
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

9-3-2019

An Approach Of Automatic Reconstruction Of Building Models For An Approach Of Automatic Reconstruction Of Building Models For

Virtual Cities From Open Resources Virtual Cities From Open Resources

Sumit Khairnar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Khairnar, Sumit, "An Approach Of Automatic Reconstruction Of Building Models For Virtual Cities From
Open Resources" (2019). Electronic Theses and Dissertations. 7815.
https://scholar.uwindsor.ca/etd/7815

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7815?utm_source=scholar.uwindsor.ca%2Fetd%2F7815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

 AN APPROACH OF AUTOMATIC RECONSTRUCTION OF BUILDING

MODELS FOR VIRTUAL CITIES FROM OPEN RESOURCES

By

Sumit Khairnar

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2019

© 2019 Sumit Khairnar

AN APPROACH OF AUTOMATIC RECONSTRUCTION OF BUILDING

MODELS FOR VIRTUAL CITIES FROM OPEN RESOURCES

by

Sumit Khairnar

APPROVED BY:

__

M. Hlynka

Department of Mathematics and Statistics

__

I. Ahmad

School of Computer Science

__

X. Yuan, Advisor

School of Computer Science

 Sep 3, 2019

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights. Any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iv

ABSTRACT

Along with the ever-increasing popularity of virtual reality technology in recent

years, 3D city models have been used in different applications, such as urban

planning, disaster management, tourism, entertainment, and video

games. Currently, those models are mainly reconstructed from access-restricted

data sources such as LiDAR point clouds, airborne images, satellite images, and

UAV (uncrewed air vehicle) images with a focus on structural illustration of

buildings’ contours and layouts. To help make 3D models closer to their real-life

counterparts, this thesis research proposes a new approach for the automatic

reconstruction of building models from open resources. In this approach, first,

building shapes are reconstructed by using the structural and geographic information

retrievable from the open repository of OpenStreetMap (OSM). Later, images

available from the street view of Google maps are used to extract information of the

exterior appearance of buildings for texture mapping onto their boundaries. The

constructed 3D environment is used as prior knowledge for the navigation purposes

in a self-driving car. The static objects from the 3D model are compared with the

real-time images of static objects to reduce the computation time by eliminating

them from detection process.

v

DEDICATION

To my family and friends…

vi

ACKNOWLEDGMENTS

I owe a debt of gratitude to Dr. Yuan, for the vision and foresight, which inspired

me to conceive this thesis work. As my teacher and mentor, he has taught me more

than I could ever give him credit for. I am also thankful to my thesis committee

members, Dr. Ahmad, and Dr. Hlynka, for providing me extensive professional and

personal guidance, which helped me learn a great deal about both scientific research

and life in general.

Nobody has been more important to me in the pursuit of this thesis than my family

members & colleagues. I would like to thank my parents; whose love and guidance

are with me in whatever I pursue. They are the ultimate role models and the source

of my inspiration. Most importantly, I wish to thank all the faculties and staff of the

School of Computer Science and my friends who provided unending support and

encouragement through my course work at the University of Windsor.

vii

TABLE OF CONTENTS.

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES .. x

LIST OF ABBREVIATIONS/SYMBOLS .. xi

LIST OF FIGURES .. xii

 CHAPTER 1 INTRODUCTION .. 1

1.1 Overview ... 1

1.2 Working of a self-driving car .. 2

1.3 Virtual 3D city model ... 6

1.4 Texture mapping 3D city model ... 7

1.5 OpenStreetMap – VGI data .. 9

1.6 Thesis Contribution ... 10

1.7 Structure of the thesis .. 10

CHAPTER 2 LITERATURE REVIEW ... 11

2.1 Construction of 3D city model .. 11

2.1.1 Methods for 3D city modelling ... 11

2.1.2 Photogrammetry based 3D city models .. 12

2.1.2.1 Aerial photogrammetry based model ... 12

2.1.2.2 3D city model with aerial images and cadastral map 14

2.1.2.3 3D city model with computer vision techniques 15

2.1.2.4 3D city models with GIS ... 16

2.1.2.5 3D city modelling from satellite photogrammetry 18

2.1.2.6 3D city modelling from single satellite image 18

2.1.2.7 3D city model from panorama images ... 19

viii

2.1.2.8 3D city model from video .. 19

2.1.2.9 3D city model from TLS data ... 20

2.1.3 Laser scanning based 3D models .. 21

2.1.3.1 Terrestrial laser-based approach .. 21

2.1.3.2 Aerial laser-based approach ... 22

2.1.3.3 3D city model with mobile mapping system 23

2.1.4 VGI data based 3D city models .. 24

2.1.5 Hybrid data-based 3D modeling ... 26

2.1.5.1 3D modelling with aerial laser and terrestrial laser 26

2.1.5.2 3D modelling with laser and photogrammetry 26

2.1.5.3 3D modelling with laser and videogrammetry 28

2.2 Texture mapping 3D city model ... 28

2.2.1 Photorealistic method .. 29

2.2.2 Pictometry based approach ... 30

2.2.3 Laser scanning based approach ... 31

2.2.4 Dynamic pulse function based method ... 32

2.3 Related works.. 36

2.4 Thesis statement .. 38

2.4.1 Problem statement ... 38

CHAPTER 3 PROPOSED METHODOLOGY ……………………………….39

3.1 Motivation ... 39

3.2 Working of the overall system .. 39

3.2.1 Working of individual modules .. 41

3.3 Proposed methodology for construction of virtual environment 43

3.3.1 Construction of 3D building models .. 45

3.3.2 Geo-locating 3D environment.. 47

3.3.3 Texture image construction ... 48

3.3.4 Texture image mapping ... 53

CHAPTER 4 IMPLEMENTATION AND EXPERIMENTS 55

4.1 Software information .. 55

4.2 Data extraction from OSM server ... 55

ix

4.3 Visualizing data in vector format .. 56

4.4 Extruding footprints to 3D models.. 58

4.5 Texture image extraction .. 59

4.6 Reconstruction of texture image ... 60

4.6.1 Perspective transform image ... 60

4.6.2 Model-to-image comparison ... 61

4.6.3 Occlusion removal .. 62

4.7 Image stitching .. 63

4.8 Texture mapping on the 3D model ... 64

4.9 Size of the constructed model ... 66

4.10 Use of 3D model in the overall system ... 67

4.11 Result comparisons and discussions ... 69

4.12 Drawbacks and limitations……………………………………………………..71

CHAPTER 5 CONCLUSION AND FUTURE WORK 72

5.1 Conclusion .. 72

5.2 Future work ... 73

REFERENCES/BIBLIOGRAPHY... 74

VITA AUCTORIS .. 81

x

LIST OF TABLES

Table 1: Tags used in OSM data structure…………………………………………9

Table 2: Summary of 3D reconstruction methods with texture information………33

Table 3: Review of 3D construction and texture mapping techniques……………36

Table 4: List of tools used for implementation and experiment………..…………..55

xi

LIST OF ABBREVIATIONS/SYMBOLS

LiDAR Light Detection and Ranging

RADAR Radio Detection and Ranging

IMU Inertial Measurement Unit

GPS Global Positioning System

UAV Uncrewed Aerial Vehicle

3D 3-dimensional

2D 2-dimensional

OSM OpenStreetMap

VGI Volunteered Geographic Information

HD High Definition

XML Extensible Markup Language

GIS Geographic Information System

VNG Virtual Newcastle Gateshead

CC Cyber City

TLS Three-Line-Scanner

MMS Mobile Mapping System

SOA Service Oriented Architecture

CNN Convolutional Neural Network

FCN Fully Convolutional Network

DAE Digital Asset Exchange

KML Keyhole Markup Language

PID Proportional Integral Derivative

MPC Model Predictive Control

SAT-PP Satellite Image Precision Processing

xii

LIST OF FIGURES

Figure 1.1 Working of a self-driving car …………………………….…………………….2

Figure 1.2 Computer vision through camera sensor ……………………………………….3

Figure 1.3 Sensor fusion …………………………………………………………………...3

Figure 1.4 Path planning ……………………………………………….………………….4

Figure 1.5 Control in a self-driving car ……………………………………………………5

Figure 1.6 Texture mapping importance …………………………………………….…….8

Figure 1.7 A UAV for texture extraction …………..……………………………………...8

Figure 1.8 Node, way, relation …………………………………………………………….9

Figure 1.9 Representation of OSM data ………………………………………………...…9

Figure 2.1 3D objects and buildings ……………………………………………………...13

Figure 2.2 3D model with aerial images and cadastral map ……………………………...14

Figure 2.3 3D model with stereo camera ………………………………………………....15

Figure 2.4 3D model with GIS data ……………………………………………………...17

Figure 2.5 VNG model in Autodesk LandXplorer …………………………………….…17

Figure 2.6 3D model from car images sequences ………………………………………...19

Figure 2.7 3D environment from video with depth map …………………………………20

Figure 2.8 Data captured with TLS sensor ……………………………………………….21

Figure 2.9 3D city model with TLS data and CC Modeler ………………………………21

Figure 2.10 3D model based on laser scanning …………………………………………..22

Figure 2.11 3D model with LiDAR and image …………………………………………..22

Figure 2.12 3D model with point cloud and 3D city model with textures ……………….23

Figure 2.13 Setup for MMS and simulation of captured data …………………………....23

Figure 2.14 Level of detail ……………………………………………………………….24

Figure 2.15 OSM tags ……………………………………………………………………25

Figure 2.16 Extruded buildings from OSM ………………………………………………25

Figure 2.17 Combination of lasers; Virtual model; alignment …………………………...26

xiii

Figure 2.18 3D environment with laser and aerial images ……………………………….27

Figure 2.19 3D model of Berkley university ………………………………………….….27

Figure 2.20 Laser data and videogrammetry ……………………………………………..28

Figure 2.21 Rectified image ……………………………………………………………...30

Figure 2.22 Real-life object removal ……………………………………………………..30

Figure 2.23 Flight path for pictometry …………………………………………………...30

Figure 2.24 Hidden angles in Pictomerty ………………………………………………...31

Figure 2.25 Lase scanned data; texture image ……………………………………………32

Figure 2.26 Dynamic pulse function ………………………………………………...…...32

Figure 2.27 Final model of Karabuk university ……………………………………….…33

Figure 3.1 Overall system ………………………………………………………………..40

Figure 3.2 Flowchart for proposed methodology ………………………………………...44

Figure 3.3 Region to extract ……………………………………………………………...45

Figure 3.4 Flowchart for 3D building models ……………………………………………46

Figure 3.5 Pseudocode for building extrusion ……………………………………………47

Figure 3.6 Georeferencing virtual 3D model …………………………………………….48

Figure 3.7 Process of image extraction and reconstruction ………………………………50

Figure 3.8 Texture mapping process ……………………………………………………..53

Figure 4.1 Bounding box query …………………………………………………………..56

Figure 4.2 Vector format of XML data …………………………………………………..57

Figure 4.3 Footprints of OSM data ………………………………………………………57

Figure 4.4 Extruded building models …………………………………………………….58

Figure 4.5 KML file for geo-locations …………………………………………………...58

Figure 4.6 Façade texture image …………………………………………………………59

Figure 4.7 Perspective transform …………………………………………………………60

Figure 4.8 Rendered image of 3D model ………………………………………………...61

Figure 4.9 Model-to-image comparison ………………………………………………….61

Figure 4.10 Background subtracted image ……………………………………………….62

Figure 4.11 Masked objects for removal …………………………………………………62

xiv

Figure 4.12 Occlusion removed façade texture …………………………………..………63

Figure 4.13 Three façade images to stitch ….…………………………………..………...63

Figure 4.14 Stitched image ……………………………………………………………….64

Figure 4.15 Textured 3D model (view 1) …………...……………………………………65

Figure 4.16 Textured 3D model (view 2) ………………………………………………...65

Figure 4.17 Textured 3D model (view 3) ………………………………………………...66

Figure 4.18 3D model geometry comparison …………………………………………….66

Figure 4.19 Building detection …………………………………………………………...67

Figure 4.20 3D features of building ……………...………………………………………68

Figure 4.21 3D features of building………………………………….…………………...68

Figure 4.22 3D features of building ………...……………………………………………68

Figure 4.23 Real-time image of 3D objects ………………………………………………70

Figure 4.24 Virtual image of 3D objects ………………………………………………...70

Figure 4.25 Drawbacks of texture image ………………………………………………...71

1

CHAPTER 1

INTRODUCTION

1.1 Overview

We have come to an era where self-driving cars are practically feasible. In recent years

self-driving cars have gone from “maybe possible” to “definitely possible” to “inevitable”

to “how did anyone ever think this wasn’t inevitable?” to “now commercially available”

[53]. Besides Google, Uber, and Tesla, there are many other companies who have invested

large sums of money into the research of this system. With such a huge amount of

investment and interest in the development of self-driving systems, we can understand that

self-driving automobiles are an inevitable future. But at their current stage, they are far

from being viable [51]. With the levels of sophistication involved, a high cadre of expertise

is required to ensure the smooth functioning of the conventional self-driving car.

Awareness of the nearby environment is necessary to ensure the perfect functioning of a

self-driving car. To help the car familiarize itself with its surroundings, a virtual

environment can be constructed. It would comprise of static objects that the car may

interact with while driving. Several companies are working towards the construction of a

3D or HD map for self-driving cars. The sole purpose of these maps is to familiarize the

car with ever-existing objects on the road, which are classified as static objects. Darms et

al. [49] and Hu et al. [50] have defined static objects as those that do not move when the

car is on the road. These include buildings and roadside amenities such as benches, poles,

etc. We shall use the same definition for the extent of this thesis.

The main aim of our work is to construct a virtual environment consisting of most of the

static objects that a car interacts with, when it is on the road.

2

1.2 Working of a self-driving car

A self-driving car is a vehicle which can sense the surroundings and can navigate without

human input [53]. Self-driving cars can detect the environment with the help of a variety

of sensors, such as LiDAR, RADAR, Camera, GPS, and IMU.

1) Camera: It functions as the eyes of a self-driving car. It helps detect objects found on

the road.

2) RADAR: RAdio Detection And Ranging uses radio waves to find the range, angle, and

velocity of objects.

3) LiDAR: Light Detection And Ranging measures the distance to the target by penetrating

a laser beam towards the object. LiDAR is used to generate a 3D map of the surroundings.

4) IMU-enabled GPS: IMU stands for Inertial Measurement Unit, which provides the

angular rate and orientation of a body. IMU-enabled GPS is used when GPS is unavailable.

5) Others: Other sensors used are infrared cameras, 360-degree cameras

Figure 1.1. Working of self-driving car [53]

The work system of a self-driving car has been divided into five different components.

These components use the information provided by the above-mentioned sensors to control

the car.

3

Computer Vision

Computer vision relates to how cameras are used to see the road and detect objects on the

road. With the help of camera images, object identification is performed, and the pose of

the detected object is estimated. Once identified, the objects are classified and tracked for

better understating of the surroundings.

Figure 1.2. Computer vision through camera sensor

Sensor Fusion

Sensor fusion is the process of integrating the data received from different sensors to build

a detailed understanding of the car’s nearby environment [55].

Figure 1.3. Sensor fusion [53]

4

Sensor fusion is required because data received from a single sensor is of little use when

compared to the combined data [53]. Data received from cameras are better for object

detection, but to measure the distance between the objects and the car, radar sensor gives

better results than a camera. Radar provides better results due to the waves penetrating

through the Radar sensor. This function helps it outperform the camera even in bad weather

conditions.

All data received from different sensors is fused. It is then used to help the car understand

better. As seen in Figure 1.3, the sensors mentioned in the line of sight module consist of

LiDAR, RADAR, camera, and ultrasonic sensors, which are all fused together in the sensor

fusion module.

Localization

Localization is to know the position of the car in the real world. This information can be

obtained once the environment is known. GPS sensor is used to acquire the real-world

location of the car; also, mathematical algorithms such as Kalman Filter, Extended Kalman

Filter, and Unscented Kalman Filter are used to make the GPS information more accurate.

Path Planning

Path planning enables a self-driving car to find the fastest, the safest, and the most

convenient route from the start point to the endpoint [54]. The car needs to detect all the

static and dynamic objects (maneuverable) to bypass them. This makes path finding

complicated.

Figure 1.4. Path planning [54]

5

Major approaches for path planning are predictive control model, behavior-based model,

and feasible model. Before crafting the trajectory plan, the path of the car, the path

planning, the car maneuver, and the maneuver planning of the car is considered. Any

dynamic object is referred to as a maneuver.

Control

Control is the final step in the working system of the self-driving car. Once the trajectory

for the start point to the end point is defined, vehicle control such as turning the steering

wheel, hitting the throttle or brakes, is controlled.

Figure 1.5. Control in self-driving car [56]

There are different types of controllers which are used in the system; some of them are,

Proportional Integral Derivative (PID), Model Predictive Control (MPC), kinematic model,

and dynamic model [56]. All these controllers take angle (yaw) and speed (v) into account

while defining the trajectory.

As seen in Section 1.2, there are many different types of sensors used in a self-driving car.

Also, with the addition of every sensor, the cost of the self-driving car increases. The total

sensor cost of Google’s self-driving car is around $150,000, of which the cost of the LiDAR

sensor alone is around $70,000 [57]. The main function of the LiDAR sensor is to generate

a 3D map of the surroundings. Later, this is combined with the information of other sensors,

and the functioning is controlled.

6

This research mainly concentrates on the construction of a virtual 3D environment which

can serve as prior information to the car, particularly, to use the VGI (Volunteered

geographic information) data, which is open source. The construction and use of the 3D

environment also reduce the overall cost of the self-driving car as it eliminates the use of

the LiDAR sensor, which makes up half the cost of all the sensors combined.

1.3 Virtual 3D city model

Virtual 3D city models are used in an increasing number of applications, including

landscape planning, disaster management, location-based services, tourism industry, and

urban planning. Virtual 3D city models are an important visualization of urban geospatial

and georeferenced information. The 3D model enables the visual representation of past and

existing cities. It also provides a decision on whether a redevelopment of existing cities is

required. Virtual 3D city models are not only restricted with visualization purposes but also

provide data basis for spatial querying of thematic data, for computational models in urban

security, and for noise propagation models [60].

In general, the term virtual 3D city models refers to a digital representation of different

entities of the city and their geometric and topologic structures. A virtual 3D city model

comprises of:

• Buildings,

• Vegetation objects such as trees and hedges,

• City furniture such as benches, night lamps,

• Water bodies such as rivers or lakes,

• Terrain surface

The usage of the information provided by the 3D model depends on the application domain.

 ‘Every second producer has requests to provide other objects or information than

he is presently producing, and three out of four users would like to have other city

data than already available.’ [59]

For instance, in urban planning, realistic texture is required on 3D models as visual details

are essential in urban redevelopment. Whereas, the tourism industry requires 3D models

with thematic details such as the description of a historic monument, a popular landmark,

7

or a restaurant. Hence, the question regarding the detailing of a 3D model remains not fully

answered.

In general, a 3D city model is called ‘virtual environment’, ‘virtual 3D model’, ‘virtual 3D

environment’, ‘3D model’, and ‘virtual city.’ All these names have been used in this thesis

to refer to the 3D city model.

The construction of the 3D city model is carried out with the use of different types of data

including sensory information, GIS data, CAD data, Building Information Model data, and

VGI data. Sensors used in the construction of the 3D model are primarily LiDAR and

cameras. LiDAR captures the 3D geometric information. Cameras capture the façade

textures. The data captured with LiDAR sensor is visualized as 3D point cloud. Then, pre-

processed to find the planar facades in point cloud. GIS data is a type of thematic data. It

contains all the information in textual format. Building Information Model are pre-

constructed models of existing buildings from the city. They are accurate with the complex

construction. VGI data is crowdsourced data which is mapped by public. VGI data is

mainly available in thematic format or visual format.

When integrated, there are two ways in which 3D models supports different applications.

For some scenarios, 3D model provides the context for spatial information. For others, it

works as a base model or prior information on which different applications perform.

1.4 Texture mapping 3D city model

‘Texture mapping is a powerful and flexible low-level graphics drawing primitive’ [58].

Texture provides means to store visual and thematic information for the 3D models of

buildings and other components existing in the virtual environment. Particularly, textures

allow the specification of the visual appearances of the facades of models.

8

Figure 1.6. Texture mapping importance [58]

Mapping the texture is essential in the construction of the 3D city model that can be seen

in Figure 1.6. The image on the left side contains actual textures, whereas the image on the

right does not have any textures mapped.

Textures are constructed by either capturing from real sources or by digitally creating them.

Textures captured from the real location are known as photorealistic textures.

Photorealistic textures are captured with Airborne cameras and Airborne LiDAR sensors.

Also, GPS sensor is combined with the whole setup, which helps geo-reference the

captured images.

Figure 1.7: A UAV for texture extraction

As seen in Figure 1.7, a UAV is mounted with a camera and a LiDAR sensor with GPS, to

capture the façade and roof textures. The other main approaches are Pictometry based

texture mapping and Photorealistic texture approach, which are discussed in detail in

Chapter 2.

9

1.5 OpenStreetMap – VGI data

OpenStreetMap is a crowdsourced mapping technology started in 2004 as a university

project. The structure of OSM data is XML based, also, it uses tag information for mapping

real-world locations. The structure of XML data is based on three primitives [61].

1. Node: a point in real-world with latitude and longitude

2. Way: an ordered list of nodes, such as a line; it represents linear features such as a

stream or a railway

3. Relations: refers to an ordered sequence of way or nodes

In Figure 1.8, nodes, ways, and relations are shown, from left to right respectively.

Figure 1.8. Node, Way, Relation (left to right order) [61]

Figure 1.9: Representation of OSM data [61]

In Figure 1.9, in the left-side is the visual representation of OSM data on

openstreetmap.org, and the right-side image is an actual mapping of the data [61].

Some of the important tags in OSM structure

height Describes the Height of a feature

length Describes the Length of a feature

width Width of a feature, not used in ways

material Material of which the feature is made of

surface Surface material of the feature

building To mark the feature as a building; the value is set to yes or some

specific type of building as hut or a garage

building:part To model different areas of a building

10

height To mention the height of the feature

building:levels To mention the number of floors in the building

Table 1.1: Tags used in OSM data structure

In Table 1.1, tags used to map an entity are shown. Similarly, elevation, building:material,

building:entrance, building:amenities, and sidewalk are also used in some specific cases.

1.6 Thesis Contribution

Major contributions of this research work can be summarized as follows:

• 3D city model constructed with the proposed system helps reduce computation time

of object detection by eliminating static objects (objects that do not move while the

car is on the road)

• Self-driving car can be geo-localized in real environment by comparing real-time

images with rendered images of the virtual world

• Proposed research work does not include the use of any sensors (mentioned in

Section 1.2) to extract 3D structural information or to construct the environment.

• Once detected, all the dynamic objects can be updated into the virtual environment

and can be used for better navigation of the self-driving car.

1.7 Structure of the thesis

The remainder of the thesis is structured as follows.

Chapter 2 provides technical details of construction of the 3D city model, texture extraction

for the façade of the 3D model, and reconstruction of the texture image.

Chapter 3 discusses the proposed system for the construction of the 3D model, and texture

extraction with mapping, details of the overall system and connection of this thesis work

with the overall system.

Chapter 4 gives a detailed description of the implementation setup, experiments conducted,

and the usage of the 3D model in the overall system.

Chapter 5 provides summary concluding the thesis with the direction of possible future

work.

11

CHAPTER 2

LITERATURE REVIEW

This chapter discusses the relevant background of recent works in the construction of the

3D city model and texture mapping. This section also covers the technical background of

3D city models and texture extraction and mapping using different data sources.

2.1 Construction of 3D city model

Nowadays, 3D city modeling has become an important issue for researchers in the area of

geomatics. Geomatical techniques play a key role in the construction of a 3D city model.

For mapping technologies geomatics is an umbrella which consists of technologies like

Photogrammetry, Geographical Information System, Remote sensing, Lasergrammetry,

Global Positioning System, and Radargrammetry. Mainly in the construction of 3D

environment, laser techniques and Photogrammetry are used. Singh S.P. et al. [1]

conducted a review related to the usage of 3D city models in various applications. They

presented the most representative geomatical technique for 3D city modeling and other

related works of researchers.

2.1.1 Methods for 3D city modelling

Current methods are mainly categorized in the following approaches.

• Based on Automation

1. Automatic

2. Semi-automatic

3. Manual

• Based on Data Input

1. Photogrammetry based technique

2. Laser scanning based technique

3. VGI (Volunteered Geographic Information) based technique

4. Hybrid data input-based technique

12

A further categorization of the methods based on data input is as follows.

• Photogrammetry based technique

1. Aerial Photogrammetry based technique

2. Aerial image and cadastral map based technique

3. Computer vision based techniques

4. GIS data based techniques

5. Satellite Photogrammetry based technique

6. Single satellite images based technique

7. Panorama image based technique

8. Video based technique

9. TLS data based technique

• Laser scanning based technique

1. Terrestrial Laser-based technique

2. Aerial Laser-based technique

3. Mobile mapping system based technique

• VGI data-based technique

1. With the use of Government open data

2. With the use of OpenStreetMap data

• Hybrid data input-based method

1. Aerial Laser and Terrestrial Laser

2. Laser and Photogrammetry

3. Laser and Videogrammetry

2.1.2 Photogrammetry based 3D city models

2.1.2.1 Aerial photogrammetry-based model

Nowadays, airborne data is mostly used to collect 3D structural information. Aerial photos

are mostly used as raw data. With the help of stereo-pair images, a 3D point cloud is

constructed. This type of semi-automatic method for the acquisition of 3D structural data

from 2D aerial stereo images is presented in [2]. In the approach, digital photogrammetric

workstation (Traster T10) was used alongside Microstation CAD package, and Consob (in-

13

house developed software); researchers used digital aerial images of Netherlands in the

scale of 1:2200.

Data acquisition, superimposition, processing, updating, and visualization are the main

processes in this work. Figure 2.1 demonstrates the reconstructed 3D objects and buildings

developed with the approach in [2].

The relation between Photogrammetry and 3D city modeling was provided by Kobayashi

[3].

Figure 2.1. 3D objects and buildings [2]

The author also recommended a method to construct a 3D city model with the use of

Photogrammetric processing. Along with Photogrammetry techniques, the author used

aerial images for the construction of 3D city model and discussed the effectiveness and

efficiency of the 3D model in terms of labor and reusability. The 3D construction model

was based at Phoenix, USA.

Shashi and Jain [4] explored the use of Photogrammetry in scene visualization and in the

construction of a 3D city model. A digital camera was used in the construction. In their

approach, they perform close-range photogrammetric processing for better accuracy. The

usage of digital camera instead of aerial or high-resolution cameras reduces the cost of the

approach. This stands out as the chief benefit of their work. The authors also conclude that

close-range photogrammetry gives the best solution for the construction of a 3D city model.

14

Leberl et al. [5] compared the point cloud generated from an image and point cloud

generated with a laser system. They discuss the advantages and disadvantages of both the

methods and conclude that the accuracy of the 3D point cloud is better when generated

with photogrammetric methods.

Amat et al. [6] discussed a methodology to construct a 3D city model with the help of aerial

images and close-range photography. In this method, the authors suggest that small 3D

buildings, doors, windows are not visible from aerial photography, so close-range images

are used to extract façade of the buildings. Certainly, with the combination of close-range

photography and aerial photogrammetric techniques, 3D city model can be constructed.

Hammoudi and Dornaika [7] also provided a method for the construction of a 3D city

model with aerial images. For this approach, geometric and photometric properties are used

in perspective projection. The main advantage of the method is its use of direct raw images

(without any pre-processing) and featurelessness. As a part of pre-processing, feature

extraction and feature matching are avoided. An objective function is used to combine the

dissimilarity between the captured images.

2.1.2.2 3D city model with aerial images and cadastral map

Flamanc et al. [8] constructed a 3D city model by using the aerial images and cadastral

maps. They also tested the approach with model-driven and test-driven systems. They used

the cadastral map to extract information such as positions of existing structures of

buildings, adjoining or adjacent streets, and dimensions.

Figure 2.2. 3D model with aerial images and a cadastral map [8]

15

Figure 2.2 presents the 3D model constructed with the help of aerial images and a cadastral

map.

2.1.2.3 3D city model with computer vision techniques

Lang and Forstner [9] suggested a semi-automatic technique for the acquisition of the 3D

shape of buildings. Stereo cameras are used for extraction. The acquired information of 3D

shapes is topographical. Figure 2.3 describes a 3D model constructed with a stereo camera.

Figure 2.3. 3D model with a stereo camera [9]

Pollefeys et al. [10] provided an automated method to construct a textured 3D model from

a sequence of images. Computer vision algorithms are used to construct the 3D city model.

The accuracy of the model is not the best due to the use of computer vision algorithms.

Hence, this approach is mainly used in archaeology and not in metrology. Authors tested

this approach on the Roman site, Sagalassos, Turkey.

Jang and Jung [11] used ground images to construct a 3D city model. To capture ground

images, they used a digital camera mounted with a compass and GPS sensor. All the

captured images are referenced to the real-world coordinates with the help of Global

Positioning System. To correct the pose of the images, they use Structure from Motion-

based algorithm; they also register the 3D model with real coordinates with GPS.

Jurgen Dollner el al. [12] presented a pipeline to construct a virtual 3D city model handling

tasks such as integration, managing, presenting, and distributing urban information. As

input to the pipeline, Geo-referenced thematic data, Cadastral data, Digital Aerial photos,

16

Digital Terrain Model, and 3D Geodata is passed. At the end of the process, the virtual 3D

city model is constructed.

Cornelis et al. [13] discussed a method for constructing a 3D city model in real-time. Two

cameras are used to record the calibrated videos, which work as an input to the system.

They used Structure from Motion algorithm concept. They also use object detection

algorithms for video recordings. The main feature of this method is that it constructs a

virtual 3D city model in real-time.

Snavely Noah et al. [14] created a new method for the construction of a 3D city model by

using the images available on the internet and introduced a new concept of photo-tourism.

Authors use unordered images of the real-world site and construct the 3D model from the

downloaded images. This method also uses Structure from Motion algorithms along with

image-based rendering. This approach was tested on Google images of Notre Dame, Mount

Rushmore, South Dakota, Sphinx (Giza), Colosseum located in Rome, and Great Wall of

China.

Jianxiong Xiao et al. [15] provided an approach for automatic reconstruction of 3D models

from street-side photos. Street-side photos are captured with a ground-level digital camera.

To regularize the noisy and missing data, inverse-patch based composition method is used.

Due to ground-level image capturing, skyscraper buildings are not modeled in this

approach.

2.1.2.4 3D city models with GIS

Gruen A. and Xinhua W. [16] developed a software named CyberCity Modeler, for

automatic generation of a 3D point cloud. It has been developed in such a way that it

generates structured data for city modeling from photogrammetrically measured points.

This has been mainly designed to handle GIS data and to integrate raster images and vector

data as hybrid GIS.

Nedal Al-Hanbali et al. [17] worked on constructing a 3D model of Artemis temple and

Jerash City. Authors used photogrammetry principles and GIS data for the construction of

the 3D model. The 3D GIS model was accurate in measurement, therefore used for

visualization, preservation, and reconstruction of the temple in the city.

17

Nedal Al-Hanbali et al. [18] created a 3D model for Yarmouk University with the help of

GIS Data and Photogrammetric techniques.

Figure 2.4. 3D model with GIS data [18]

Malumpong C. and Chen X. [19] used interoperable 3D GIS data with a 3D modeling

software named Google Sketchup. The aim of the work was to integrate 3D GIS

information with 3D modeling software to construct the virtual 3D city model and other

objects of the city.

Razzak A. et al. [20] also proposed a technique for the construction of a 3D city model

from 3D GIS data. Authors followed the GIS techniques for the virtual environment, and

the final result contained all the objects visualized for users.

Thompson and Horne [21] worked on a VNG project, which focused on data exchange,

CityGML, interoperability, and data accessibility issues in Autodesk LandXplorer

software.

Figure 2.5. VNG model in Autodesk LandXplorer [21]

18

2.1.2.5 3D City modelling from satellite photogrammetry

Tao and Young Hu [22] evaluated the concept of RFM in 3D reconstruction, due to which

the generation of Digital Elevation Model is possible without physical sensor model. In the

evaluation, authors studied two methods: forward RFM, and inverse RFM. They concluded

that reconstruction accuracy is better with forward RFM. The approach was tested with

real IKONOS stereo pairs to construct the 3D model.

Fraser et al. [23] discussed the use of IKONOS imagery for the extraction of buildings and

positioning. They assessed the model with qualitative and quantitative approaches to

construct the 3D model of the campus of the University of Melbourne.

Kocaman et al. [24] tested an approach for 3D city modeling with the use of high-resolution

satellite images in SAT-PP software and CyberCity Modeler [16]. They extracted buildings

and DSMs to construct 3D city model with IKONOS and stereo images.

Tack et al. [25] introduced and tested an approach for semi-automatic construction of 3D

city model with tri-stereoscopic high-resolution satellite images. They also studied

IKONOS triplet data with photogrammetry software named SAT-PP for Istanbul.

2.1.2.6 3D city modelling from single satellite image

Huang et al. [26] developed a method for reconstruction of 3D objects from a single high-

resolution satellite image. The geometry was constructed with the help of Rational

Polynomial Coefficient method by using one high-resolution satellite image and Digital

Elevation Model. The satellite ray determines the polynomials and shadows on the ground

determines the azimuth of the object. Height of the objects is determined from the shadow

size and its angle with the Sun. Authors tested the method on IKONOS image data and

designed software for real-time reconstruction, extraction, and visualization.

Izadi and Saeedi [27] discussed a method for 3D building model with data input as a single

satellite image. They designed a method for automatic building detection and height

estimation with the shape of the roofs with the help of a single satellite image. The system

detects multiple buildings without angular constraints, with the accuracy of 94% and a

height error of 0.53 m on satellite image dataset.

19

2.1.2.7 3D city model from panorama images

Luhmann and Tecklenburg [28] suggested a method for 3D objects reconstruction by using

multiple panorama images. In this work, they also discussed frame by frame panorama

generation, image acquisition, calibration, and control point measurement. Each of the

panorama images is oriented with the global coordinate system. By following an object

reconstruction method such as space intersection and moving floating mark, the 3D model

is constructed. Authors tested the approach by constructing the entrance hall of the

University of Applied Sciences in Oldenburg.

Koseck and Micusik [29] designed an approach of 3D modeling by using street-view

panoramic images with piecewise planar methodology. The images are captured with a

camera calibrated in a car. The images are mapped one after one, and the 3D model is

constructed.

Figure 2.6. 3D model form car image sequences [29]

2.1.2.8 3D city model from video

The concept of constructing a 3D city model with videos is known as Videogrammetry.

Videos are captured with a still digital camera or a camera recorder.

Clip et al. [30] designed a system for 3D city modeling; the scene capturing is mobile in

the system. The setup can be used with backpack or mounted on a car. The setup also

20

consists of GPS and IMU to geo-reference the captured scenes. After capturing, computer

vision techniques are used to construct the final 3D city model from the videos.

Zhang et al. [31] provided a concept for Depth Map Recovery from a sequence of videos.

In the process, each frame is divided into images, and a Depth Map is constructed. To

recover the camera parameters, bundle optimization, and disparity initialization Structure-

from-motion is used; space-time fusion techniques are used to generate depth maps. Figure

2.7 shows the results of the approach in depth map format.

Figure 2.7. 3D Environment from video with depth map [31]

2.1.2.9 3D city model from TLS data

The TLS is an aerial multispectral digital sensor system by STARLABO, Tokyo. Three-

Line-Scanner is a principle which is used to capture image triplets. It captures very high-

resolution images of three points, forward, backward, and nadir.

Gruen et al. [32] used the TLS sensor to construct a 3D city model. Authors imported the

TLS data in CC Modeler [16] and produced two datasets for Yokohama city. In Figure 2.8,

the left image shows the area captured with the TLS sensor, and image in the right shows

the detailed view of the same area. After importing the data in CC Modeler, the point cloud

is generated for the TLS data. With the combination of CC Modeler and TLS stereoscopic

measurement, 3D environment is constructed. In Figure 2.9, both views present the

constructed 3D city with TLS sensor data and CC Modeler.

21

Figure 2.8. Data captured with the TLS sensor [32]

Figure 2.9. 3D city model with TLS data and CC Modeler [32]

2.1.3 Laser scanning based 3D models

2.1.3.1 Terrestrial laser-based approach

Vosselman and Dijkman [33] proposed a method for construction of a 3D model with the

use of 3d point cloud and ground plan. In this work, Hough transform method is used to

extract planar surfaces from irregular point clouds. The algorithm has two faces; first, the

intersection between lines and height jump edges is detected. In the second, models are

refined by fitting the point cloud. Figure 2.10 shows the constructed model with this

approach.

Ming et al. [34] proposed a method for automatic reconstruction of 3D city model by using

LiDAR data and images from ground level.

22

Figure 2.10. A 3D model based on laser scanning [33]

A 3D point cloud is generated with the help of LiDAR. Automatic plane detection is

performed for the detection of a planar surface. Target recognition is performed for geo-

referencing the model. This approach is used to construct the 3D city model with LiDAR

data and digital imagery.

Figure 2.11. A 3D model with LiDAR and image [34]

2.1.3.2 Aerial laser-based approach

Dorninger and Pfeifer [35] designed an approach to determine 3D city models from the

airborne laser-generated point cloud, from which they extracted building models and

reconstructed them. An important aspect of this work is the detection of planar faces in the

point cloud, which is used to detect the faces of 3D objects. Thus, primarily, this approach

is based on 3D segmentation. In Figure 2.12, the left image shows the 3D model

23

constructed with the point cloud, and image in the right shows the final construction with

textures, extracted with an airborne camera.

Figure 2.12. 3D model with point cloud (left); 3D city model with textures (right) [35]

2.1.3.3 3D city model with mobile mapping system

Mobile Mapping System (MMS) is the setup of a camera, LiDAR, RADAR, and GPS

mounted on a vehicle. Once calibrated, street recordings are captured from the POV of the

vehicle. After capturing the data, it is visualized, and a 3D city model is obtained. Google

Street View uses the same concept to capture the street and visualize them from ground

level.

Blaer and Allen [36] developed a system for the automatic reconstruction of the 3D city

model by using a robot mounted with a laser scanner to capture the data. By visualizing

the captured data, they create a 3D model.

Figure 2.13. Setup for MMS (left); Simulation of captured data (right) [36]

24

In their work, they also developed a simulator to test the designed algorithm. With this

approach, they created Uris hall at Columbia University and Fort Jay on Governors Island,

New York.

2.1.4 VGI data-based 3D city models

In the last decade, research in the area of Volunteered Geographic Information has been at

its best, resulting in an increase in the amount of 3D city development. One of the most

used and popular projects established in 2004 is OpenStreetMap. Until now, there are more

than 2 million active users and contributors with OpenStreetMap [45]. Research by Over

et al. [46] introduced the possibility of constructing the 3D city model with the help of

OpenStreetMap data, with extension to the research Groger et al. [47] conducted, which

concluded that OpenStreetMap has the potential of creating LoD1 CityGML model.

Figure 2.14. Level of Detail [48]

Figure 2.14 shows the information of Level of Detail. LoD is a 3D construction concept

that checks the quantity of real-world details that have been acquired into the virtual

environment. Moreover, as 3D models are constructed with different purposes that may

not satisfy the universal criteria, the concept of LoD has been strongly criticized in the area

of 3D reconstruction [48]. The main idea behind the construction of 3D environment with

OSM data was to integrate OpenStreetMap and CityGML concepts. This concluded that it

is possible to construct LoD1 and LoD2 3D models with OpenStreetMap but not with

LoD3 and LoD4. Research work by Goetz M. et al. [44] provided a flowchart for highly

detailed 3D city model with the use of OpenStreetMap data.

25

The earliest example of crowd generated 3D information is Google 3D Warehouse, started

in 2006. The Warehouse contains geo-referenced real-world objects as well as non-

referenced prototype models of different complex objects. In recent times, the development

of Google SketchUp and ESRI Engine has increased the amount of production in 3D

modeling. In 2007, Google and Microsoft included VGI data in their 3D modeling projects.

Goetz M. and Zipf A. [44] provided a method to construct a 3D city model by using

OpenStreetMap data. OSM data is the tagged information of every place with geo-locations

and height and area information. Authors developed a method to extrude the height

parameter and convert the 2D mapped data into a 3D model.

Figure 2.15. OSM tags [44]

Figure 2.15 shows the information about how the data is mapped in OpenStreetMap

architecture.

Figure 2.16. Extruded buildings from OSM [44]

26

Result of the work is shown in Figure 2.16 with extrusion of 2D features.

2.1.5 Hybrid data-based 3D modeling

In this method, multiple types of sensors are used to capture data for the construction of a

3D city model. Sensor combination such as Aerial Laser and Terrestrial Laser, Laser and

Camera Images or VGI data and Laser, are used in 3D reconstruction.

2.1.5.1 3D modelling with aerial laser and terrestrial laser

Bohm and Haala [37] designed a methodology for the construction of a 3D city model with

a combination of Aerial Laser and Terrestrial Laser. The setup consisted of Leica HDS

3000 Terrestrial Laser and OPTECH ALTM 1225 Airborne Laser. Terrestrial Lasers

collected façade information and geometry of the 3D model, and Aerial Laser collected

information of roof shapes. A 3D point cloud is generated with a combination of both

lasers. The combined data is visualized to construct a 3D environment.

Figure 2.17. Combination of both lasers (left); Virtual model (center); Virtual model after

alignment (right) [37]

In Figure 2.17, different phases of the methodology are shown; the image on the left is a

combination of both lasers and image on the right is the final output of the approach.

 2.1.5.2 3D modelling with laser and photogrammetry

Habib et al. [38] designed a methodology to construct a 3D model with a combination of

LiDAR data and aerial images. Point cloud generated with LiDAR is referenced with

images to construct the final 3D environment. Conjugate features are used to geo-reference

the images relative to LiDAR frames.

27

Figure 2.18. 3D environment with laser and aerial images [38]

The final output of the approach is shown in Figure 2.18, with textures mapped on 3D point

cloud faces.

Frueh and Zakhor [39] developed a technique to construct a 3D textured model with the

use of ground laser and camera. A truck was mounted with two lasers (one vertical and one

horizontal) and one camera to capture recordings.

In this work, Markov Carlo Localization and correlation techniques are used for the final

construction of the model. In 2003, the work was extended with the use of aerial laser and

aerial imagery.

Figure 2.19. 3D model of Berkley University [39]

28

Data received from sensors is combined and visualized as a 3D model of Berkley

University.

2.1.5.3 3D modelling with laser and videogrammetry

Zhao et al. [40] introduced a concept of alignment of continuous video on point cloud.

LiDAR data and video data are captured for the same scene. A novel approach of

registration is used to map the captured video on the 3D point cloud. Before the fusion of

sensor data, the 3D point cloud is processed to find the planar surfaces.

Figure 2.20. Laser data and videogrammetry [40]

2.2 Texture mapping 3D city model

3D city modeling mainly consists of three parts: geometric modeling, semantic modeling,

and thematic modeling. One of the most important tasks is to texture map the geometric

model. When texture-mapped, it increases the quality of the 3D model and gives a realistic

touch to the virtual environment. Also, having realistic textures is necessary when the

model is used for purposes like urban development, navigation system, virtual tour, or for

this research work as prior information provided to the self-driving car.

29

Texture mapping the 3D model consists of following processes

• Texture Extraction

Texture extraction is the process of capturing a real-world image from the building

or constructing a computer-based graphical image to map onto the 3D building

model. To capture images real-world scenes, a setup with the combination of

camera and GPS is used. The camera captures the images from the façade and the

GPS sensor geo-locates the image with global coordinates.

• Texture Reconstruction

Texture reconstruction is the process of cleaning the objects which are in occlusion

with the building façade. Objects which occlude with buildings are trees, vehicle,

night lamps, benches, humans, and electricity wires.

• Texture Mapping

Texture mapping is the process of applying an image onto the relative building

façade.

Texture extraction, texture reconstruction, and texture mapping will be discussed in detail

in upcoming chapters.

Methods for texture mapping 3D city model

1. Photorealistic method

2. Pictometry based method

3. Laser scanning based method

4. Dynamic pulse function-based method

2.2.1 Photorealistic method

Façade texture is required to give building models a realistic view. Texturing can be

achieved with images, shaded polygons, or solid color. If the texture is an image, then the

image must be rectified as a façade. In Figure 2.21, the rectification can be seen. The

rectified image is mapped onto the relative façade side. Yang B. et al. [43] proposed a

method to extract façade texture from the real buildings and processes the images to rectify

them and to remove the occlusion.

30

Figure 2.21. Rectified image [43]

Figure 2.22. Real-life object removal [43]

As shown in Figure 2.22, the objects in occlusion are removed from the final image.

2.2.2 Pictometry based approach

In Pictometry, front and side elevated images are acquired along with the location of the

buildings by using an Uncrewed Aerial Vehicle (UAV). Wang Y. et al. [41] proposed this

system of using Pictometry to capture images for façade and roof. In this approach, five

cameras capture five geo-referenced images for each side (one top and four sides).

Figure 2.23. Flight path for Pictometry [41]

31

In the low flying airplane, the camera angle is set 40-degree, which gives oblique angle

images. Once the images are captured, the mesh is unfolded, and each image is mapped

with the respective side. As shown in Figure 2.23, the low flying airplane captures five

images of different sides.

One of the problems with this approach is that image capturing being at an oblique angle;

some parts of the buildings are not captured in the cameras.

Figure 2.24. Hidden angles in Pictometry [41]

In Figure 2.24, it can be seen that while capturing from one side, the other building part is

not visible.

2.2.3 Laser scanning based approach

In this method, a laser scanner is used at an oblique angle to generate 3D data of the

buildings. To capture texture data, a camera is used at an oblique angle [39]. The data

received from the camera is superimposed onto the data received from the laser scanner.

To match the respective side with the image, 3D line segments from the laser scanner are

matched with the 2D line segments of the aerial image.

32

Figure 2.25. Laser scanned data (left); texture image (right) [39]

2.2.4 Dynamic pulse function-based method

Alizadehasharfi et al. [42] introduced a technique for texture construction named Dynamic

pulse function. The system is a computer-based texture reconstruction. This method is

applicable only to those facades which have repetitive objects such as air-conditioners, or

windows. The output from this system is of high quality. As shown in Figure 2.26, the left

side image contains all parts of the image. The image on the right is the final output

constructed with the approach.

Figure 2.26. Dynamic pulse function [42]

For testing purposes, the 3D model of Karabuk University is modeled in SketchUp, and

textures are created with Dynamic pulse function method.

33

Figure 2.27. Final model of Karabuk University [42]

Summary of the methods discussed in Section 2.1 and 2.2 is provided in Table 2.1. Table

consists information of method, input to the system, hardware sensors used, acquisition of

building shapes, process involved in construction, texture extraction and output of the

method.

Method Input Sensors Building

Shape

Process Texture Output

Aerial

Images +

Close

Range

Images

Stereo

paired

Aerial

Images

Airborne

Sensor

Aerial

images +

CAD

Package

Image

processing

based method

Close

range

images

3D

object

model

Aerial

Images +

Cadastra

l maps

Aerial

images

Airborne

Sensor

Cadastral

Information

Image

processing

based method

Not used

3D

object

model +

No

texture

Compute

r vision

Image

sequences

Stereo

camera +

GPS +

Compass

Camera

Images

Structure-

from-motion

Camera

images

with GPS

3D

model

with

texture

34

GIS Raster

images +

Vector

data

N/A

N/A

Image

processing,

Point based

method

N/A

3D

Point

cloud

GIS +

Digital

Image

Raster

images +

Vector

data +

Digital

image

Digital

camera

Model

constructed

in Google

SketchUp

Image

processing

based method

Close

range

digital

images

3D

model

with

texture

Satellite

Images

IKONOS

satellite

images

Not used IKONOS

images

Rational

Functional

model

method

N/A

3D

object

model +

No

texture

Single

satellite

image

IKONOS

satellite

image

Not used Rational

Polynomial

coefficients

and DEM

model

Monoplotting

technique and

shadow of

building

N/A

3D

object

model +

No

texture

Panoram

a Images

Digital

panorama

image

Camera

+ GPS

Digital

images

Image

calibration

with space

intersection

Digital

panorama

images

3D

object

model

with

texture

Video Video or

Image

sequences

Camera

recorder

+ GPS

Recorded

video

Computer

vision

with Video

processing

and SfM

method

Video

footage

3D

object

model

with

texture

35

Three-

line-

scanner

TLS data

of

forward,

backward

and nadir

point

TLS

sensor +

GPS

Stereoscopi

c

measureme

nt with

point cloud

data

TLS data and

CC Modeler

software

Not used

3D

model

with

texture

UAV

based

model

Oblique

angle

aerial

images

and

terrestrial

images

UAV

with

GPS +

camera

Different

types of

images

Image based

methods and

camera

calibration

with software

Close

range

terrestrial

images

3D

model

with

texture

Laser

based

method

Point

cloud and

ground

plan

LiDAR From point

cloud data

Segmentation

of point

cloud

surfaces

Not used 3D

object

model +

no

texture

Mobile

mapping

system

Point

cloud and

camera

images

LiDAR +

camera +

GPS

From point

cloud data

and images

Mapping

technique

with point

cloud and

camera

images

Camera

mounted

on MMS

system

3D

model

with

texture

Aerial +

ground

laser

3D point

cloud of

aerial and

ground

parts

Airborne

LiDAR +

Terrestri

al

LiDAR

By

combining

the 3D point

cloud from

both the

lasers

Segmentation

of point

cloud

surfaces

Not used 3D

object

model +

No

texture

36

Airborne

Images +

Ground

LiDAR

Façade

point

cloud and

aerial

images

LiDAR +

UAV

camera +

GPS

LiDAR 3D

point cloud

Orthophoto

generation

technique to

combine

LiDAR and

images

Aerial

images

3D

model

with

texture

VGI data

+

Govern

ment

open

data

Vector

informatio

n and

building

models

Not used Visualizing

vector data

Combination

of building

information

models and

extrusion

Not used 3D

object

model +

No

texture

Our

approach

(VGI

data)

Vector

informatio

n from

OSM

Not used Vector data

of OSM

Extrusion of

2D footprints

and Model-

to-image

comparison

with

inpainting

Street-

view

imagery

3D

model

with

texture

Table 2.1: Summary of 3D reconstruction methods with texture information

2.3 Related works

The table below gives the information about the work done so far by researchers in area

closely related to this research work; also, mentioned are contributions and scope of

improvements.

 Research Paper Contributions Scope of Improvement

Generating 3D city

models without

elevation data. Biljecki,

F., Ledoux, H., &

Stoter, J. 2017

Uses OpenStreetMap data for

the construction of 3D city

model; also, open government

data used for extra information

of buildings

LiDAR is used for to

extract the building height

information, use of sensor

increases cost; roof

37

information has not been

used to from OSM

3D city

model construction

based on a

consumer-grade UAV.

Zhongdi, Y. U., Hui, L.

I., Fang, B. A., &

Zhaoyang, W. A. N. G.

2018

3D city model is constructed

with textures; same sensors are

used to capture the geometry of

buildings and texture facades

UAV is mounted with four

different cameras so, use of

UAV increases the cost of

overall system; the

textures are captured at

oblique angles so need to

be processed with

rectification methods.

Improving accuracy of

automated 3-D building

models for smart cities.

Yang, B., & Lee, J. 2019

The construction is carried out

with the use of hardware

sensors; Airborne LiDAR and

camera with GPS sensor is used

Accuracy is better with the

approach because of all the

sensors; also, uses already

existing building information

An airborne LiDAR is used

in the approach which does

not give high point density,

so the geometry of the

building is not much

accurate

Automatic Texture

Reconstruction of 3D

City Model from

Oblique Images. Kang,

J., Deng, F., Li, X., &

Wan, F. 2016

Oblique images are used in the

construction of 3D city model

with the use of UAV; Texture

information is also extracted

with the same sensors

Only oblique images have

been used in the

construction method; use

of façade images can help

improve the accuracy

which is also easy to

capture

38

Integration of aerial

oblique imagery and

terrestrial imagery for

optimized 3D modeling

in urban areas. Wu, B.,

Xie, L., Hu, H., Zhu, Q.,

& Yau, E. 2018

A database has been used which

consist aerial and terrestrial

images of same objects; objects

matching method has been used

to combine the aerial and

terrestrial images

The matching method uses

point cloud data created

from image but not

LiDAR, that reduces the

accuracy of the façade

plane

Table 2.2: Review of 3D construction and texture mapping techniques

2.4 Thesis statement

2.4.1 Problem statement

Literature survey suggests that there is a need for continued change in the methods with

which the 3D city model is constructed. 3D city model is used in the self-driving car to

know its surroundings; it cannot be used until it gives proper results. At the time of writing

this thesis, most methods use the sensory information as input for the construction of 3D

city model. The cost parameter is affected with the addition of sensors. Sensors used in the

self-driving car are LiDAR, RADAR, camera, GPS enabled IMU, and infrared camera.

On the other hand, in recent years, the amount of research in the field of Volunteered

Geographic Information has increased. Researchers have also proved that a 3D city model

can be constructed with crowdsourced data [44] [46]. Also, a tremendous amount of effort

is exerted in extracting the VGI data with increased accuracy. Also, when a 3D map is

constructed with sensors (in real-time), it demands for more computation power. Object

detection from real-time constructed 3D environment also consumes more time. Moreover,

sensors mounted on the self-driving car need to be changed after two-three years. To solve

these problems, the proposed method focuses on constructing a 3D environment

beforehand which can be used to remove static objects resulting in reduced computation

time. Furthermore, constructing a 3D environment from VGI (also known as crowdsourced

or open-sourced) data reduces the cost of the overall system.

39

CHAPTER 3

PROPOSED METHODOLOGY

This chapter discusses about the proposed system to construct a virtual 3D city model and

processes of texture mapping; including texture extraction, texture reconstruction, and

texture mapping. This chapter contains the flowchart used for the construction of 3D model

and detailed methods of texture mapping. Additionally, the chapter discusses about the

working of the overall system and connection of virtual 3D city model with all other

modules.

3.1 Motivation

In recent years, research in the area of self-driving cars has increased. Despite this, a

perfectly functioning autonomous car is still not a reality. Also, semi-autonomous cars have

been made available to the market in the last couple of years; and, they have been involved

with some pedestrian fatalities [74]. Recently, two deaths involving Uber and Tesla self-

driving systems have raised safety concerns. This has resulted in arriving at a conclusion

that more computation time is required for dynamic object detection [71].

In our approach, a 3D environment of a real place is constructed, which helps in reducing

the computation time for the self-driving system by eliminating static and variable objects

(buildings, trees). Also, we are aware that the cost of 3D construction is a huge issue

because of the usage of hardware sensors. Hence, this system proposes a method for the

construction of a 3D environment with reduced cost and reduction in computation time for

the self-driving system.

3.2 Working of the overall system

The overall system consists of six modules:

1. Construction on virtual 3D environment

2. Rendered images of real-time video

40

3. 3D feature and keypoint extraction

4. Removal of static and variable objects

5. Dynamic object recognition

6. Dynamic object detection

As shown in Figure 3.1, all these modules are interconnected which each other

Figure 3.1. Overall system

In Figure 3.1, work shown in the red-colored box is the contribution of this thesis work. Its

connection with all other modules, which are in different colored boxes, is also depicted

using arrows.

41

The description of the overall system is in reference to Figure 3.1. The overall system

primarily deals with the construction of a virtual 3D environment with the use of

OpenStreetMap data (VGI/crowdsourced) and the façade texture from Google street view

images. The virtual 3D city model consists of static objects, such as buildings, and some

of the variable objects, such as trees. Apart from this, there is a separate repository which

contains 3D models of dynamic objects, such as cars. The module marked in the blue-

colored box in Figure 3.1 shows the real-time video (image sequences) passed as input to

the system. Real-time image is an image received by the self-driving system through the

camera mounted on car. The virtual environment is rendered, and keypoint features and 3D

features are stored in a repository; this work is performed in the module colored in green.

The module marked in pink is the static and variable object elimination module. In this

module, the keypoint features of the input image (blue module) and keypoint features of

the virtual environment (pink module) are matched. Matching the keypoint features of the

virtual environment and real-time image confirms the location of the car in the real-world;

this solves the problem of geo-localization of the self-driving car. With the matching,

location of the static objects is also confirmed, and they are eliminated from the object

identification process; which provides more time for the identification and prediction of

dynamic objects such as human beings or animals on the road, as those are the ones which

have impact on the navigation of the self-driving system. The module marked in cyan deals

with the object recognition and pose estimation of dynamic objects present in the real-time

input image, such as cars. Additionally, this module tracks the recognized objects from

multiple frames of the video and calculates the speed of the dynamic object. The recognized

object with the pose information along with the object speed and location is used to update

dynamic objects into the 3D virtual environment. The module marked in grey color updates

the dynamic objects’ information into the virtual environment.

3.2.1 Working of individual modules

The modules which are directly associated with this research work are extraction of objects

features, and dynamic object prediction. The virtual 3D city model and the real-time video

are the input to the overall system.

42

1. Keypoint extraction and dataset creation:

In the scope of this module, only cars and humans are considered as dynamic

objects. In the case of cars, the 3D object models stored in the repository are

rendered. KeypointNet [62] is used to extract the keypoint features from different

rendered views of car models. The coordinate information of the identified

keypoints in the rendered image, orientation details of the keypoint, and the

direction of the car (left, right, towards, away), are stored in an annotation file. In

case of humans, the DensePose [63] model is adopted and integrated into the overall

system for human pose estimation. The DensePose model has its own manually

collected ground truth dataset, which annotates dense correspondence between the

image and a 3D surface model by asking the annotators to segment the image into

semantic regions and to then localize the corresponding surface point for each of

the sampled points on any of the rendered part images [64]. The surface coordinates

of the rendered views localize the collected 2D points on the 3D model. The

dynamic object recognition module uses this repository for matching the keypoint

features of the dynamic objects in the input image with the keypoint feature

information of the 3D object models stored in the repository and a suitable 3D

model corresponding to the object in the input image is retrieved.

2. Static and variable object removal:

In this module, static and variable objects in the real-time image are detected with

the Fast R-CNN approach. Once detected, the keypoint features of a virtual image

are matched with the keypoint features of a real-time image to verify static and

variable objects. Once verified, a heat map is generated for the verified images, and

with the help of the heat map and the contour detection, verified objects are

eliminated from the image. In this way, static and variable objects are eliminated.

This helps reduce the object detection time while the car is running.

3. Dynamic object recognition:

This module matches keypoint features of the dynamic objects in the input image

with the keypoint feature information of 3D object models stored in the repository

to find a suitable matching 3D model for each of the dynamic objects present in the

43

input image. A voting algorithm is used for the matching purpose, which also

estimates a confidence score that signifies the confidence of object identification.

This process improves the confidence of recognition and pose estimation of

dynamic objects in the input image. This module is marked in cyan color in Figure

3.1.

4. Dynamic object prediction:

This module uses the information from the dynamic object recognition module to

update the virtual city with dynamic objects on the road in real-time. The

recognized object, with its pose information, speed and location, is used to update

the virtual city with the identified dynamic objects in real-time. Prior knowledge

about the dynamic, static and variable objects from the virtual city and IoT is then

used to determine the appropriate navigation decision of the self-driving car. This

module is marked in grey color in Figure 3.1. The output of different modules is

visualized in this module with the use of AirSim Simulator. Also, future prediction

about the navigation of dynamic objects is calculated in this module. Moreover,

this module predicts the distance from dynamic objects and visualizes them with

different indicators.

3.3 Proposed methodology for construction of virtual environment

The proposed methodology consists of four processes followed by the sub-processes,

1) Construction of 3D building models

I. Extracting 3D structural data

II. Converting the 2D footprints into 3D models

2) Geo-locating the 3D environment

I. Setting the offset between local coordinates and world coordinates

3) Texture image construction

I. Extracting Textures from street-level imagery

II. Reconstructing the texture images

4) Mapping texture onto building models

I. Comparing the façade plane with the image

44

With the usage of a virtual 3D environment, the car becomes aware of its surroundings so

that it can function accordingly. Currently, most methods use hardware sensors to know

the surroundings. Whereas, this research work aims to use opensource VGI data for the

construction of the 3D virtual environment. As seen in Chapter 2, research in the area of

VGI has increased in recent years; latest research proves [44] that VGI can contain the 3D

structural data of different types in the form of a database. This idea has been exploited in

our research work to gather 3D structural information. OpenStreetMap data is used in this

approach as opensource data. The virtual 3D environment constructed with this approach

reduces the cost of the overall system by eliminating the usage of hardware sensors.

Flowchart of the proposed system is shown in Figure 3.2.

45

Figure 3.2. Flowchart proposed methodology

3.3.1 Construction of 3D building models

As discussed, OpenStreetMap data is used as 3D structural information. This works as a

base for the building models. Overpass API is used to extract OpenStreetMap data from its

server; extracted data is a read-only copy of the main OpenStreetMap database, which

delivers an arbitrary amount of data. To extract data with Overpass API, coordinates of

four real-world points are supplied; with the use of four locations, it creates a bounding

box of the region, and that region is extracted in XML data format.

Figure 3.3. Region to extract

An example depicting the use of Overpass API is shown in Figure 3.3; a region to extract

is created with the use of bounding boxes. Once the XML file of 3D structures is extracted,

it is visualized as 2D footprints by using OSM library. 2D footprints is a digital drawing of

building in 2-dimensions with the height information attached to it. In Figure 3.4, the

flowchart for the construction of 3D building models is shown.

46

Figure 3.4 Flowchart for 3D building models

Once the 2D footprints are visualized, the height information is used to extrude the 2D

footprints into 3D building models. The most commonly used method for converting 2D

footprints to 3D buildings is extrusion. Starting with the basic planar surface, each edge

and vertex is selected. They are extended up to their attached height. Pseudocode for the

extrusion process is described in Figure 3.5. The extrusion process for the OpenStreetMap

data starts by looking for the tags that are relevant to the extrusion process. Some of these

tags are building: height, building:levels, building:levels:aboveground, building:color,

building:colour, building:façade:color, building:façade:colour, building:roof,

building:roof:shape, and building:roof:type. After checking for the height and roof

information, separate parts are created for body and roof, which are combined to construct

47

one 3D model. This thesis does not include the roof portion in the process. This is due to

the limited availability of databases containing roof information. The pseudocode for the

extraction of OSM:tags and combining the building parts is described in Figure 3.5.

Figure 3.5. Pseudo code for building extrusion [44]

In this way, 3D building models are constructed from the OSM data with the GIS extrusion

process. The constructed 3D building model is without textures and geo-locations.

3.3.2 Geo-locating 3D environment

Geo-locating the virtual 3D environment is necessary for the virtual environment to work

as a GIS system. The XML file extracted from OpenStreetMap server contains geo-

locations of all buildings, but when the data is visualized and extruded to be converted into

a 3D environment, it loses the geo-locations of all buildings. Hence, the virtual

environment is geo-located. The process of geo-locating the virtual environment starts with

pre-processing of the XML database file. First, when the 2D footprints are visualized in

QGIS, only the geo-location layer is extracted and saved in a separate file with .kml

(Keyhole Markup Language) extension. QGIS is a geographic information system

software, mainly designed for the analysis of spatial data. As the construction of 3D models

and extraction of the kml file (geographic location) has been carried out from the same

database, the kml file contains the geographic location information of each building. Once

the kml file is extracted, the virtual 3d model and the geographic location (kml) file is

imported in CAD software and matched with each other. Thus, the virtual 3D model is geo-

located. This process of georeferencing is described in Figure 3.6.

48

Figure 3.6. Georeferencing virtual 3D model

3.3.3 Texture image construction

To make the virtual 3D environment look realistic, texture mapping is important. In

Chapter 2, most of the current methods use photorealistic texture mapping, which is to

capture texture from real locations. Usually, photorealistic texture mapping uses the

combination of a camera and a GPS. The camera captures the façade texture information

and the GPS references the image to geocoordinates. In our research work, a photorealistic

approach is used for texture mapping; the texture is extracted from the Google street view

imagery. The texture image construction is a two-part process: first, the extraction of

texture images and second, the reconstruction of texture images.

1) Texture image extraction

Texture images are extracted with the Google street-view static API. By supplying the

geo-location as an input, the texture image file is fetched from google street view

49

database. The geo-locations file used for geolocating the virtual 3D model, is reused as

an input. Here, instead of a keyhole Markup Language file, a comma separated value

(csv) file is used. While querying with the street view static API, these parameters are

used to fetch the texture image [72].

• Location: takes either a string value (such as Niagara Falls, ON) or latitude and

longitude value. When the address string or coordinates are provided, the API

sometimes uses different camera location to provide a better picture

• Pano: is a specific panorama ID

• Size: specifies the output image size in pixels; specified as {width x height} – for

example, 400 x 600 provides an image of 400 pixels wide, and 600 pixels high

Some of the optional parameters are

• Heading: indicates the compass heading of the camera; input values are from 0 to

360 (90 indicates East, and 180 indicates South). If the heading is not provided,

then a value is calculated which directs at the location

• Fov: stands for Field of View of an image. This represents the zoom level for an

image, with the default being 90 and maximum 120.

• Pitch: specifies the up or down angle of the camera relative to the street view

vehicle. Positive value angles the camera upwards, and negative value angles the

camera downwards.

• Radius: sets a radius to search an image, centered on given latitude and longitude,

input values in meters

With the combination of default and optional parameters, a query is generated and supplied

with street view static API to extract an image of a specific location. With the extraction

of every image, one annotated file gets generated with the pano id and the geolocation of

that image, which helps to match every image with relative façade plane.

2) Reconstruction of texture image

In the reconstruction of texture images, the occluded objects are removed to make

textures look realistic. In occlusion removal, different objects such as cars, trees,

humans, and night lamps are removed from texture image [43]. To remove occlusion

50

and not lose the clarity of the image, an inpainting based method is used. Inpainting is

a technique used to restore missing parts of an image or fill patches in an image.

Figure 3.7 Process of image extraction and reconstruction

In this approach, a mask-based inpainting approach is used to remove occlusion in the

image. Figure 3.7 describes the process of image extraction and reconstruction.

As shown in Figure 3.7, all the four sides of textures are extracted for a building and

annotated with the pano id and geo-locations. After extracting images for all sides, the

model-to-image comparison is performed to remove the background of the image. Therein,

the existing virtual 3d model (without textures) is rendered, and images are obtained for all

different orientations. Then, the image from the virtual 3D model is projected onto the

extracted texture image to match the edges of model-image and texture image. Once the

51

edge-match is performed the remaining part of the texture image is masked and removed

to construct the façade texture image of model size. This texture image still contains the

occluded objects. To remove them, a mask based inpainting approach is used; which works

based on two images, the original image and an image with the mask on objects to be

removed. The masked images are obtained with the help of semantic segmentation. A pre-

trained model of FCN with ResNet 101 is used to detect and mask the real-life objects from

the image. The pre-trained model is trained to detect 16 different classes, such as

vegetation, humans, animals, cars, etc. With the help of the masked image and the original

image, the occluded objects are removed with inpainting method. Therein, the removed

region is filled with the help of neighboring pixels.

Algorithm for texture extraction and texture reconstruction, with the use of model-to-image

comparison and mask-based inpainting method is discussed.

52

Algorithm: Texture image extraction and reconstruction

INPUT: CSV file of Geo-locations

OUTPUT: Texture Images with model-image comparison and occlusion removal

Step 1: Extract the façade texture images with the use of street-view static API

Step 2: store the annotation file with pano id and geo-locations for the images

Step 3: If texture for any of the four sides is not extracted, increase the radius for the image

 in step 1 and repeat step 2.

Step 4: get the rendered image for the model-to-image comparison

Step 5: compare the model image with texture image; if it doesn’t provide significant

 results, then detect edges and match for both images and repeat step 5

Step 6: perform FCN based ResNet 101 semantic segmentation to mask the image for

 inpainting purpose

Step 7: mask based inpainting to remove the object and neighboring pixels to fill the

 removed region

Step 8: texture images for building facades, with background subtracted and occlusion

 removed

Step 9: End

53

 3.3.4 Texture image mapping

For texture mapping, GPS-assisted texture mapping approach is used. As discussed in

Chapter 2, most methods use a hardware setup of a GPS and a camera to extract façade

textures. Images captured with this setup are georeferenced by GPS sensor. In this

approach, the façade texture is extracted from street-view imagery, which is not geo-

referenced. To solve this problem, we use an annotated file to keep track of geolocations

of each façade image in our approach. To select the façade texture image from the database,

the geo-location of façade plane in the model, and the geo-location of façade texture image

from the annotated file is matched. After matching the facade texture with the help of

geolocations, the texture image is mapped onto the façade plane. If this does not provide a

significant result, the edges of the 3D model plane and the edges of texture image are

matched. Thereafter, the façade texture is mapped.

Figure 3.8. Texture mapping process

54

The flowchart of texture image selection for specific façade and texture mapping with edge

matching algorithm is shown in Figure 3.8.

With the algorithms used in the proposed system, the final output is a virtual 3D city model

with texture mapped on the façade planes. The detailed description is of algorithms is

provided in Section 3.3.1, 3.3.2, 3.3.3, and 3.3.4

The output of this proposed system is used by the overall system to geo-localize the self-

driving car in the real-world. 3D features and keypoints are extracted from static objects in

the virtual world. The extracted features are compared with the real-time image to eliminate

the static objects from the object detection part which reduces the time for object detection.

This provides more time for the detection of dynamic objects. The results of these processes

are discussed in Chapter 4 in detail.

55

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTS

The proposed approach is implemented on Windows OS using Python Programming

Language, in the implementation, different Python, OpenCV and OpenGL libraries are

used. The list of software and tools used is given in Table 4.1.

4.1 Software information

The implementation of proposed methodology was performed on Alienware 1.5.0 x64-

based Desktop, with NVIDIA 8.1.940.0 and Intel 64 ~ 3192 MHz GPU.

ITEM DETAILS

Operating System Windows

Languages Python 3.7.1

IDE Spyder, Anaconda Navigator, JOSM

Python Libraries OpenCV, Scikit, PyOpenGL

Tools Maya 2019, SketchUp, 3D Viewer, QGIS,

CAD Software

Table 4.1: List of tools used for implementation and experiments

4.2 Data extraction from OSM server

To perform the experiment, a downtown area from Waterloo Region is selected; all the

extraction and texture mapping is performed for the specific area. Location of the selected

region is King St S at Wills Way to King St S at William St E, Waterloo, ON. In the

proposed system, data extraction is performed with Overpass API by querying into

OpenStreetMap server.

56

Query:

<osm-script>

 <union into="_">

 <query into="_" type="Node">

 <bbox-query s="43.46456" w="-80.51661" n="43.461" e="-80.52503"/>

 </query>

 </union>

 <print e="" from="_" geometry="skeleton" ids="yes" limit=""

mode="meta" n="" order="id" s="" w=""/>

</osm-script>

By running this query on OSM server, the OSM data for the supplied coordinates is

returned in XML format; which contains the 3D structural information of the selected data.

Fig 4.1. Bounding box query

The query mentioned above creates a bounding box for the supplied coordinates as shown

in Figure 4.1. The XML file contains all the information of the buildings in the bounding

box, such as geo-location, building height, address, type of building, and available facilities

in the building. Moreover, in some places, the roof information is also available.

4.3 Visualizing data in vector format

In Figure 4.2, the XML format of OpenStreetMap data is visualized in vector format in

Java OpenStreetMap editor to check the available information in the extracted area. JOSM

is the map editor for OpenStreetMap data. Almost all the tagging of the data is also

performed with this editor. Hereon, to visualize the footprints of the building, the OSM

57

library is used in Python. The library is able to understand the tags of OSM architecture in

python.

Figure 4.2 Vector format of XML data

As shown in Figure 4.3, the buildings and roads are represented as footprints. To visualize

buildings, flat polygons are used; for roads and crossroads, strings are used; to visualize

trees and crossing signals, a point has been used.

Figure 4.3. Footprints of OSM data

58

4.4 Extruding footprints to 3D models

Once the footprints are acquired, the buildings are extruded by using the attached height

information with pseudo code shown in Figure 3.5. In this process, traffic signals and other

night poles or benches are not extruded; only the buildings, roads, and some of the trees

are extruded. The result of building extrusion process is shown in Figure 4.4.

Figure 4.4. Extruded building models

3D model shown in Figure 4.4 is geo-located with the help of Keyhole Markup Language

file which contains the geo-locations of all the objects in 3D model.

Figure 4.5. KML file for geo-locations

59

To extract the geo-locations file, the XML file of OpenStreetMap data is visualized in

QGIS software, from which the geo-location layer is exported in kml file format. Also,

with the help of CAD software, the kml file is mapped onto the 3D model. Figure 4.5 shows

the details of two building models from the selected area.

4.5 Texture image extraction

After the construction of 3D virtual model, photorealistic textures are extracted from street-

view imagery with street view static API.

 function initialize() {

 var fenway = {lat: 43.4634198, lng: - 80.5219242};

 var map = new google.maps.Map(document.getElementById('map'), {

 center: fenway,

 zoom: 14

 });

 var panorama = new google.maps.StreetViewPanorama(

 document.getElementById('pano'), {

 position: fenway,

 pov: {

 heading: 34,

 pitch: 10

 }

 });

 map.setStreetView(panorama);

}

A script with the details of Geo-locations and optional parameters such as zoom, heading,

pitch, and field of view, extracts the images for texture façade.

Fig 4.6. Façade texture image [72]

60

With the geo-locations {lat: 43.4634198, lng: -80.5219242}, the street view static API

returns the image shown in Figure 4.6. The image is extracted with the use of optional

parameters: zoom, heading, and pitch. With the extraction of the texture image, one

annotated file is created which holds the geo-location records of the image and pano id,

which helps in mapping the textures onto the model. In the proposed method, texture is a

specific visual image which is extracted from street-view imagery and mapped onto each

side of the building.

4.6 Reconstruction of texture image

4.6.1 Perspective transform image

When the texture images are extracted from the street-view, they are captured as a 360-

degree image because when Google MMS captures the image, it uses 360-degree camera.

To straighten the image, getPerspectiveTransform is used from OpenCV. Therein, the

corner points of the image are detected, and the image is straightened with respect to those

corner points. To detect the corner points, contours are detected in the image and the

intersection of contours is stored as a corner point. Google street-view images are not

straight as they are captured with a 360-degree camera that creates a panorama or a fisheye

image.

In corner detection, if there is no corner detected in the process, then the biggest contour is

selected as a building. In that, with no corner points in the image, there is no intersection

of horizontal and vertical axis. With no intersection, there is only one contour detected in

the contour detection process. The biggest contour area is selected as a building in an

image. The originally extracted image is shown in Figure 4.6. The perspective transform

image is shown in Figure 4.7.

Figure 4.7. Perspective transform

61

4.6.2 Model-to-image comparison

After extracting the façade texture image from street view imagery, the rendered image of

the model and the façade texture image are compared by projecting them on each other to

detect the edges, With the projection, the background shades and other connected buildings

are subtracted. To reconstruct, the image shown in Figure 4.7 is used as the façade texture.

Also, the same view is fetched from 3D model with the help of geo-locations, which shown

in Figure 4.8.

Figure 4.8. Rendered image of 3D model

In the model-to-image comparison, the façade texture image extracted from street-view

imagery is projected onto the 3D model image. Once projected, the edges of the rendered

image the façade texture image are compared to match the images. The projection of both

images is shown in Figure 4.9.

Figure 4.9. Model-to-image comparison

In Figure 4.9, there is a difference in the 3D model image and the texture image, which is

removed by matching the edges of both the images. The final reconstructed image is shown

in Figure 4.10.

62

Figure 4.10. Background subtracted image

4.6.3 Occlusion removal

In the process of occlusion removal, a mask-based inpainting method is used. For the

masking purpose, the texture image is semantically segmented, wherein different objects

are detected in an image and masked with red. For semantic segmentation, a pre-trained

model of FCN (Fully Convolutional Network) with ResNet 101 architecture is used.

Semantic segmentation is the process of defining specific pixel in an image to a class label.

Generally, these labels include a person, furniture, flower, car, etc., just to mention a few.

Semantic segmentation is image classification at pixel level. For example, there is an image

that has many trees, segmentation labels that as a tree or describes it with a different color

mask. For semantic segmentation, Figure 4.10 works as an input. Objects such as

vegetation, light poles, electric poles and dynamic objects such as humans, cars, and

animals are masked to be removed from the original image. Figure 4.11 shows the detected

and masked objects.

Figure 4.11. Masked objects for removal

Once the semantically segmented image is masked with the objects to be removed, mask-

based inpainting is performed. Therein, the masked region is removed and tried to be filled

with the neighboring pixels. The mask-based inpainting is useful when the removed region

63

is small because of the use of neighboring pixels to fill the region. Figure 4.12 shows the

occlusion removed façade texture image.

Figure 4.12. Occlusion removed façade texture

4.7 Image stitching

Herein, the OpenCV library is used with createstitcher class. This takes different images

as input and combines them as one.

Figure 4.13. Three façade images to stitch

In Figure 4.13, three different images are shown, which are of different facades. All three

images are stitched as one to wrap onto the 3D model, which is shown in Figure 4.14.

64

Figure 4.14. Stitched images

4.8 Texture mapping on the 3D model

In this process, the reconstructed texture image is mapped onto the relative 3D model by

comparing the geo-locations. For mapping, relative to the geo-location of the façade plane,

a texture image is acquired with the help of the annotated file. The annotated file has the

details such as pano id and geo-location of that image. Thus, by comparing the geo-location

of a specific image and façade plane of a 3D model, the texture is mapped onto the 3D

model. If this doesn’t provide significant results, then the edges of the façade plane and the

edges of the texture image are matched, and the texturing process is repeated.

Roads are mapped as a string on the OSM server. For the coordinates, four different points

of different locations are tagged as a road. To map the texture on them specific file is

selected from the reconstructed texture database. Once the file is selected, geo-locations

are matched for the texture image and string of road. After matching, the texture image is

mapped onto the façade plane of road structure.

In the proposed methodology, texture mapping of the 3D building is necessary because of

the specific usage of the 3D model. The 3D city model is compared with the real-time

image of buildings. In the comparison process, 3D features are extracted for the virtual

environment and real-time image and stored in a repository. With the matching of 3D

65

features, location of the building is confirmed, and it is eliminated from the objects

detection process. In the 3D feature matching process, if 3D features of the virtual

environment do not match with the 3D features of real-time image, then the building

location is not confirmed, and that creates a mismatch for the static object elimination

process. For this specific use of the 3D model, the textures are necessary on the building

façade.

In Figure 4.15, 4.16, and 4.17 different views of the 3D model are shown with textures

mapped on buildings.

Figure 4.15. Textured 3D model (view 1)

Figure 4.16. Textured 3D model (view 2)

66

Figure 4.17. Textured 3D model (view 3)

4.9 Constructed 3D model in real-world

To check the geometry size of constructed model, the final model is imported into Google

SketchUp and mapped onto a digital map. As seen in Figure 4.18, the edges of the 3D

model match with the digital map layer.

Figure 4.18. 3D model geometry comparison [73]

67

4.10 Use of 3D model in the overall system

The constructed 3D model is used as prior information in a self-driving car system. From

the 3D environment buildings are detected. From the detected buildings, 3D features and

keypoints are extracted. The detected building is shown in Figure 4.19.

Figure 4.19. Building detection

 Once the building is detected, heat map is generated to remove the buildings connected

with it. After the heat map is generated, as shown in Figure 4.20 (left side), 3D features are

detected and saved in a repository.

Once the 3D features and keypoints are extracted and stored in a repository, 3D features of

the real-time image are extracted. The real-time image is of same building as building from

virtual world. In this way, the 3D features of a virtual image and the 3D features of a real-

time image are matched to confirm the location of building. 3D features detected on real-

time image are shown in Figure 4.20 (right side).

68

Figure 4.20. 3D features of buildings (virtual image in left; real-time image in right)

Figure 4.21. 3D features of buildings (virtual image in left; real-time image in right)

Figure 4.22. 3D features of buildings (virtual image in left; real-time image in right)

69

Once confirmed, all the static objects from the virtual environment are eliminated from the

process of object detection to reduce the computation time for object detection.

4.11 Result comparisons and discussions

3D city model constructed with the proposed methodology is primarily used to provide

information of the static objects present in the city. Aim of the overall system is to use the

3D city model and eliminate the static objects from the object detection process. The

elimination reduces the computation time for static object detection and provides extra time

for the detection of dynamic objects. The methodologies referred in Section 2.3 aim to

construct a 3D city model from different resources. As [65] uses OpenStreetMap data for

3D structural information with the combination of LiDAR data for the height of building

object. With the use of the sensor, the overall cost of the system increases. They also use

Government provided open data in the construction process. The availability of open-

source Government data is uncertain as that depends on individual city. The approach

presented by [68] does not use the opensource data for the construction of 3D model. As

an input, aerial and terrestrial images are provided to the proposed system. The approach

is based on image matching algorithms. The approach provides significant results, but it is

mainly based on the usage of the sensors. Approaches suggested in [45] and [46] provide

good results by using OpenStreetMap data for the 3D construction, but they do not provide

any information about the texture mapping of building facades.

To texture map the 3D model, existing approaches use a mobile mapping system or

computer generated textures to map the building façades. The mobile mapping system

consists of a camera and GPS sensor. Computer generated textures are mainly used in

virtual tour or gaming industry. Here, the 3D model is used as prior information for the

navigation of a self-driving car.

The proposed method in this research work only uses OpenStreetMap data to extract 3D

structural information. For the texture purposes, street-view imagery is used to reconstruct

the building façade. The results from Section 4.4 and 4.10 provides information about the

working of this approach. In Section 4.4, the 3D model is generated from the OSM data.

In Section 4.10, provides different views of the constructed 3D model.

70

Moreover, to compare the quality of the 3D model, street-level image of a building and

same building from virtual 3D environment is shown in Figures 4.23 and 4.24 respectively.

4.23. Street-level image of buildings

4.24. Virtual image of 3D objects

Aim with the construction of 3D model has been to extract 3D features from the virtual

environment and then compare them with the features of a real-time image. With this, real-

time location of the car is known. Also, by matching the 3D features, static objects are

detected and removed from detection process.

Approaches discussed in Section 2.3 provide significant results. Here, the 3D environment

is used for the specific situation of providing prior information to the self-driving car. For

that, the 3D model constructed with the proposed approach provides significant results.

Section 4.10 provides different situation with for the usage of 3D model.

71

 4.12 Drawbacks and limitations

In the proposed methodology, the construction of the 3D virtual environment is carried out

with opensource data; which is crowdsourced VGI data from OpenStreetMap. One of the

limitations of the OSM data is its availability; it is available at almost all the places, but the

quality of the data is not the same. At some places, objects such as benches, night lamps,

and some of the trees are not mapped into the database.

In the database, roof types and height is not mentioned, that has been a major limitation in

the proposed method. Without the roof portion, accuracy for the matching of 3D features

and key points between the virtual environment and real-time image reduces; because the

main difference between the virtual image and real-time image is roof portion of the

building .

In the texture extraction process, the textures are extracted from Google street-view

imagery. Herein, only the images captured by Google’s mobile mapping system are

extracted. If there is any street, which has not been captured by MMS, those texture images

cannot be acquired by the proposed methodology. Also, sometimes in the occlusion

removal process, if the image quality is low, then the quality of the final texture images

reduces because the neighboring pixels are used to fill the removed region of the image.

The drawback of unavailability of texture image is shown in Figure 4.25. Texture for the

back side of the buildings has not been mapped due to lack of availability of texture images.

Figure 4.25. Drawback texture image

72

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Most of the leading car companies today are looking forward to making the dream of a

fully autonomous car a reality, with an intention to create a huge impact or a revolution

[52]. There are several advantages that an autonomous car offers. These include less traffic,

increased safety, and less wastage of time on driving. However, for the self-driving system

to function with zero faults or accidents, it is required that the system knows the

surroundings of the car. This requires the car to understand the already existing static

objects on the road. The aim of the proposed system is to construct a 3D environment,

which can be passed to the self-driving system as prior information; this helps the system

understand the surroundings.

On the other hand, with the increasing number accidents by the self-driving systems, the

virtual 3D model can be used to eliminate the static objects from the object detection

process. This saves time. The saved time can also be very useful in a critical decision

making situation. The constructed virtual environment uses the OpenStreetMap data,

which does not use any of the sensors to map the information. The 3D features are extracted

from the virtual environment, which are matched with the 3d features of real-time image;

this helps the self-driving system geo-localize the car into the real-world.

Even though the virtual 3D environment has been constructed with the use of crowdsourced

data, results from Sections 4.8, 4.9, and 4.10 prove that constructed 3D environment

provides significant outputs for the extraction of keypoint features and 3D features. Also,

the extracted keypoints and 3D features are matched with the features of real-time images

to eliminate the static objects during the run of the car. This reduces the time for object

detection. This time can be invested in the detection of dynamic objects and their

prediction.

73

5.2 Future work

1) As the virtual 3D environment does not have a roof structure on top of buildings,

one of the future works could be to construct roof structures either with the

availability of 3D structural data or with 3D construction with multiple 2D images.

2) Currently, textures are unavailable for specific areas. In the future, an alternate data

source can be merged with the system for the extraction of textures from specific

areas; which would result in increased accuracy of the 3D environment for the

detection of static objects.

74

REFERENCES/BIBLIOGRAPHY

1. Singh, S. P., Jain, K., & Mandla, V. R. (2013). Virtual 3D city modeling: techniques

and applications. ISPRS-International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, (2), 73-91.

2. Zlatanova, S., Painsil, J., & Tempfli, K. (1998). 3D object reconstruction from aerial

stereo images.

3. Kobayashi, Y. (2006). Photogrammetry and 3D city modeling. Digital Architecture

and Construction, 90, 209.

4. Shashi, M., & Jain, K. (2007). Use of photogrammetry in 3D modeling and

visualization of buildings. ARPN Journal of Engineering and Applied Sciences, 2(2),

37-40.

5. Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., & Wiechert, A.

(2010). Point clouds. Photogrammetric Engineering & Remote Sensing, 76(10), 1123-

1134.

6. Ainah, A. N., & Halim, S. (2010). Integration of Aerial and Close-Range

Photogrammetric Methods for 3D City Modeling Generation. Geoinformation Science

Journal, 10(1), 49-60.

7. Hammoudi, K., & Dornaika, F. (2011). A featureless approach to 3D polyhedral

building modeling from aerial images. Sensors, 11(1), 228-259.

8. Flamanc, D., Maillet, G., & Jibrini, H. (2003). 3d city models: an operational approach

using aerial images and cadastral maps. International Archives of Photogrammetry

Remote Sensing and Spatial Information Sciences, 34(3/W8), 53-58.

9. Lang, F., & Forstner, W. (1996). 3D-city modeling with a digital one-eye stereo system.

In In Proceedings of the XVIII ISPRS-Congress.

10. Pollefeys, M., Koch, R., Vergauwen, M., & Van Gool, L. (2000). Automated

reconstruction of 3D scenes from sequences of images. ISPRS Journal of

Photogrammetry and Remote Sensing, 55(4), 251-267.

11. Jang, K. H., & Jung, S. K. (2006, June). 3D city model generation from ground images.

In Computer Graphics International Conference (pp. 630-638). Springer, Berlin,

Heidelberg.

75

12. Döllner, J., Baumann, K., & Buchholz, H. (2006). Virtual 3D city models as foundation

of complex urban information spaces (pp. 107-112). na.

13. Cornelis, N., Leibe, B., Cornelis, K., & Van Gool, L. (2008). 3d urban scene modeling

integrating recognition and reconstruction. International Journal of Computer

Vision, 78(2-3), 121-141.

14. Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet

photo collections. International journal of computer vision, 80(2), 189-210.

15. Xiao, J., Fang, T., Zhao, P., Lhuillier, M., & Quan, L. (2009, December). Image-based

street-side city modeling. In ACM transactions on Graphics (TOG) (Vol. 28, No. 5, p.

114). ACM.

16. Gruen, A., & Wang, X. (1998). CC-Modeler: a topology generator for 3-D city

models. ISPRS Journal of Photogrammetry and Remote Sensing, 53(5), 286-295.

17. Al-Hanbali, N., Al Bayari, O., Saleh, B., Almasri, H., & Baltsavias, E. (2006). Macro

to micro archaeological documentation: Building a 3D GIS model for Jerash city and

the Artemis Temple. In Innovations in 3D Geo Information Systems (pp. 447-468).

Springer, Berlin, Heidelberg.

18. Al-hanbali, N., Fedda, I., Awamleh, B., & Dergham, M. (2006). Building 3D GIS

Model of a University Campus for Planning Purposes: Methodology and

Implementation Aspects.

19. Malumpong, C., Chen, X., & FoS, G. I. S. (2008). Interoperable three-dimensional GIS

city modeling with geo-informatics techniques and 3D modeling software.

20. Ziboon, A. R. T., & Mohsin, A. N. (2009). 3-D Virtual Maps Production for Mosul

City by USING GIS Techniques. Engineering and Technology Journal, 27(9), 1775-

1789.

21. Thompson, E. M., & Horne, M. (2010). 3D-GIS integration for virtual

NewcastleGateshead.

22. Vincent Tao C., Hu Yong. (2002). 3D Reconstruction methods based on Rational

Function Model, Photogrammetric Engineering and Remote Sensing.

23. Fraser, C. S., Baltsavias, E., & Gruen, A. (2002). Processing of Ikonos imagery for

submetre 3D positioning and building extraction.

76

24. Kocaman, S., Zhang, L., Gruen, A., & Poli, D. (2006, February). 3D city modeling

from high-resolution satellite images. In Proceedings of ISPRS Workshop on

Topographic Mapping from Space, Ankara, Turkey (pp. 14-16).

25. Tack, F., Goossens, R., & Büyüksalih, G. (2009). Semi-automatic city model extraction

from tri-stereoscopic VHR satellite imagery. In ISPRS Workshop on Object Extraction

for 3D City models (Vol. 38, No. 3/W4, pp. 89-96).

26. Huang, X., & Kwoh, L. K. (2008). Monoplotting–A semiautomated approach for 3D

reconstruction from single satellite images. Int. Arch. Photogramm., Rem. Sens. &

Spatial Inf. Sc, 37(B3b-2), 735-740.

27. Izadi, M., & Saeedi, P. (2011). Three-dimensional polygonal building model estimation

from single satellite images. IEEE Transactions on Geoscience and Remote

Sensing, 50(6), 2254-2272.

28. Luhmann, T., & Tecklenburg, W. (2004). 3-D object reconstruction from multiple-

station panorama imagery. International Archives of Photogrammetry, Remote Sensing

and Spatial Information Sciences, 34(5/W16), 8.

29. Micusik, B., & Kosecka, J. (2009, June). Piecewise planar city 3D modeling from street

view panoramic sequences. In 2009 IEEE Conference on Computer Vision and Pattern

Recognition (pp. 2906-2912). IEEE.

30. Clipp, B., Raguram, R., Frahm, J. M., Welch, G., & Pollefeys, M. (2008, March). A

mobile 3d city reconstruction system. In Workshop on Virtual Cityscapes, IEEE Virtual

Reality.

31. Zhang, G., Jia, J., Wong, T. T., & Bao, H. (2009). Consistent depth maps recovery from

a video sequence. IEEE Transactions on pattern analysis and machine

intelligence, 31(6), 974-988.

32. Gruen, A., Zhang, L., & Wang, X. (2003). 3D city modeling with TLS (Three Line

Scanner) data. International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 34, 24-27.

33. Vosselman, G., & Dijkman, S. (2001). 3D building model reconstruction from point

clouds and ground plans. International archives of photogrammetry remote sensing

and spatial information sciences, 34(3/W4), 37-44.

77

34. Li-Chee-Ming, J., Gumerov, D., Ciobanu, T., & Armenakis, C. (2009, September).

Generation of three dimensional photo-realistic models from LiDAR and image data.

In 2009 IEEE toronto international conference science and technology for humanity

(TIC-STH) (pp. 445-450). IEEE.

35. Dorninger, P., & Pfeifer, N. (2008). A comprehensive automated 3D approach for

building extraction, reconstruction, and regularization from airborne laser scanning

point clouds. Sensors, 8(11), 7323-7343.

36. Blaer, P. S., & Allen, P. K. (2009). View planning and automated data acquisition for

three‐dimensional modeling of complex sites. Journal of Field Robotics, 26(11‐12),

865-891.

37. Böhm, J., & Haala, N. (2005). Efficient integration of aerial and terrestrial laser data

for virtual city modeling uusing lasermaps.

38. Habib, A. F., Kersting, J., McCaffrey, T. M., & Jarvis, A. M. Y. (2008, July).

Integration of lidar and airborne imagery for realistic visualization of 3d urban

environments.

39. Früh, C., & Zakhor, A. (2003). Constructing 3d city models by merging aerial and

ground views. IEEE Computer Graphics and Applications, 23(6), 52-61.

40. Zhao, W., Nister, D., & Hsu, S. (2005). Alignment of continuous video onto 3D point

clouds. IEEE Transactions on Pattern Analysis & Machine Intelligence, (8), 1305-

1306.

41. Wang, Y.; Schultz, S.; Giuffrida, F. Pictometry’s proprietary airborne digital image

system and its application in 3D city modeling. Int. Arch. Photogram. Remote Sens.,

37, 1065-1070, 2008.

42. Alizadehashrafi B, Towards Enhancing Geometry Textures Of Three Dimensional City

Elements. PhD Thesis, Faculty of Geoinformation and Real Estate Universiti

Teknologi, Malaysia, 17-32, 59-74, 2012.

43. Lee, J., & Yang, B. (2019). Developing an optimized texture mapping for photorealistic

3D buildings. Transactions in GIS, 23(1), 1-21.

44. Goetz, M.; Zipf, A. (2012). Towards defining a framework for the automatic derivation

of 3D CityGML models from volunteered geographic information.

78

45. Fan, H. & Zipf, A. (2016). Modelling the world in 3D from VGI/Crowdsourced data.

In: Capineri, C, Haklay, M, Huang, H, Antoniou, V, Kettunen, J, Ostermann, F and

Purves, R. (eds.) European Handbook of Crowdsourced Geographic Information, pp.

435–446, London: Ubiquity Press.

46. Over, M., Schilling, A., Neubauer, S. & Zipf, A. (2010). Generating web-based 3D

City Models from OpenStreetMap: The current situation in Germany. Computer

Environment and Urban System (CEUS), vol. 34(6), pp. 496–507.

47. Gröger, G., Kolbe, T. H., Czerwinski, A. & Nagel, C. (2008). OpenGIS® City

Geography Markup Language (CityGML) Implementation Specification. Available at:

http://www.opengeospatial.org/legal/.

48. Biljecki, F., Stoter, J. E. (2017). Level of detail in 3D city models Filip Biljecki.

Nederland: Delft University of Technology

49. Darms, M., Rybski, P., & Urmson, C. (2008b). Classification and tracking of dynamic

objects with multiple sensors for autonomous driving in urban environments. In

Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, the

Netherlands (pp. 1192–1202). IEEE

50. X. Hu, L. Chen, B. Tang, D. Cao, and H. He. (2018). ‘‘Dynamic path planning for

autonomous driving on various roads with avoidance of static and moving obstacles,’’

Mech. Syst. Signal Process.

51. Self-driving Cars Are Still Years Away. That's Probably A Good Thing. Michael

Hobbes - https://www.huffingtonpost.ca/entry/autonomous-vehicles-uncertain-

future_n_5d4c71f4e4b09e7297435cd4

52. What Is a Self-driving Car? The Complete Wired Guide Alex Davies -

https://www.wired.com/story/guide-self-driving-cars

53. Self-driving Car: Path Planning To Maneuver the Traffic. /@jonathan_hui -

https://medium.com/@jonathan_hui/self-driving-car-path-planning-to-maneuver-the-

traffic-ac63f5a620e2

54. How Does Path Planning For Autonomous Vehicles Work - Dzone Iot Paul Ryabchuk

- https://dzone.com/articles/how-does-path-planning-for-autonomous-vehicles-wor

55. Safe Central Compute https://www.nxp.com/applications/solutions/automotive/adas-

and-highly-automated-driving/safe-central-compute:SENSOR-FUSION-SYSTEM

79

56. Pid Theory Explained https://www.ni.com/en-ie/innovations/white-papers/06/pid-

theory-explained.html

57. An Introduction To Self-driving Cars FutureCar - https://www.futurecar.com/351/An-

Introduction-to-Self-Driving-Cars

58. Haeberli, P., & Segal, M. (1993, June). Texture mapping as a fundamental drawing

primitive. In Fourth Eurographics Workshop on Rendering (Vol. 259, p. 266).

59. Förstner, W.: 3D-City Models: Automatic and Semiautomatic Acquisition Methods.

Proceedings Photogrammetric Week '99, pp. 291-303, Wichmann-Verlag, 1999.

60. RERUM NATURALIUM (2006). Real-time Visualization of 3D City Models.

61. Gkeli, M., Ioannidis, C., Potsiou, C. (2017). Review of the 3D Modelling Algorithms

and Crowdsourcing Techniques - An Assessment of their Potential for 3D Cadastre. In:

FIG Working Week 2017 – ‘’Surveying the world of tomorrow – From digitalisation

to augmented reality’’, Helsinki, Filand, pp. 1-23.

62. S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi. (2018). Discovery of latent

3D keypoints via end-to-end geometric reasoning. In NIPS.

63. Rıza Alp Guler, Natalia Neverova, Iasonas Kokkinos. (2018). "DensePose: Dense

Human Pose Estimation in The Wild".

64. DensePose COCO Dataset arXiv:1802.00434v1 [cs.CV] 1 Feb 2018.

https://arxiv.org/pdf/1802.00434

65. Biljecki, F., Ledoux, H., & Stoter, J. (2017). Generating 3D city models without

elevation data. Computers, Environment and Urban Systems, 64, 1-18.

66. Zhongdi, Y. U., Hui, L. I., Fang, B. A., & Zhaoyang, W. A. N. G. (2018). 3D city model

construction based on a consumer-grade UAV. Remote Sensing for Land &

Resources, 30(2), 67-72.

67. Yang, B., & Lee, J. (2019). Improving accuracy of automated 3-D building models for

smart cities. International journal of digital earth, 12(2), 209-227.

68. Kang, J., Deng, F., Li, X., & Wan, F. (2016). Automatic texture reconstruction of 3d

city model from oblique images. International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences, 41.

80

69. Wu, B., Xie, L., Hu, H., Zhu, Q., & Yau, E. (2018). Integration of aerial oblique

imagery and terrestrial imagery for optimized 3D modeling in urban areas. ISPRS

journal of photogrammetry and remote sensing, 139, 119-132.

70. Openstreetmap. https://www.openstreetmap.org

71. Death Of Elaine Herzberg. https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg

72. https://developers.google.com/maps/documentation/javascript/streetview

73. 3d Design Software: 3d Modeling on the Web. https://www.sketchup.com/

74. List Of Self-driving Car Fatalities. https://en.wikipedia.org/wiki/List_of_self-

driving_car_fatalities

81

VITA AUCTORIS

NAME: Sumit Khairnar

PLACE OF BIRTH:

Ahmedabad, India

YEAR OF BIRTH:

1996

EDUCATION:

Bachelor of Engineering, 2013-2017

Gujarat Technological University, Ahmedabad,

Gujarat, India

Master of Science in Computer Science, co-op, 2017-

2019

University of Windsor, Windsor, ON

	An Approach Of Automatic Reconstruction Of Building Models For Virtual Cities From Open Resources
	Recommended Citation

	tmp.1573682764.pdf.RZuda

