mobile mapping system 

consists of a camera and GPS sensor. Computer generated textures are mainly used in 

virtual tour or gaming industry. Here, the 3D model is used as prior information for the 

navigation of a self-driving car.  

The proposed method in this research work only uses OpenStreetMap data to extract 3D 

structural information. For the texture purposes, street-view imagery is used to reconstruct 

the building façade. The results from Section 4.4 and 4.10 provides information about the 

working of this approach. In Section 4.4, the 3D model is generated from the OSM data. 

In Section 4.10, provides different views of the constructed 3D model.  
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Moreover, to compare the quality of the 3D model, street-level image of a building and 

same building from virtual 3D environment is shown in Figures 4.23 and 4.24 respectively.   

 

4.23. Street-level image of buildings 

 

4.24. Virtual image of 3D objects 

Aim with the construction of 3D model has been to extract 3D features from the virtual 

environment and then compare them with the features of a real-time image. With this, real-

time location of the car is known. Also, by matching the 3D features, static objects are 

detected and removed from detection process.  

Approaches discussed in Section 2.3 provide significant results. Here, the 3D environment 

is used for the specific situation of providing prior information to the self-driving car. For 

that, the 3D model constructed with the proposed approach provides significant results. 

Section 4.10 provides different situation with for the usage of 3D model.  
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 4.12 Drawbacks and limitations 

In the proposed methodology, the construction of the 3D virtual environment is carried out 

with opensource data; which is crowdsourced VGI data from OpenStreetMap. One of the 

limitations of the OSM data is its availability; it is available at almost all the places, but the 

quality of the data is not the same. At some places, objects such as benches, night lamps, 

and some of the trees are not mapped into the database. 

In the database, roof types and height is not mentioned, that has been a major limitation in 

the proposed method. Without the roof portion, accuracy for the matching of 3D features 

and key points between the virtual environment and real-time image reduces; because the 

main difference between the virtual image and real-time image is roof portion of the 

building  .  

In the texture extraction process, the textures are extracted from Google street-view 

imagery. Herein, only the images captured by Google’s mobile mapping system are 

extracted. If there is any street, which has not been captured by MMS, those texture images 

cannot be acquired by the proposed methodology. Also, sometimes in the occlusion 

removal process, if the image quality is low, then the quality of the final texture images 

reduces because the neighboring pixels are used to fill the removed region of the image. 

The drawback of unavailability of texture image is shown in Figure 4.25. Texture for the 

back side of the buildings has not been mapped due to lack of availability of texture images. 

 

Figure 4.25. Drawback texture image 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Most of the leading car companies today are looking forward to making the dream of a 

fully autonomous car a reality, with an intention to create a huge impact or a revolution 

[52]. There are several advantages that an autonomous car offers. These include less traffic, 

increased safety, and less wastage of time on driving. However, for the self-driving system 

to function with zero faults or accidents, it is required that the system knows the 

surroundings of the car. This requires the car to understand the already existing static 

objects on the road. The aim of the proposed system is to construct a 3D environment, 

which can be passed to the self-driving system as prior information; this helps the system 

understand the surroundings.  

On the other hand, with the increasing number accidents by the self-driving systems, the 

virtual 3D model can be used to eliminate the static objects from the object detection 

process. This saves time. The saved time can also be very useful in a critical decision 

making situation. The constructed virtual environment uses the OpenStreetMap data, 

which does not use any of the sensors to map the information. The 3D features are extracted 

from the virtual environment, which are matched with the 3d features of real-time image; 

this helps the self-driving system geo-localize the car into the real-world.  

Even though the virtual 3D environment has been constructed with the use of crowdsourced 

data, results from Sections 4.8, 4.9, and 4.10 prove that constructed 3D environment 

provides significant outputs for the extraction of keypoint features and 3D features. Also, 

the extracted keypoints and 3D features are matched with the features of real-time images 

to eliminate the static objects during the run of the car. This reduces the time for object 

detection. This time can be invested in the detection of dynamic objects and their 

prediction.  
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5.2 Future work 

1) As the virtual 3D environment does not have a roof structure on top of buildings, 

one of the future works could be to construct roof structures either with the 

availability of 3D structural data or with 3D construction with multiple 2D images. 

2) Currently, textures are unavailable for specific areas. In the future, an alternate data 

source can be merged with the system for the extraction of textures from specific 

areas; which would result in increased accuracy of the 3D environment for the 

detection of static objects.  
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