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Introduction: Three-dimensional (3D) reconstruction of fracture fragments on
hip Computed tomography (CT) may benefit the injury detail evaluation and
preoperative planning of the intertrochanteric femoral fracture (IFF). Manually
segmentation of bony structures was tedious and time-consuming. The
purpose of this study was to propose an artificial intelligence (AI)
segmentation tool to achieve semantic segmentation and precise
reconstruction of fracture fragments of IFF on hip CTs.
Materials and Methods: A total of 50 labeled CT cases were manually
segmented with Slicer 4.11.0. The ratio of training, validation and testing of
the 50 labeled dataset was 33:10:7. A simplified V-Net architecture was
adopted to build the AI tool named as IFFCT for automatic segmentation of
fracture fragments. The Dice score, precision and sensitivity were
computed to assess the segmentation performance of IFFCT. The 2D
masks of 80 unlabeled CTs segmented by AI tool and human was further
assessed to validate the segmentation accuracy. The femoral head diameter
(FHD) was measured on 3D models to validate the reliability of 3D
reconstruction.
Results: The average Dice score of IFFCT in the local test dataset for
“proximal femur”, “fragment” and “distal femur” were 91.62%, 80.42% and
87.05%, respectively. IFFCT showed similar segmentation performance in
cross-dataset, and was comparable to that of human expert in human-
computer competition with significantly reduced segmentation time (p <
0.01). Significant differences were observed between 2D masks generated
from semantic segmentation and conventional threshold-based
segmentation (p < 0.01). The average FHD in the automatic segmentation
group was 47.5 ± 4.1 mm (41.29∼56.59 mm), and the average FHD in the
manual segmentation group was 45.9 ± 6.1 mm (40.34∼64.93 mm). The
mean absolute error of FHDs in the two groups were 3.38 mm and
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3.52 mm, respectively. No significant differences of FHD measurements were
observed between the two groups (p > 0.05). All ICCs were greater than 0.8.
Conclusion: The proposed AI segmentation tool could effectively segment the bony
structures from IFF CTs with comparable performance of human experts. The 2D
masks and 3D models generated from automatic segmentation were effective and
reliable, which could benefit the injury detail evaluation and preoperative planning
of IFFs.
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computed tomography
Introduction

Intertrochanteric femoral fracture (IFF) is commonly seen

in the elderly women with severe osteoporosis (1), and is

increasingly prevalent as the population continues to age

(2). Concurrently, surgical interventions especially internal

fixation is the most common treatment for stable and

unstable fractures due to the advantage of early

rehabilitation and mobilization (3). The surgical goals are to

achieve stable fixation, allow early mobilization and improve

the quality of life of patients (1, 4). To assist the surgery,

computed tomography (CT) and three-dimensional (3D) CT

are widely used in the clinical settings for precise evaluation

and diagnosis (4). Furthermore, CT and 3D reconstruction

are considered as pre-requisites for computer-assisted

preoperative planning, intraoperative navigation and

postoperative assessment of managing IFFs and other hip

diseases (5–9). The fracture details on CT with 3D

reconstruction can assist orthopaedic surgeons to achieve

better understanding of the morphologic characteristics and

injury mechanisms. As a result, the surgeons would benefit

from planning the optimal surgical approaches, achieving

anatomical fracture reduction and decreasing fixation failures.

However, reliable 3D reconstruction depends on the accurate

segmentation of target tissues on CT images. Manual 3D

segmentation is labor intensive and time-consuming, for that

typical CT volumes of one patient usually contain hundreds of

2D image slices (10). Besides, the segmentation accuracy also

highly depends on the technicians who conduct the

segmentation (11). Thus, automatic segmentation based on

machine learning methods is proposed and used in many

studies (9–17). These machine learning methods are usually

divided into two main categories: supervised learning and

unsupervised learning, which depends upon whether prior

knowledge was utilized or not. Unsupervised methods

including thresholding (18), region growing (19), graph cut

(20) and so on were applied. Accordingly, these segmentation

models did demonstrate the effectiveness and accuracy in hip

segmentation but were suitable only for solving certain hip

segmentation under healthy or minimal pathological
02
conditions. Supervised methods including statistical shape

model (15, 21), atlas-based (14) and deep learning (10, 17)

methods were also applied, but they were usually established

with large amount of training data to achieve satisfactory

segmentation result, which was also time-consuming and

tedious. However, the automatic segmentation remains a

challenging task due to the characteristic features of hip CTs,

which includes the inherent blur of CT images, the weak

boundaries between pelvis and femur, the narrowness of joint

space, the low quality of CT scans and the patient’s leg posture

(9, 10). Furthermore, these studies usually focused on the

femur segmentation from hip CTs, but not the semantic

segmentation of fracture fragments.

To the best of our knowledge, no studies were available on

achieving automatic segmentation and precise reconstruction of

fracture fragments (including head-neck, femoral shaft, lesser

trochanter, greater trochanter, lateral wall, posterior crest,

anterior cortex fragment and so on) on hip CTs, which could

be helpful for fracture evaluation and surgical design of IFFs.

Thus, the purpose of the present study was to propose an

artificial intelligence (AI) segmentation tool to achieve

semantic segmentation and precise reconstruction of

fragments of IFFs on hip CTs.
Materials and methods

This retrospective study was Health Insurance Portability

and Accountability Act compliant and was approved by the

institutional ethical committee of local institutions before data

extraction. The medical records and imaging data of IFF

patients in our institutions were retrospectively obtained and

reviewed. The inclusion criteria were: (1) IFF patients

confirmed by medical records and radiological images; (2)

with thin-layer CTs; (3) with 1 or more fracture fragments on

CT. The exclusion criteria were: (1) metal artifacts on CT; (2)

combined with pathological fractures, hip tumor, hip

deformity, or other combined fractures. A total of 137

patients with thin-layer hip CTs were included in this study,

in which 50 labeled CTs from institution A was regarded as
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FIGURE 1

Data sources and distribution of 137 intertrochanteric femoral fracture CTs.
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the local dataset for the development of the AI segmentation

tool, and the other 87 CTs (7 labeled and 80 unlabeled) from

institution B was regarded as the cross-dataset for testing and

segmentation evaluation (Figure 1).

All image annotations were conducted in a personal

computer (graphics processing unit: a Nvidia GeForce 1080Ti,

with 4 GB of memory and a 3.5-GHz Intel Core i7–4790

CPU with 8 GB of memory). The machine learning model for

semantic segmentation was developed, trained, validated and

tested using Keras (version 2.1.1 with tensorflow_backend py).
Manual annotation

A total of 50 CT cases were manually segmented with Slicer

4.11.0 (http://www.slicer.org). The bony structures of the

proximal femur on hip CTs were meticulously segmented and

labeled. An orthopaedic surgeon who was an expert in

reading hip CT and had systematic training in Slicer manually

was required to segment the bones manually. According to

the location and clinical concepts of different fragments, the

bony structures were simply divided into three categories: the

“proximal femur”, the “fragment” and the “distal femur”

(Figure 2). Then the segmented images were reviewed by a

radiologist expert and another orthopaedic surgeon, both of

whom were experienced in hip CT reading. Any disagreement

of segmentation was solved by the vote of three doctors.

These manual annotations were regarded as the ground truth.
Frontiers in Surgery 03
Data preprocessing and segmentation
assessment

All thin-layer CTs were preprocessed using the following

steps: resampling, cropping, and intensity normalization. The

Dice score, precision and sensitivity were used to assess

the segmentation performance of all fragments (Figure 2).

The functions of these 3 indicators were as follows:

Dice Score = 2 × True Predicted Voxels/(Predicted Voxels +

True Voxels)

Precision = True Predicted Voxels/Predicted Voxels

Sensitivity = True Predicted Voxels/True Voxels

Because the Dice score was the most common indicator

in computer vision, the current study adopted it as the

primary index to assess the segmentation performance of

the AI tool.
Network architecture

The presented AI segmentation tool was developed based

on the V-Net architecture (22). The 5-layer simplified V-Net

architecture consists of two parts, including the encoder and

the decoder parts (Figure 3). The encoder part performed

data analysis and feature-representation learning from the

input data, and the decoder part generates segmentation

results. The Rectified Linear Unit (ReLU) nonlinear activation

function was used in the whole network structure. There were
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FIGURE 2

Manual segmentation and 3D reconstruction on slicer. (A) manual labels by human experts; (B) 3D reconstruction from 2D masks; (C) illustration of
the Dice score, precision, and sensitivity.
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also 4 shortcut connections (concatenations) between layers of

equal resolution in the encoder and decoder paths. The last

layer of the model was a 1 × 1 × 1 convolutional layer followed

by a softmax layer, with 4 output channels. The input of the

model was 128 × 128 × 64 voxel patches of CT, the output

was the corresponding probability mask with the shape of

128 × 128 × 64 × 4. The developed AI segmentation tool was

named as IFFCT (Intertrochanteric Femoral Fracture CT)

because its aim was to automatically segment multiple bony

fragment structures of IFF CTs.
Training

During the training phase, the original catenary data was

subjected to the standard processing and the augmentation

operation in each training iteration, including add random

scaling, Gaussian noise, rotation, flipping and cropping. The

augmented training data were used as the input, this could

alleviate the risk of insufficient generalization performance

caused by the small amount of training data. Dice coefficient

Loss Function was used instead of Cross-Entropy Loss

Function as the loss function, which was one of the

characteristics of V-Net. The convolutional layer parameters

of V-Net were initialized by the method of He et al (23). The

size of the patch (depth × height × width) input to the V-Net

neural network during the training process was 128 × 128 × 64
Frontiers in Surgery 04
(unit: voxel); the minibatch was 8, optimized by the SGD-M

optimization algorithm; and the initial learning rate was 1e−2.

The reason we chose the SGD-M optimization algorithm

instead of Adam optimization algorithm for training was its

stable performance, not easy to fall into the local optimum,

and high computational efficiency.
Five-fold validation

During the training process, for each patch xi in the original

CT image X, model M would output the corresponding

probability mask yi, yi =M(xi). We used the combined

algorithm (Table 1) to sum the label probabilities of every

patch according to its locations. Then, the automatic

segmented mask was obtained. By comparing the automatic

segmented masks with the manual segmented masks, the Dice

scores of various kinds of voxel classes could be obtained.

Five-fold validation was conducted using the validation

dataset in order to select the final model IFFCT with the

highest segmentation performance.
Testing

The ratio of training, validation and testing of the 50 labeled

cases was 33:10:7. A total of 7 cases randomly selected from the

local dataset were tested on IFFCT. Another 7 cases from cross-
frontiersin.org
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FIGURE 3

Schematic of the simplified V-Net network architecture (IFFCT).

TABLE 1 Overview of the combined algorithm.

Algorithm 1: Combined Algorithm

Require: X: CT volume, H ×W ×D
Require: xi∈ X(Li), (i = 1,……, k): CT voxel patch
Require: yi=M(xi): yiis the output of the last layer (SoftMax activation function) of the model M, yi has 1 more dimension than xi, and this dimension has 4 channels. Each
channel refers to the probability of the corresponding voxel belonging to background, proximal femur, fragment or distal femur, respectively.

(1) For xi∈ X(Li), (i = 1,……, k) do
(2) Y(Li) + yi
(3) N(Li) + 1
(4) End for
(5) S← arg max (Y/N, axis = −1) (find the channel with the largest value in the last dimension)
(6) Return S (the automatic mask)

Wang et al. 10.3389/fsurg.2022.913385
dataset (IFF CTs from another institution) were also tested in

order to validate the robustness of the trained model. To

obtain the ground truth of these CTs from cross-dataset, the

same surgeons and radiologist conducted the annotation and

review. The Dice score, precision and sensitivity were used to

assess the segmentation performance of all bony structures of

IFF CTs (Figure 2).

In order to compare the segmentation performance of

IFFCT with human experts, we also introduced the human-

computer competition. Namely, the 7 cases from the local test

dataset were segmented by another orthopaedic expert who

had CT reading and Slicer operation experiences. Then, the

Dice scores of manual segmentation were calculated by

comparing with the ground truth. Segmentation time of local

test dataset and cross-dataset of by IFFCT or human experts

were also recorded.
Frontiers in Surgery 05
Evaluation of AI-generated masks by
human experts

Given that the evaluation indexes are all indicators in

computer vision, and may not represent the applicability in

clinical practice, we further evaluated the segmentation

accuracy of AI-generated masks and normal segmented

masks. A total of 80 unlabeled CTs from cross-dataset were

segmented using the normal threshold method and IFFCT-

based semantic segmentation method on Slicer. Three

independent observers reviewed and evaluated the

segmented 2D masks according to the difficulties to

distinguish each fracture fragment and the adhesion of the

pelvis and femur (Figure 4). Any disagreement of

segmentation evaluation was solved by the vote of three

observers.
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FIGURE 4

Evaluation of semantic segmentation and threshold-based segmentation. (A) threshold-based segmentation; (B) semantic segmentation. Blue arrow:
from original CT to segmented masks. Red arrow: different fracture fragments were highlighted by different colors which made it easy to distinguish.
White arrow: adhesion between pelvis and femur.
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3D Reconstruction and measurement
validation

To further investigate the segmentation performance and

reconstruction precision of IFFCT, we measured the femoral

head diameter (FHD) on 3D models generated from both

manually segmented and automatically segmented images.

The schematic measurement of FHD in 3D space were listed

below (Figure 5): first, the highest point a and the lowest

point b at the maximum expanding region of the femoral

head were selected at the anterior-posterior view. Then, point

c at the maximum expanding region of the femoral head was

also selected at the overlook view. According to the concepts

of geometry, these three points could define a plane S1, and

the diameter of the circumcircle of these three points could be

defined as the FHD.

A total of 28 reconstructed models of IFF CT were then

reconstructed and visualized on Slicer (Figure 6), 14 models

were from the local test dataset and 14 models were from

the cross-dataset. The ground truths of the manual

segmentation in this part were identified by the experts

mentioned above. Two independent observers measured the

FHD of 3D models from manually and automatically

segmented images. One month later, one of the observers
Frontiers in Surgery 06
measured the FHD again. The intraclass correlation

coefficient (ICC) was calculated to assess test-retest

reliability and inter-observer reliability of multiple

measurements.
Statistical analysis

All data were statistically analyzed by SPSS 22.0 (IBM

Corporation, Chicago, USA). The normal distribution was

tested using the Shapiro–Wilk test. Mann–Whitney U test

was used to compare the differences of segmentation time

between IFFCT and human experts. The difference of

segmentation performance on 2D masks between IFFCT-

based semantic segmentation and threshold-based

segmentation were compared using chi-square test. The

differences of FHD measurement on 3D models between

automatically generated masks and manually generated

masks were compared using a paired Student t test. The

reliabilities of the 3D measurements between manually and

automatically segmented images was compared using intra-

observer and inter-observer ICCs. All continuous data were

presented as mean ± SD, and p < 0.05 was considered

statistically significant.
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FIGURE 5

Schematic measurement of FHD in 3D space. (A) determination of the highest point a and the lowest point b at the maximum expanding region of
femoral head at the anterior-posterior view; (B) determination of point c at the maximum expanding region of femoral head at the overlook view;
(C) according to geometry, these three points could determine a plane S1; (D) the center point d, radius (line segment ad = 1/2 FHD) and diameter
(FHD) could also be determined using geometry principle.

Wang et al. 10.3389/fsurg.2022.913385
Results
Testing results showed that IFFCT could achieve successful

segmentation of multiple bony structures encompassing

“proximal femur”, “fragment” and “distal femur” on CT

(Figure 7). The quantitative segmentation accuracy was

shown in Table 2. The average Dice score, precision and

sensitivity of “proximal femur” were 91.62%, 99.60% and

92.34%. The average Dice score, precision and sensitivity of
Frontiers in Surgery 07
“fragment” were 80.42%, 76.24% and 78.67%. In “distal

femur”, the average Dice score, precision and sensitivity were

87.05%, 87.77% and 86.27%. The segmentation performance

from cross-dataset was also shown in Table 3 and Figure 8.

The average Dice score of the “proximal femur”, “fragment”

and “distal femur” were 87.19%, 69.70% and 88.75%,

respectively. This could reveal that our AI segmentation tool

has the fair generalization ability.

After training, it took about 2.6 s for IFFCT to complete an

automatic segmentation (from data preprocessing to semantic
frontiersin.org
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FIGURE 6

3d reconstruction and measurements of FHDs on slicer. (A,B) 3D rendering from manually segmented masks and automatically segmented masks.
(C,D) measurement of FHD on 3D model from manually segmented masks and automatically segmented masks.

FIGURE 7

Automatic and manual labeled masks in local test dataset.

TABLE 2 Segmentation accuracy in 7 testing cases from the local
dataset.

Structures Dice Score (%) Precision (%) Sensitivity (%)

Proximal femur 91.62 99.60 92.34

Fragment 80.42 76.24 78.67

Distal femur 87.05 87.77 86.27

Wang et al. 10.3389/fsurg.2022.913385
segmentation) on a single case in local test dataset (2.6 ± 0.5 s)

and cross-dataset (2.6 ± 1.1 s), which was significantly less than

that of manual segmentation (local test dataset 79.1 ± 20.1 min,

cross-dataset 87.4 ± 11.9 min) (Figure 9). Besides, we also

conducted the human-computer competition, and the

segmentation performance of IFFCT was comparable to that

of human expert (Table 4).

The results of segmentation performance on 2D masks

showed that there were significant differences between
Frontiers in Surgery 08
semantic segmentation and conventional threshold-based

segmentation (Table 5). In the semantic segmentation group,

24 cases were evaluated as difficult to distinguish fracture

fragments, while 57 cases were regarded as difficult ones in

the threshold-based segmentation group (p < 0.01). There

were 10 cases with the adhesion of pelvis and femur in the

semantic segmentation group, while there were 26 cases in the

threshold-based segmentation group (p < 0.01).

The results of 3D measurement between 3D models

generated from automatic segmentation and manual

segmentation (ground truths from the local dataset and cross-

dataset) were shown in Table 6. The average FHD in the

automatic segmentation group was 47.5 ± 4.1 mm
frontiersin.org

https://doi.org/10.3389/fsurg.2022.913385
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


TABLE 3 Segmentation accuracy in 7 testing cases from the cross-
dataset.

Structures Dice Score (%) Precision (%) Sensitivity (%)

Proximal femur 87.19 91.43 85.37

Fragment 69.70 74.02 76.47

Distal femur 88.75 91.50 86.55

FIGURE 8

Automatic and manual labeled masks in cross-dataset.

FIGURE 9

Segmentation time of human experts and IFFCT in local test dataset
and cross-dataset. Local test dataset: 2.6 ± 0.5s vs 79.1 ± 20.1 min;
cross-dataset, 2.6 ± 1.1s vs 87.4 ± 11.9 min. *P < 0.01.

TABLE 4 Segmentation accuracy of human experts in the Human-
computer competition.

Structures Dice Score (%) Precision (%) Sensitivity (%)

Proximal femur 95.16 91.64 90.81

Fragment 87.64 85.32 82.40

Distal femur 90.70 88.88 83.18

Wang et al. 10.3389/fsurg.2022.913385
(41.29∼56.59 mm), and that of the manual segmentation group

was 45.9 ± 6.1 mm (40.34∼64.93 mm). The mean absolute error

(MAE) of FHD in the automatic segmentation group and

manual segmentation group were 3.38 mm and 3.52 mm,

respectively. No significant differences of FHD measurements

were observed between the two groups (p > 0.05). The

reliability test revealed strong test-retest reliability and inter-

observer reliability in measurements on 3D models generated

from automatic and manual segmentations (all ICC values >0.8).
Discussion

In this study, we constructed an AI segmentation tool based

on the V-Net neural network for semantic segmentation of

intertrochanteric fracture CTs and demonstrated the

competency of the AI tool to segment fracture fragments when

compared against qualified human experts. Results have showed

a satisfying segmentation performance on the test dataset with

the average Dice score over 80%. Meanwhile, the segmentation

performance in the cross-dataset showed a satisfying

generalization ability of our AI tool. The segmentation

performance of our AI tool was not only roughly comparable to

that of human experts, but also with a much less segmentation

time. The segmentation evaluation on 2D masks revealed that

the majority of the AI-generated masks were deemed

satisfactory by the experts. The accurate semantic segmentation

could facilitate the computer-assisted diagnosis, injury detail

evaluation and preoperative planning procedures of IFF.
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In addition, precise 3D reconstructions of relevant bony

structures were also achieved with the assistance of our AI

segmentation tool. No significant differences of FDH

measurements were observed between automatically and

manually generated 3D models. The 3D reconstruction with the

assistance of our AI segmentation tool was efficient and reliable

according to the results of test-retest reliability and inter-observer

reliability of multiple measurements, in which all ICCs were

greater than 0.8. Accordingly, recent studies have shown the

advantages of CT reconstruction in fracture stability assessment

and implants selection over X-rays (24, 25). When looking at the

prominence of precise reconstruction, the 3D reconstruction of

intertrochanteric fractures could assist surgeons observing

fracture lines and fragments, better understanding the fracture

mechanisms and evaluating the fracture stability in clinical

settings. Surgeons could determine whether the operation and

preoperative planning were needed or not, and it could also

benefit the intraoperative fracture localization. Moreover,

postoperative evaluation and fracture prognosis prediction could

also benefit from the use of CT reconstructions.

Due to the defects of inefficiency, time-consuming and

highly required experience of manual segmentation, many

studies have focused on automatic segmentation based on

machine learning methods. For example, Chen et al. (10)

presented a 3D feature-enhanced network for hip
frontiersin.org
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TABLE 5 The evaluation of segmentation accuracy of 2D masks generated from semantic segmentation and threshold-based segmentation.

Semantic segmentation Threshold-based segmentation P value

Difficulty of distinguish fracture fragments <0.01*

Difficult 24 (30.00%) 57 (71.25%)

Easy 56 (70.00%) 23 (28.75%)

Adhesion of pelvis and femur <0.01*

With 10 (12.50%) 26 (32.50%)

Without 70 (87.50%) 54 (67.50%)

*P < 0.01, significant differences between the two groups.

TABLE 6 The measurement results of FHD (mm) and reliability assessments.

Parameters Minimum Maximum Mean ± SD MAE Intra-observer ICC Inter-observer ICC

Automatic segmentation 41.29 56.59 47.54 ± 4.10 3.38 0.874 0.856

Manually segmentation 40.34 64.93 45.90 ± 6.09 3.52 0.886 0.845

Wang et al. 10.3389/fsurg.2022.913385
segmentation with a high Dice similarity coefficient of 96.88%

and average segmentation time of 0.93 s, but its performance

heavily depends on large amount of training data, which

were not always available. Chang et al. (17) have proposed a

patch-based refinement algorithm for automatic femur

segmentation from CT images. Their method achieved

accurate segmentation on a small dataset of 60 CT hips (120

hemi-hips). In their study, the processing time was about 9s

per CT volume. It should be noted that Chang’s method was

more suited for segmentation of diseased hips when

compared with Chen’s work. However, these femur

segmentations were not semantic, and might not be directly

used in the evaluation of fracture fragments on IFF CTs.

Our study introduced an AI segmentation tool for automatic

segmentation of the fracture fragments on IFF CTs through

a simplified V-Net neural network and validated the

feasibility and reliability of the 2D masks and 3D

reconstructed models of relevant bony structures.

The presented AI tool in this study could be easily extended

to other applications. One such extension might apply our AI

tool to the segmentation of femoral head fracture, femoral neck

fracture and subtrochanteric fracture. In the future, the AI tool

will be trained on more datasets, especially on some CT of

proximal femoral fracture patients and the necrosis of the

femoral head. We hoped that the fracture fragments on other

fracture CTs would also be accurately segmented and precisely

reconstructed with the assistance of the AI tool. This would

undoubtedly benefit the evaluation in clinical practice, enhance

the understanding of morphologic fracture characteristics and

injury mechanisms for orthopaedic surgeons, and facilitate

surgical strategies as well as operation preparation.

There are several limitations of this study that should be

noted. First, the segmentation performance of different fracture
Frontiers in Surgery 10
fragments was not consistent, the Dice score of “proximal

femur” (91.62%) was higher than that of “fragment” (80.41%)

and “distal femur” (87.05%). While in our IFFCT model, the

lesser trochanter fragment, intermediate fragment and coronal

fragment were included as the “fragment”. The relatively low

segmentation accuracy of “fragment” may limit the application

of our AI tool in fracture classification, for the new AO/OTA

classification focuses on these fracture fragments and the

femoral lateral wall (26). Next, deep learning methods for

segmentation or other tasks usually need to leverage large

amount of labeled data for model training (27). Although our

AI tool has achieved satisfying segmentation accuracy on a

small training dataset. These are the instinct characteristics of

V-Net (or U-Net, 3D U-Net) that use data augmentation,

residual learning or skip connections to learn from a small

dataset. The presented AI segmentation tool was based on a

simplified V-Net architecture, and residual function was not

used. It might be the reason for not high enough segmentation

accuracy. A semi-supervised approach for semantic

segmentation by leveraging both limited labeled data and

abundant unlabeled data would have the tremendous potential

(28). We believe that the segmentation performance of our AI

tool would be greatly improved with more training data,

application of residual functions and semi-supervised learning

methods in the future.
Conclusion

In summary, we proposed an AI segmentation tool that

could effectively segment the fracture fragments from IFF CTs

with comparable performance of human experts. The 2D

masks and 3D models generated from automatic segmentation
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are effective and reliable, which could benefit the injury

detail evaluation and preoperative planning of IFFs without

tedious and time-consuming segmentation and reconstruction

procedures. Future studies with larger samples are needed

to validate and improve the performance of our AI

segmentation tool.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: The original

contributions presented in the study are included in the

article and supplementary material, and further inquiries (the

local test dataset and cross dataset) can be directed to the

corresponding author. The code is available at https://

github.com/ArthurWuzh/unsegmented_prediction.git.
Ethics statement

The studies involving human participants were reviewed

and approved by Tongji University. Written informed consent

for participation was not required for this study in accordance

with the national legislation and the institutional requirements.
Author contributions

DW collected and analyzed data, segmented the CT data,

validated the reconstruction with GF and write the

manuscript with the contribution from GF, ZW helped

design, test and validate the machine learning algorithm with

GF and HL. HL was involved in study design, algorithm
Frontiers in Surgery 11
supervision and validation. GF helped supervised and

designed the overall study, and validated the reconstruction

and the machine learning algorithm. XL and YC were

involved in concept development, study design and

supervision. HZ design, supervise this study with contribution

from GF. All authors contributed to the article and approved

the submitted version.
Funding

This work was supported by the Guangdong Basic and

Applied Basic Research Foundation [Grant no.

2019A1515111171]; and the National Natural Science

Foundation of China [Grant no. 82102640]; and the

Characteristic Special Disease Project of Shanghai Putuo

District [Grant no. 2020tszb04]. The main uses of supported

funding were data collection, data analysis and language editing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
References
1. Sheehan SE, Shyu JY, Weaver MJ, Sodickson AD, Khurana B. Proximal
femoral fractures: what the orthopedic surgeon wants to know. Radiographics.
(2015) 35(5):1563–84. doi: 10.1148/rg.2015140301

2. White SM, Griffiths R. Projected incidence of proximal femoral fracture
in England: a report from the NHS Hip Fracture Anaesthesia
Network (HIPFAN). Injury. (2011) 42(11):1230–3. doi: 10.1016/j.injury.2010.
11.010

3. Adeel K, Nadeem RD, Akhtar M, Sah RK, Mohy-Ud-Din I. Comparison of
proximal femoral nail (PFN) and dynamic hip screw (DHS) for the treatment
of AO type A2 and A3 pertrochanteric fractures of femur. J Pak Med Assoc.
(2020) 70(5):815–9. doi: 10.5455/JPMA.295426

4. Li M, Li ZR, Li JT, Lei MX, Su XY, Wang GQ, et al. Three-dimensional
mapping of intertrochanteric fracture lines. Chin Med J. (2019) 132
(21):2524–33. doi: 10.1097/CM9.0000000000000446

5. Wang D, Zhang K, Qiang M, Jia X, Chen Y. Computer-assisted preoperative
planning improves the learning curve of PFNA-II in the treatment of
intertrochanteric femoral fractures. BMC Musculoskelet Disord. (2020) 21(1):34.
doi: 10.1186/s12891-020-3048-4
6. Jia X, Zhang K, Qiang M, Wu Y, Chen Y. Association of computer-
assisted virtual preoperative planning with postoperative mortality
and complications in older patients with intertrochanteric hip fracture.
JAMA Netw Open. (2020) 3(8):e205830. doi: 10.1001/jamanetworkopen.
2020.5830

7. Tonetti J, Boudissa M, Kerschbaumer G, Seurat O. Role of 3D intraoperative
imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res. (2020)
106(1s):S19–s25. doi: 10.1016/j.otsr.2019.05.021

8. Stražar K. Computer assistance in hip preservation surgery-current status and
introduction of our system. Int Orthop. (2020) 45(4):897–905. doi: 10.1007/
s00264-020-04788-3

9. Zoroofi RA, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, et al.
Automated segmentation of acetabulum and femoral head from 3-D CT
images. IEEE Trans Inf Technol Biomed. (2003) 7(4):329–43. doi: 10.1109/TITB.
2003.813791

10. Chen F, Liu J, Zhao Z, Zhu M, Liao H. Three-Dimensional feature-enhanced
network for automatic femur segmentation. IEEE J Biomed Health Inform. (2019)
23(1):243–52. doi: 10.1109/JBHI.2017.2785389
frontiersin.org

https://doi.org/10.1148/rg.2015140301
https://doi.org/10.1016/j.injury.2010.11.010
https://doi.org/10.1016/j.injury.2010.11.010
https://doi.org/10.5455/JPMA.295426
https://doi.org/10.1097/CM9.0000000000000446
https://doi.org/10.1186/s12891-020-3048-4
https://doi.org/10.1001/jamanetworkopen.2020.5830
https://doi.org/10.1001/jamanetworkopen.2020.5830
https://doi.org/10.1016/j.otsr.2019.05.021
https://doi.org/10.1007/s00264-020-04788-3
https://doi.org/10.1007/s00264-020-04788-3
https://doi.org/10.1109/TITB.2003.813791
https://doi.org/10.1109/TITB.2003.813791
https://doi.org/10.1109/JBHI.2017.2785389
https://doi.org/10.3389/fsurg.2022.913385
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Wang et al. 10.3389/fsurg.2022.913385
11. Kim JJ, Nam J, Jang IG. Fully automated segmentation of a hip joint using
the patient-specific optimal thresholding and watershed algorithm. Comput
Methods Programs Biomed. (2018) 154:161–71. doi: 10.1016/j.cmpb.2017.11.007

12. Zou Z, Liao SH, Luo SD, Liu Q, Liu SJ. Semi-automatic segmentation of
femur based on harmonic barrier. Comput Methods Programs Biomed. (2017)
143:171–84. doi: 10.1016/j.cmpb.2017.03.005

13. Almeida DF, Ruben RB, Folgado J, Fernandes PR, Audenaert E, Verhegghe
B, et al. Fully automatic segmentation of femurs with medullary canal definition in
high and in low resolution CT scans. Med Eng Phys. (2016) 38(12):1474–80.
doi: 10.1016/j.medengphy.2016.09.019

14. Chu C, Bai J, Wu X, Zheng G. MASCG: multi-atlas segmentation
constrained graph method for accurate segmentation of hip CT images. Med
Image Anal. (2015) 26(1):173–84. doi: 10.1016/j.media.2015.08.011

15. Younes L B, Nakajima Y, Saito T. Fully automatic segmentation of the femur
from 3D-CT images using primitive shape recognition and statistical shape models.
Int J Comput Assist Radiol Surg. (2014) 9(2):189–96. doi: 10.1007/s11548-013-0950-3

16. Chu C, Chen C, Liu L, Zheng G. FACTS: fully automatic CT segmentation of a
hip joint. Ann Biomed Eng. (2015) 43(5):1247–59. doi: 10.1007/s10439-014-1176-4

17. Chang Y, Yuan Y, Guo C, Wang Y, Cheng Y, Tamura S. Accurate pelvis and
femur segmentation in hip CT with a novel patch-based refinement. IEEE
J Biomed Health Inform. (2019) 23(3):1192–204. doi: 10.1109/JBHI.2018.2834551

18. Zhang J, Yan CH, Chui CK, Ong SH. Fast segmentation of bone in CT
images using 3D adaptive thresholding. Comput Biol Med. (2010) 40(2):231–6.
doi: 10.1016/j.compbiomed.2009.11.020

19. Li W, Kezele I, Collins DL, Zijdenbos A, Keyak J, Kornak J, et al. Voxel-
based modeling and quantification of the proximal femur using inter-subject
registration of quantitative CT images. Bone. (2007) 41(5):888–95. doi: 10.1016/
j.bone.2007.07.006

20. Liu L, Raber D, Nopachai D, Commean P, Sinacore D, Prior F, et al.
Interactive separation of segmented bones in CT volumes using graph cut. Med
Frontiers in Surgery 12
Image Comput Comput Assist Interv. (2008) 11(Pt 1):296–304. doi: 10.1007/978-
3-540-85988-8_36

21. Yokota F, Okada T, Takao M, Sugano N, Tada Y, Tomiyama N, et al.
Automated CT segmentation of diseased hip using hierarchical and conditional
statistical shape models. Med Image Comput Comput Assist Interv. (2013) 16(Pt
2):190–7. doi: 10.1007/978-3-642-40763-5_24

22. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks
for volumetric medical image segmentation. 2016 fourth international conference
on 3D vision (3DV) (2016).

23. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. 2015 IEEE international conference
on computer vision (ICCV); 7–13 Dec. 2015 (2015). p. 1026–34.

24. Ren H, Ao R, Wu L, Jian Z, Jiang X, Yu B. Effect of lesser trochanter
posteromedial wall defect on the stability of femoral intertrochanteric fracture
using 3D simulation. J Orthop Surg Res. (2020) 15(1):242. doi: 10.1186/s13018-
020-01763-x

25. Cho JW, Kent WT, Yoon YC, Kim Y, Kim H, Jha A, et al. Fracture
morphology of AO/OTA 31-A trochanteric fractures: a 3D CT study with an
emphasis on coronal fragments. Injury. (2017) 48(2):277–84. doi: 10.1016/j.
injury.2016.12.015

26. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and
dislocation classification compendium-2018. J Orthop Trauma. (2018) 32(Suppl
1):S1–S170. doi: 10.1097/BOT.0000000000001063

27. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K,
et al. A guide to deep learning in healthcare. Nat Med. (2019) 25(1):24–9.
doi: 10.1038/s41591-018-0316-z

28. Yu L, Wang S, Li X, Fu C-W, Heng P-A. Uncertainty-aware self-ensembling
model for semi-supervised 3D left atrium segmentation. Computer vision and
pattern recognition (cs.CV). Cham: Springer International Publishing
(2019). p. 605–3.
frontiersin.org

https://doi.org/10.1016/j.cmpb.2017.11.007
https://doi.org/10.1016/j.cmpb.2017.03.005
https://doi.org/10.1016/j.medengphy.2016.09.019
https://doi.org/10.1016/j.media.2015.08.011
https://doi.org/10.1007/s11548-013-0950-3
https://doi.org/10.1007/s10439-014-1176-4
https://doi.org/10.1109/JBHI.2018.2834551
https://doi.org/10.1016/j.compbiomed.2009.11.020
https://doi.org/10.1016/j.bone.2007.07.006
https://doi.org/10.1016/j.bone.2007.07.006
https://doi.org/10.1007/978-3-540-85988-8_36
https://doi.org/10.1007/978-3-540-85988-8_36
https://doi.org/10.1007/978-3-642-40763-5_24
https://doi.org/10.1186/s13018-020-01763-x
https://doi.org/10.1186/s13018-020-01763-x
https://doi.org/10.1016/j.injury.2016.12.015
https://doi.org/10.1016/j.injury.2016.12.015
https://doi.org/10.1097/BOT.0000000000001063
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.3389/fsurg.2022.913385
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/

	Accuracy and reliability analysis of a machine learning based segmentation tool for intertrochanteric femoral fracture CT
	Introduction
	Materials and methods
	Manual annotation
	Data preprocessing and segmentation assessment
	Network architecture
	Training
	Five-fold validation
	Testing
	Evaluation of AI-generated masks by human experts
	3D Reconstruction and measurement validation
	Statistical analysis

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


