124 research outputs found

    FACTS: Fully Automatic CT Segmentation of a Hip Joint

    Get PDF
    Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications

    Pelvis segmentation using multi-pass U-Net and iterative shape estimation

    Get PDF
    In this report, an automatic method for segmentation of the pelvis in three-dimensional (3D) computed tomography (CT) images is proposed. The method is based on a 3D U-net which has as input the 3D CT image and estimated volumetric shape models of the targeted structures and which returns the probability maps of each structure. During training, the 3D U-net is initially trained using blank shape context inputs to generate the segmentation masks, i.e. relying only on the image channel of the input. The preliminary segmentation results are used to estimate a new shape model, which is then fed to the same network again, with the input images. With the additional shape context information, the U-net is trained again to generate better segmentation results. During the testing phase, the input image is fed through the same 3D U-net multiple times, first with blank shape context channels and then with iteratively re-estimated shape models. Preliminary results show that the proposed multi-pass U-net with iterative shape estimation outperforms both 2D and 3D conventional U-nets without the shape model

    Automating the multimodal analysis of musculoskeletal imaging in the presence of hip implants

    Get PDF
    In patients treated with hip arthroplasty, the muscular condition and presence of inflammatory reactions are assessed using magnetic resonance imaging (MRI). As MRI lacks contrast for bony structures, computed tomography (CT) is preferred for clinical evaluation of bone tissue and orthopaedic surgical planning. Combining the complementary information of MRI and CT could improve current clinical practice for diagnosis, monitoring and treatment planning. In particular, the different contrast of these modalities could help better quantify the presence of fatty infiltration to characterise muscular condition after hip replacement. In this thesis, I developed automated processing tools for the joint analysis of CT and MR images of patients with hip implants. In order to combine the multimodal information, a novel nonlinear registration algorithm was introduced, which imposes rigidity constraints on bony structures to ensure realistic deformation. I implemented and thoroughly validated a fully automated framework for the multimodal segmentation of healthy and pathological musculoskeletal structures, as well as implants. This framework combines the proposed registration algorithm with tailored image quality enhancement techniques and a multi-atlas-based segmentation approach, providing robustness against the large population anatomical variability and the presence of noise and artefacts in the images. The automation of muscle segmentation enabled the derivation of a measure of fatty infiltration, the Intramuscular Fat Fraction, useful to characterise the presence of muscle atrophy. The proposed imaging biomarker was shown to strongly correlate with the atrophy radiological score currently used in clinical practice. Finally, a preliminary work on multimodal metal artefact reduction, using an unsupervised deep learning strategy, showed promise for improving the postprocessing of CT and MR images heavily corrupted by metal artefact. This work represents a step forward towards the automation of image analysis in hip arthroplasty, supporting and quantitatively informing the decision-making process about patient’s management

    Statistical Shape Modelling of the Large Acetabular Defect in Hip Revision Surgery

    Get PDF
    The assessment of three-dimensional (3D) bony defects is important to inform the surgical planning of hip reconstruction. Mirroring of the contralateral side has been previously used to measure the hip centre of rotation (CoR). However, the contralateral side may not be useful when diseased or replaced. Statistical Shape Models (SSMs) can aid reconstruction of patient anatomy. Previous studies have been limited to computational models only or small patient cohorts. We used SSM as a tool to help derive landmarks that are often absent in hip joints of patients with large acetabular defects. Our aim was to compare the reconstructed pelvis with patients who have previously undergone hip revision. This retrospective cohort study involved 38 patients with Paprosky type IIIB defects. An SSM was built on 50 healthy pelvises and used to virtually reconstruct the native pelvic morphology for all cases. The outcome measures were the difference in CoR for 1) SSM vs diseased hip, 2) SSM vs plan and 3) SSM vs contralateral healthy hip. The median differences in CoR were 31.17 mm (IQ: 43.80 - 19.87 mm), 8.53 mm (IQ: 12.76 - 5.74 mm) and 7.84 mm (IQ: 10.13 - 5.13 mm), respectively. No statistical difference (p > 0.05) was found between the SSM vs plan and the SSM vs contralateral CoRs. Our findings show that the SSM model can be used to reconstruct the absent bony landmarks of patients with significant lysis regardless of the defect severity, hence aiding the surgical planning of hip reconstruction and implant design. This article is protected by copyright. All rights reserved

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Accuracy and reliability analysis of a machine learning based segmentation tool for intertrochanteric femoral fracture CT

    Get PDF
    IntroductionThree-dimensional (3D) reconstruction of fracture fragments on hip Computed tomography (CT) may benefit the injury detail evaluation and preoperative planning of the intertrochanteric femoral fracture (IFF). Manually segmentation of bony structures was tedious and time-consuming. The purpose of this study was to propose an artificial intelligence (AI) segmentation tool to achieve semantic segmentation and precise reconstruction of fracture fragments of IFF on hip CTs.Materials and MethodsA total of 50 labeled CT cases were manually segmented with Slicer 4.11.0. The ratio of training, validation and testing of the 50 labeled dataset was 33:10:7. A simplified V-Net architecture was adopted to build the AI tool named as IFFCT for automatic segmentation of fracture fragments. The Dice score, precision and sensitivity were computed to assess the segmentation performance of IFFCT. The 2D masks of 80 unlabeled CTs segmented by AI tool and human was further assessed to validate the segmentation accuracy. The femoral head diameter (FHD) was measured on 3D models to validate the reliability of 3D reconstruction.ResultsThe average Dice score of IFFCT in the local test dataset for “proximal femur”, “fragment” and “distal femur” were 91.62%, 80.42% and 87.05%, respectively. IFFCT showed similar segmentation performance in cross-dataset, and was comparable to that of human expert in human-computer competition with significantly reduced segmentation time (p < 0.01). Significant differences were observed between 2D masks generated from semantic segmentation and conventional threshold-based segmentation (p < 0.01). The average FHD in the automatic segmentation group was 47.5 ± 4.1 mm (41.29∼56.59 mm), and the average FHD in the manual segmentation group was 45.9 ± 6.1 mm (40.34∼64.93 mm). The mean absolute error of FHDs in the two groups were 3.38 mm and 3.52 mm, respectively. No significant differences of FHD measurements were observed between the two groups (p > 0.05). All ICCs were greater than 0.8.ConclusionThe proposed AI segmentation tool could effectively segment the bony structures from IFF CTs with comparable performance of human experts. The 2D masks and 3D models generated from automatic segmentation were effective and reliable, which could benefit the injury detail evaluation and preoperative planning of IFFs
    corecore