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Abstract

In patients treated with hip arthroplasty, the muscular condition and pres-

ence of inflammatory reactions are assessed using magnetic resonance imag-

ing (MRI). As MRI lacks contrast for bony structures, computed tomography

(CT) is preferred for clinical evaluation of bone tissue and orthopaedic surgical

planning. Combining the complementary information of MRI and CT could

improve current clinical practice for diagnosis, monitoring and treatment plan-

ning. In particular, the different contrast of these modalities could help better

quantify the presence of fatty infiltration to characterise muscular condition

after hip replacement.

In this thesis, I developed automated processing tools for the joint analysis of

CT and MR images of patients with hip implants. In order to combine the mul-

timodal information, a novel nonlinear registration algorithm was introduced,

which imposes rigidity constraints on bony structures to ensure realistic defor-

mation. I implemented and thoroughly validated a fully automated framework

for the multimodal segmentation of healthy and pathological musculoskeletal

structures, as well as implants. This framework combines the proposed reg-

istration algorithm with tailored image quality enhancement techniques and

a multi-atlas-based segmentation approach, providing robustness against the

large population anatomical variability and the presence of noise and artefacts

in the images.

The automation of muscle segmentation enabled the derivation of a measure

of fatty infiltration, the Intramuscular Fat Fraction, useful to characterise the

presence of muscle atrophy. The proposed imaging biomarker was shown to
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strongly correlate with the atrophy radiological score currently used in clinical

practice.

Finally, a preliminary work on multimodal metal artefact reduction, using an

unsupervised deep learning strategy, showed promise for improving the post-

processing of CT and MR images heavily corrupted by metal artefact.

This work represents a step forward towards the automation of image analy-

sis in hip arthroplasty, supporting and quantitatively informing the decision-

making process about patient’s management.



Impact Statement

This work developed automated processing tools for the analysis of Computed

Tomography (CT) and Magnetic Resonance (MR) images of patients with hip

implants. It showed the potential benefit of combining multimodal information

to obtain patient-specific anatomy and quantitative assessment of muscular

condition after hip replacement.

From a clinical perspective, this work represents a step forward towards

personalised treatment in the orthopaedic field. First, by providing the au-

tomated segmentation of volumetric images, it reduces the burden of manual

segmentation for musculoskeletal radiologists. As a result, the volumetric infor-

mation these images provide can be fully exploited both in terms of volumetric

rendering of the patient’s anatomy and in terms of deriving quantitative met-

rics from the regions of interest. Such metrics could help better characterise the

clinical condition of the patient, for instance in relation to a healthy population.

In addition, a three-dimensional visualisation of all musculoskeletal structures

could inform orthopaedic surgeons on the need for revision surgery, the choice

of surgical approach and the extent of muscle damage associated with the im-

plant. It also opens up new clinical research questions. For instance, could the

proposed imaging biomarkers for muscle atrophy be employed in a longitudi-

nal study to support the monitoring of patients with hip implants? And also,

are the benefits of a multimodal analysis counterbalancing the costs of acquir-

ing multiple scans? Such questions could be addressed by the development of

clinical studies which take advantage of the tools here developed.

Further methodological research could also stem from the presented work.
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The advance of deep learning technologies is revolutionising healthcare and

specifically the medical imaging field. However, these approaches often rely

on the availability of large annotated datasets, which are difficult and labour-

intensive to construct in the medical field. The proposed framework could

facilitate the application of deep learning in the musculoskeletal imaging field

by speeding up the generation of such datasets, as it would provide a means to

automatically segment regions of interest and thus generate annotated data.

Moreover, this work represents a baseline for the combination of CT and MR

information in the case of heavily corrupted images, and fosters further research

for the synthesis of missing modalities: can we artificially generate a CT from

the MRI of a patient and vice versa? This question is particularly relevant in

hip imaging, since the availability of synthetic CT images would spare gonad

exposure to ionising radiation associated with CT scanning.

In conclusion, most of the work discussed in this thesis has potential to

improve the clinical workflow in hip replacement patient’s management, by

supporting clinicians with patient-specific information and by promoting fur-

ther research towards a clearer understanding of implant failure mechanisms.
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Chapter 1

Medical imaging for hip

arthroplasty

Medical imaging is increasingly becoming a powerful tool to help in diagnosis,

treatment and management of patients in all clinical fields, thanks to the rapid

development of novel imaging techniques and automated analysis tools. How-

ever, in the musculoskeletal (MSK) field, advanced imaging analysis methods

struggle to translate to clinical practice, due to either lack of generalisability

or difficulty in tailoring musculoskeletal models to patient-specific anatomy.

As a result, current decisions for patient management in the MSK field often

rely on clinical evaluation along with only a qualitative assessment of medical

imaging examinations.

As they mostly limit the range of motion, MSK conditions have a strong im-

pact on life quality and on the ability to perform basic daily tasks. Taking

into account the increase of both life expectancy and prevalence of risk fac-

tors such as obesity and sedentary lifestyle, MSK problems are now recognized

as a primary burden on both individuals and health systems. The World

Health Organization, for instance, indicates the development of technologies

to facilitate monitoring and delivering of clinical services in MSK health as a

research priority [1]. In the UK, MSK disorders represent the leading cause

of pain and disability. In November 2017 the government launched a Muscu-
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loskeletal Diseases Profile tool1, with the aim of summarising key MSK data to

promote further understanding and improvement of the health service. They

later showed that in 2018 up to 17% of the population in England reported

a long term MSK problem. Considering the UK data only, 15-20% of general

practitioner consultations relate to MSK problems [2]. Therefore automated

methods for MSK medical image analysis are needed to aid prevention, diag-

nosis and treatment in clinical practice, leading to advancements in the service

provided.

In this scenario, this project focuses on improving the clinical workflow for

medical image analysis in the context of hip arthroplasty surgery.

1.1 Hip arthroplasty
Hip arthroplasty is the second most common surgical procedure after hernia

repair [3], and consists of replacing a pathological hip joint with a prosthesis.

This joint is composed of the femoral head and the acetabulum (a round cavity

in the pelvis), and it is surrounded by several ligaments and robust muscles.

Being one of the largest joints in the human body, it provides both stability and

great flexibility, thanks to its ball-and-socket configuration, where the femoral

head (the ball) moves freely into the acetabulum (the socket). The principal

cause of hip joint degeneration is osteoarthritis (91.9% of diagnoses in the UK

[4]), which determines pain and stiffness. According to the Musculoskeletal

Disease Profile, 10.9% of the population aged 45 and over are affected by hip

osteoarthritis, making this a major public health issue.

To restore the normal functioning of the joint, a hip arthroplasty procedure

called total hip replacement (THR) is typically performed: both the acetabu-

lum and the femoral head are replaced by a modular implant inserted into the

femur through a stem (Fig. 1.1). In younger patients, a more bone-preserving

alternative procedure called hip resurfacing arthroplasty (HRA) is sometimes

preferred, where a resurfacing cup is applied to reshape the femoral head

1https://fingertips.phe.org.uk/profile/msk

https://fingertips.phe.org.uk/profile/msk
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Figure 1.1: Main types of hip arthroplasty procedures.
Image from http://www.mydepuyhiprecall.com/2013/05/the-depuy-hip-
litigation-guide.html.

only [5]. In the UK, the National Joint Registry recorded almost 1 million

hip arthroplasty procedures since 2003, with about 92000 performed in 2017

alone [4]. The reported age range of the patients spanned between 7 to 105

years (median age: 69), and higher prevalence was noted among women, who

represented approximately 60% of the cases. Overall this type of interven-

tions reports successful outcomes in alleviating symptoms and improving life

quality, with a decrease from 92.0% before surgery to only 17.8% of patients

indicating moderate or severe pain after surgery [6]. However, commonly used

implants are associated with a non negligible failure rate - 7.27% at 14 years

from primary surgery according to the UK National Joint Registry [4] - and

consequent need to replace the implant in revision surgery. Aseptic loosening,

fracture, dislocation, adverse reaction to particulate debris and infection are

the most frequent indications to justify revision. Interestingly, revision rates

are found to increase with lower age at primary surgery. For instance, male pa-

tients below 55 are associated to a risk of revision surgery of 16% at 14 years

from the primary one, compared to only 2.5% for men aged 75 and above.

Overall, the failure rate increases up to 19-22% when Metal-on-Metal (MoM)

implants have been utilised in primary surgery, this type of prosthesis being

http://www.mydepuyhiprecall.com/2013/05/the-depuy-hip-litigation-guide.html
http://www.mydepuyhiprecall.com/2013/05/the-depuy-hip-litigation-guide.html
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linked to adverse inflammatory reactions and muscular wastage [7, 8]. The

former induce either solid or cystic inflammatory masses in the periprosthetic

tissue, called pseudotumours, and can determine nerves or tendons compres-

sion and consequent pain [9, 10]. Muscular wastage or atrophy manifests as a

reduction of muscular mass, both as volume shrinkage and as increased fatty

infiltration, which weakens the muscle. Hip abductor muscles are most con-

cerned by atrophy, with prevalence ranging between 22% and 90% of the cases

depending on the muscle [8].

Given the established risk associated with MoM implants, their use has been

dramatically reduced after 2012, and formal guidelines for the management

of implanted patients have been released and updated by the Medicines and

Healthcare products Regulatory Agency (MHRA) in a Medical Device Alert

[11] since then. Their recommendations include regular blood metal ion level

tests to quantify metal debris (in particular to measure the concentration of

Cobalt and Chromium ions), as well as the use of Magnetic Resonance Imaging

(MRI) or Ultrasounds (US) to assess soft tissue conditions.

Medical imaging plays therefore an important role in assisting and monitoring

patients with hip implants. Moreover, understanding the mechanisms of im-

plant failure is an active research area: medical imaging, coupled with failed

implant retrieval analysis [10], can shed new light on these mechanisms and

strongly impact the surgical outcomes.

1.2 Medical imaging for hip arthroplasty

Medical imaging is involved throughout the hip arthroplasty clinical workflow

for different tasks (Fig. 1.2). Both in pre-operative and post-operative set-

tings, radiography and computed tomography (CT) imaging are the routine

modalities to assess the bone stock, to plan surgery and to verify delivery, given

their optimal contrast for osseous structures [12]. Compared to radiography,

the three-dimensional (3D) nature of CT acquisition makes it most suitable

to assess the correct positioning of the implant, by measuring the acetabu-
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lar inclination and version angle with respect to the anterior pelvic plane. In

the case of MoM patients, CT-measured implant position already proved to

correlate with increased metal ions levels in blood [13]. In particular, cobalt

and chromium levels were found to sharply rise with cup inclination greater

than 45° and with insufficient version (< 20°). CT also provides clearer visu-

alisation of prosthesis dislocation or fracture, and it facilitates the detection

of osteolysis [14]. These features combined with its fast and relatively cheap

acquisition make CT a useful diagnostic tool for bone and implant visuali-

sation. However, its use is associated with radiation exposure to the gonads

and consequent higher risk of developing cancer. This risk limits its repeated

applicability for monitoring purposes, especially for younger women in fertile

age [15].

For soft tissue visualisation Magnetic Resonance Imaging (MRI) and Ultra-

sounds (US) are generally preferred if not explicitly required as follow-up mea-

sures [11]. Thanks to its outstanding soft tissue contrast, MRI already proved

to be the most suitable modality to assess muscular conditions on suspicion

of inflammation or muscle atrophy [16]. Due to the presence of metal in most

of the implants, the Metal Artefact Reduction Sequence (MARS) MRI is fre-

quently adopted to reduce the susceptibility artefacts around the implant and

consequently improve the image quality. The MARS MRI is a modification of

the Turbo Spin-Echo (TSE) sequence, where an intensified slice-select gradient

and a smaller flip angle are coupled with a broader bandwidth to enhance the

imaging gradients over the susceptibility-induced ones, however at the expense

of a reduced Signal-to-Noise Ratio (SNR) [17]. Although the effect of the metal

artefact is reduced through this sequence, the implant still remains completely

obscured, making any evaluation on its position or on the bone-implant inter-

face impossible on the MR image [14]. In general, MR requires long acquisition

times and lacks signal for cortical bone, which hampers accurate identification

of bone boundaries, especially in the joint space. Bone MR sequences such as

Zero-Time-Echo (ZTE) MRI are a promising solution to this problem [18], but
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at present they are still at research stage, most of these sequences requiring

high field scanners (B0 > 3T), and have not been tested in presence of implants

yet. Nonetheless, MRI is increasingly becoming a popular modality in MSK

and specifically in hip arthroplasty due to its excellent soft tissue contrast and

its non-ionising nature.

(a) (b) (c) (d)

Figure 1.2: Examples of medical imaging for hip arthroplasty. White arrows
indicate regions of clinical interest. (a) X-ray image1 showing a dislocated implant.
(b) CT image1 reporting osteolysis of pelvic bones. (c) MARS MR image2 presenting
a fluid-like soft-tissue lesion. (d) US image3 showing the presence of a pseudotumour.

1.3 Current challenges in MSK imaging
Despite the relevant role of medical imaging for the diagnosis, treatment and

monitoring of patients in orthopaedics, the development and application of ad-

vanced automated imaging analysis techniques are lagging behind other clinical

fields. The main challenges in MSK are the lack of standardised acquisition

protocols, the large inter-subject variability of the structures of interest, and

their typically extended size, often requiring large and highly variable imaging

Field-of-View (FOV) or patient’s pose across different acquisitions [20, 21].

In the specific case of hip arthroplasty, one additional major challenge is the

presence of strong metal-artefact induced noise in the images. The artefacts

greatly degrade the image quality, often covering the anatomical features of

interest. In CT, the higher X-ray attenuation of the metallic prosthesis with re-

spect to biological tissue determines photon starvation at the signal detectors.

This results in darker and brighter streaks (star artefacts) crossing the full field-
1Image from http://www.complexhipsurgery.com/metal-debris-disease
2Image from Robinson et al.[14]
3Image from Matharu et al.[19]

http://www.complexhipsurgery.com/metal-debris-disease
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(a) (b)

Figure 1.3: Appearance of metal-artefact-induced noise in a CT image (a) and in
a MARS MR image (b).

of-view in the axial plane, also affecting regions far away from the implants

(Fig. 1.3(a)). Being widespread, the artefacts hamper the clear identification

of different organ boundaries, especially between different muscles, potentially

reducing the diagnostic confidence [22]. By contrast, in MRI the metal-induced

artefact appears as a dark irregular shadow more localised around the implant.

The shadow is originated by the absolute lack of detectable signal from the

metal object, combined with susceptibility variations between metal and bio-

logical tissue that produce local modification of the static magnetic field, often

leading to frequency shift, further signal loss and geometrical image distortion

[23]. Therefore, the exact position of the implant, as well as its interface with

the bone stock are not visible in MRI, and the muscles closer to the prosthesis

might be partially shaded or distorted (Fig. 1.3(b)). Moreover, fat-suppression

or fat-enhancement MRI sequences such as DIXON might not be effective in

the presence of metal, as they rely on the ability to identify the narrow fre-

quency separation between fat signal and water signal [23]. Thus, the quan-

tification of fatty infiltration within muscular structures might be hindered as

well. Combined together, these aspects strongly limit the generalisability and

applicability of existing methods for image analysis in hip arthroplasty. As a

result, current decisions for patient post-surgical management often rely only

on separate, subjective and qualitative assessments of imaging data. For in-

stance, the evaluation of muscle atrophy in clinical practice is based on visual

slice-by-slice inspection and qualitative scoring of the total fatty infiltration

percentage (e.g. less than 20% or more than 70% in the whole muscular vol-

ume) [24]. This type of assessment does not account for the three-dimensional
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nature of the anatomy, discarding the volumetric information embedded in 3D

imaging data.

Finally, as mentioned CT and MRI yield complementary information - bones

and implant the former, soft tissue optimal visualisation the latter. However,

they are assessed independently from each other and seldom integrated for

improved and more complete clinical picture of all MSK structures jointly and

relatively to the implant.

1.4 Research hypotheses and objectives
In this context, this project is based on the research hypothesis that the cur-

rent clinical workflow for hip arthroplasty could be enhanced by improving the

processing, use and analysis of the images clinically available. It is hypothe-

sised that a unique framework combining the complementary information of

CT and MRI could support the diagnosis and treatment of implant failure, as

well as monitoring of well-functioning implants. In particular, such framework

could have clinical value for imaging biomarkers extraction and surgical plan-

ning. It would help better delineate implants, muscular and skeletal structures

concurrently and their relative spatial localisation, towards a more accurate

definition and visualisation of patient-specific anatomy. This would benefit the

customisation of surgical planning to minimise the damage to healthy MSK

tissue and potentially result in longer-lasting implants after revision, especially

relevant for younger patients [4]. Moreover, a more accurate muscle damage

analysis could take advantage of the richer muscular information from MRI

and the standardisation of CT intensities to better quantify fatty infiltrations,

together with the clearer implant localisation the latter provides. This could

help identify the muscles at greater risk of developing atrophy and therefore

improve implant failure assessment.

In the direction of improving the clinical workflow for hip arthroplasty, the

aims of my project are twofold:

1. To develop tools for the combination of CT and MRI complementary
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MSK information, employing state-of-art and novel approaches that

could ease and automate the image analysis and that could be trans-

lated to real clinical settings.

2. To develop methods for the automatic extraction of quantitative imaging

biomarkers to help the characterisation of pain origin and the assessment

of implant failure.

To this end, I will employ images that have been collected retrospectively

for routine clinical practice, and will develop tailored information processing

tools in the fields of image processing, image registration (i.e. the process

of aligning same anatomical structures in different images) and segmentation

(i.e. the delineation and classification of regions of interest).

1.4.1 Contributions

The first main contribution of this work is the development of a novel composite

framework for the automated joint segmentation of pelvic CT and MR images

in the presence of hip Metal-on-Metal implants. The proposed pipeline is de-

signed to handle low-quality clinical images, characterised by highly anisotropic

resolution and strongly affected by metal artefact induced-noise. One key as-

pect of the pipeline is the introduction of a novel non-linear diffeomorphic

registration algorithm that preserves the local rigidity of bones, allowing for a

robust intra-subject multi-modality alignment. The automated segmentation

is inclusive of relevant bones, muscles and implants, and it is obtained through

a multi-channel multi-atlas segmentation propagation approach. This latter

combines information from both CT and MRI and employs a new atlas of

implanted hips I built for this purpose, providing robustness against the large

population variability of MSK structures. The derived fused segmentation

can be overlaid on both imaging modalities, highlighting also those structures

which the single modalities lack contrast for (e.g. the different abductor mus-

cles in CT, the bones and the implants in the MR). It can also be employed

for patient-specific volume rendering, which helps the 3D visualisation of the
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relative spatial positions of the considered anatomical structures.

The obtained segmentation provides an automated means for definition of re-

gions of interest, from where quantitative imaging biomarkers can be extracted.

Towards this aim, the second contribution of this work is the derivation of

a novel automated quantification of fatty infiltration, the Intramuscular Fat

Fraction (IFF), which measures the percentage of fat in muscular volumes. The

proposed derivation takes advantage of both imaging modalities and shows po-

tential as a quantitative imaging biomarker of muscle atrophy.

Finally, I introduced a novel data-driven approach to metal artefact reduc-

tion to further improve the image quality in both CT and MRI and facilitate

downstream analysis. As the appearance of the artefact differs in the two

modalities, the proposed method makes use of the contextual information to

simultaneously correct missing data in both CT and MRI.

1.5 Thesis organisation

This thesis is organised as follows. Chapter 2 presents a review of the literature,

discussing the current state-of-the-art approaches for medical image informa-

tion processing in the MSK field. Special focus is kept on current quantification

methods of muscle atrophy, pelvic CT and MRI registration and segmentation

approaches, as well as techniques for metal artefact reduction in these modali-

ties. After presenting the dataset used for this thesis project in Chapter 3, I will

introduce in Chapter 4 a novel registration algorithm I proposed to improve

the alignment of CT and MR images, which allows for non-linear deformation

of soft tissue while preserving the rigidity of bony structures. This chapter

also presents the experiments to assess the accuracy and the robustness of

the proposed algorithm. Chapter 5 introduces the developed pipeline for the

joint automated segmentation of clinical CT and MRI from hip arthroplasty

patients. A validation analysis is reported in comparison with single modality

approaches, and the effects of the inaccuracies from the previously discussed

registration algorithm are also analysed. In Chapter 6, I will introduce a novel



1.5. Thesis organisation 31

automated method for quantification of fatty infiltration using both CT and

MRI, which is benchmarked against the current clinical evaluation of muscle

atrophy. The last contribution of this thesis is reported in Chapter 7, where a

deep learning multimodal framework for metal artefact reduction is presented,

and the benefits of fusing the CT and MRI information for this task are anal-

ysed. Finally in Chapter 8 a summary of the obtained results and future trends

for medical imaging in hip arthroplasty are discussed.



Chapter 2

Medical image analysis in MSK

Medical image analysis refers to all techniques for correcting, manipulating and

improving images after acquisition in order to extract meaningful information

and facilitate their interpretation. Among these techniques, registration and

segmentation tools play a fundamental role in image processing pipelines. The

former allow to identify anatomical correspondences between different images,

which therefore guarantees reliable comparisons in both longitudinal or mul-

timodal studies - where different time points acquisitions or different imaging

modality scans from the same subject are compared - and in cross-sectional

studies - where inter-subject comparisons are performed. Segmentation tech-

niques help delineate specific regions of interest (ROIs) within the images,

which are needed for further quantitative and/or qualitative analysis (e.g. vol-

ume or shape analysis, texture analysis). This often results in the derivation of

summative metrics, called imaging biomarkers, that are relevant for the char-

acterisation of a physiological or a pathological condition within the ROI.

Despite the efforts of the medical imaging research community towards the au-

tomation of image processing and quantitative biomarkers extraction, the full

translation of such tools to clinical practice is still far from being reached. In

the MSK field, the main bottleneck is the lack of robust and generalisable seg-

mentation techniques for automated ROI definition [20]. As a result, though

cumbersome and time-consuming, manual ROI definition is often considered

as the only reliable solution for imaging biomarker extractions.
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In this chapter, I will firstly present the current imaging biomarkers used in

the clinical literature for the assessment of muscle wastage in hip arthroplasty.

Then, I will discuss the problem of automated ROI definition in MSK, and

state-of-the-art segmentation and registration methods attempts to address it.

Finally, I will focus on the problem of metal artefact induced noise in medical

imaging for hip arthroplasty and most recent approaches to reduce its impact

on medical image analyses.

2.1 Imaging biomarkers for hip arthroplasty
An imaging biomarker is defined as an “anatomic, physiologic, biochemical, or

molecular parameter” that can be detected or measured from a medical image

to determine the presence or the severity of a pathology [25].

In the context of hip arthroplasty, an important factor to establishing implant

failure is the development of muscle atrophy. Atrophy manifests as severe

muscle wastage, and can be assessed on MR images in terms of muscular

volume shrinkage and by quantification of the fatty infiltration within the

muscle (intramuscular fat) [26]. Such quantities can therefore represent useful

imaging biomarkers to help diagnosis and patient monitoring.

2.1.1 Current clinical assessment

The quantification of muscle atrophy from MRI is currently performed us-

ing a single-slice scoring system, which provides a visual estimation of the

percentage of fat infiltration into the muscular volume. The most commonly

adopted is the Pfirrmann grading system [24], which consists of assessing axial

T1-weighted MR images at one-third and two-thirds of the distance between

the greater trochanter tip and the iliac crest (see Figure 2.1 for anatomical

reference). A similar approach was introduced by Bal and Lowe [27]: visual

scores are assigned for muscular volume and fatty change with respect to the

asymptomatic hip side. The classification description of the two scoring scales

is reported for reference in Table 2.1, showing the qualitative and subjective

nature of such systems.
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Figure 2.1: Anatomical representation of the abductor muscles considered in this
work. The greater trochanter and the iliac crest are also shown as typical skeletal
references for the assessment of muscle atrophy [24]. Image adapted from https:
//anatomyinfo.com/gluteal-muscles/.

Table 2.1: Comparison of the currently used radiological scores to rate muscle
atrophy in terms of size changes and fatty infiltration.

Pfirrmann score [24] Bal & Lowe score
(as reported by [26])

Grade 0 No intramuscular fat Normal
Grade 1 Some fat streaks present Not exceeding 30% decrease in

muscle size
Grade 2 Evident presence of fat, but

less than muscle tissue
Decrease muscle size and 30%-
70% fatty infilitration

Grade 3 Same amount of fat and muscle >80% muscle size decrease,
>70% fatty infiltration

Grade 4 More fat than muscle -

These and similar scores are applied in other muscular structures as well,

however they are strongly rater-dependent and discard all the volumetric in-

formation that the image provides. For instance, in the case of the roteator

cuff muscle, Vidt et al. [28] showed that such 2D assessment is not represen-

tative of the respective 3-dimensional measures. An exemplar case for gluteus

maximus classification is shown in Figure 2.2, demonstrating the subjectivity

of such scoring systems, characterised by large inter- and intra-rater variability.

A more objective volumetric quantification of atrophy is therefore required to

https://anatomyinfo.com/gluteal-muscles/
https://anatomyinfo.com/gluteal-muscles/
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(a) (b)

Figure 2.2: Example of muscle atrophy scoring for the gluteus maximus, delineated
by the red contour. Although the pattern of fatty infiltration appears similar in both
cases, the same rater classified subject (a) as grade 3 (> 70% fatty infiltration and
reduction in muscle size) and subject (b) as grade 2 (30−70% fatty infiltration and
reduction in size) according to Bal and Lowe scale [27].

drive the characterisation of muscular condition and help the surgeons in the

management of implanted patients.

2.1.2 Quantitative imaging biomarkers

The availability of methods to segment a whole muscle as ROI allows to de-

rive volumetric quantitative biomarkers. Most methods to quantify muscular

wastage have been focussing on two measures: the gross muscle volume and

the amount of intramuscular fat. Apart from where explicitly stated, all the

methods presented next for muscle image biomarkers extraction are based on

manual segmentation of the gross muscular volume to define the ROI.

Muscular volume assessment

The quantitative assessment of muscular volume has already proved its rele-

vance in many MSK diseases such as neuromuscular disorders, muscular dys-

trophies, inflammatory myopathies, sport injuries and sarcopenia [29]. In its

most basic form, it is simply computed as the voxel volume in millimetres

times the number of voxels within a specific ROI. A surrogate metric that is

commonly used in clinical routine is the Cross-Sectional Area (CSA), measured

as the muscle area at one or few specific 2D slices of the whole volume. While

being a fast and easy measure, it is scarcely reproducible and not representa-
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tive of the full volume [30].

Actual 3D measurements from full-volume muscle segmentation were reported

by Grimaldi et al. [31, 32] in the context of hip joint pathology analysis. With

respect to their control cohort, in the case cohort they identified significant

volume reduction between the symptomatic and the asymptomatic hip side

for the gluteus maximus (GMAX), the gluteus medius (GMED) and the pir-

iformis muscles. A statistically non-significant trend for volume shrinkage of

the gluteus minimus (GMIN) was found as well, while the tensor fasciae latae

(TFL) showed no significant asymmetry. Similar analysis and conclusions were

obtained by Skorupska et al. [30] in the study of the low back with leg pain,

where more than 50% of the diseased subjects presented smaller volume for

the GMAX, the GMIN and the piriformis.

While the cited work required manual segmentation of the muscular volume,

fully automated segmentation and quantification was proposed by Karlsson et

al. [29] and by LeTroter et al. [33], both employing an atlas-based approach

to separate different muscles (see Sec. 2.2 for a more detailed description of

the segmentation methods). The former took advantage of a specific MRI

acquisition, the two-point Dixon chemical-shift protocol, to acquire water-fat

separated MR images and correct the muscle volumes for fat infiltration, re-

porting good agreement with the volumes obtained from the manual ground

truth segmentation. The method was validated on healthy subjects only and

thus no clinical relevance of the muscular volume in pathological conditions

was reported. The latter compared a semi-automated single-atlas and a fully-

automated multi-atlas approaches to obtain volume estimation of the quadra-

tus femoris in healthy subjects. The volume was computed by the truncated

cone formula, which assumes an inter-slices conical shape of the muscles [34].

Interestingly, in the case of longitudinal analysis, the authors reported a bet-

ter agreement between the volume from manual segmentation and the semi-

automated single-atlas approach, compared to the multi-atlas one. They sug-

gested that, although time-consuming, performing manual segmentation on
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the first time-point and then use it to automatically segment subsequent time-

points should be preferred to a fully-automated method.

Fat infiltration

As already introduced in Sec. 2.1.1, current measures of fatty infiltrations

are qualitative visual estimations at few characteristic slices [24, 35]. How-

ever, severe fatty muscular degeneration is associated with poor functional

outcome [35], leading to a need for defining standardised ROI selection and

more accurate intramuscular fat quantifications [36, 37].

Most state-of-the-art methods are based on tailored MR acquisition with en-

hanced contrast for fat signal, such as chemical-shift MR sequences [38, 39].

Given a manually selected ROI, the fat infiltration is quantified as fat fraction

(FF):

FF = Sf
Sf +Sw

×100 (2.1)

where Sf and Sw are the total signal from fat and the total signal from wa-

ter in the considered volume. An exemplar image of fat segmentation for FF

estimation is shown in Figure 2.3. The relevance of such estimation of the

intramuscular fat was recently demonstrated in a longitudinal clinical study

reported by Morrow et al. [39], where FF was found significantly correlated

with reduced thigh and calf muscle strength and with other clinical assessment

scores in patients with neuromuscular diseases. However, this type of MR ac-

quisition is limited by longer scan time and by increased noise and confounding

factors [38]. Moreover, it is very sensitive to magnetic field inhomogeneities,

and therefore unsuitable in the presence of metal implants [23].

An Ultra-short Time Echo (UTE) sequence was employed by Ugarte et al. [40],

who introduced a novel automated segmentation of fat within a manually delin-

eated ROI. This method relies on a fuzzy c-means clustering of the intensities,

with the addition of spatial connectedness constraints to enforce a filament-

like structure to the regions classified as fat. While providing a volumetric

map of the fatty infiltration, no clear quantification is however proposed nor

benchmarked for pathological conditions. An automated fat fraction quan-
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Figure 2.3: Segmentation of fat in MR derived from water-fat separated imaging of
the calf musculature. The subcutaneous adipose tissue (SAT), the inter- and intra-
muscular fat are highlighted. The intermuscular adipose tissue (IMAT) is simply
the union of inter- and intra-muscular fat. Image from Karampinos et al. [38].

tification derived from standard T1-weighted MR images was proposed by

Lareau-Trudel et al. [41] for patients with facioscapulohumeral muscular dys-

trophy type 1. A k-means clustering algorithm was first applied to classify

each voxel as background, adipose tissue or muscle tissue. An active-contour

segmentation algorithm was then applied to separate the subcutaneous adipose

tissue from the muscle boundary. By combining this with the previous classifi-

cation the percentage of fat within muscular volume could be obtained. They

found signficant correlation between their automated fat fraction measure and

a 4-point visual scale of fatty infiltration, and even higher correlation when the

fat fraction was converted to a logarithmic scale. While fully automated, they

still reported a substantial failure rate, with 20% of the cases requiring manual

adjustments in the segmentation. More recently, Gadermayr et al. [37] com-

pared different automated and semi-automated methods to define the ROI,
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and from each of them they calculated the fat fraction as:

FFγ(s) =
∫ smax

γ
h(s)ds (2.2)

where h(s) is the normalised intensity histogram of volume s, with highest

intensity being smax, while γ is a manually selected threshold to separate

muscular and fat intensities. They also introduced a metric to quantify the

error on FF estimation derived from the automated ROI as the maximum L1

distance from manual ROI-derived FF, for a specified threshold γ.

Finally, although most fat fraction quantification methods have been developed

from MRI, it is worth mentioning a CT-based analysis proposed by Momose et

al. [42]. They used volume and mean CT radiodensity information of manually

segmented Gluteus Medius as a measure of fatty degeneration in patients with

hip osteoarthritis. The 3D volumetric assessment was once again shown to

more accurately reflect muscle strength compared to CSA measures. The CT

radiodensity was found significantly lower in the pathological hip side when

compared to the contralateral healthy side. More relevant, it significantly

correlated with a reduction of hip abductor strength, clinically measured with

a dynamometer.

2.1.3 Current challenges and open questions

As presented in the previous section, a variety of definitions and techniques

have been investigated, but none has yet defined a standardised and robust

approach for the estimation of muscle atrophy. To the best of my knowledge,

no method explicitly tackles the issue of imaging biomarkers quantification in

the presence of implants, which heavily degrade the image quality. Moreover,

only few works directly mention and address the problem of partial volume

effects, i.e. the presence of piled-up signal due to the limited imaging reso-

lution and potential tissue heterogeneity within the voxel. Such effects could

bias the voxel classification into fat or muscular tissue and thus make the

biomarker estimation more difficult. However, the main obstacle still remains
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the automation of the processing pipelines and of the biomarker extractions.

In fact, most methods still require manual input from external users, either as

definition of ROI or threshold selection.

In the musculoskeletal field, the application of automated image analysis tools

is hampered by the exceptional shape variability of musculoskeletal structures

within the population. Together with the inconsistency and variety of im-

age acquisition protocols, this poses strong limitations to the generalisability

of existing approaches, and therefore their customisation to subject-specific

cases or to pathological conditions [20, 21]. In addition, these factors curb

the availability of sufficiently large annotated data sets to be used in super-

vised machine learning or deep learning approaches, which are showing very

promising results in other medical imaging applications. Finally, a further

complication is the presence of metal objects in the field of view, as in the

case of hip replacement. The induced artefacts greatly vary in appearance de-

pending on the image modality and the shape of the implants. By corrupting

the signal intensity from numerous voxels, either localised around the implant

or spread across the FOV, the presence of metal further hampers the ability

to discriminate between tissue types and thus reliably estimate the muscle

atrophy.

The following sections review the current state-of-the-art strategies to address

the described problems.

Summary box: Challenges in imaging biomarkers for hip re-

placement

• Based on qualitative, rater-dependent visual scores

• Lack of standardisation of quantitative muscle atrophy estimation

• Lack of robust and automated segmentation techniques

• Lack of robust and automated image analysis tools
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2.2 Segmentation of musculoskeletal anatomy

In medical imaging, segmentation is the process of classifying and delineat-

ing boundaries of semantically connected regions such as different biological

structures. As a result, a new same-size image is usually produced, where each

pixel/voxel stores a label indicating the class of the respective pixel/voxel in

the original image (Fig. 2.4). Common applications of segmentation include

the localisation and monitoring of tumours or any other pathological region,

longitudinal analysis of organ volume, shape and texture modifications, as well

as delineation of target regions for treatment or surgical planning [43].

The most basic approach to perform image segmentation is by manual de-

lineation of contours. In case of medical applications, this is a heavily time-

consuming task, subject to intra- and inter-rater variability. Nonetheless, this

GMAX GMED GMIN TFL Pelvis

Label image Overlaid imagesMR image

CT image Label image Overlaid images

Figure 2.4: Same-subject CT and MR images and respective manual segmenta-
tion (label image) of gluteus maximus (GMAX), gluteus medius (GMED), gluteus
minimus (GMIN), tensor fasciae latae (TFL) and pelvic bones. The third column
shows the segmentation overlaid to the respective grey-level image. While muscular
and skeletal tissue is easily distinguishable, the correct boundaries between different
muscles or between different bones are harder to define due to the lower intra-class
intensity variability.
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technique benefits from human expertise in recognising relevant objects, hence

it is often considered as the ground truth. In the past thirty years, several

methods have been elaborated to achieve automatic or semi-automatic seg-

mentation of medical images, their applicability being strictly connected to

the image modality and the type of segmented structures. The main algorith-

mic approaches relevant for MSK can be categorised in the following groups:

• Intensity-thresholding approaches make use of filtering techniques on the

voxel intensity values. They can be applied stand-alone or combined with

other basic image processing tools, such as smoothing and/or morpho-

logical operations, in a sequence of steps tailored for specific applications.

• Iterative clustering refers to unsupervised classification techniques aim-

ing at simultaneoulsy maximising the intra-class similarity while min-

imising the inter-class one. For the purpose of image segmentation, they

are applied to the voxel intensity values and they are effective on imaging

modalities where there is a clear and reproducible relationship between

tissue type and voxel intensity (e.g. in CT). An examples is the k-means

clustering algorithm: given the number of expected classes and an ini-

tialisation of the average intensity per class, it iteratively assigns each

voxel to the class whose average is closest and then updates the average

value. The operation is repeated until no voxel classification is modified

anymore. An extension of the k-means algorithm is the fuzzy c-means,

where each voxel is not associated with a single class but with a member-

ship value (between 0 and 1) per class, representing its distance to the

average of that class. This makes the classification more robust to out-

liers and implicitly considers partial volume effects, but is still affected

by noise and does not encompass any shape information. If assumptions

can be made on the intensity distribution of the images, model-based

clustering can also be developed. A Gaussian Mixture Model (GMM)

is often chosen in medical imaging for this task using an Expectation-

Maximisation (EM) framework to obtain the maximum likelihood esti-
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mates of the mean and standard deviation per class. Anatomical priors,

as well as noise modelling and Markov Random Field regularisation can

be encompassed within the EM framework to tailor the segmentation al-

gorithm to specific tasks [44]. However, such approaches would fail if the

intensity distributions of different classes present extensive overlapping.

• Active shape models (ASM) indicate the process of applying a local search

algorithm to fit a shape model to an image, in order to locate and segment

the structure of interest. Statistical shape models (SSM) are typically

used as models to be fit by the ASM approach. SSM are population-

derived models most suited for structures with characteristic shape and

location. Given a training dataset, they are built by (1) localising a set

of easily identifiable landmarks along the shape contour in each image,

(2) rigidly registering the shapes into the same reference frame, (3) using

principal component analysis (PCA) to derive a shape model defined as

the mean shape and its variations modes. When applied to a new image

with the ASM, these models provide a priori knowledge on the shape

to segment in order to identify the same object within the image [45].

The SSM can be combined with texture information to learn correlations

between shape and texture (statistical appearance models or SAM). In

this case, after warping each training image to the mean shape, a tex-

ture vector is extracted from each of them, an eigen-model for texture

is built using PCA, and is then combined with the shape model. The

process of fitting this model to a new image is called active appearance

model (AAM), where not only the shape but also the texture is taken

into account to obtain the automated segmentation of the structure of

interest [46]. AAMs take greater advantage of the available information

compared to ASMs, but are computationally expensive and strongly re-

liant on a good initialisation.

• Atlas-based methods are based on the same ASM concept of applying

prior information to a new image. The prior knowledge in this case de-
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Figure 2.5: Schematic representation of the multi-atlas automated segmentation
approach. First, all the template images are registered to the target. The optimised
transformations T1, . . . , Tn are used to resample the respective label images to
the target space (segmentation propagation). The final automated segmentation is
estimated through a label fusion technique.

rives from one or more atlas images, which are sets of intensity image

(template) and its known segmentation (label image) [47]. Differently

from ASM approaches, the final segmentation is obtained by propagat-

ing the label images into the target image space. More specifically, first

all the available atlases are aligned to the target using image registra-

tion. The same alignment is applied to their respective label images so

as to remap them onto the target image (segmentation propagation).

Each propagated segmentation represents therefore a candidate segmen-

tation for the target. A final consensus is then defined using a label

fusion technique (e.g. majority voting, STAPLE [48], STEPS [49]). A

schematic representation of the multi-atlas automated segmentation is

shown in Figure 2.5. Compared to SSM, atlas-based methods are more

generalisable across subjects and across modalities, as they do not rely
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on the presence of specific shape features, but only on the possibility to

achieve a reasonably accurate registration. However, the need to perform

multiple registrations is also a drawback in terms of computational cost.

• Region-based methods separate homogenous regions by identifying

boundaries in the image. If edges are clearly visible in the image,

such methods are typically more robust to noise than pure intensity-

based ones as they can encompass spatial connectivity information.

However, they often require some manual initialisation, which they are

very sensitive to. Region-growing methods such as watershed belong to

this category, together with contour modelling, either parametric (active

contours or snakes) or non-parametric (level sets). Active contours [50]

are parametric curves optimised by minimisation of an energy func-

tional. They are typically physics-based models that balance boundary

evolution to image edges with specific shape constraints (e.g. continuity,

boundary smoothness). Level sets [51] are a contour evolution method

based on implicit surfaces. Differently from active contours, they are

also able to model self-intersection and changes in topology.

• Graph-cut segmentation considers each voxel in an image as the node

of a graph, connected to the neighbouring voxel by an edge (n-link).

Each node is also connected by so-called t-link edges to different termi-

nal nodes, designating the different possible classes. Both n-links and

t-links are associated with nonnegative weights such that the segmenta-

tion problem becomes the identification of the best graph cut minimising

the sum of the weights of the severed edges [52]. In practice, this is equiv-

alent to the minimisation of a cost function including regional properties,

boundary terms and possibly hard constraints.

• Deep learning segmentation refers to a broad range of fully data-driven

algorithms that make use of large training data to learn the features

best representing the structure under study. A deep learning model is
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expressed as a neural network (NN), a collection of layers connected to

each other to construct highly-dimensional non-linear functions. The

neural network is then trained to map the inputs to a desired output

using an optimisation scheme. Supervised learning is the most common

setting, where the training set is composed of grayscale images and their

respective label images (typically manual segmentations). In this case

the neural network is optimised to correctly predict the label images,

given the grayscale as input. If trained correctly, the model is able to

generalise to unseen images and thus automatically predict their seg-

mentation. In medical imaging, convolutional neural networks (CNNs)

are the most widely used model, as they employ convolutional filters to

extract image features in a tractable way on such high-dimensional data

as medical images [53]. While being very powerful modelling techniques,

they require large amounts of reliable labelled training data, which is

often not readily available in medical imaging applications. A few ap-

proaches already exist in the literature, which aim at obviating the need

for large labelled training sets. Data augmentation is the most common

approach, and consists in artificially injecting input data variability dur-

ing training through randomly transforming the available data (e.g. by

applying random rotations/flipping along the image axes or by adding

random noise)[54]. This approach typically favours the generalisation to

unseen data as it prevents the network from simply memorising the train-

ing set, but is limited by the variability the random transforms are able to

capture. Alternatively, a patch-based sampling scheme can be adopted,

when the segmentation problem is applied to large 3D volumes. This

refers to the technique of randomly sampling portions (patches) of the

volume, instead of feeding the full volume at once. Similarly, 2.5D deep

learning techniques use 2D CNNs but with 3D input, where the input

usually includes a few neighbouring slices or multi-view slices. Both these

approaches can be used to enlarge the number of training samples while
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keeping the model parameters to a tractable number, however they might

struggle to capture the global context medical images carry [53]. More

sophisticated techniques include transfer learning - where a deep learning

model pre-trained on a different task (e.g. natural image classification)

is slightly modified and fine-tuned on the target task (e.g. medical im-

age segmentation) [55] - and active learning - where the network output

is iteratively presented to a human expert who corrects any mistake or

annotates scribbles which are fed to the network to improve the segmen-

tation [56]. Finally, semi-supervised learning represents a promising and

growing field towards the compensation of missing labelled data. During

training, these approaches leverage both labelled and unlabelled data to

improve the generalisability of the learnt model. Typically, the model

is first partially trained using only the labelled data, then pseudo-labels

are generated with this model also for the unlabelled data. The model

is then retrained with all the available labels, typically by taking into

account the uncertainty associated with each label. The process can also

be iterated to further improve the performance [57].

Task-specific hybrid approaches combining the discussed categories are be-

coming more and more popular in the field. For instance, SSM or atlas-based

methods can be used to initialise a segmentation further refined by a graph-cut

algorithm; non deep-learning methods and manual refinements can be adopted

to generate the large training datasets needed to train the deep learning mod-

els.

A few challenges still characterise the application of the described techin-

ques in the musculoskeletal field. As already mentioned, the main bottleneck is

the large inter-subject variability in both shape and texture, especially of mus-

cles. Moreover, most of MSK structures are relatively wide, requiring either

very large image FOV or methods able to cope with object occlusion, which

happens when the object of interest is partially outside the FOV or hidden by

other elements in the scene. Other challenges involve the small intra-class ap-
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Table 2.2: Typical intensity values in CT imaging measuring the radiodensity of
tissue in Hounsfield Units (HU): HU = 1000×(µtissue−µwater)/(µwater−µair), with
µ indicating the X-ray attenuation coefficient [59, 60].

Substance CT intensity (HU)
Water 0

Air -1000
Fat [-100, -50]

Soft Tissue [+30, +300]
Bone [+300, +3000]

Heavy metals >+3000

pearance variability: while it is reasonably simple to distinguish muscular and

skeletal structures, it is generally harder to define clear boundaries between

different adjacent muscles or adjacent bones. An example is shown in Figure

2.4, reporting both a CT and an MR segmented scans.

2.2.1 Bone segmentation

As introduced in Section 1.2, CT is the preferred modality for bone visualisa-

tion. In MR, the highly rigid structure of cortical bone induces a fast-decaying

signal that is often not detectable, causing a lack of information in the recon-

structed image in correspondance to cortical areas. As a result, the cortical

bone appears as black, while trabecular bone tissue has a gray-to-white ap-

pearance, close in intensity to fat [58]. By contrast, in CT the signal inten-

sity at each voxel is directly proportional to the X-ray attenuation coefficient

characteristic of the tissue presented in the volume. Typical ranges of image

intensities are reported in Table 2.2. Being highly attenuating with respect to

other tissue types, bones produce areas of high contrast in the image, which

makes them more easily distinguishable. Hence most of the work presented

in the literature for hip joint segmentation has been developed for this latter

imaging modality.
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Segmentation from CT images
Given the well-modeled relationship between image intensity and tissue type,

the easiest and most common form of bone segmentation in CT is thresholding:

voxels associated with intensities within a certain range of values (typically

+300/+3000 HU [60]) are classified as bone tissue. This technique is effective

for cortical bone, as its intensities are well separated from other tissues (HU >

1800−1900), but it fails in identifying the trabecular bone and bone marrow,

as their intensities are closer to other tissue types (300 ≤ HU ≤ 400). This

worsens in presence of pathological conditions such as osteoporosis, where the

bone boundary becomes very narrow [61]. Simple thresholding also does not

permit to distinguish and classify the different types of bones.

A large variety of more sophisticated automated methods has been presented

in the literature for the segmentation of the hip joint, focusing mostly on the

correct identification of the acetabular space. Four main categories can be

identified [62, 63]:

• Intensity-thresholding approaches. One of the most recent attempts was

reported by Cheng et al. [64], who proposed an iterative adaptive thresh-

olding classification, based on Bayes decision rule, with the application

of a valley-emphasising filter to enhance contrast in the acetabular space.

A coarse-to-fine approach was presented by Guo et al. [65], where mor-

phological operations and an EM bone boundary definition strategy are

coupled with a 3D surface voxel tracing algorithm to further refine the

segmentation. While typically fast, these methods tend to fail in case

of severely diseased hips, as bone boundaries are less sharp or less well-

defined [65].

• Active shape models (ASM). Examples of this approach in the pelvic do-

main are reported by Seim et al. [66], who focused only on the pelvic

bone, and by Keinmueller et al. [67], who extended the model to the

whole articulation by including also the proximal femur. Similarly,

Yokota et al. [68] implemented a hierarchical SSM approach to firstly
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segment the pelvis and the distal femur and then refining the segmenta-

tion of the femoral head near the acetabular space. This latter method

proved to be robust for diseased hip joints as well.

• Atlas-based methods. For hip segmentation, a single-atlas approach was

presented by Pettersson et al. [69], while multi-atlas frameworks were

proposed by Whitmarsh et al. [61] and more recently by Besler et al. [70].

The use of atlases naturally allows for the independent labelling of each

and every bone, making this method more robust to cases with narrow

acetabular space, provided that an accurate atlas-to-target registration

can be obtained.

• Graph-cut segmentation. A fully automated application of this method to

the hip joint segmentation was proposed by Krcah et al. [71], which does

not require any prior shape model but only exploits intensity information

as prior. Alternatively, Pauchard et al. [63] presented an interactive

graph-cut framework for femur segmentation, where the user provides

initial quick scribbles of the foreground and background to be included

as hard constraint in the graph-cut and can also perform manual editing

on the result iteratively.

In the context of combining multiple techniques, work has been proposed by

Chu and collaborators in two separate articles. In their first work [62], they

combine a robust landmark-based initialisation with a multi-atlas segmenta-

tion approach, which is further improved by fitting an articulated SSM to pre-

serve the joint structure. In the second one [72], the multi-atlas based segmen-

tation is employed to constrain a multi-label graph-cut algorithm. An example

of hybrid method with SSM and graph-cut is offered by Huang et al. [73] for

femur segmentation. To avoid the need of population models, region-growing

methods have been combined with patient-specific optimal thresholding [74] or

other variational approaches such as phase-field fracture models [75] to better

separate femur and pelvic bones. They have the advantage of fairly reduced
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computational cost with respect to atlas-based methods, though their general-

isability to pathological hips together with their robustness to noise still need

to be proven.

More recently, deep learning approaches have been introduced for bone seg-

mentation in CT. Some examples on whole-body CT showed high segmentation

accuracy but focussed on segmenting the skeletal components as a whole, with-

out differentiating individual bones [76, 77]. Lindgren Belal et al. [78] proposed

a cascade of CNNs to automatically segment 49 different bones, including the

pelvic bone. They used whole-body data, which would be computationally

intractable for a deep learning model. To overcome this problem, a first CNN

was trained to locate relevant anatomical landmarks, and each landmark was

then fed to a second CNN together with a corresponding patch of the CT

image for automated segmentation. Similar work was proposed by Schnider

et al. [79], who compared different 3D U-Net models for segmenting 126 dif-

ferent bone structures (including pelvic bones and femora). In both works,

however, no segmentation accuracy is reported for the pelvis or the femora.

An automated segmentation of the proximal femur was very recently proposed

by Zhao et al. [80], who obtained highly accurate results on 3D CT images

cropped around the femoral head using a 3D V-Net architecture. They also

showed significant correlation (R2 = 0.9956) when comparing the volumes from

the automated and the manual segmentations. Interestingly, the ground truth

to train this model was built using thresholding and a contour detection algo-

rithm, followed by manual refinements, on the training data points.

Altogether, despite this large variety of approaches, global thresholding cou-

pled with manual editing still remains the most commonly applied segmenta-

tion method for bones in CT [81].

Segmentation from MR images

Despite the limitations of this modality for bone visualisation, the use of MR

is still appealing for its lack of ionising radiation exposure and for its relatively

good contrast for cartilaginous tissue.
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Methods similar to the ones described for the segmentation in CT images are

often applied. Schmid et al. [82] combined a SSM initialisation of a physics-

based deformable contour evolution which accounts for the most probable

modes of variations and a Markov-Random-Field regularisation. This was

extended by Chandra et al. [83], with the introduction of clinically relevant

weighting maps into the statistical shape model, to focus and improve the seg-

mentation of 3T MRI in the most critical areas of the acetabular space. More

recently, Damopoulos et al. [84] proposed the use of a random forest classifier

to obtain an initial probabilistic segmentation of the femur in radial MR scans,

which is then used to drive the registration of a template mesh to the target

image. However, such methods often require a manual detection of landmarks

to initialise the model fitting, and most commonly rely on shape models built

from a healthy population, whose applicability to pathological scenarios is still

unclear.

Xia et al. [85] developed a comparison between a CT-to-MR multi-atlas ap-

proach - where the segmentation from template CT images are propagated to

the T2-weighted MR space - and an ASM method built on a CT-derived sta-

tistical shape model of the hip joint. Both methods proved to be robust and

accurate, with the higher computational burden of the multi-atlas approach

being the only major difference. However, the use of a 3T MR scanner on

healthy volunteers might have facilitated the achievement of good segmenta-

tion results in the MR.

Due to the different appearance of cortical and trabecular bone in MRI, region-

growing methods are less effective for bone segmentation, as they tend to con-

verge to the trabecular bone only or leak into soft tissue where the cortical

bone is very thin [58]. To overcome this issue, Arezoomand et al. [58] developed

an atlas-based semi-automatic initialisation of an active contour segmentation

of 3T MRI scans.

Deep learning methods have been recently coming into play for this task in

MSK. An example on knee MRI is given by Liu et al. [86], where an encoding-
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decoding CNN is trained to predict bone and cartilage segmentation of the

joint, subsequently refined through a marching cube and simplex deformable

model to extract a final mesh of the segmented structures. T2-weighted MR

images acquired on a 3T scanner were employed in this case as well. Promising

results for femur segmentation in T1-weighted images were reported by Zeng

et al. [55] using a similar 3D U-net architecture. To overcome the small size of

the training dataset, they took advantage of a transfer learning approach from

a network trained to classify sport images. A comparison of 2D and 3D CNN

architectures for proximal femur segmentation in high-resolution T1-weighted

MR images from a 3T scanner was presented by Deniz et al. [87]. They re-

ported very high segmentation accuracy (Dice similarity = 0.95± 0.02) and

showed that 3D CNN models and the use of dilated convolutions boosted the

segmentation performance. Such high accuracy and the computational gain

at testing are clear advantages of well-trained deep learning models over other

techniques. Still, however effective and popular, the lack of large annotated

training datasets is currently the main holding-back factor for such deep learn-

ing approaches to flourish in hip imaging.

2.2.2 Muscle segmentation

A variety of approaches can be found in the literature for the segmentation of

muscles and other soft tissue in both CT and MR images. While fat is charac-

terised by a specific range of values on the HU scale and can be easily segmented

in CT images through thresholding, muscle intensity distribution overlaps with

that of other organs and tissue types, [-29, 150] HU, hence clear boundaries

between neighbouring muscles and/or organs are hard to delineate [88, 89]. On

the other hand, MRI provides remarkable contrast for soft tissue structures,

but its wider application in orthopaedics is currently limited by its high costs

and by the lack of standardised acquisition protocols. Together with the con-

siderable shape and texture variability of muscular structures, this hampers

the development of standardised and accurate segmentation techniques which

could aid the image analysis [20].
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Segmentation from CT images

Few attempts have been reported in the literature for the segmentation of mus-

cles in CT, mostly focussing on chest and abdominal area for the quantification

of body composition and fatty or lean tissue distribution. Different approaches

have been proposed either based on fitting statistical shape and appearance

models (Chung et al. [90]), on combination of atlas-based and active contour

models (Zhang et al. [88]), or on deep learning segmentation (Lee et al. [89]).

However, all of these methods are applied to the whole musculature, thus being

inadequate to differentiate the individual muscles specifically.

Regarding individual muscles, the segmentation of the psoas major in CT was

addressed by Kamiya et al. [91] by means of a mathematical shape model, de-

fined from a set of landmarks and muscle centerlines, which per contra is not

trivially extendable to pathological cases. Atlas-based approaches are currently

the most appropriate solution for simultaneous segmentation and classification

of several different muscles, as they allow to include prior geometrical knowl-

edge about the shapes and the relative locations of the considered structures.

Wei et al. [92] employed a single-atlas segmentation propagation approach for

the paraspinal muscle, where the atlas is affinely registered to the target, fol-

lowed by a local contour optimisation to improve the convergence to the correct

muscle location, and further refined by active contour segmentation. Interest-

ing work was presented by Otake et al. [93] to estimate patient-specific muscle

fiber orientation from CT: the segmentation of gluteus maximus and medius is

firstly derived with a hierarchical multi-atlas approach, and a geometric muscle

fibers template is fit to a CT-derived structural tensor vector field within the

gross muscle volume. However, the success of this approach relies on sufficient

intramuscular fat within the muscle to allow for the fibers to be detected.

At the time of writing, the most relevant results are reported by Yokota et

al. [94]. In order to segment 19 skeletal muscles in the hip and thigh region,

they introduced a hierarchical multi-atlas approach in three steps shown in

Fig. 2.6. First, the skin and the bones of the target image are automatically
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Figure 2.6: Hierarchical multi-atlas approach for automated muscle segmentation
proposed by Yokota et al.. Three iterations of multi-atlas segmentation propagation
and label fusion are performed, first to segment bone and skin, second for the full
musculature and finally for 19 individual muscles classification. (Image from Yokota
et al. [94]).

segmented and a label-based registration is used to align all the templates to

the target image (spatial normalisation); then, the whole muscular tissue is

segmented using the spatially normalised atlases and a new label-based regis-

tration of the whole muscles is used to update the spatial normalisation; a final

iteration of atlas-based segmentation propagation is used to obtain the sepa-

rate muscles labelling. In a cross-validation study with 20 female patients, they

reported an average Dice score [95] from all muscles of about 80%, showing im-

provement against no use of hierarchisation. Interestingly, they demonstrated

how a 2D assessment of segmentation accuracy led to either under- or over-

estimation on at least 5 muscles, when compared to full volumetric measures.
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A major drawback of Yokota’s method is the high computational cost, due

to the multiple iterations of atlases-to-target registrations. The same group

very recently tackled this issue using a deep learning framework, which is slow

at training but computationally very efficient at testing on unseen data [96].

They proposed a 2D Bayesian U-Net, where Monte Carlo dropout is applied at

inference to estimate the segmentation uncertainty. On the same 19 muscles,

this method improved the Dice Score to 89%, and it also showed potential for

an active learning framework, where high uncertainty regions are presented to

a human rater for reassessment and manual correction. Although the authors

mentioned that all their subjects had total hip replacement on one hip side, in

both studies results are shown only for the contralateral (non-implanted) hip

side. It is thus unclear what was the perfomance on the implanted side and

what was the impact of metal artefacts.

Segmentation from MR images

The interest in muscle segmentation in MRI initially arose from the possibility

of developing musculoskeletal models for biomechanical dynamic simulations.

The first attempts were therefore limited to an adult average anatomy, with no

customisation to subject-specific geometry [21]. An example is the 3D finite

element model developed by Blemker et al. [97] derived from manual segmen-

tation of hip muscles. As the accuracy of biomechanical simulations was shown

to benefit from patient-customisation [98], more research efforts have been fo-

cussing on automated muscle segmentation from MRI, also in connection with

localisation of tendon insertions.

Although graph-based modeling or active contour initialisation are found in

the literature [41, 99, 100], similarly to CT, atlas-based methods are still the

most commonly used for muscle segmentation in MRI, either stand-alone or

in combination with other refinement techniques. In fact, edge-based methods

tend to fail in determining separate muscle boundaries, especially when heavy

fat infiltration is present, as they cannot distinguish between intramuscular

and intermuscular fat without a shape model [37].
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Figure 2.7: Example of atlas-based automated muscle segmentation from water-
fat separated MRI. Results from a 1.5T (a) and a 3T (b) atlas datasets are shown.
(Image from Karlsson et al. [29]).

Similar atlas-based approaches are discussed by Jurcak et al. [101] and by

Prescott et al. [102], the former exploiting a probability atlas to initialise a

geodesic active contour algorithm to segment the quadratus lomborum muscle,

the latter selecting the template most similar to the target image to initialise

a level-set segmentation of four quadriceps muscles. A full-body 10 muscle

groups segmentation was achieved by Karlsson et al. [29], taking advantage of

Dixon acquisition with water-fat separated MR images for enhanced contrast

of muscular boundaries (Fig. 2.7). The multi-atlas based automated segmen-

tation was validated on 3T MR images, using both a 1.5T and a 3T atlas

datasets. For the same group of muscles, Ahmad et al. [103] proposed a semi-

automatic algorithm based on patient-specific atlas: the manual segmentation

of a single 2D slice (ideally the mid-FOV one) is used as an atlas by registering

and propagating its segmentation to neighbouring slices; the process is iter-

ated by updating the atlas image with the newly segmented slices and moving

therefore along the full volume. On the same idea of propagating manually



2.2. Segmentation of musculoskeletal anatomy 58

annotated slices, Ogier et al. [104] presented a framework that combines both

an interpolation and a propagation schemes from the inferior and superior

manually segmented slices. The former registers the references slices together

and linearly interpolates between their segmentation to obtain the intermedi-

ate slices contours, while the second performs pairwise registration and label

propagation of each slice with the nearest reference one. A deep learning for

thigh muscle and fat segmentation was proposed by Yao et al. [105], integrat-

ing a network for the detection of edges and regions with a traditional active

contour refinement and a classification network. Still within the thigh area,

Mesbah et al. [106] presented the advantages of using fat- and water-separated

MRI images to obtain an accurate segmentation of different muscular groups

and the intramuscular fat in healthy and pathological subjects. Taking advan-

tage of the multimodal information, they employed a Markov Gibbs Random

Field model which included atlas-based prior shape knowledge, labelling spa-

tial coherence and fat and muscle intensity differences. They interestingly

compared their approach with a CNN segmentation model (DeepMedic [107]),

demonstrating comparable performances and arguing that their approach is

more computationally efficient and would not require re-training if new atlases

are available.

Most of the discussed methods are adapted only for healthy conditions and

often require manual interaction. In the case of pathological muscles, no

method is able to accomodate for metal-artefact corrupted images. For MoM

hip arthroplasty patients, to the best of my knowledge the only automated

segmentation method of hip abductor muscles in MRI was presented by Klemt

et al. [108] in previous work from my group. They proposed a multi-atlas based

segmentation propagation approach based on a robust Least Trimmed Square

registration framework, which proved to achieve high accuracy segmentation

for both healthy and severely atrophied muscles.
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2.2.3 Joint skeletal and muscular segmentation

Examples of combined musculoskeletal segmentation can hardly be found in

the literature for hip anatomy. A first attempt, still within the context of seg-

mentation for biomechanical simulations, was presented by Gilles et al. [109],

who implemented a multi-resolution simplex mesh model of musculoskeletal

structures that can be registered to a MR image in a semi-automated way.

A biomechanical modelling technique was proposed by Kohout et al. [110],

based on a surface mesh generic model that can be fit to EOS imaging data by

alignment of three landmarks. While such models are suited for biomechan-

ical simulations, they do not really fit locally to the anatomy of the patient,

hence they cannot be used to evaluate imaging biomarkers or generically assess

pathological conditions.

Only very recently a few more works on joint skeletal and muscular segmen-

tation have been published, concurrently to the development and progression

of this thesis project. The methods proposed by the Nara Institute of Science

and Technology group [94, 96], which were discussed in section 2.2.2, do report

the ability to segment also the pelvic bones and the femora together with 19

muscles. However, no segmentation performance is reported for the skeletal

structures, as they were not the main focus of the work. For the purpose of

body composition analysis, Hemke et al. [111] trained a 2D U-Net to automat-

ically segment CT slices into subcutaneous adipose tissue, muscle, bone and

other generic tissue. A segmentation of the intramuscular fat was then derived

through morphological erosion of the muscle mask and subsequent threshold-

ing of the CT image at -30 HU within the muscle area. The model is however

not able to differentiate separate muscles or bones, and it was also debatably

trained and tested to segment a single standardized CT slice, with no clear as-

sessment of the whole muscle volume. A more robust deep learning approach,

called Attention-Pyramid network (APNet), has been recently introduced by

Liang et al. [112] for the segmentation of 50 pelvis anatomical structures on

MR images. They combined spatial pyramid pooling to capture model local
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context with an attention mechanism to preserve the global context, reporting

a mean Jaccard index of 80.27% on the test image and improving over stan-

dard deep learning architectures.

A last very relevant development from the Nara group concerns the segmenta-

tion of CT images of patients with THR also on the implanted hip sides [113].

Using simulated data, they trained two U-Nets: the first one refines a stan-

dardized metal artefact reduction technique called Normalized Metal Artefact

Reduction (NMAR, see Sec. 2.4); the second performs the segmentation of 19

hip muscles, femur, pelvis and sacrum. The training data was generated by

impainting implant data onto pre-operative CT images, forward projecting the

images in the sinogram space, merging them and reconstructing the corrupted

image with filtered back projection to produce the artefact. The MAR net-

work and the segmentation network were then tested on 3 post-operative CTs

with manual segmentation of gluteus maximus and medius. An example of

their segmentation result is reported in Fig. 2.8. It shows how an automated

segmentation technique developed on healthy population (i.e. non corrupted

images) performs poorly on cases with artefacts, thus demonstrating the need

for segmentation methods more robust to metal-induced noise. Although very

promising, their method is based on a supervised approach for the metal arte-

fact reduction. As no real CT image can be obtained with metal but without

artefact, they need to rely on simulated data where the artefact is artificially

generated. Thus, the performance of the U-Net is highly dependent on how

realistic this simulated data is (see Sec. 2.4 for more details). As it was tested

on 3 subjects only, further validation would also be desirable to assess the

accuracy and generalisability of their approach.

2.2.4 Summary of current methods limitations

A number of limitations still characterises the currently available approaches

for musculoskeletal segmentation. First, the majority of the methods focuses

either on bony or muscular structures, with no means of fusing them to better

visualise their spatial relationship. In the past ten years, most of the combined
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Figure 2.8: Example of automated segmentation of CT images including hip im-
plants using the pipeline proposed by Sakamoto et al. [113]. The top row displays
the performance of a U-Net based segmentation when no explicit compensation is
applied for the metal artefact. The 3D rendering of the segmentation is reported
together with two exemplar axial slices, also overlaid with their segmentation result.
The bottom row shows the outcome of their proposed approach, where a refined
metal artefact reduction method is applied before the segmentation (Image from
Sakamoto et al. [113]).

musculoskeletal segmentation techniques were developed for the purpose of

generic biomechanical simulations, not tailored to patient-specific anatomy.

However, recent literature has shown that such models would benefit from

customisation to the subject, thus a volumetric model derived from patient’s

imaging would be more accurate for these tasks [98].

In general, most of the discussed image-based methods are built on prior

geometrical knowledge from healthy subjects. This consequently limits the

physiological and pathological variability they are able to encompass and ac-

count for. This problem becomes even more relevant in presence of strong

artefacts in the image, hampering the robustness of the model-fitting proce-

dure, such as in the case of MoM hip arthroplasty patients. With the exception
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of Klemt et al. [108] and Sakamoto et al. [113], no method has reported reliable

performance in presence of hip implants within the image FOV.

My work sets in this context, addressing the automated segmentation and

analysis of musculoskeletal anatomy from low-quality and heavily artefacted

hip imaging data. In particular and differently from all the methods currently

available in the literature, I propose the combination of CT and MRI infor-

mation, taking advantage of both modalities to enhance both the inter-tissue

and the intra-tissue variability. The effective fusion of multimodal information

requires accurate registration, thus the state-of-the-art processing techniques

for this task will now be discussed.

Summary box: Challenges in MSK segmentation

• Little work on combined muscular and skeletal segmentation

• Models including prior shape knowledge are built on healthy pop-

ulation

• Lack of robust methods to deal with metal artefact induced noise

• Lack of standardisation of scanning protocols

• Large shape variability in population

• Typically large inter-tissue variability (e.g. easy differentiation

between bone and muscle), but small intra-tissue variability (e.g.

difficult differentiation among different muscles).
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2.3 Registration of pelvis CT and MRI
In medical imaging, registration indicates the process of establishing a one-

to-one mapping between the coordinates in one space and those in another,

in order to find corresponding anatomical or functional points in two or more

images [114, 115]. A general registration algorithm comprises a transformation

model, defining the geometric transformation between images, and a cost func-

tion, typically including a similarity measure to quantify the alignment of the

images and a penalty term to promote desired properties on the transformation

model (e.g. smoothness, regularisation of volumetric expansion and contrac-

tion). An optimisation scheme is adopted to iteratively update the transfor-

mation model parameters in order to minimise the cost function (Figure 2.9).

Different registration algorithms are substantially characterised by different

choices of transformation model, cost function and optimisation scheme. In

particular, the complexity of the transformation model defines the degree of

alignment achievable: simple rigid or affine models provide global alignment

(same transformation is applied to all voxels, parametrised by 6 to 12 degrees

of freedom), while nonlinear transformation models allow for more localised

deformations, as the number of degrees of freedom becomes of the same order

of magnitude as the number of voxels.

Floating Image

Warped Image Reference Image

Transformation

Cost Function

Optimisation

• Similarity 
• Penalty terms
• …

• Rigid
• Affine
• Free-form 

deformation
• …

• Discrete
• Gradient-

based
• Gradient-free
• …

Figure 2.9: General scheme for image registration algorithms. A transformation
model is chosen to warp a floating image and align it to a reference image. The
model parameters are iteratively updated through an optimisation scheme in order
to minimise a cost function, which typically measures the quality of the alignment
between the reference and the warped images. Image adapted from Modat [116]

.
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Registration algorithms can be designed to align images acquired with

different modalities (multimodal registration). This is particularly useful in

comparing and fusing the information derived from each modality. As men-

tioned in Sec. 1.2, CT provides excellent contrast for bones and implant, while

soft tissue anatomy is better visualised on MRI. Hence, CT-MRI registration

is an extremely helpful tool in musculoskeletal imaging to combine their com-

plementary information. This is indeed an active research area, especially in

the field of pelvic radiotherapy treatment planning, where CT provides the

tissue attenuation information to calibrate the treatment while MRI allows

for more accurate contouring of cancerogenous tissue (e.g. for prostate, rectal

or cervical cancer). In this context, the first methods to perform multimodal

registration were manual or semi-automatic, mostly based on the manual anno-

tation of landmarks and on the identification of the best affine transformation

to match these points [117]. Kerkhof et al. [118] proposed a bone-driven regis-

tration by simply thresholding the CT and extracting a bone segmentation to

which the MR is registered by maximisation of mutual information [119]. A

different structure-driven nonlinear approach was proposed by Rivest-Hénault

et al. [120], who included a further term in the registration cost function to

quantify the similarity between tissue contours delineated in both modalities.

Similarly, Noorda et al. [121] presented a multimodal framework in which,

after initial global alignment through rigid and affine registration, they em-

ployed a B-spline parametrisation for nonlinear registration and tailored the

cost function to combine information from the image intensity distributions,

from the gradient images and from the bone segmentation. An interesting

learning-based registration method has been introduced by Cao et al., which

makes use of image synthesis to avoid a direct multimodal approach: a random

forest regression is trained to synthesize the CT from the MR and vice versa;

then each modality is registered to its synthetic same-modality counterpart

and the two registration results are finally fused to provide a final deformation

field for the multimodal registration [122].
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Being tailored to specific datasets and most often to a specific organ or re-

gion of interest within the FOV, the discussed registration methods would not

achieve a satisfactory alignment on extended FOV as the ones typically used

to assess musculoskeletal structures. Among the challenges that have not been

addressed yet is the low-quality and highly anisotropic resolution of MR images

routinely acquired in MSK, bound to the short acquisition time that is usu-

ally available. The difference in the high in-plane and very low out-of-plane

resolution (up to a factor 10) strongly affects the ability of intensity-based

registration algorithms to achieve accurate anatomical correspondences along

the three imaging planes. Moreover, in the specific case of hip arthroplasty,

the presence of metal implants in the imaging field introduces artefacts and

induced-noise that deteriorate the image quality in both CT and MR. How-

ever, the main problem affecting the CT-MR registration in the pelvic domain

is related to differences of subject’s pose within the two scanners. While a

global rigid or affine transformation would be insufficient to cope with differ-

ent stretching or compression of soft tissue, a nonlinear transformation would

introduce unrealistic shape deformations in rigid structures such as bones and

implants. The applied transformation should therefore allow for low-frequency

nonlinear deformations of soft tissues, but also preserve the shape of rigid

structures.

2.3.1 Nonlinear registration with rigidity constraint

The problem of nonlinear registration with locally rigid behaviour has wide ap-

plication not only for musculoskeletal but also for other anatomical structures.

One of the first examples in the literature tackles this issue for breast imag-

ing [123], where discrepancies of tumour volume measurements were observed

before and after nonlinear registration of contrast-enhanced MR to its baseline.

To solve this, the authors proposed a free-form deformation (FFD) registra-

tion framework where control points within specific masks - i.e. segmented

breast lesions - were coupled and bound to have the same displacement. Such

a solution would therefore model a rigid transformation defined by translation
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only and no rotation within each mask. To provide a more general framework

to this problem, a novel transformation model called polyrigid or polyaffine

was introduced in 2005 by Arsigny et al. [124]. The main idea behind this

approach is to define some fuzzy regions associated with independent rigid or

affine transformations, and obtain the full-FOV deformation field by smooth

interpolation of all these local components. In particular, they propose a ve-

locity field parametrisation that weighs the contributions of the locally rigid

regions, from which the displacement field can be derived through integration,

ensuring diffeomorphic transformations. An application of this formulation to

the MSK field was presented by Seiler et al. [125], who included a polyaffine

regularisation within the log-demons registration framework for femur allograft

selection in the treatment of bone tumours.

Extending the idea of deriving a diffeomorphic nonlinear transformation from a

set of rigid local ones, Commowick et al. [126] proposed a two-step strategy that

computes spatially sparse local rigid transformations using a block-matching

approach without the need for initialisation or prior knowlegde of the rigid

parts. A dense velocity field is then interpolated from the rigid matrices in the

logarithmic domain.

A widely applied solution was suggested by Staring et al. [127] and consists of

introducing a penalty term in the registration cost function that would pro-

mote a rigid behaviour in user-defined masks. Given a deformation field φφφ

parametrising the transformation between a reference image IR and a floating

one IF , the optimisation problem to be solved by the registration algorithm is

formulated as:

max
φφφ

[S(φφφ;IR, IF )−αPrigid(φφφ)] (2.3)

where S represents a measure of similarity between the reference and the float-

ing image after transformation and P is the penalty term, whose contribution is

weighted by the hyperparameter α. In Staring’s formulation, this penalty term

includes three components (penalisation of non-null second order derivatives

of φφφ, promotion of orthonormality and of incompressibility) and applies only
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for the displacement associated to voxels within rigid masks. This approach

was extended for spine CT-MRI registration by Reaungamornrat et al. [128],

who added a constraint to impose injectivity to the transformation model. In

the context of CT synthesis for radiotherapy treatment planning, Dowling et

al. [129] generated a well-aligned CT-MRI training dataset using the structure-

guided nonrigid registration proposed by Rivest-Hénault et al. [120]. However,

their algorithm relies on availability of accurate contours of the same anatomi-

cal structure in both modalities, which are matched in the registration through

the addition of a soft constraint to the cost function. While being effective,

all these methods need to find a trade-off between the terms in the cost func-

tion, particularly between the similarity measure and the rigidity constraint.

Hence, deviations from a strictly rigid transformation might still be allowed,

and a careful selection of the rigidity penalty term weight α must be carried

out to establish the right balance in the cost function. For these reasons, such

methods are often referred to as “soft constraints”.

Opposite to this is the concept of “hard constraint”, indicating that the con-

straint conditions have to be met exactly. Haber et al. [130] presented a mathe-

matical formulation of the image registration problem where a nonlinear trans-

formation model can be enforced to be strictly rigid in specified areas. Using

the same formalism as above, the optimisation problem is the following:

max
φφφ

[S(φφφ;IR, IF )]

subject to φφφ(xxx)−Rj(xxx) = 0 ∀xxx ∈Maskj
(2.4)

where Rj indicates a rigid or affine transformation specific to the j-th rigid

mask. In their work, the authors report a proof of concept on 2D examples

only, and do not explicitly consider the integration of such formulation into

a broader diffeomorphic registration framework. Nonetheless, the use of such

image-based “hard constraints” should be preferred as it limits the optimisation

only to biologically and physically plausible transformations, which preserve

the volume and the shape of rigid structures.
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Figure 2.10: Example of checkerboard visualisation (on the right) to assess the
registration results. The reference CT image (left) and the affinely registered MR
(centre) from the same subject are shown. The yellow circles in the checkerboard
illustrate areas of clear misalignment between the CT and the MR.

2.3.2 Validation methods
Given the wide variety of registration algorithms available, it is always impor-

tant to define a validation protocol that evaluates the accuracy of the achieved

alignment and the robustness of the results [115]. Unfortunately, registration

is an ill-posed problem and there is no ground truth to compare with. The first

and the simplest evaluation is based on visual assessment by overlaying the ref-

erence and the warped floating image and visually inspecting their alignment.

In this sense, checkerboard visualisation can help identify discontinuities in

boundaries and misalignments (Fig. 2.10). However, it is a subjective and

qualitative evaluation, which is often insufficient to assess registration perfor-

mance on 3D images.

The gold standard approach consists of using firmly fixed markers positioned

before the image acquisition and visible on all the considered modalities. The

markers can be used to estimate the registration error as the residual distance

between their pairs (homologous points). In most cases, such an approach is

invasive and unfeasible on routinely clinically acquired data. More common

is instead the post-acquisition localisation of specific anatomical landmarks in

the image FOV that can be used as homologous points. The Target Registra-

tion Error (TRE) is defined as the distance between corresponding landmarks

after application of the optimised transformation, and it is often indicated as

a measure of registration accuracy [131].

If contours of regions of interest are available in both images, the similarity
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between the segmented structures can also be quantified as a measure of ac-

curacy. A very common metric to check the segmentations overlap is the Dice

Score [95]:

DS = 2× ||SR∩SW ||
||SR||+ ||SW ||

(2.5)

where SR and SW are respectively the segmentation of the reference and of

warped images.

Another validation option consists in the synthesis of a ground truth de-

formation and in testing how well the registration algorithm recovers the

transformation. This is however limited by the ability of simulating realistic

deformations. Finally, the increase of image similarity could be checked as an

indicator, although no conclusion should be drawn only based on this as the

registration algorithm is generally designed to maximise such measure.

The accuracy is not the only desirable property of a registration algorithm.

The biological plausibility of the transformation is also a fundamental aspect

to be considered. When registering two images of the same patient, the struc-

tural topology has to be preserved in order to prevent from unrealistic folding

of the tissue. This is monitored by computing the Jacobian determinant |J | of

the transformation at each voxel, which indicates the amount of deformation

applied at that point: |J |> 1 indicates volumetric expansion; |J |= 1 indicates

volume preservation (e.g. in the case of rigid transformation); 0 < |J | < 1

indicates volume compression; finally, |J |< 0 indicates topology breaking and

should therefore be avoided. As a result, diffeomorphic transformation models

are usually preferred as they naturally guarantee the preservation of topology.

As discussed in the previous paragraph, the biological plausibility of the trans-

formation concerns also the need for rigid behaviour within rigid structures,

which is fundamental in the musculoskeletal field. Finally, inverse-consistency

is also sought to guarantee that the transformation is invariant to the choice

of reference or floating image.

In conclusion, the validation of registration algorithms cannot rely on a single

accuracy measure, but has to include different comparisons and analyses to
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assess the performance and the presence of all the desired features in the

transformation.

Summary box: Challenges in pelvis MR-CT registration

• Need to cope with different patient’s pose within the scanners

• Robustness to metal artefact induced noise

• Preservation of the rigidity of skeletal structures while locally de-

forming soft tissue

• Accuracy throughout large field-of-view

• Robustness to anisotropic resolution of imaging data

• Extensive validation
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2.4 Metal Artefact Reduction

Metallic implants are one of the main causes of image quality degradation

in medical imaging. In patients with hip replacement, the size of the metallic

prosthesis makes the artefacts even more severe and extended [132], hampering

the diagnostic interpretation of the images in the most clinically relevant areas,

i.e. close to the implant. As a result, the introduction of successful metal

artefact reduction (MAR) techniques in hip replacement imaging is of great

importance and thus is an active field of research.

2.4.1 MAR in CT images

In Computed Tomography, the presence of metal objects in the FOV causes

the corruption or incompleteness of projection data, producing bright and dark

streaks that radiate from the metal source throughout the reconstructed im-

age. The signal corruption comes from the physics of X-ray absorption. In the

presence of a polychromatic X-ray beam, the higher attenuation coefficient of

metal induces greater absorption of low-energy photons and consequent “beam

hardening” - the process by which the average beam energy increases. Because

of the higher energy, the dominant photon-matter interaction mechanism is

no longer transmission but Compton scattering, causing part of the photons

to be detected at different angles than the ones expected from transmission.

Thus, the assumptions of transmissive model which the image reconstruction

algorithms are based on are not met anymore, and the estimation of the at-

tenuation coefficient along each projection may be altered. In addition, the

higher absorption reduces the photon flux to the detectors, thus increasing

the statistical noise of the measures. Finally, the sudden and sharp change

in attenuation coefficient at the edges between metal and biological tissues

detemines non-linear partial volume effects, which affect the accuracy of the

image reconstruction.
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Non-learning-based approaches

Numerous approaches have been proposed in the literature for MAR in CT

and can be grouped in acquisition improvements, sinogram completion, itera-

tive reconstruction and image post-processing methods [132].

Regarding the acquisition improvements, the most noteworthy development is

the introduction of dual-energy CT. This technique combines two polychro-

matic beam acquisitions to synthesise a virtually monoenergetic image, thus

reducing the impact of beam hardening effects. Phantom studies demonstrated

a substantial 74% reduction of the metal artefact from hip implants, although

at the expenses of a slight decrease of the contrast-to-noise ratio [133].

Sinogram completion methods refer to the synthesis of missing or corrupted

projection data. In the sinogram space, the artefacts are localised around the

metal trace, so theoretically they can be more easily compensated for [134].

The typical algorithm consists of segmenting the metal trace in the sinogram

space, replacing the corrupted data and finally reconstructing the CT image

(e.g. through filtered back projection). Such approaches work best on the

original raw data, however they can also be applied to virtual sinograms: the

reconstructed image is first forward projected into the sinogram space (vir-

tual sinogram), the corrupted data is corrected and then the image is recon-

structed back to its original space. To this category belongs the current state-

of-the-art MAR approach on reconstructed CT, namely the normalized MAR

(NMAR) [135]. The algorithm, reported in Fig. 2.11, initially reconstructs the

image and generates a metal-only image and a prior image (including bone,

soft tissue and air) using intensity thresholding. These are both forward pro-

jected and the original sinogram is normalised with the sinogram of the prior

image. Interpolation from neighouring pixels is performed over the metal trace,

the sinogram is denormalised and the final corrected image is reconstructed

with back-projection. While correcting for the metal artefact, the interpo-

lation step of NMAR and similar sinogram completion techniques typically

introduces new interpolation errors and loss of details close to the metal. In
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Figure 2.11: Normalized Metal Artifact Reduction (NMAR) algorithm. Intensity
thresholding is initially applied to generate a metal-only image and a prior image
(including bone, soft tissue and air). All the images are forward projected and
the prior sinogram is used to normalise the original one. The metal trace is then
replaced with interpolation from neighbouring intensities and the corrected sinogram
is denormalised and back-projected to the image domain. (Image from Meyer et
al. [135])

.

an attempt to address these limitations, Treece [134] introduced an iterative

sinogram correction algorithm called Refined MAR (RMAR), where the prior

is not obtained for the whole image at once but it is iteratively estimated in-

dependently for each projection angle, by comparing with uncorrupted areas,

and by using a bitonic filter for the interpolation. The RMAR algorithm was

developed for reconstructed images and, although slower than the more tradi-

tional NMAR, demonstrated a reduction of secondary interpolation artefacts

and better details preservation. However, such methods rely on the quality

of the image-derived priors, and residual metal artefact or severe photon star-

vation effects might still be present in the corrected image. Finally, in the

absence of actual raw data from the scanner, the need to forward-project onto

the sinogram space and back-project into the image space typically requires
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making assumptions on the scanner and acquisition protocol (often not avail-

able). It also causes accumulation of interpolation errors.

Iterative reconstruction algorithms define the MAR as an optimisation prob-

lem: starting from an initial reconstructed image estimate, they compute its

virtual sinogram and compare with the real sinogram, and update the recon-

structed image so as to minimize the difference between the virtual and the

real sinogram. In the optimisation, the metal trace is either ignored, down-

weighted or corrected with tailored physical model assumptions or prior in-

formation. However, they tend to be very slow and more importantly they

require access to the real raw data, often not accessible on commercial CT

scanners [132].

Finally, a few examples of MAR as post-processing on reconstructed CT images

are present in the literature. They typically use filtering and morphological

operations and can in some cases incorporate shape prior information to reduce

the streaks throughout the FOV (e.g. Naranjo et al. [136]). Despite the clear

advantage of not requiring the projection data, they have not been shown as

effective as sinogram completion techniques, especially in more severe artefacts

such as in the pelvis.

Deep learning approaches

Traditional physics-based or iterative reconstruction methods are now being

challenged by novel deep neural network approaches, which are data-driven

and less dependent on physical model assumptions. However, most meth-

ods [137, 138] are trained in a supervised fashion, relying on pairs of images

with artefact and their respective ground truth without artefact. During train-

ing, deep learning networks learn how to regress the denoised image from the

corrupted image by comparing their output to the ground truth. With metal

artefacts, real ground truth images (with metal objects in the field-of-view,

but no artefacts) cannot be acquired. Thus, such supervised methods need to

employ surrogate ground truths, such as pre- and post-operative paired data

or simulated images.
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An example of correction directly in the image domain is the work proposed

by Zhu et al. [139], where a 2D fully convolutional network is trained first on

a simulated anthropomorphic head phantom with dental implants, and then

on a real cylindrical phantom. In their work, testing is always performed on

the same type of data as training, so the generalisability of this approch to

real clinical data is not demonstrated. Similarly, Huang et al. [140] proposed

a patch-based CNN learning the residuals between a corrupted image and

the artefact-free one, and showed qualitative clearer reconstruction on 15 real

clinical images compared to standard sinogram completion with linear inter-

polation. A supervised learning in the sinogram space was instead proposed

by Park et al. [141], who however claimed efficacy on primary beam hardening

effects only, due to the limitations of the training data synthesisation process.

More promising strategies combine deep learning with traditional sinogram

completion algorithms, in particular with NMAR. Gjesteby et al. [142] initially

proposed the use of a CNN as a sinogram refinement step after application of

NMAR. They further extended their approach to a patch-based two-branch

CNN to enforce residual learning: one branch receives as input the NMAR

corrected patch, while the other processes a corresponding “artefact-only” im-

age, obtained by subtracting the original corrupted image from the same im-

age after low-pass filter; the two branches are finally merged to produce an

artefact-free patch. They also applied a perceptual loss to train their net-

work: using a pretrained feature extractor, the corrected and the ground truth

(artefact-free) images are compared in a feature space instead of the traditional

image space. Such modifications proved to increase the performance and re-

duce over-smoothing effects on simulated data [138]. A different approach

was proposed by Zhang et al. [143], where a patch-based 2D CNN is adopted

to fuse different existing sinogram-based MAR techinques, concatenated and

used as multi-channel input. The CNN output is then segmented into bone,

water and air with a k-means clustering algorithm to produce a prior image,

which can be finally applied for the original sinogram interpolation.
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Figure 2.12: Dual domain network (DuDoNet) for metal artefact reduction in
CT. The method combines a CNN to correct the sinogram (SE-NET) and a CNN
to correct the reconstructed image (IE-Net), connected by a differentiable Radon
inversion layer. (Image from Lin et al. [144]).

While the methods discussed so far operate either in the image or in the pro-

jection domain, Lin et al. [144] recently proposed to combine the two domains.

They argue that correcting in the image domain is hampered by the struc-

tured and non-local nature of the artefact, and on the other hand sinogram

interpolation methods introduce secondary artefacts. They thus suggest to

jointly train two CNNs - one in the image domain (IE-Net), the other in the

sinogram domain (SE-NET) - which are connected by a novel reconstruction

layer (Radon inversion layer). Their combined network Dual Domain Network

(DuDoNet) is shown in Fig. 2.12. By having a differentiable reconstruction

layer, they are able to backpropagate information from the image-domain to

the sinogram-domain, avoiding the introduction of secondary artefacts. This

is enforced with a training loss including a sinogram recovery loss (corrected

sinogram vs. artefact-free sinogram), an image recovery loss (corrected im-

age vs. artefact-free image) and a Radon consistency loss (sinogram-corrected

image before the image network vs artefact-free image).

Generative Adversarial Networks for MAR in CT
A deep learning model that has become very popular recently is the Genera-

tive Adversarial Network (GAN) [145]. The basic GANs are composed of two
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elements: a generator and a discriminator. The former is meant to generate

samples from the same distribution as the training data, while the discrimina-

tor aims at learning to differentiate between real samples and generated (fake)

ones. During training, the generator uses the discriminator classification to

learn to produce more realistic samples, and thus tries to fool the discrimina-

tor into classifying fake samples as real. At the same time, the discriminator

keeps trying to improve its differentiation ability. A schematic representation

of the GAN principles is shown in Figure 2.13. GANs find their theoretical

basis in game theory, where the generator and the discriminator act as two

players trying to maximise their output while not having control on the ac-

tions of the other player. More formally, let us consider the generator as a

function GθG
: X → Y mapping between a domain X and the domain of the

training samples Y , and dependent on the parameters θG. The discriminator

can be modelled instead as a function DθD
: Y →{0,1}, associating each input

to the probablity of being real or fake, and dependent on the parameters θD.

The discriminator is in effect a binary classifier, thus its loss function can be

defined as a cross-entropy loss:

LD(θD, θG) =−1
2Ey∼pdata

logDθD
(y)− 1

2Ex log(1−DθD
(GθG

(x))) (2.6)

where E indicates the expectation value over the respective distribution. Con-

sidering a zero-sum formulation for the game, the loss function for the gener-

ator can be defined as:

LGAN (θD, θG) =−LD(θD, θG) (2.7)

The optimal solution for the joint estimation of all the model parameters is:

θ∗D, θ
∗
G = argmin

θG

max
θD

LGAN (θD, θG) (2.8)
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Figure 2.13: Generative adversarial networks. (a) Schematic representation, (b)
Working principle: the generator implicitly learns the probability distribution of the
real data.

This formulation is also called minimax game and its solution is given by a

Nash equilibrium, meaning that the optimal parameter θ∗D is a local maximum

of LD and jointly θ∗G is a local minimum of LG [145].

The GAN formulation is an unsupervised generative model that implicity

learns the probability distribution of the training set. As a result, by sampling

from this learnt distribution, new samples can be produced. This generative

property is one of the main strengths of GANs, as it allows to still generate

realistic images without the need of paired data, i.e. without the need of a

ground truth. As a matter of fact, GANs have found most common applica-

tions in image-to-image translation, style transfer and image synthesis, such

as mimicking art styles (e.g. Van Gogh or Monet) from real photographies, or

generating realistic pictures of non-existing people. Compared to other deep

learning methods (e.g. autoencoders or variational autoencoders), the genera-

tors have been regarded as producing qualitatively less blurred, more realistic

and more diverse samples [145, 146]. These properties make GAN approaches
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very appealing in a problem such as metal artefact reduction, since in CT this

can be thought both as a denoising and a style transfer problem. However,

GANs come with a series of non trivial drawbacks, the most important being

the instability of training. The convergence of the model to the Nash equilib-

rium is difficult to reach, and requires training monitoring and balancing of

the different adversarial components [146]. For instance, if the discriminator

becomes too accurate and its loss converges, no information can be propa-

gated back to the generator to improve the fake samples (vanishing gradient

problem). Moreover, GANs typically require larger training datasets than su-

pervised settings: the more data are seen at training, the better the real data

distribution can be modelled and thus the more realistic samples are produced.

The training instability and the need for big dataset make GANs often unsuc-

cessful for 3D images, confining their application in the medical imaging field

only to 2D slices or patch-based approaches. Least but not last in importance,

GANs have been demonstrated to hallucinate features in the generated sam-

ples and introduce geometrical distortions [147]. This is clearly undesirable

for the medical imaging applications, since any modification or domain trans-

fer generated through GANs need to preserve the anatomical content of the

images.

Because of these difficulties, the application of GANs to the MAR problem

in CT has been limited to a supervised setting, where the generator output is

still compared to the ground truth, and the adversarial training works mostly

as a regulariser [137, 148]. In this regard, the work by Wang et al. [137] for

MAR for cochlear implants is exemplar. They introduced a conditional GAN

(cGAN) trained on paired pre-operative CT and post-operative CT images of

the ear. The original GAN loss function is modified to jointly minimise the L1

distance between the generated artefact-corrected post-operative CT and the

ground truth pre-operative CT:

L= min
θG

max
θD

LGAN (θD, θG) +λL1(θG) (2.9)
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where L1(θG) = ||y−GθG
(x)||1 =∑n

i=1 |y−GθG
(x)|, with y indicating the pre-

operative ground truth and GθG
(x) the generated artefact-corrected CT from

the post-operative input x. The network was trained on 90 CT pairs from

which 2D slices were extracted and preprocessed with a piecewise linear in-

tensity normalisation, to further enhance the image contrast. The authors re-

ported a significant reduction in segmentation error of the intra-cochlear struc-

tures from their post-operative CT test set, operating directly in the image

domain (as opposed to sinogram space). They also acknowledged that, while

having a 3D network would be theoretically better for volumetric anatomical

modelling, they were not able to obtain improved performance in 3D.

Still, the most appealing characteristics of GAN approaches is the ability to

work in an unsupervised setting, where no ground truth is required. Inspired by

current developments in image-to-image translation, Liao et al. [149] recently

proposed a valid alternative to the supervised setting in the case of MAR.

They introduced the Artefact Disentanglement Network (ADN), an unsuper-

vised adversarial training scheme to disentangle the artefact from the anatomy

appearance in CT images, showing state-of-the-art performance on both syn-

thetic and real data (Figure 2.14). Given two unpaired images - one with metal

artefact, the other without, but from different subjects, the ADN is trained

to: (1) remove the artefact from the first input and (2) add the same artefact

on the artefact-free image. By simultaneously trying to remove and synthesise

artefact, with the aid of the discriminators, the network learns to produce re-

alistic artefact-free images. In addition, starting from an artefact-free CT, the

output of the artefact synthesis branch is forward passed through the artefact

removal one so as to reproduce the original input CT. This “cycle” consistency

promotes the geometrical preservation of the image anatomical content, coun-

teracting the geometrical distortion problems of traditional GANs. Liao’s work

defines a relevant starting point for the multimodal metal artefact reduction

technique presented in this thesis. Thus, further details about the Artifact

Disentanglement Network will be provided in Chapter 6.
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Figure 2.14: Overview of the Artifact Disentanglement Network proposed by Liao
et al. [149] for metal artefact reduction in CT. The network is composed of: three
encoders E, mapping the input images to a lower dimensional representation; two
decoders acting as generators G and mapping the encoded lower dimensional repre-
sentation back to the image domain, with or without the artefact; two discriminators
D, classifying images (with or without the artefact) as either real or fake. Corrupted
images undergo both self-reconstruction and artefact removal. Artefact-free images
undergo self-reconstruction, artefact synthesis and subsequent artefact removal for
cycle consistency.

MR-driven MAR in CT

A last set of approaches still in its infancy is the use of MRI as prior informa-

tion to correct the CT. Research in this area has focussed only on metal arte-

fact from dental implants, and typically in the setting of trimodality (CT/M-

R/PET) acquisitions for radiation therapy. A pilot study on two subjects was

presented by Anderla et al. [150] and extended by Delso et al. [151]. Similarly

to MR-based PET attenuation correction methods, they proposed to derive a

pseudo-CT from the MR image (based on simple thresholding segmentation of

the MRI) and replace the corrupted voxels in the real CT with the pseudo-CT

values. They however acknowledged that this fails in case of MRI signal void,

thus it is not able to reduce the artefacts in cortical bone regions.

A similar approach was proposed by Park et al. [152] but in a more general

setting without the need of multimodality scanner. Their method is based on

CT-MR intra-subject registration, and subsequent replacement of corrupted
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CT pixels with HU values from an artefact-free region. The MRI data is

used to estimate the transformation between artefact-free slices and corrupted

ones, which is then applied to the respective CT slices to replace the corrupted

pixels. While conceptually simple, the method relies on the assumption that

artefact-free slices are close enough to the corrupted ones to provide an ac-

curate registration. Thus, its application to large hip implants with extended

corrupted FOV is not straightforward. Lastly, Nielsen et al. [153] more formally

modeled the CT artefact reduction as a CT value regression from correspond-

ing MR patches. They proposed to learn the joint probability distribution of

artefact-free CT and MR intensities using Gaussian kernel density estimation,

and model the artefacts as zero mean Gaussian noise on real CT values. Bayes’

rule can then be applied to infer the corrected CT value from corrupted ones.

Also, they interestingly employ an expectation-maximisation framework to es-

timate per-patient model parameters, making the correction subject-specific

and independent on the MR acquisition. Although the methodology is sound

and mathematically robust, at present its validation is limited to qualitative

comparisons and lack of thorough testing of the modelling assumptions.

The discussed works are all limited to dental implants or surgical clips,

whose artefacts in the MRI space are generally more localised and less detri-

mental than the larger hip implants. Also, they are mostly simulations or small

cohort studies, thus a more thorough validation is needed to demonstrate their

effectiveness and scalability. On a broader perspective, these methods have

been shown to prevent the introduction of secondary artefacts typical of sino-

gram interpolation techniques. On the other hand, they require at least two

modalities and are very sensitive to accurate registration between MR and

CT. Nonetheless, they all show value in combining multimodal information if

available, indicating a promising direction of investigaton.

2.4.2 MAR in MR images

In Magnetic Resonance Imaging, metal objects induce local magnetic field

inhomogeneities that cause intensity and geometrical distortions in the recon-
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Figure 2.15: Knee MRI scan affected by metal-induced artefacts due to the pres-
ence of stainless steel screws. Darker areas caused by signal loss are indicated by
the solid arrow, and pile-up effects by the dashed arrow. The dotted arrow indicates
an area of geometrical distortion. Image from Hargreaves et al. [23].

structed image. Due to the highly rigid structure or metal, no signal is received

from the implant itself, which thus appears dark in the image. Moreover, the

sudden change of magnetic susceptibility between metal and biological tissue

induces severe variations in the static magnetic field dependent on the implant

shape, size and type. This determines a change of the characteristic resonance

frequency, leading to significant signal loss and incorrect spatial information

encoding. As illustrated in Figure 2.15, these susceptibility artefacts typically

appear as blackened areas at and close to the implant, partially shadowing the

neighbouring structures (due to signal loss), together with bright spikes or geo-

metrical distortion due to spatial displacement of the signal and accumulation

in neighbouring regions (pile-up). Finally, being based on the chemical shift

between water and fat resonance frequency, fat suppression protocols tend to

fail in the presence of metal, because of the metal-induced frequency shift [23].

In MRI research, efforts have focused mostly on image acquisition im-

provements: tailored MR sequences such as MARS [17], MAVRIC [154] or

SEMAC [155] have proven effective in reducing the extension of the shad-
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(a) (b) (c)

Figure 2.16: Examples of metal artefact reduction sequences in pelvic MRI. (a)
MAVRIC (General Electric, from http://newsroom.gehealthcare.com/mavric-
sl-imaging-mr-conditional-implants-to-spot-adverse-reactions-fast/).
(b) SEMAC (Siemens Healthineers, from https://www.siemens-healthineers.
com/en-us/magnetic-resonance-imaging/clinical-specialities/msk-
imaging). (c) MARS acquisition [17], used in this thesis project .

owing, but cannot completely eliminate it, making the clear visualisation of

the implant in MRI impossible (Fig. 2.16). To the best of my knowledge,

no post-acquisition method has been proposed in the literature to reduce the

artefact in reconstructed MR images. The only relevant work is a phantom

study on metal artefacts from dental implants [156], which incorporates CT

information by registering the two images, segmenting the phantom teeth

from the CT and inpainting them on the MR image. However, the main focus

of this work was the evaluation of the artefact extension with different MRI

sequences and only limited description on how the artefact was compensated

for in both modalities was provided. Although limited to a phantom study and

thus not proven effective in any real clinical application, this preliminary work

shows the potential of using CT information to recover the MRI signal and

it opens up new directions of investigation for metal artefact reduction in MRI.

http://newsroom.gehealthcare.com/mavric-sl-imaging-mr-conditional-implants-to-spot-adverse-reactions-fast/
http://newsroom.gehealthcare.com/mavric-sl-imaging-mr-conditional-implants-to-spot-adverse-reactions-fast/
https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/clinical-specialities/msk-imaging
https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/clinical-specialities/msk-imaging
https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/clinical-specialities/msk-imaging
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Summary box: Challenges in Metal Artefact Reduction

• Physics-based or iterative MAR techniques in CT still have resid-

ual artefacts and can introduce secondary artefacts

• Deep learning strategies for MAR in CT require either artefact-free

ground truth images and/or large amount of training data

• MAR in MR only relies on tailored acquisition protocols that re-

duce the shadowing effect but cannot fully restore the signal

• No post-reconstrution MAR techniques in MR have been proven

effective in clinical data

2.5 Summary
The review of the current literature highlighted a lack of effective image anal-

ysis methods for combining and segmenting CT and MRI information in the

presence of hip implants. The main bottlenecks are the large variability both

of the anatomical structures under study and of the acquisition protocols cur-

rently used, which often limit the generalisability of the existing approaches.

Moreover, most methods applied to the pelvic anatomy do not consider the

case of hip implants, which heavily affect the quality of the images and intro-

duce strong artefacts. However, the fusion of skeletal and muscular information

using a multimodal approach could help better visualise the patient-specific

anatomy and support the extraction of quantitative and clinically relevant

imaging biomarkers. The following chapters in this thesis will explore this po-

tential and will illustrate automated processing pipelines specifically developed

for multimodal imaging in the presence of hip implants.



Chapter 3

Data description and

preprocessing

The dataset used in this thesis project comprises CT and MR images from 87

subjects that have been treated with MoM hip arthroplasty. Data was selected

retrospectively, based on availability of images from both modalities, among

patients that were referred to Charing Cross Hospital (London, UK) for unex-

plained hip pain between 2006 and 2012. Summary demographic statistics are

reported in Table 3.1. All the MR images were acquired on a Siemens MAG-

NETON Avanto 1.5T scanner, with the Metal Artefact Reduction Sequence

(MARS) presented in Sabah et al. [26]. This standard protocol includes the

collection of two T1-weighted Turbo Spin Echo highly anisotropic images: an

axial acquisition (TE = 8 ms, TR = 509 ms, typical imaging resolution =

0.78× 0.78× 7.02 mm3) and a coronal acquisition (TE = 7.1 ms, TR = 627

ms, typical imaging resolution = 1.25× 1.25× 6.00 mm3). Most of the CT

acquisitions were performed on a Siemens SOMATOM Sensation 16 scanner,

but 8 cases acquired on a Siemens SOMATOM Definition AS+ machine. Tube

voltage varied in the range [80, 120] kVp.

Bal and Lowe radiological score [27] of gluteus medius atrophy was available

for 35 subjects, while Cobalt and Chromium blood concentration information

was retrieved for another 35 subjects (only 16 cases had both pieces of infor-

mation).



3.1. Image quality enhancement 87

Females Males Total

Number of subjects 54 33 87
Unilateral cases 36 26 62
Bilateral cases 18 7 25

Mean [Range] age 53.74 [23, 74] 56.88[35, 70] 54.93 [23, 74]

MRI within 1 month from CT 42 21 63
MRI within 6 months from CT 4 2 6
MRI within 12 months from CT 3 2 5
MRI within 24 months from CT 4 6 10
MRI within 37 months from CT 1 2 3

Table 3.1: Summary of the dataset demographic statistics. Unilateral cases refer
to patients with only one implanted side, while bilateral cases to subjects with
implants on both hip joints. The mean age at the time of CT acquisition is also
shown, together with the number of cases grouped according to the time difference
between the CT and the MR acquisition.

Among the available CT-MRI pairs, data from 11 subjects were randomly

selected for manual segmentation in order to build the template dataset for

the automated segmentation tool proposed in this work. The generation of the

template dataset is described in Sec. 3.2, after the introduction of the generic

preprocessing steps implemented for all the dataset in Sec. 3.1.

3.1 Image quality enhancement

The images in the described dataset were acquired in routine clinical setting,

and thus with standard clinical quality (as opposed to research image quality).

Specifically, no Metal Artefact Reduction technique was applied on the CT

data, while the MR acquisition was limited by scanning time, resulting in a

series of multi-planar 2D acquisitions with highly anisotropic resolution (up

to a factor of 10 difference between the in-plane and out-of-plane resolution).

In addition, for both modalities it was not possible to access the raw data,

but only the reconstructed images in DICOM format. Thus, a series of pre-

processing steps have been implemented in this work to enhance the quality

of clinically acquired data.
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CT preprocessing

The reconstructed CT images have initially been corrected for metal artefact

using the wxDICOM software1, based on the Refined Metal Artefact Reduction

method proposed by Treece [134] and described in Sec. 2.4.1. After conversion

to the easier-to-handle NIfTI format, a cubic interpolation scheme was utilised

to resample the corrected CT to isotropic resolution of 1×1×1mm3. Finally,

thresholding and morphological operations were applied to obtain a body mask

and exclude signal from the CT couch. A summary of the processing steps is

shown in Figure 3.1. These corrected CT images have been used for all the

experiments discussed in this thesis, with the exception of Chapter 7, where a

novel method for multimodal metal artefact correction is introduced.

Refined Metal 
Artefact Reduction 

(RMAR)

Resampling to 
isotropic 
resolution

Couch removal

Figure 3.1: Processing pipeline for image quality enhancement in CT.

MRI preprocessing

For each subject, the axial and the coronal MRI acquisitions were first con-

verted from DICOM to NIfTI format. Because of the typically large scanned

FOV, the images appeared heavily affected by bias field inhomogeneities.

Hence, a global N4 bias field correction [157] was first applied to each acqui-

sition (using SimpleITK). A residual bias field effect was however still visible,

especially in the subcutaneous adipose tissue. To compensate for it, I automat-

ically generated masks of the adipose tissue regions, using the Expectation-

Maximisation segmentation algorithm proposed by Van Leemput et al. [44].

These masks were utilised to estimate the residual bias field and apply a com-

pensating correction on the whole FOV, still using the N4 algorithm. After this

correction, the intensity of the two MRI acquisitions were normalised using a

histogram matching technique that aligns specified quantile values of the two
1https://mi.eng.cam.ac.uk/Main/GMT_wxDicom

https://mi.eng.cam.ac.uk/Main/GMT_wxDicom
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intensity histograms and rescales all the intensities accordingly (SimpleITK

HistogramMatchingImageFilter). The two views were finally combined into a

single volume at 1×1×1 mm3 resolution using the super-resolution reconstruc-

tion (SRR) algorithm developed by Ebner et al. [158]. This method generates

a single high-resolution 3D volume from a series of orthogonal MRI stacks of

low-resolution 2D slices. The use of a SRR algorithm has several advantages.

Firstly, it allows us to compensate for the highly anisotropic resolution of the

acquired data, which would adversely affect the subsequent registration to the

CT image; secondly, it compensates for the lack of 3D MRI acquisition, as 2D

multislice sequences are usually preferred in clinical routine due to scanning

time constraints. The MRI quality enhancement pipeline is shown in Figure

3.2, while an example of the sole effect of the SRR is reported in Figure 3.3.

Bias field correction
Histogram 
matchingN4 ITK bias field 

correction
Adipose tissue 
segmentation

Bias field 
correction 
refinement

Bias field correction

N4 ITK bias field 
correction

Adipose tissue 
segmentation

Bias field 
correction 
refinement

Super 
Resolution 

Reconstruction

Figure 3.2: Processing pipeline for image quality enhancement in MRI.

Axial acquisition

SRR

Coronal acquisitionAxial acquisition

SRR

Coronal acquisitionAxial acquisition

SRR

Coronal acquisitionAxial acquisition

SRR

Coronal acquisition

Axial acquisition

SRR

Coronal acquisition

Axial acquisition

SRR

Coronal acquisition

Axial acquisition Coronal acquisition SRR
(0.78 x 0.78 x 7 mm  ) (1.25 x 1.25 x 6 mm  ) (1 x 1 x 1 mm  ) 3 3 3

Figure 3.3: Example of the input axial and coronal MRI acquisitions and the
respective super-resolution reconstructed (SRR) MRI, showing how low-resolution
information is combined to maintain high resolution in both imaging planes.



3.2. Template dataset generation 90

3.2 Template dataset generation
The work presented in this thesis is based on the availability of a series of tem-

plate images with associated manual labelling of structures of interest. The

manual segmentation was needed both for the actual automated segmentation

pipeline and for quantifying the performance of the proposed tools. As no

such dataset is publicly available in the context of hip replacement, one of the

contributions of this thesis project is the generation of a template dataset of

paired CT-MR pelvic images and associated musculoskeletal segmentation.

The template dataset consists of 11 subjects (10 unilateral, 1 bilateral), whose

MR images and CT were acquired on the same day. For each subject, the CT

and MR images were preprocessed for image quality enhancement as discussed

in the previous section (Sec. 3.1).

Given their higher contrast for bony structures, the CT images were used to

manually delineate2 the pelvic bones, the femora and the implant(s). Manual

segmentation of Gluteus Maximus (GMAX), Gluteus Medius (GMED), Glu-

teus Minimus (GMIN) and Tensor Fasciae Latae (TFL) was performed on the

MR image after super-resolution reconstruction was applied. These muscles

are part of the abductor group and were deemed as the most relevant for clin-

ical assessment by the clinical collaborators of this project.

The two modalities were then registered into the same reference frame - full

details on the intra-subject registration method will be introduced in Chapter

4 - and the respective bones and muscles manual segmentation masks were

merged into a single multi-label segmentation image. I finally performed fur-

ther manual refinement, in order to guarantee non-overlapping regions between

the segmented structures.

The template dataset was then organised into two subsets: the implanted hip

sides (12 sides) and the non-implanted ones (10). For the sake of simplicity,

I will refer to these latter as the healthy sides, although I acknowledge that

the absence of the implant does not imply absence of pathology nor implant-

2Manual segmentations were performed using ITKSnap tools. www.itksnap.org

www.itksnap.org
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Implanted template
CT MR           SEG CT MR           SEG

Healthy template

GMAX GMED ImplantGMIN TFL Pelvis Femur

Figure 3.4: Examples from the template sets, composed of CT, the respective
non-linearly registered MRI (see Chapter 4 for algorithmic details), and their fused
segmentation of hip joint bones and abductor muscles. An implanted (left) and
a healthy (right) template sides are shown. A single slice from the 3D volume is
displayed for illustration purposes.

induced artefact. In order to separate and group all the implanted and the

healthy hip sides, each template set of CT, MR and label images was split along

the CT-derived sagittal axis of symmetry, and reoriented according to the pres-

ence or absence of an implant. For this task, I developed a symmetry-detection

algorithm that, in analogy with the mechanics of rigid body, computes the in-

ertia tensor of the CT image using its intensities as mass values. Specifically, to

balance the high intensity values of the implant typically present only on one

side, the inertia tensor is obtained from the input CT after rigidly registering

and averaging it with its left-right flipped image. The mid-sagittal plane of

symmetry can then be extracted by the inertia tensor. Simple thresholding at

3000 HU is then exploited to assess the presence of implants in each hip side

of the original CT. All implanted sides are then oriented to be on the left and

the healthy sides on the right.

Within each subset, all the templates were rigidly aligned into their mid-space

through the robust group-wise registration framework proposed by Klemt et

al. [108]. Only the header orientation matrices were updated to avoid intensity

resampling.

Figure 3.4 shows two examples from template sets, one for the healthy and

one for the implanted hip sides.
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3.3 Landmarks annotation
The eleven subjects selected for the template dataset generation were also

manually annotated with landmarks. The annotation was performed in the

original CT and MR image spaces, i.e. before the intra-subject registration but

after the application of the quality enhancement preprocessing. For this task,

I designed a protocol for the selection of imaging landmarks in CT and MRI of

patients with hip implants, which was reviewed by an expert musculoskeletal

radiologist. I selected five anatomical landmarks on each hip side (total of

ten landmarks per subject), of which three are located on skeletal and two on

muscular structures. The landmarks were chosen according to three criteria:

(1) being easily identifiable in both imaging modalities; (2) being spread across

the full field-of-view; (3) being located on the structures I aim to segment

automatically. In addition, the selected landmarks are not gender related, not

age related and very little susceptible to normal variants. Below is the detailed

description of each landmark, together with an example for each of them.

(1) Greater trochanter

On the coronal view I search for the top tip of the greater trochanter in the

middle slice of appearance of the femur. In the described dataset, the slice

number increases as posterior to anterior. I consider as first slice the one

where the first hyper-intense spot appears in the middle of Gluteus Maximus,

while the last slice is the one where the femoral head is lastly visible before

disappearing. Given the position in millimetres of these two slices, the middle

position is computed as (initial position + final position)/2. I consider the

closest visible slice to this mid-point.

Non-implanted side Implanted side

Figure 3.5: Greater Trochanter landmark
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(2) Tensor Fasciae Latae (TFL)

On the axial view I search for the most anterior and medial tip of the TFL in

the middle slice of appearance. As for the femur, I search for the first and the

last slice of appearance of the TFL. The first (inferior) slice is the one where

the muscle firstly emerges from the tendon (i.e. where the tendon seems to

enlarge and it is not just a thin stripe anymore). The last (superior) slice is

the one where the TFL gets completely covered by the Gluteus Medius and

Minimus (afterwards the top tip of the TFL is not visible anymore). Using

these slices, I compute the mid position in millimetres and in the respective

slice I choose the most anterior and most medial tip.

Non-implanted side Implanted side

Figure 3.6: Tensor Fasciae Latae landmark

(3) Pelvic Brim

On the axial view, I select a point on the pelvic brim. This corresponds to the

anterior-medial corner of the pelvic bone just above the femoral head. Moving

inferior to superior, I select the first slice where the femoral head is not visible

any more (not even as brighter “shadow” in the middle of the pelvic bone) and

I choose the anterior-medial corner.

Non-implanted side Implanted side

Figure 3.7: Pelvic Brim landmark
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(4) Gluteus Maximus (GMAX) Sacrum origin

On the axial view, I select the point where GMAX inserts onto the coccyx.

Moving inferior to superior, I select the first slice where this is clearly visible

and in particular I choose the corner of the GMAX inserting onto the bone.

Non-implanted side Implanted side

Figure 3.8: Landmark at the GMAX Sacrum origin

(5) Ischium

On the axial view, moving inferior to superior I choose the first slice where

the pelvic bone splits into the ischium and the symphysis pubis. In this slice,

I select the most external vertex of the ischium.

Non-implanted side Implanted side

Figure 3.9: Ischium landmark

As the identification of clear landmarks on extended and generally homo-

geneous structures such as muscles is not trivial, to account for choice bias I

performed the manual selection twice for each image at different times. The

average reproducibility error across all the 11 subjects is reported in Fig. 3.10.

This protocol was designed for the purpose of characterising the registra-

tion error on the structures of interest throughout the FOV. I thus acknowledge

that the described landmarks are not directly linked to clinical relevance.
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Figure 3.10: Manual selection reproducibility error for the 10 landmarks in CT
and in MR images (mean and 95% confidence interval are reported). Landmarks:
Greater Trochanter (GT), anterior tip of the Tensor Fasciae Latae (TFL), Pelvic
Brim (PB), Gluteus Maximus sacrum origin (GMAX) and Ischium (Isc). (H) indi-
cates the healthy hip side, (I) the implanted one.



Chapter 4

Multimodal registration with

rigidity constraints

Motivation

Accurate alignment of CT and MRI is needed to combine their multi-

modal information.

Contribution

A novel nonlinear intra-subject registration algorithm is introduced,

characterised by a diffeomorphic transformation model constrained to

a strictly rigid behaviour on bones and implants.

The main aim of this work is the combination of information from differ-

ent imaging modalities to ease the assessment of both muscular and skeletal

structures in patients with hip replacement. Towards this aim, intra-subject

image registration is a crucial step for merging information, as it allows to align

anatomically corresponding points from different images. However, many chal-

lenges characterise this task.

First, intensity-based registration is heavily affected by noise and artefacts in

the images. The image quality enhancement steps described in the previous

chapter were designed to help with this problem, in particular by applying a

metal artefact reduction technique on the CT data [134] and by combining
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Figure 4.1: Example of different patient’s pose in the CT scanner (left) and in
the MRI (right). The difference in the couch shape determines difference in bone
position and soft tissue deformations that cannot be recovered by simple global
registration

multiple MR acquisitions into a single isotropic SRR MR [158]. Moreover, the

images are characterised by large variability of the anatomical structures as

well as typically large imaging FOV, thus the robustness of registration algo-

rithms could be hampered by these factors.

Yet, the main challenge is the difference in the patient’s pose within the two

scanners. As illustrated in Figure 4.1, the CT scanners used for this project

were characterised by a round couch, while the MR scanner had a flat one.

This results in different pelvic positions in the two scanners, with varying

amount of soft tissue compression, which cannot be recovered by a rigid or

affine registration. On the other hand, a fully nonlinear registration would al-

low for unrealistic deformations in rigid structures such as bones and implants.

A desirable transformation model for this task should therefore accomodate

both a nonlinear deformation of soft tissue and preservation of rigidity in in-

compressible structures. State-of-the-art approaches for this problem rely on

“soft constraints”, i.e. regularisation terms added to the cost function which

penalise deviation from rigid behaviour in defined areas [127, 128] or that en-

force the alignment of corresponding masks from the two images [129]. These

approaches, however, need to find a balance between the terms in the cost
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function, which might still cause deviations from a strictly rigid transformation

and therefore requires a careful selection of the rigidity penalty term weight. A

“hard constraint” solution such as that proposed by Haber et al. [130] should

be preferred, as it enforces a strict fullfilment of the rigidity constraints in the

defined areas.

This chapter introduces a novel multimodal nonlinear registration frame-

work able to compensate for a different patient’s pose within the CT and

the MR scanners while preserving the rigidity of bony structures. I will first

present the mathematical formulation of the proposed method as a “hard con-

straint”, its inclusion in a diffeomorphic framework and provide the details of

the algorithmic implementation. The performance of the proposed approach

will be assessed on the available template dataset, from which I will discuss its

advantages and limitations. The work described here was initially presented

at the 5th Workshop of Computational Methods and Clinical Applications in

Musculoskeletal Imaging (MSKI) held in conjuction with MICCAI 2017 [159],

and then published in the Computer Methods and Programs in Biomedicine

journal [160].

4.1 Transformation model

In order to prevent implausible deformation of bones, I introduced an intensity-

based nonlinear registration framework that applies a strictly rigid transforma-

tion to all the voxels within specified masks. This method extends the math-

ematical formulation of hard rigid constraints presented by Haber et al. [130]

to the 3D case and is embedded into a diffeomorphic framework.

Let’s first consider the original formulation from Haber et al. [130]. Given

a reference image R : X → R, defined in the reference space X ⊆ R3, and a

floating image F : Y → F , defined in the floating space Y ∈ R3, the registra-

tion algorithm aims at optimising a transformation model φφφ :X→ Y which is

enforced to be rigid within specific areas defined by a set of masks M , with
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Mj ⊂X ∀Mj ∈M , and nonlinear elsewhere. Therefore, given the cost function

C(R,F ;φφφ) = (1−λ) S(F (φφφ(X)), R(X)) −λReg(φφφ), (4.1)

where S is a measure of similarity between the reference and the warped float-

ing image and Reg a regularisation term weighted by a coefficient λ, the opti-

misation problem is formulated as:

max
φ
C(R,F ;φφφ) subject to φφφ(x)−Rj(x) = 000 ∀x ∈Mj , ∀Mj ∈M (4.2)

with Rj : R3→ R3 being a rigid transformation applied to all voxels xxx within

the j-th mask. Using this formulation, the rigid constraint in the bony struc-

tures is embedded directly into the transformation model φφφ as a “hard con-

straint”. This differs from currently proposed approaches based on “soft con-

straints”, which simply penalise large deviations from a rigid behaviour within

specified regions, e.g. [127, 128] (Sec. 2.3.1, Eq. 2.3).

As introduced in Sec. 2.3.2, the preservation of rigidity in incompress-

ible structures is not the only desirable characteristics of the transformation

model. Topology preservation and inverse-consistency are also necessary to

guarantee the biological plausibility of any analysis based on image registra-

tion. These properties are naturally provided by diffeomorphic transforma-

tion models, being differentiable one-to-one mappings. For this reason, in

this work we take advantage of a stationary velocity field formulation for

the transformation model, originally proposed by Arsigny et al. [161] and

developed it into a registration framework by Ashburner [162]. Assuming

a constant velocity field vvv, the deformation field is obtained by integrating

the velocity field over time. This can be computed by the Euler integra-

tion method, which breaks the integration path into many small time-steps

h: φφφ(t+h) = φφφ(t) +hvvv(φφφ(t)) = (xxx+hvvv) ◦φφφ(t) [162]. Starting with an identity

transformation at time t= 0, the velocity field is divided into n steps and the

final deformation is given by a series of compositions of each small time step:
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φφφ(1/n) = xxx+ vvv(xxx)
n

φφφ(2/n) = φφφ(1/n) ◦φφφ(1/n)

φφφ(3/n) = φφφ(1/n) ◦φφφ(2/n)

...= ...

φφφ(n/n) = φφφ(1/n) ◦φφφ((n−1)/n)

(4.3)

The computation can be simplified by choosing n as a power of 2 and by ap-

plying a scaling-and-squaring exponentiation [161]: an initial scaling is applied

to the velocity field to represent a small deformation and then the field is it-

eratively composed with itself to approximate the integration (squaring). For

instance, choosing n= 8 leads to:

φφφ(1/8) = xxx+ vvv(xxx)
8

φφφ(1/4) = φφφ(1/8) ◦φφφ(1/8)

φφφ(1/2) = φφφ(1/4) ◦φφφ(1/4)

φφφ(1) = φφφ(1/2) ◦φφφ(1/2)

(4.4)

So long as the small step is a diffeomorphic deformation, the final composed

deformation field will preserve diffeomorphicity as composition of two diffeo-

morphisms is a diffeomorphism itself (in practice, small deviations might still

be possible due to numerical approximations). The use of stationary veloc-

ity fields directly enables the explicit estimation of the inverse transforma-

tion. The velocity field is indeed a member of the Lie algebra, and the de-

formation field can be considered as the exponentiation of the velocity field:

φφφ(1) = Exp(vvv) [162]. Thanks to the properties of exponential maps, we have

that φφφ(−1) = Exp(vvv)−1 = Exp(−vvv). Thus, the inverse transformation can di-

rectly be approximated with scaling-and-squaring of−vvv from the floating space

identity deformation.

The stationary velocity field model provides us with a sound mathemat-
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ical framework to easily incorporate rigid behaviour in specified areas while

preserving the desirable geometrical properties of diffeomorphisms. The rigid-

ity constraints expressed in Equation 4.2 can indeed be applied to the velocity

field vvv after the initial scaling. The integration to the final deformation is then

approximated through the composition of this small field by itself several times

(squaring step). As the scaled deformation is set to rigid, due to the proper-

ties of composition the final deformation is maintained rigid within the desired

areas. In other words, with reference to Equation 4.4, the final deformation

φφφ(1) will be guaranteed rigid if φφφ(1/8) is set to be rigid.

4.2 Registration algorithm
The proposed transformation model has been embedded in the NiftyReg

framework, an open-source package developed by Modat et al. containing

utilities for medical image registration1. This package uses the symmetric

block-matching algorithm [163, 164] for rigid and affine registration, while the

nonlinear registration algorithm is based on the Free-Form Deformation (FFD)

parametrisation using cubic B-splines [165, 166]. A symmetric and diffeomor-

phic nonlinear registration is also implemented with a stationary velocity field

model parametrised with cubic B-splines basis [167].

4.2.1 Parametrisation with cubic B-splines

In NiftyReg, the parametrisation of the stationary velocity field takes advan-

tage of the efficient formulation of the Free-Form Deformation algorithm [166].

The transformation φφφ is not optimised at each and every voxel but only over a

lattice of control points {µ} overlaid on the reference image. The displacement

at each voxel is then derived by cubic B-spline interpolation:

φφφ(xxx) =xxx+
3∑
l=0

3∑
m=0

3∑
n=0

Bl

(
x

δx
−b x

δx
c
)
Bm

(
y

δy
−b y

δy
c
)
Bn

(
z

δz
−b z

δz
c
)
µi+l,j+m,k+n

(4.5)

1https://github.com/KCL-BMEIS/NiftyReg
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where i, j,k are the indices of the first considered control point, and δx, δy, δz

denote the control point spacing along each direction. B represents the ap-

proximated cubic B-spline basis functions:

B0(u) = (1−u)3/6

B1(u) = (3u3−6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 4)/6

B3(u) = u3/6

(4.6)

Cubic B-splines are characterised by a local support of 4 control point width,

meaning that each control point influences a region of size 4δx× 4δy × 4δz
centred in the control point itself. As a result, the spacing of the control

points defines the amount of local detail of the deformation. A multi-resolution

coarse-to-fine (also named pyramidal) approach can be used to favour faster

computation, to optimise the capture range and to avoid local minima thanks

to the smoothing derived from downsampling: starting with a large spacing,

low frequency components of the transformation are optimised and by itera-

tively reducing the spacing higher frequency components are estimated while

the transformation gets refined more locally. Such approach can easily be ap-

plied to the cubic B-splines parametrisation, as the deformation can be refined

and preserved identical when halving the spacing of the control point grid [116].

When using the standard FFD algorithm, the control point positions di-

rectly parametrise the transformation. In the stationary velocity field model,

instead, the control points are used to define where the velocity field is esti-

mated. The final transformation is obtained through exponentiation, approxi-

mated with the scaling-and-squaring approach (Eq. 4.4). The exponentiation

is performed only at the control points, not at the voxel level, using a cubic

spline interpolation. The dense deformation field at each voxel is finally inter-

polated from the control point grid deformation.

As mentioned, this parametrisation also provides us with both the direct and

inverse transformation, which are optimised simultaneously. By default, the
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optimisation is performed through a conjugate gradient scheme in NiftyReg.

At each iteration of the optimisation process, the gradient of the cost function

C(R,F ;φφφ) = (1−λ) S(F (φφφ(X)), R(X)) −λReg(φφφ) is computed at each con-

trol point and a line search along the direction of the gradient is performed

to identify a local maximum of the cost function. The gradient at the cur-

rent maximum is added to the estimate of the control point transformation

parameters, and the inverse update is performed similarly for the backward

transformation. The forward and backward velocity fields are averaged in the

reference and the floating space to enforce symmetry on the transformation

model. Finally, the scaling-and-squaring exponentiation is applied to obtain

the current displacement field at the control points. This algorithm, reported

in Algorithm 1 for the forward model, is iterated until convergence of each

pyramidal level or until the maximum number of iterations is reached.

Algorithm 1 Control point parametrisation update (forward transformation)
Compute the gradient, G, of the current cost function value for each control
point µ:

G(µ) =∇C(R,F ;µ), ∀µ ∈ {µ}

Perform a line search along the direction of G
for each step in line search do

Update the current control point parameters:

µ← µ+G(µ), ∀µ ∈ {µ}

if stationary velocity field parametrisation then
Symmetrise with backward transformation

µ← 0.5(µ−µbackward), ∀µ ∈ {µ}

end if
end for
if stationary velocity field parametrisation then

Scaling-and-squaring exponentiation (n steps)
end if



4.2. Registration algorithm 104

4.2.2 Introduction of rigid constraints

In order to introduce the rigidity constraints, I modified the optimisation

scheme to update the transformation parameters as in Algorithm 2.

Algorithm 2 Control point parametrisation update with rigid constraints
Compute the gradient, G, of the current cost function value for each control
point µ:

G(µ) =∇C(R,F ;µ), ∀µ ∈ {µ}

Perform a line search along the direction of G:
for each step in line search do

Update the current control point parameters:

µ← µ+G(µ), ∀µ ∈ {µ}

if stationary velocity field parametrisation then
Symmetrise with backward transformation

µ← 0.5(µ−µbackward), ∀µ ∈ {µ}

Down-scale the control point parameters

µ← µ/2n, ∀µ ∈ {µ}

end if
for each mask Mj do

Define the subset {µ}j of the control points within Mj

Least Trimmed Square regression of the rigid transformation Rj :

Rj = LTS({µ}j)

Update the parameters with the estimated rigid displacement:

µ←Rj(µ) ∀µ ∈ {µ}j

end for
if stationary velocity field parametrisation then

Up-scale control point parameters

µ← µ∗2n, ∀µ ∈ {µ}

end if
end for
if stationary velocity field parametrisation then

Scaling-and-squaring exponentiation (n steps)
end if
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Specifically, at each iteration the gradient of the cost function is used to

update the new parameters of each control point as described in the previ-

ous section. Within each mask associated with a rigid region, I extract the

parameters of all the control points and use a Least Trimmed Square (LTS)

regression to robustly estimate the rigid transformation that best fits the dis-

placement associated with each control point, discarding 50% of points with

highest residuals as outliers. The obtained rigid transformation is subsequently

applied to update the current estimate of the parameters associated with each

control point within the mask (i.e. the displacement in a FFD transformation

model or the velocity field in a stationary velocity field one). Of note, before

any optimisation is performed, the rigid masks are resampled to the control

point grid space and dilated by 1. This is necessary to compensate for the

local support of B-splines: by this dilation, the effect of the rigidity constraint

is extended slightly beyond the initial rigid area, thus making sure that the

impact of non-linear transformation from control points at the border of the

rigid area is negligible within the original rigid mask itself. In case of a pyra-

midal coarse-to-fine approach, this operation is repeated at the beginning of

the optimisation for each pyramidal level.

The proposed approach provides a formulation for the gradient computa-

tion for both rigid and non-rigid areas that can be easily incorporated into a

gradient-based optimisation scheme, and can be used in both a velocity field

parametrisation and standard Free-Form Deformation one.

4.3 Application to pelvic CT-MRI registra-

tion
The proposed registration algorithm was tested on the clinical application

relevant for this project, i.e. the intra-subject registration of CT and MRI of

patients with hip implants. The registration pipeline includes three steps: (1)

generation of bone masks to localise areas where rigidity should be enforced; (2)

initial affine registration; (3) nonlinear registration with rigidity constraints.
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Bone masks generation: The described transformation model requires

masks for the anatomical regions to be kept rigid - bones and implants in this

application. In particular, these structures can be better segmented from CT

images, thus the rigidity masks are extracted from this modality. As manual

contouring is labour-consuming, I propose to take advantage of the template

datasets to automatically derive segmentation masks of bones and implants,

using a multi-atlas segmentation propagation pipeline as the one described in

Figure 2.5. The target CT image is first split along the sagittal axis of symme-

try, with the same algorithm described in Sec. 3.2. For each hip side, template

CT images are registered to the target CT image via affine registration [164]

followed by free-form nonlinear registration [166] with default parameters in

NiftyReg; the template label images are then propagated with the respective

estimated transformation and final consensus is obtained using the STEPS

label fusion algorithm [49]. The two hip sides are finally combined back to-

gether into the full FOV. The pipeline for automated bone masks extraction

was implemented in NiPype [168].

Affine registration step: As a first step, an initial global alignment is

achieved by affinely registering the SRR MRI to the CT using the symmetric

block-matching algorithm available in NiftyReg [164]. The SRR MRI is then

resampled into the CT space using the estimated affine transformation and a

cubic interpolation scheme.

Nonlinear registration step: A more refined local alignment is then achieved

through the non-linear registration step, where rigidity is enforced on areas

specified by binary masks. For this thesis’ application, the Normalised Mutual

Information (NMI) was used as a measure of similarity, being the most com-

monly adopted solution for multimodal registration. This is an entropy-based

similarity measure introduced by Studholm et al. [169] which is maximised

when the reference and the warped floating images have the most information

in common, and thus when they are aligned. The bending energy (BE) was se-

lected as a regularisation term [166] in order to promote smooth deformations.
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The final cost function for this application can therefore be written as:

C(R,F ;φφφ) = (1−λ)NMI(F (φφφ(X)), R(X)) −λBE(φφφ), (4.7)

Previous work [170] also tested the efficacy of Locally Normalised Cross Cor-

relation (LNCC) as a measure of similarity for intra-subject registration, but

it was found performing worse than NMI for this application. Indeed, NMI

is generally more robust to noise, which is heavily affecting the CT and MR

images of patients with hip implants. To further reduce the impact of noise,

during the registration intensity clipping was applied to both reference CT and

floating MRI at the 1st and 99th percentiles of their intensity distributions.

In order to ensure smooth transitions in the deformation field, the proposed

algorithm is iterated on a five-level course-to-fine pyramidal approach, using a

final control point spacing of 5 mm. As the images are fairly large, this choice

is suitable to sufficiently capture both low and high frequency changes. To

account for the local support of the cubic B-spline parametrisation, the rigid

masks are dilated by 1 control point at each level of the resolution pyramid.

4.4 Validation and experiments
The registration pipeline described in the previous section was tested on the

template subjects, due to the availability of landmark annotation as well as

manual segmentation to perform quantitative assessment. A series of experi-

ments were designed to determine: (1) the influence of the rigidity constraints

on the registration accuracy; (2) the impact of automated bone mask gener-

ation process on the registration; (3) potential failure in recovering femoral

rotation.

4.4.1 Effect of the rigidity constraints

In order to assess the impact of the rigidity constraints on the registration

accuracy, I compared the CT and SRR MRI registration for each template

subject using the proposed rigidity constraints on bones and implants or fully
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non-linear registration. The transformation was optimised for varying regular-

isation weights λ, so as to idenfity the most appropriate parameter selection

for the available dataset. The manual segmentation masks of pelvis, left femur,

right femur and implants were used to localise the rigid areas.

The quantification of the registration accuracy was obtained by computing

the Target Registration Error (TRE) on 10 anatomical landmarks - 5 for each

hip side - manually selected in both skeletal (3 landmarks) and muscular (2

landmarks) structures. More details about the landmarks annotation process

was reported in Sec. 3.3. Given a transformation φφφ, the TRE for a specific

landmark i was calculated in a symmetric form as:

TREi = 1
2(‖xxxiii−φφφ−1(yyyiii)‖`2 +‖φφφ(xxxiii)−yyyiii‖`2) (4.8)

where xxxiii is the landmark position in the CT space and yyyiii is the corresponding

landmark position in the MRI.

For each landmark and each subject I computed the average of the TRE val-

ues from the different manually selected landmark sets. For each subject and

for each registration approach, I reported the root mean square error (RMSE)

of the TRE values across the ten landmarks. Figure 4.2(a) shows the RMSE

TRE distributions at varying bending energy weights for the registration with

and without rigid constraints. Overall, the rigidly-constrained registration

algorithm not only provides clinically plausible deformations, but it also out-

performs the standard non-linear one in effectively reducing the TRE RMSE,

producing therefore a more accurate alignment at the landmark locations. I

also observed a reduced sensitivity to the choice of the regularisation param-

eter. Moreover, the introduced algorithmic steps for the rigidity constraint

did not impact the total computation time (on the same machine, the rigidly

constrained non-linear registration required 93 minutes on average, compared

to 96 minutes for the fully non-linear approach).

As a further comparison, I additionally manually delineated the gluteus

medius of healthy hip sides on the template CT images and computed the
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Figure 4.2: (a) Comparison of TRE RMSE values obtained from the rigidly-
constrained non-linear registration and the standard fully non-linear one with vary-
ing weights of the bending energy regularisation term. The TRE RMSE for the affine
registration is reported as well. Wilcoxon signed rank test was performed between
pairs with same registration parameters, and statistically significant differences are
reported (NS indicates non significant, * indicates p-value p < 0.05, ** indicates
p < 0.01, *** indicates p < 0.001). (b) Dice Score for gluteus medius segmentation
overlap between registered CT and MRI (only the healthy hip sides are considered).
Wilcoxon signed rank test between pairs with same registration parameters did not
highlight any significant difference (all p > 0.05).

Dice score between the registered CT segmentation and MRI based segmenta-

tion. In particular, to obtain a symmetric estimation I computed the average

between the Dice score in the CT space (by warping the manual MRI seg-

mentation with the inverse transformation) and the Dice score in the MRI
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space (by warping the manual CT segmentation with the direct transforma-

tion). In Fig. 4.2(b), the distributions of the Dice score values are reported

with and without the use of the rigid constraint using the same set of λ values.

In agreement with the previous result, higher Dice scores are obtained with

the proposed method, with similar improved performances for regularisation

weights lower than 0.1, although non statistically significant.

Both experiments have been used to select an optimal bending energy

weight for further analysis. I selected λ= 0.001, being the value that yields the

best TRE RMSE, while still providing high degree of overlap for the segmented

gluteus medius muscles (median Dice score [minimum, maximum] = 0.89 [0.81,

0.93]).

A visual comparison of the registration results for one case is presented in

Fig 4.3. At equal regularisation (λ = 0.001), the Jacobian determinant maps

show that the use of the rigid constraints enforces a volume-preserving de-

formation within bones and implant, ensuring anatomical plausibility of the

applied transformation. For a fair comparison, I also reported the outcome

of the standard non-linear registration with its optimal regularisation weight

(λ = 0.5). While it promotes smoother transformations, it does not provide

sufficient local deformation in the soft tissue to compensate for the different

patient’s position, especially on the implanted side. Also, the Jacobian deter-

minant map still shows volume variations in the bony area, which are instead

avoided by design in the proposed method.

4.4.2 Effect of automated bone masks

The proposed registration pipeline takes advantage of an automated segmen-

tation method to define the masks for the rigidity constraints. The following

experiment was designed to test the robustness of the registration to the use of

automated masks. Indeed, an inaccurate bone mask generation would result

in incorrect application of the rigidity constraint, and thus it would adversely

influence the intra-subject registration and all the subsequent analysis.

As an initial check, I quantified the segmentation accuracy by computing the
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Reference CT Affine registration

Rigidly constrained non-linear registration

Standard non-linear registration  -1%

1%

Standard non-linear registration -1%

1%

-1%

1%

(! = 0.001)

(! = 0.001)

(! = 0.5)

Figure 4.3: Example of registration results. The central axial and coronal views
for the reference CT, the affinely registered MRI, the non-linearly registered MRI
with and without the use of the rigidity constraints are reported. The coloured insets
show the Jacobian determinant maps (in percentage of volume change) for each non-
linear deformation. Results are displayed with the rigidly-constrained registration
optimal regularisation weight (λ = 0.001) to showcase the sole effect of the rigidity
constraints. The result of the optimal fully non-linear regularisation weight (λ= 0.5)
is also shown. Yellow arrows point at areas where the standard non-linear registra-
tion fails to recover a good alignment. Differently from this latter, the proposed
rigidly constrained non-linear registration allows for more localised deformation and
better soft tissue alignment while preserving the volume and shape of bones and
implant.

Dice score between the automated and the manual bone masks. Table 4.1

presents and median and the range of Dice score values for the pelvic bone,

the healthy femora, the implanted femora and the implants. The agreement be-

tween the manual and the automated bone masks is satisfactory, although not

perfect. This is especially true in the pelvic bone, which is the most variable

and the most affected by FOV variations among the considered structures. To

measure the impact of the segmentation inaccuracy on the intra-subject regis-
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Median [Minimum, Maximum] Dice Score
Pelvis 0.91 [0.59, 0.93]
Femur (Healthy) 0.96 [0.95, 0.97]
Femur (Implanted) 0.92 [0.84, 0.95]
Implant 0.93 [0.83, 0.95]

Table 4.1: Median [Minimum, Maximum] Dice Score values between the automated
bone masks and their manual ground truth for the 11 subjects in the template
dataset.

Automated bone masks Manual bone masks
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Figure 4.4: Root Mean Square Error of Target Registration Error computed over
10 landmarks for the 11 template subjects. Comparison between intra-subject CT-
MRI registration with manual bone masks and automated ones (λ= 0.001).

tration, I compared the Target Registration Error (TRE) between registrations

with either automated or manual bone masks. The boxplot graph reported in

Figure 4.4 shows this comparison. A very slight increase in the TRE is ob-

served with the automated bone masks, however no significant difference was

identified (Wilcoxon signed rank test, 5% confidence level). Although I ac-

knowledge that this analysis is limited only to the 11 subjects whose ground

truth was available, this experiment shows that the intra-subject registration

is robust against segmentation errors due to the use of automated bone masks.

4.4.3 Rotation recovery analysis

The last experiment aims at identifying failure modes of the incorporation of

rigidity constraints. As shown also by the TRE analysis at varying λ (Fig. 4.2)

and by the example in Fig. 4.3, the use of the rigidity constraints naturally

acts as regulariser of the applied deformation. However, the deformation field
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can be highly discontinuous at the joint between the pelvis and the femur, for

instance in the case of internal/external rotation of the femur. Moreover, the

proposed transformation parametrisation does not model sliding effects.

To try and quantify the ability of our model to correctly recover the transfor-

mation for the rigid structures, I compared the estimated rigid transformations

with those obtained from simple rigid registrations focused on one bone at a

time. The implant was discarded for this analysis, as it was not possible to

estimate a rigid transformation focussing on the implant only due to the metal

artefact in the MRI. For each of the 11 template subjects, the MRI-to-CT rigid

transformations were computed separately for each bone with the symmetric

block-matching algorithm implemented in NiftyReg by masking the consid-

ered structure in the reference space. Given the estimated transformation

matrix

T =



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1


(4.9)

and assuming the order of the rotation is around the x−axis first, then y, then

z, the three Euler angles were derived as:

θx =tan−1(T32,T33)

θy =tan−1(−T31,
√
T 2

11 +T 2
21)

θz =tan−1(T21,T11)

(4.10)

where tan−1 indicates the four quadrant arctangent.

Similarly, the rigid transformation was extracted for each mask from the de-

formation field obtained with the rigidly-constrained non-linear registration

algorithm. The Euler angles were computed as in Equation 4.10 and com-

pared to the rigid-only ones.
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The results for the pelvis, the non-implanted femora (healthy) and the im-

planted femora are presented in Fig. 4.5. For the latter structure, three sub-

jects had to be excluded due to failure of optimising the rigid transformation

focussed on the femur only. A general tendency to underestimate the rotation
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Figure 4.5: Rotation recovery analysis, comparing the ground truth angles and
the angles obtained with rigidly-constrained non-linear registration algorithm. The
bisector is displayed in black for reference.
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is visible from these results, especially for θz in both healthy and implanted

femora, which represents flexion/extension of the leg. This is expected as the

non-linear registration algorithm optimises a transformation that aligns both

the bones and the surrounding soft tissue, and it is regularised for smooth and

diffeomorphic transitions over a control point grid with 5 mm spacing. It is

therefore likely that the optimisation converges to local minima that might not

exactly correspond the global minimum for the specific structure.

The absolute error for each angle was computed as AE(θGT , θrec) = |θGT −θrec|,

with θGT being the Euler angle from the single-bone registration considered

as the ground truth, and θrec the Euler angle recovered from the proposed

rigidly-constrained non-linear registration algorithm. The median, minimum

and maximum absolute errors are reported in Table 4.2, together with the re-

spective ground truth angle ranges for reference.

Pelvis Femur (H) Femur (I) Overall

θx GT 0.50 [0.11, 2.09] 1.24 [0.38, 4.04] 1.05 [0.53, 2.29] 0.89 [0.11, 4.04]
AE 0.53 [0.01, 1.79] 0.86 [0.02, 4.04] 0.14 [0.01, 2.45] 0.47 [0.01, 4.04]

θy GT 0.22 [0.01, 0.93] 3.07 [0.02, 6.12] 2.54 [0.67, 5.62] 1.61 [0.01, 6.12]
AE 0.20 [0.01, 0.64] 0.60 [0.02, 3.08] 0.71 [0.25, 1.64] 0.45 [0.01, 3.08]

θz GT 0.44 [0.04, 3.01] 17.85 [2.49, 32.81] 7.96 [2.15, 24.79] 7.28 [0.04, 32.81]
AE 0.32 [0.01, 0.97] 11.05 [0.44, 27.00] 4.05 [0.79, 21.21] 1.71 [0.01, 27.00]

All θ GT 0.29 [0.01, 3.01] 3.07 [0.02, 32.81] 2.28 [0.53, 24.79] 1.48 [0.01, 32.81]
AE 0.24 [0.01, 1.79] 1.18 [0.02, 27.00] 1.17 [0.01, 21.21] 0.58 [0.01, 27.00]

Table 4.2: Rotation angle recovery: median [minimum, maximum] absolute error
(AE) in degrees between the Euler angles from the single-bone rigid transformation
and from the rigidly-constrainted non-linear deformation field. The median [mini-
mum, maximum] ground truth angles (GT) are also reported for reference. H and I
indicate the healthy and implanted hip sides respectively.

On the available template dataset, the absolute error appeared systematically

higher for θz in both femora, which can be explained by the large range of

associated ground truth angles. Overall, the median absolute error was found

to be 0.58° although it raised up to 27°, especially along the flexion/extension

axis, as also noticed from Fig. 4.5. The trend of the absolute error with respect
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Figure 4.6: Absolute error versus ground truth Euler angles. The bisector is shown
in black for reference, as well as the trend line (in light blue) obtained from ordinary
least squares fit. Note that the display range varies across the different angles.

to the magnitude of the ground truth angle is shown in Fig. 4.6. Especially for

θz, a linear trend was observed between the angle and its associated absolute

error. This trend is particularly problematic for large rotation angles, where

an error bigger than 50% can have a substantial impact on the final alignment.

However, in our dataset the median rotation angles were 0.29°, 3.07° and 2.28°

for the pelvis, the healthy femora and the implanted femora respectively, with

90% of the angles below 12°. For the sake of illustrating the impact of ro-

tation errors, Figure 4.7 shows an example of angle recovery for the healthy

femur with an error close to the femora median absolute error, while Figure

4.8 shows the case reporting the worst error. In the context of this application

for hip imaging, the error on the angle recovery has none or little impact on

the registration for small rotations, with satisfactory alignment on the femur

as well as on the surrounding soft tissue. For large rotations of the femur,

its position is not well recovered, although a reasonably good alignment is

achieved throughout the FOV. Two factors might have influenced this result:

first, the optimisation converged to a local minimum and no further improve-

ment was possible; second, such large rotation might have induced folding in

the surrounding tissue, which is however impeded by design in the stationary

velocity field model. The algorithm thus found a trade-off between the allowed

rotation and the preservation of diffeomorphism.
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Reference CT Femur-only 
registration

Rigidly constrained 
non-linear registration

θx θy θz

GT 0.78 -3.07 -8.88
Rec -0.07 -3.08 -6.38
AE 0.85 0.01 2.50

Figure 4.7: Example of rotation recovery performance on healthy femur: case with
errors similar to the femora median absolute error. Figure (left): the reference CT
image, rigidly-constrained non-linear registered MR image and the femur-focussed
rigidly registered MR. Table (right): ground truth (GT) angles from the femur-only
registration, recovered (Rec) angles from the rigidly-constrained non-linear regis-
tration and the respective absolute error (AE). Despite a 2.50° error on one of the
angles, the femur alignment is still satisfactory.

Reference CT Femur-only 
registration

Rigidly constrained 
non-linear registration

θx θy θz

GT -1.09 -6.12 -32.81
Rec 2.03 -3.05 -5.81
AE 3.12 3.07 27.00

Figure 4.8: Example of rotation recovery performance on healthy femur: case with-
worst error. Figure (left): the reference CT image, rigidly-constrained non-linear
registered MR image and the femur-focussed rigidly registered MR. Table (right):
ground truth (GT) angles from the femur-only registration, recovered (Rec) angles
from the rigidly-constrained non-linear registration and the respective absolute error
(AE). The inset shows a poor alignment on the femur of the non-linear registraiton,
probably due to convergence to a local minimum, as other anatomical structures
appear well-aligned.

Because of skewed distributions, the sign-test was used to compare the

ground truth and the recovered angles. No significant differences were found

in any of the three angles and in any of the anatomical structures (significance

threshold at 0.05), although no robust conclusion can be drawn from this test

due to the very small sample size.



4.5. Discussion 118

4.5 Discussion

The combination of multimodal information requires accurate alignment of the

different images, achievable through intra-subject image registration. In order

to compensate for differences in patient’s position within the scanners, I devel-

oped a novel CT-MRI intra-subject registration algorithm that allows for local

deformation of the soft tissue while preserving the rigidity of bone structures.

The introduction of rigidity constraints is crucial to obtain clinical trust, as

it guarantees fidelity in the applied anatomical deformations. Indeed, differ-

ently from other approaches such as Staring et al. [127] and Reaungamornrat

et al. [128], the hard-constraint formulation limits the optimisation only to

strictly rigid transformations within rigid structures, preserving their shape

and volume. As the hard constraints have been embedded in a diffeomorphic

transformation model, the proposed method also guarantees the preservation

of topology and avoids unrealistic tissue folding.

For the pelvic images registration task, this registration algorithm proved to

be more robust to the choice of regularisation parameters and more accurate

than standard same-parametrisation non-linear registration (Sec. 4.4.1). The

addition of further algorithmic steps to optimise the rigid transformations did

not impact on the overall computation time, as the rigidity masks actively reg-

ularise the transformation and favour convergence. Moreover, the algorithm

showed robustness against segmentation inaccuracies for the rigid areas that

might arise from the use of automated mask extraction (Sec. 4.4.2).

This framework was developed in the context of intra-subject pelvic CT and

MRI registration, but its implementation is anatomy-agnostic and generic: it

can be applied to any anatomy requiring rigidity in specific areas, so long as

masks of the rigid areas are available. In addition, its incorporation in a cubic

B-spline parametrisation makes it flexible and suitable for both Free-Form De-

formation model as well as its diffeomorphic extension with stationary velocity

field.

Despite the demonstrated improvements on intra-subject registration ac-
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curacy and transformation plausibility, the proposed method still presents

some limitations. Firstly, the non-linear step is initialised with a global regis-

tration. If this registration fails or is not sufficiently accurate, the non-linear

step would not be able to compensate for global misalignment due to limited

capture range and local optima. Secondly, the current parametrisation does

not model sliding effects, which can cause large discontinuities in the defor-

mation field within the acetabular space when large femoral rotation occurs

between the patient’s position in the MR and in the CT scanners. When

compared to rigid registration focussed on individual bones only (Sec. 4.4.3),

the proposed technique introduces critical errors for hip application on large

rotations (> 10°), although they seem to represent only a tiny percentage of

the observed rotation angles (templates dataset median rotation angle is about

1.5°).

While not directly observed in this application, the order of optimisation of

the rigid transformations might have an impact on the final result, especially

if the rigid structures are close to one another (e.g. spine application). Further

tests on a different dataset would thus be needed to assess the importance of

the rigid masks order.

I finally acknowledge that the validation set is limited in sample size, as ground

truth segmentation and landmark annotation were available for eleven subjects

only. Although the template subjects greatly vary in anatomy, implant type

and extent of metal artefacts, the generalisability of this registration algorithm

should be further tested on a larger dataset.



Chapter 5

Automated multimodal

segmentation

Motivation

Image segmentation is needed for quantitative and qualitative analysis,

but it is a cumbersome and time-consuming task. In MSK, the

development of automated segmentation tools is hindered by the large

variability of musculoskeletal structures and the presence of metal

artefact induced noise.

Contribution

A fully automated pipeline for the joint segmentation of CT and MR

images of patients with hip implants is presented. It provides skeletal,

muscular and implant segmentation, and it is robust to the low quality

of clinical data.

Image segmentation allows for the delineation of regions of interests

(ROIs) for quantitative or qualitative analyses relevant for the clinical inter-

pretation of the images themselves. Recent advances in image processing have

enabled the automation of medical image segmentation, mitigating the burden

of manual annotation. However, automating the segmentation of musculoskele-

tal structures is challenging because of the large anatomical variability in the
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population, the lack of standardised scanning protocols, and the small intra-

tissue variability which hampers the separation of different bones or different

muscles. The presence of metal implants further complicates the segmentation,

due to the introduction of metal artefacts and noise.

Most methods proposed in the scientific literature focus on the segmen-

tation of either skeletal or muscular structures. In both cases, atlas-based

segmentation approaches and statistical shape models are the most common

choice, as they take advantage of prior anatomical knowledge to infer the seg-

mentation of new images [33, 62, 68, 72, 82, 83, 85, 103].

Very little work has been proposed to combine the segmentation of all

relevant musculoskeletal structures of the hip joint. One of the most remark-

able examples is the work by Yokota et al. [94], where a hierarchical multi-

atlas approach is employed to obtain automatic segmentation of pelvis, femur

and 19 muscles in CT images (see also Fig. 2.6). Their atlas dataset con-

sisted of 20 subjects (augmented to 40 templates by mirroring with respect

to the sagittal plane), and the approach was tested with a Leave-One-Out

Cross Validation study, reporting an average Dice score of 80.21±6.13 % on all

muscles. More recently, Liang et al. [112] proposed a deep learning framework

called Attention-Pyramid Network (APNet), which automatically segments 50

anatomical structures on pelvic MR images. The network was trained on 240

slices from 10 subjects and tested on 20 slices of a single patient, resulting in

an average Intersection-over-Union (IoU) of 80.27%. Finally, quantification of

segmentation accuracy of musculoskeletal structures in the pelvis was also re-

ported by Hiasa et al. [171], whose focus was however the MR-to-CT synthesis

using a CycleGAN approach. They trained a two-channel 2D U-Net for seg-

mentation of four musculoskeletal structures using 20 labeled CT images and

respective synthetic MRI. At testing, they automatically segmented 10 real

MR images coupled with their synthetic CT. Their approach shows promise

for effectively incorporating multimodal information for both synthesis and

segmentation.
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The discussed methods were all developed and tested on healthy hip sides,

with little or no metal artefact corruption. Only very recently Sakamoto et

al. [113] presented an automated segmentation for patients with hip implants.

Their method combines two U-Nets to first refine the metal artefact correction

and then obtain the segmentation of 19 muscles and hip bones. However, their

analysis is limited by the use of images with simulated metal artefact and by

testing on only 3 real post-operative images.

In order to address the need for robust image segmentation of muscu-

loskeletal anatomy for patients with hip replacement, I developed a fully auto-

mated pipeline to jointly process CT and MRI of the same patient and combine

their multimodal information. The proposed approach generates the segmen-

tation of the pelvic bones, the implants and the abductor muscles which are

at greatest risk of developing atrophy or hypertrophy after hip arthroplasty.

To achieve robustness and high accuracy, this pipeline combines: (1) tailored

pre-processing to reduce the impact of metal artefact as well as to improve

the quality of MRI data; (2) diffeomorphic nonlinear registration algorithm

respective of local rigidity of the bones; (3) a multi-channel multi-atlas seg-

mentation propagation approach, which accomodates for the large population

variability of the considered anatomical structures.

This chapter first presents the automated segmentation pipeline, with

particular focus on the multi-channel multi-altas segmentation propagation

step. The validation of the method will then be discussed and the results will be

compared with current state-of-the-art approaches. The work here described

was originally presented at the 5th Workshop of Computational Methods and

Clinical Applications in Musculoskeletal Imaging (MSKI) held in conjuction

with MICCAI 2017 [159], and then published in the Computer Methods and

Programs in Biomedicine journal [160].
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5.1 Fully automated pipeline for multimodal

segmentation
The proposed segmentation framework was developed for the processing of CT

and MRI data of patients with hip implants. It considers three inputs: one

CT image, and two anisotropic MR acquisitions at different high-resolution

planes (as they are often acquired in clinical practice for faster scanning time).

The inputs are processed in three sequential blocks of steps: image quality en-

hancement, intra-subject MRI-CT image registration with rigidity constraints

on bone, and multi-atlas based multimodal segmentation.

A schematic representation of this pipeline is shown in Fig. 5.1. Taking ad-

vantage of the NiPype framework for the implementation [168], this pipeline

makes use and extends image processing utilities from NiftyReg1, NiftySeg2,

FSL3 and SimpleITK4.

Image quality enhancement . The purpose of the first processing block is

to enhance the quality of the input images, to deal with routinely acquired

clinical data. The steps presented here were specifically implemented for the

available data types (i.e. one CT image and two anisotropic MR T1-weighted

acquisitions). However, the modular formulation of the pipeline allows for

tailoring these steps to different data types. For instance, it can be adapted

to manage only partial data - e.g only one MR image available - or extended

to include different acquisitions - e.g. other sequences MR images.

As previously discussed in Sec. 3.1, the CT image is initially corrected for

metal artefact [134] and resampled to 1× 1× 1 mm3 resolution. For the MR

images, the axial and the coronal acquisitions are corrected for bias field effects,

their intensity distributions are matched by means of histogram normalisation

and finally they are fused into a single volume at 1×1×1 mm3 resolution with

the Super Resolution Reconstruction algorithm proposed by Ebner et al. [158].

1https://github.com/KCL-BMEIS/NiftyReg
2https://github.com/KCL-BMEIS/NiftySeg
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
4http://www.simpleitk.org/
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Figure 5.1: Proposed framework for joint automated segmentation of CT and
MR pelvic images. The three blocks composing the pipeline are highlighted: im-
age quality enhancement (orange), where the two modalities are firstly processed
independently; our novel intra-subject multimodal registration (green), where the
proposed rigidly constrained non-linear registration provides alignment of the CT
and MRI while guaranteeing a rigid behaviour in bones; multi-atlas based auto-
mated segmentation (purple), where the joint CT and MRI segmentation of the two
hip sides are separately obtained and then recombined in the full FOV.

Intra-subject registration with rigidity constraints . The second block

of the pipeline aims at aligning the CT and the SRR MRI of the same subject.

This requires a multimodal non-linear registration to compensate for different

patient’s pose within the two scanners while respecting the rigidity of bony

structures. The steps in this block follow the same presented in Sec. 4.3. First,

pelvis, femora and implant masks are automatically derived from the CT image

using the multi-atlas segmentation propagation strategy described in Sec. 4.3.

Then, an initial global alignment is achieved by affinely registering the SRR

MRI to the CT using a symmetric block-matching algorithm [164]. A more

refined local alignment is then achieved through the non-linear registration

step with rigidity constraints on the extracted masks. After the registration,
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the images are split along the axis of symmetry as automatically detected from

the CT image (Sec. 3.2) and reoriented to have implanted hips as left hip side,

and healthy hips as right side - in line with the reorientation of the template

subsets.

Multi-atlas segmentation propagation . In the last block, the separated

multimodal hip sides are automatically segmented using multi-channel multi-

atlas segmentation propagation and label fusion, taking advantage of the tem-

plate dataset described in Sec. 3.2. The sides and their obtained labels are

finally reoriented and recombined to their original space. The obtained seg-

mentation labels the pelvis, the femora, the implants, GMAX, GMED, GMIN

and TFL, and it can be overlaid on both CT and MRI. A more detailed ex-

planation of the segmentation pipeline is provided in the next section.

5.2 Multi-atlas segmentation approach
The final block of the proposed pipeline uses the template datasets in a multi-

atlas segmentation propagation and label fusion framework to estimate the

final segmentation of each hip side.

Segmentation propagation. Given the selected dataset (either healthy or

implanted) for the considered hip side, the templates CT-MR images are reg-

istered to the target CT-MRI (stacked into a 4D volume) through the following

steps:

1. Rigid registration: All the templates are rigidly aligned to the target

independently, using symmetric block-matching [164].

2. LTS average of rigid transformations: The optimised rigid matrices are

averaged in the log-Euclidean space, discarding 50% of them as out-

liers through least trimmed square regression. Since all the templates

are co-registered to their mid-space, this guarantees robustness against

potentially failed template registrations.

3. Affine registration: All the templates are affinely aligned to the target.
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Instead of initialising the registration with the previously computed rigid

matrix for each template, the LTS rigid average is employed for all of

them.

4. LTS average of affine transformations: Similarly to the rigid case, a LTS

average affine transformation is computed.

5. Non-linear registration: Using the LTS average affine matrix as initial-

isation, each template is non-linearly registered to the target using a

multi-channel approach that aligns simultaneously both imaging modal-

ities. Both CT and MRI contribute equally to the cost function. The

optimisation will thus converge to a final transformation that balances

the alignment of the CTs and the alignment of the MR images. In this

approach, we make use of a standard Free-Form Deformation registra-

tion algorithm, parametrised through cubic B-splines [166]. A bending

energy penalty term is also added to the cost function to regularise the

optimised deformation field. Using Ti to refer to the i-th template image

and R for the reference (target) image to segment, the total cost function

is:

C(R,Ti) = (1−λ)
(1

2S(RCT ,TCTi ) + 1
2S(RMR,TMR

i )
)

+λBE (5.1)

where S indicates a similarity measure, BE the bending energy term,

weighted by the hyper-parameter λ.

6. Segmentation propagation: The final estimated non-linear transforma-

tions are deployed to resample the label image of the respective templates

onto the target space, using a nearest-neighbour interpolation scheme.

Label fusion. As for the bone-mask creation, a final consensus is obtained

from the candidate segmentations by means of the STEPS label fusion algo-

rithm [49]. This technique considers the propagated segmentations as potential

classifiers, and locally ranks them based on the similarity between the target
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Figure 5.2: Multi-channel multi-atlas segmentation propagation and label fusion
pipeline for automated segmentation of registered CT and MRI. Each template
subject is aligned to the target image with rigid registration (R) followed by affine
registration (A) and non-linear one (NL). Each step is initialised by the least-
trimmed square (LTS) average of all template transformations from the previous
step. The segmentations are then resampled using the estimated transformations
and fused into a final consensus.

image and the respective registered template. The similarity is measured on

a local patch with locally normalised cross correlation (LNCC) and spatial

consistency is favoured by the use of a Markov Random Field (MRF) regu-

larisation. For this application, STEPS was modified to use a multi-channel

version of LNCC to rank the templates, defined as the sum of LNCC values

from each channel. Two main hyper-parameters require tuning: the weight

β of the MRF regularisation, and the number N of the top ranked classifiers

to retain in the final majority voting to estimate the consensus label in each

voxel. A diagram of the segmentation pipeline is displayed in Fig. 5.2.

This procedure is performed for both hip sides separately. The two sides

are finally reoriented back and recombined to their original full FOV, pro-

viding a final multi-label image that can be overlaid on both CT and MRI,

highlighting all the segmented musculoskeletal structures.
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5.3 Pipeline validation
This section describes a series of experiments that have been performed to val-

idate the proposed multimodal automated segmentation pipeline. It focusses

mostly on quantifying the performance of the multi-channel multi-atlas seg-

mentation propagation scheme introduced in the previous section. The reader

is referred to Sec. 4.4 for a detailed performance analysis of the intra-subject

registration block.

All the experiments described below made use of the 11 template subjects (10

unilateral cases and 1 bilateral), being the only cases with available manual

ground truth segmentation of bones and muscles. The main validation experi-

ment, described in Sec. 5.3.1, is a Leave-One-Out Cross Validation (LOOCV)

study that aimed at: (1) identifying the optimal hyper-parameters for the au-

tomated segmentation, and (2) evaluating the pipeline performance with the

optimal set of parameters. The generalisability of the proposed approach was

tested further with the nested LOOCV study presented in Sec. 5.3.2, assess-

ing the performance of the pipeline on an hold-out set. Finally, continuing

the analysis presented in Sec. 4.4.2, the robustness of the full pipeline was

tested against the use of automated bone mask generation, and the results are

discussed in Sec. 5.3.3.

5.3.1 Leave-One-Out Cross Validation

To assess the performance of the automated segmentation pipeline, I designed

a LOOCV experiment on the template datasets. Given the healthy (N=10 hip

sides) or implanted (N=12 hip sides) dataset, I performed the multi-atlas based

automated segmentation step for each template image using the remaining

N−1 templates and varying the segmentation propagation and the label fusion

parameters. The obtained segmentations were then compared to the ground

truth by computing the Dice Score for each label.

This test was performed with three different settings: (1) using only the CT

images; (2) using only the MR images; and (3) using the registered 4D CT-MR

images. No muscle segmentations were available for the CT, and similarly no
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Segmentation propagation Label fusion
Similarity λ N β

CT Healthy LNCC 0.001 3 2
Implanted NMI 0.01 3 2

MR Healthy NMI 0.001 3 3
Implanted LNCC 0.1 5 2

Multimodal Healthy LNCC 0.01 3 2
Implanted LNCC 0.1 3 3

Table 5.1: Optimal hyper-parameters of the multi-atlas automated segmentation
selected from each LOOCV experiment setting. λ is the bending energy weight in the
template registration cost function, while N is the number of top ranked classifiers
to retain and β is the MRF weight for the STEPS algorithm.

bones and implant labelling were available on the MRI, thus only the available

labels were considered in the single-modality experiments. For each setting,

an hyper-parameter search was performed to tune the multi-atlas automated

segmentation parameters. In particular, for the segmentation propagation I

tested the use of NMI or LNCC as similarity measure, as well as tuned the

bending energy weight (λ = [0.001,0.01,0.1]). For the label fusion, also based

on previous analysis [170], I fixed the standard deviation of the Gaussian kernel

for the LNCC computation to σ = 5 voxels, while I performed tests for the

number of top ranked classifiers to retain in the majority voting (N = [3,5])

and for the MRF weight (β = [2,3]). The optimal set of multi-atlas-based

automated segmentation parameters was selected as the one maximising the

lowest Dice Score across subjects and across labels; when different sets of

parameters had lowest values within 0.05 difference, I chose the one with the

highest median Dice Score. The result of the selection is reported in Table 5.1.

The quantitative and qualitative analyses that follow were obtained with this

selection of parameters.

Visual examples of the performance of the proposed multimodal multi-

atlas automated segmentation pipeline are shown in Fig. 5.3. Table 5.2 dis-

plays instead the median Dice score values for bones, muscles and implants
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Figure 5.3: Examples of automated segmentation results obtained with the pro-
posed multimodal pipeline. Left, middle and right columns correspond to the sub-
jects with best, average and worst mean Dice score across the segmented structures.
They also demonstrate the large variability of musculoskeletal shapes, implant types,
patient’s position and degree of artefacts present in this type of images. For the first
case the pipeline achieved plausible segmentation throughout the field of view, while
in the second case the muscular structures are less well-defined. In the third case,
instead, the strong metal artefact in the MR image affected the templates-to-target
registration and the consequent segmentation accuracy.

obtained with the best set of parameters for each experiment setting. A more

detailed per-label comparison is reported in Fig. 5.4. Regarding the consid-

ered structures, the bones and the implant are overall better segmented with
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Leave-One-Out-Cross-Validation for model parameter selection

Healthy side
CT MR Multimodal p-value

Bones 0.95 [0.72, 0.97] N.A. 0.93 [0.75, 0.96] 0.0064*
Muscles N.A. 0.84 [0.59, 0.93] 0.85 [0.66, 0.92] 0.0806

Implanted side
CT MR Multimodal p-value

Bones 0.91 [0.70, 0.94] N.A. 0.89 [0.69, 0.91] 0.0002*
Muscles N.A. 0.83 [0.60, 0.93] 0.81 [0.61, 0.92] 0.1051
Implant 0.92 [0.81, 0.95] N.A. 0.91 [0.84, 0.95] 0.8501

Table 5.2: Median Dice Score values and 95% percentile ranges for bones, implant
and muscles: comparison between single- and multi-modality results. Wilcoxon
signed rank test was performed to test the null hypothesis of same distribution for
the multi-modality- and the respective single-modality-derived Dice Scores (obtained
p-values are reported and starred are the cases of rejection of the null hypothesis
with 5% significance level). N.A. indicates cases where the manual segmentation
was not available.

Figure 5.4: Boxplots illustrating the Dice score distribution obtained for the best
set of parameters in the LOOCV experiments. The multimodal approach was com-
pared with the CT for bones and implants, and to MRI for muscles. Results are
separated in healthy and implanted hip sides.
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respect to muscles, given their lower shape and texture variability. To com-

pare the single- vs the multi-modality performance, I tested the hypothesis of

same underlying distributions for Dice Score values with the Wilcoxon signed

rank test (5% significance level). Significant difference was found only for the

segmentation of the bony structures, although the sample size is too small to

draw any definite conclusion. The implanted side provided slightly lower val-

ues with the multimodal pipeline. This side is more affected by residual metal

artefact in CT and lack of metal intensity information in the MRI, which ham-

per both the intra- and inter-subject registration. Moreover, in the multimodal

experiment the multi-atlas segmentation parameters are selected based on all

the musculoskeletal structures, finding a trade-off between the segmentation

accuracy of bones, muscles and implant. This differs from the single-modality

cases, where the parameters are selected only on bones and implant (CT) or

muscles (MRI), therefore being more performant on such structures.

Although the quantitative results do not show a significant improvement

over the single modality approach, the proposed multimodal framework is able

to provide a consistent and unified solution to the segmentations of both CT

and MRI. This approach guarantees no overlap between the segmented ROIs,

which cannot be ensured by the use of independent approaches for muscular

segmentation on the MRI and bone or implant on the CT. On the template

set, I verified that on average 2% of the voxels labeled as muscle on the MRI

overlapped with CT-labeled bone voxels in the manual segmentations.

Moreover, without the use of a registration framework able to combine the

two modalities while maintaining their biological plausibility, the joint seg-

mentation of muscles, bones and implants would be more challenging and

less accurate on the single modality. To test this hypothesis, I adopted the

same LOOCV framework to obtain an automated segmentation of the Gluteus

Medius on CT images, exploiting the available manual segmentations of the

healthy side as already described in Sec. 4.4.1. The comparison of the Dice

Score values from CT, MRI and combined multimodal framework is reported
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Figure 5.5: Dice Score values for healthy-side GMED automated segmentation
using only CT, only MR or our 4D CT-MR framework. The Dice Score is computed
against the manual segmentation on the CT space for the CT framework, on the
MR space for the MR framework, and on the MR space then registered to the CT
space for the multimodal framework.

in Fig. 5.5. A visual example is also shown in Fig. 5.6, reporting the auto-

mated segmentation of GMED and the ground truth. While the multimodal

approach provides a reasonable result, the single modality results are less sat-

isfactory: the CT-only automated segmentation is not able to clearly recover

the boundary between fat and muscle; in the MRI-only, parts of the femur are

wrongly classified as muscle.

For the sake of illustration, Figs. 5.7 and 5.8 report a similar example on

the GMIN muscle, being the closest to the hip joint. Due to lack of manual

ground truth on the CT, these figures only compare the segmentation obtained

from MRI and the multimodal framework, for the healthy and the implanted

hip sides. The Dice score values for GMIN resulting from the LOOCV exper-

iment are reported in the summative Figure 5.4. This example shows that on

the healthy side the use of the CT in the multimodal framework allows for

better recovering of the muscle insertion on the greater trochanter, while on

the implanted side it prevents bone tissue to be wrongly labelled as muscle.
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Using CT only Using MRI only Using CT and MRI

Figure 5.6: An example of GMED automated segmentation from the LOOCV
experiments. The automated segmentation (blue) is overlaid onto the manual ground
truth (green). Although the first two columns show results for the single-modality
experiments, I reported both images for clearer visualisation of failure. For this case,
Dice Score values are: 0.68 (CT only), 0.72 (MR only), 0.77 (multimodal approach).

Using MRI only Using CT and MRI Using MRI only Using CT and MRI

Coronal view Axial view

Figure 5.7: An example of GMIN automated segmentation from the LOOCV
experiments (healthy hip side). The automated segmentation (red) is overlaid onto
the manual ground truth (light blue). A coronal and an axial view of the same
subject are reported. Dice Score values are: 0.60 (MRI only), 0.76 (multimodal
approach). No manual segmentation was available in the CT space for GMIN, so
CT only results cannot be shown.
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Using MRI only Using CT and MRI Using MRI only Using CT and MRI

Coronal view Axial view

Figure 5.8: An example of GMIN automated segmentation from the LOOCV
experiments (implanted hip side). The automated segmentation (red) is overlaid
onto the manual ground truth (light blue). A coronal and an axial view of the same
subject are reported. Dice Score values are: 0.81 (MRI only), 0.78 (multimodal
approach). No manual segmentation was available in the CT space for GMIN, so
CT only results cannot be shown.

5.3.2 Generalisability analysis

As a further test of robustness of the proposed segmentation pipeline, I ex-

tended the LOOCV experiment to a nested version, in order to verify the

generalisability of the proposed approach to unseen data. In particular, I used

N-1 subjects to perform the parameter selection in the same LOOCV fashion

as described in the previous paragraph, and then I tested the performance of

the model with the selected parameters on the hold-out subject. By iterating

this over all the template cases, I obtained the summary Dice score statistics

reported in Table 5.3. These results are in line with the full dataset LOOCV

analysis, which represents the optimal performance, showing the robustness

of this approach on a more realistic setting. The median Dice Scores are un-

changed or within 1% difference. A very slight reduction of the Dice score range

in some of the classes (e.g. muscles in the implanted hip sides) is imputable to

the use of less templates for the parameter selection. Due to the small number

of templates currently available and because of the large population variabil-

ity, removing a template subject that highly contributes to representing this
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Nested Leave-One-Out-Cross-Validation for Generalisability

Healthy side
CT MR Multimodal p-value

Bones 0.94 [0.65, 0.97] N.A. 0.94 [0.75, 0.96] 0.0513
Muscles N.A. 0.85 [0.65, 0.92] 0.86 [0.71, 0.92] 0.2789

Implanted side
CT MR Multimodal p-value

Bones 0.91 [0.64, 0.95] N.A. 0.88 [0.64, 0.92] 0.00002*
Muscles N.A. 0.83 [0.60, 0.93] 0.80 [0.58, 0.91] 0.0254*
Implant 0.92 [0.70, 0.96] N.A. 0.91 [0.82, 0.94] 0.1294

Table 5.3: Median Dice Score values and 95% percentile ranges for bones, implant
and muscles obtained from the nested LOOCV (p-values for 5% significance level
of Wilcoxon signed rank test between monomodal and multimodal comparisons are
shown). N.A. indicates that manual segmentation was not available.

variability might bias the parameter selection towards other types of subjects

(e.g. removing a subject with particularly high distribution of adipose tissue

might lead to poor segmentation of patients with more robust constitution).

This more adversely impacts the multimodal approach especially in the more

variable muscular structures, as the inter-subject registration needs to balance

the alignment of both CT and MRI. Overall, however, this experiment did not

show a significant drop in performance when tested on the hold-out set, so it

can be concluded that the proposed approach is able to generalise to unseen

data.

5.3.3 Effect of automated bone masks
A final set of experiments aimed at extending the analysis on propagation of

segmentation errors due to the use of the automated bone masks extraction

(Sec. 4.4.2). To verify whether any error would propagate to the end of the

pipeline, the multi-atlas segmentation propagation was performed on both CT-

MRI pairs registered with manual bone masks and CT-MRI registered with

automated masks. A LOOCV scheme was used in this case as well both in the

automated mask generation and in the multi-channel multi-atlas segmentation

propagation to avoid the introduction of biases.
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Figure 5.9: Dice Score for all the structures obtained after intra-subject registration
with either automated or manual bone masks.

Figure 5.9 shows the resulting Dice Score distributions for all the structures of

interest (bones, muscles and implants). No statistically significant difference

was found (Wilcoxon signed rank test, 5% confidence level), proving the ro-

bustness of the full segmentation pipeline against the use of automated bone

mask definition for the intra-subject CT-MRI registration.

5.4 Discussion
An automated processing framework to register and jointly segment same-

subject pelvic CT and MR images was developed to facilitate the definition of

regions of interest for hip arthroplasty assessment. This framework allows to

highlight both muscular and skeletal structures on all available modalities. The

implant segmentation, for example, can be overlaid on the MR image, where

the metal artefact completely shadows it. Visualising the spatial position of

the implant with respect to muscular structures could help better determine

the muscles at greater risk of developing atrophy or the presence of other

inflammatory lesions. Also, by reducing the burden of manually selecting

regions of interest through an automated segmentation scheme, 3D rendering

of patient-specific anatomy as well as volumetric imaging biomarkers can be

more easily derived.

The proposed pipeline was developed taking into consideration the large

population variability and the sources of image artefact and noise, which ham-
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per the generalisability of automated image analysis in MSK.

The image quality enhancement block makes it suitable for routinely acquired

clinical data, heavily corrupted by noise and artefacts. The use of a tailored

bias field correction scheme and of the super resolution algorithm helps obtain

high quality MR images with isotropic resolution, without the need for longer

volumetric MR acquisitions. The introduction of a Metal Artefact Reduction

(MAR) technique for the CT also facilitates the registration tasks, and thus

promotes accurate final segmentation.

As already discussed in Chapter 4, the intra-subject registration with rigidity

constraints enables accurate alignment of the CT and MRI, while guaranteeing

the anatomical fidelity in the applied deformations, crucial to obtain clinical

trust.

Should the intra-subject registration succeed, the subsequent steps of the

pipeline are not expected to fail but rather to be non-optimal in the worst

case. This is due to the robustness of the multi-channel multi-atlas segmenta-

tion block. First, a robust affine scheme is used for inter-subject registration,

which allows up to 50% of the pairwise affine registrations to fail without

compromising the final outcome. Second, the fusion algorithm automatically

selects the template images that appear to be the most similar to the tar-

get image and thus the best registered. This second aspect also enables the

pipeline to deal with several non-linear inter-subject registration failures. In

the Leave-One-Out Cross Validation experiment, the presented multi-channel

multi-atlas segmentation approach proved to achieve good accuracy with me-

dian Dice Score of 0.90 for skeletal and 0.84 for muscular structures. The

implanted sides overall reported a slightly lower accuracy, but it is reasonable

to expect an improvement on this performance following further advances in

CT-MR registration quality, such as the introduction of the sliding modelling,

and increased template dataset size.

The multimodal approach introduced a small reduction in performance

when compared to the use of CT for bone segmentation and MRI for muscle
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segmentation (Table 5.2). However, the experiment on the GMED showed that

there is added value in the use of multimodal information to segment struc-

tures which the single modality lacks constrast for (e.g. muscles in CT). The

lack of contrast for muscular structures in CT images hampers the templates

manual delineation process, introducing larger variability in the segmentations

propagated to a target space and therefore hindering the accuracy of the fi-

nal consensus. In the MRI space, the manual segmentation of the templates

is more reliable, but the qualitative nature of this modality makes the inter-

subject registrations more difficult in the multi-atlas approach. The proposed

4D multimodal framework takes advantage of both modalities, as the CT helps

regularise the templates-to-target registration while exploiting the more trust-

worthy manual segmentation from the MR, leading therefore to more robust

results.

5.4.1 Comparisons with the literature

A comparison with four of the most recent and most similar works was carried

out to further evaluate the performance of the proposed framework in relation

to the state-of-the-art. It is worth noting that only approximate and incon-

clusive interpretations of this comparison can be drawn, as the methods have

been trained and tested with different datasets, varying in size, quality and

presence/absence of metal artefact induced noise.

Results on the healthy hip sides were compared to: Yokota et al. [94],

who proposed a hierarchical multi-atlas approach for MSK segmentation in

CT images, and thus is the most similar in terms of goal and methodological

approach; Hiasa et al. [171], who presented a multimodal framework for CT-

MR image synthesis, followed by a 2D UNet for joint segmentation of MSK

structures in MR-synthetic CT pairs, and thus it is the most similar in the use

of multimodal information; and Liang et al. [112], who used a multi-resolution

CNN to segment pelvic MR images. The performance metrics reported in

their original articles are compared to the proposed approach in Table 5.4.

The proposed approach outperformed the multimodal segmentation network
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presented by Hiasa et al. [171] in all the compared structures, though I acknowl-

edge that their use of synthetically generated data for training might not be

representative of performance on real data. Yokota et al. [94] reported slightly

higher Dice Score for GMAX, GMED and TFL (still within one standard

deviation), while improved performance was observed on the smaller GMIN,

typically characterised by higher shape variability. Similar performance on

bone segmentation was observed in comparison to Liang et al. [112], although

they reported consistently higher accuracy in muscle segmentation. However,

results were provided for a single subject only, so it is difficult to assess the

validity of this comparison. In addition, the values displayed here for Liang

et al. [112], are the average between the left and right hip sides, which are in-

stead reported in the original paper. When observing their original values, the

left hip side appeared systematically worse than the right hip side (e.g. IoU

= 93.65/84.70, IoU = 95.28/77.84, IoU = 92.82/58.30 for right/left GMAX,

GMED and GMIN respectively), and no clear explanation of this behaviour is

provided.

Likewise, a comparison with the cascade of U-Nets proposed by Sakamoto

et al. [113] for the segmentation of metal-artefact corrupted CTs is reported in

Table 5.5. Similar accuracy was obtained in the segmentation of GMAX and

slightly worse for GMED, although again the small test dataset size invalidates

any conclusion.

5.4.2 Conclusions

The presented segmentation framework represents a promising tool for the

automation of image analysis in hip arthroplasty. The combination of multi-

modal information proved its efficacy in providing a robust and unified solution

for the segmentation of both skeletal and musculare structures, as well as im-

plants.

The block structure of the proposed framework makes it flexible and readily

adjustable to various types of input data. Despite relying on a dataset of reg-

istered CT-MRI atlases, the pipeline could be applied to a single modality and
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Dice score
Yokota et al. [94] Hiasa et al. [96] Proposed

(CT only) (MR+synthetic CT) (MR + CT)
Nr test cases 20 10 10

Pelvis - 0.808 ± 0.036 0.882 ± 0.072
Femur - 0.883 ± 0.029 0.949 ± 0.013
GMAX 0.921 - 0.906 ± 0.024
GMED 0.875 0.804 ± 0.040 0.850 ± 0.045
GMIN 0.697 0.669 ± 0.054 0.826 ± 0.040
TFL 0.807 - 0.797 ± 0.088

Intersection over Union (%)
Liang et al. [112] Proposed

(MR only) (MR + CT)
Nr test cases 1 10

Pelvis 79.92 79.53 ± 10.12
Femur 90.17 90.24 ± 2.15
GMAX 89.18 82.87 ± 3.82
GMED 86.56 74.13 ± 6.20
GMIN 75.56 70.53 ± 5.32
TFL 84.19 67.01 ± 10.93

Table 5.4: Comparison with literature results. Literature methods were tested on
non implanted patients, hence only “healthy” hip sides were considered for the pro-
posed method. Mean values are reported with their standard deviation (if available).
In bold is the highest value for each structure.

Dice score
Sakamoto et al. [113] Proposed

(CT only) (MR + CT)
Nr test cases 3 12

GMAX 0.91 0.89 ± 0.03
GMED 0.88 0.81 ± 0.07

Table 5.5: Comparison with literature results presented by Sakamoto et al. [113]
for the segmentation of muscles in patients with hip implants. Results are average
of both implanted and contralateral hip sides. In bold is the highest value for each
structure.
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still provide the whole musculoskeletal range of structures while requiring only

little modification. However, further analysis should be performed to test the

robustness of the pipeline when used on single image or on other acquisition

types.

This approach showed accuracy comparable to other state-of-the-art

methods, although further adjustments could have a positive impact in im-

proving its performance. For instance, variability in anatomical and implant

structures could be better captured by increasing the number of template

datasets. Moreover, a more thorough hyper-parameter search could further

optimise the segmentation propagation and label fusion steps. Finally, and

most importantly, the only active measures for reducing the impact of the

metal artefact in the images are presently the application of RMAR [134] to

CT, and the use of NMI in the intra-subject registration, being a similarity

measure robust to noise. Better approaches to metal artefact reduction in both

CT and MRI could be beneficial and favour higher segmentation accuracy, as

they would reduce the impact of noise in the several registration steps required

by this approach.

Nonetheless, the proposed pipeline is a valuable tool towards the automa-

tion of ROIs definition, from which clinical biomarkers could be derived to in-

form the clinicians about skeletal and muscular conditions around the implant.

This potential application of the segmentation framework will be explored in

the next chapter.



Chapter 6

Imaging biomarkers for muscle

atrophy

Motivation

Development of muscle atrophy is a sign of implant failure, but current

clinical assessment relies on subjective and qualitative visual scoring

systems.

Contribution

Introduction of a multimodal imaging biomarker, the Intramuscular Fat

Fraction, for automated quantification of fatty infiltration and muscle

atrophy assessment.

The interpretation of musculoskeletal images and the assessment of im-

plant failure could be facilitated by the identification of reliable and quantita-

tive imaging biomarkers. In the context of muscle atrophy, two quantities are

of main interest to define muscular condition: the muscle gross volume and

the quantification of fat infiltration within the muscle [29]. Current clinical

practice is based on a visual and qualitative assessment of few 2D slices, which

is therefore strongly subjective and does not account for the whole muscu-

lar volume. A few works have proposed 3D measures of volume [30–32] and

fat infiltration [38–40, 42]. They however rely on the time-consuming manual

segmentation of the whole muscle, making it difficult to scale up for clinical
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deployment.

The segmentation pipeline proposed in the previous chapter provides a fully

automated means for (1) patient-specific musculoskeletal anatomy visualisa-

tion and volumetric rendering, and (2) delineation of regions of interest (ROI)

for the extraction of clinically relevant information. By overcoming the need

for manual segmentation, it enables the automated derivation of 3D metrics

to quantify muscle atrophy.

This chapter reports a series of studies to evaluate the feasibility of automati-

cally extracting imaging biomarkers of muscle atrophy from the automated

segmentation. Two measures will be analysed and compared against cur-

rent clinical assessment: the volume percentage difference - measuring lateral-

contralateral volume asymmetry - and the Intramuscular Fat Fraction - mea-

suring the percentage of fatty infiltration in the muscles. Finally, a preliminary

study of the association between muscle atrophy and implant metal wear will

be presented.

6.1 Volume asymmetry

Volume measurements are the first and most basic quantitative assessment

that can be extracted from 3D muscle segmentation, being simply the product

of the number of segmented voxels and the voxel volume. A straightforward

potential measure of muscle atrophy can be derived from volumes by quanti-

fying the muscle volume asymmetry between the painful and the contralateral

hip side. Such an approach has already been reported in the literature for the

characterisation of hip osteoarthritis [31, 32], showing significant GMAX and

GMED asymmetries in patients with advanced pathology (19.7% and 12% vol-

ume reduction respectively), and a statistically non-significant shrinkage trend

for GMIN as well (around 8% for both mild and advanced pathology). Similar

analysis was performed by Takao et al. [172], who reported a mean volume

difference of 18.6±7.1% in 13 of 17 muscles pre-operatively from 20 patients

with hip osteoarthritis. No post-operative analysis was however reported.
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In line with the current literature, I thus estimated the volume asymmetry

in the available dataset to verify its potential use as a biomarker for muscle

atrophy. Volume asymmetry was defined in terms of volume percentage differ-

ence between the implanted hip side and the contralateral one:

Vdiff = 100× Vcontralateral−Vimplanted
Vcontralateral

(6.1)

In case of bilateral prostheses, the side reported as painful in the radiological

report was considered as “implanted” and the non-painful side as contralateral.

In order to establish the accuracy of the automated segmentation for this

task, I firstly compared the derivation of the volume percentage difference

from manual and automated segmentations on the template dataset. Then, I

estimated the volume asymmetry in the whole dataset and compared results

across muscles. Finally, I compared it with the visual radiological score of

muscle atrophy to verify its ability to differentiate subjects according to current

clinical classification. The results of these three analyses are discussed in the

next sections.

6.1.1 Automated vs manual segmentation comparison

As one of the main goals of this work is the automation of image segmentation

and biomarkers extraction, I firstly evaluated the ability to accurately recover

the volume percentage difference from the automated segmentation.

To this aim, I considered the eleven template subjects and their respective man-

ual segmentation or automated segmentation as obtained from the LOOCV

experiment (described in Sec. 5.3.1). The volume percentage difference was

computed from either the manual and the automated segmentation accord-

ing to Eq. 6.1 for the three abductor muscles. Their comparison is shown in

Fig. 6.1.

Overall, this analysis resulted in a mean absolute error of 15.3 ± 11.8%

between the volume difference from manual and automated segmentation (9.5

± 6.4% for GMAX, 18.9 ± 11.9% for GMED, 17.5 ± 13.6% for GMIN). How-
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Figure 6.1: Comparison between painful-contralateral volume percentage differ-
ence estimated from automated vs. manual muscle segmentation. The identity line
is displayed in black for reference.

ever, Wilcoxon signed-rank test with 5% significance level did not highlight

significant difference between the two distributions.

6.1.2 Volume asymmetry in the available dataset

The previous analysis allows us to quantify the potential error introduced by

the use of automated segmentation to extract volume measures. Keeping this

in mind, I extended the volume asymmetry analysis to the remaining data for

which the manual segmentation was not available, with the aim of evaluating

the volume asymmetry in the available population sample.

The dataset . For this analysis, I considered the full dataset described in

Chapter 3, excluding only the subjects used to build the template dataset and

the subjects with bilateral implants whose painful side information was not

available. In total, 69 subjects were thus automatically processed with the

pipeline described in Chapter 5 and the painful-contralateral volume percent-

age difference was derived from the automated segmentation. Demographic

information for this subset of the data is reported in Table 6.1. No substantial

change is noted in the demographics distribution of this subset with respect

to the full dataset.
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Volume asymmetry analysis
Females Males Total

Number of subjects 43 26 69
Unilateral cases 30 22 52
Bilateral cases 13 4 17

Mean [Range] age 53.74 [23, 74] 57.88 [35, 70] 55.30 [23, 74]

MRI within 1 month from CT 32 15 47
MRI within 6 months from CT 4 2 6
MRI within 12 months from CT 2 1 3
MRI within 24 months from CT 4 6 10
MRI within 37 months from CT 1 2 3

Table 6.1: Summary of the dataset demographic statistic for the subset employed
in the volume asymmetry analysis.
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Figure 6.2: Distribution of painful-
contralateral volume percentage difference
for the three abductor muscles in the
dataset.

Median
[2.5, 97.5]% range

GMAX 20.25
[-46.71, 46.50]

GMED 23.45
[-55.06, 69.42]

GMIN 41.92
[-67.39, 80.20]

Table 6.2: Median and
95-percentile range of painful-
contralateral volume percentage
difference for the three abductor
muscles.

Results . The distributions of the volume percentage difference for the three

abductor muscles are shown in Figure 6.2, with the corresponding median and

95 percentile range reported in Table 6.2. Unsurprisingly, these figures show a

trend towards higher volume shrinkage the closer the muscle is to the implant,

with GMIN reporting the highest volume asymmetry. The difference in muscle

size also reflects into higher variability of volume difference for GMED and

GMIN compared to the larger GMAX.
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Although a direct comparison is not possible, the values obtained from

this analysis seem compatible with the results reported by Takao et al. [172].

They estimated an average volume shrinkage of 18.6% between painful and

contralateral side pre-operatively, while no post-operative estimation is avail-

able for comparison. Qualitatively, the increase in volume shrinkage observed

in this dataset is not surprising, since these patients have been referred to Char-

ing Cross Hospital for potential failing implant and need for revision surgery.

Nonetheless, considering the fairly large error associated with the pro-

posed automated estimate of the volume difference, further validation is needed

to assess the clinical use of this measure as a biomarker for muscle atrophy.

6.1.3 Comparison with radiological score

In order to verify the validity of the volume percentage difference as a useful

indicator for muscle atrophy, I benchmarked this candidate biomarker against

the current clinical evaluation. In particular, I considered a subset of cases

with associated Bal and Lowe scoring [27] of Gluteus Medius and analysed its

association with the proposed volume percentage difference.

The dataset . Within the dataset, 27 subjects had associated muscle atrophy

grading for GMED (excluding also cases belonging to the template dataset).

The grading had been performed by an expert radiologist according to the Bal

and Lowe visual scoring system [27]: grade 0 corresponds to no atrophy, grade

1 is less than 30% change in muscle, grade 2 between 30% and 70%, and grade

3 more than 70% fatty change. Such radiological scores were available only for

the implanted hip sides, and only the symptomatic side was considered in case

of bilateral hip replacement. Summary demographic statistics are reported in

Table 6.3. Although smaller, this subset preserves most of the full dataset

characteristics: 2:1 female-male splitting, unilateral cases more than double

the bilateral ones, and similar distribution across time difference between MR

and CT. A slight increase in the average age and range is noted, due to the

lack of clinical score for youngest subjects.
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Radiological score correlation analysis
Females Males Total

Number of subjects 18 9 27
Unilateral cases 11 8 19
Bilateral cases 7 1 8

Mean [Range] age 56.61 [35, 74] 60.22 [45, 69] 57.81 [35, 74]

MRI within 1 month from CT 14 5 19
MRI within 6 months from CT 2 0 2
MRI within 12 months from CT 0 0 0
MRI within 24 months from CT 1 4 5
MRI within 37 months from CT 1 0 1

Table 6.3: Demographics of the patients whom Bal and Lowe radiological score for
muscle atrophy is available.
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Figure 6.3: Painful-contralateral GMED volume difference against radiological
score for muscle atrophy. Cases whose CT and MRI were acquired with more than
6-month difference are reported as crosses.

Results . The association between the four groups of the Bal and Lowe scor-

ing system and the volume percentage difference was tested with an Analysis

of Variance (ANOVA) study. The distribution of the volume percentage dif-

ference values grouped per score are shown in Figure 6.3. As seen from the

figure, the volume percentage difference does not allow for a clear separation

of classes. The one-way ANOVA supported this conclusion, indicating no sig-

nificant difference in the means of the four groups (p > 0.05). The Spearman’s

rank-order correlation coefficient ρs, computed between the volume percentage
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difference and the associated radiological score, further confirmed the lack of

significant correlation (ρs = 0.188, p-value= 0.347).

6.1.4 Limitations

The analyses presented in this section suggest that the volume percentage

difference might not be a reliable biomarker for muscle atrophy. Its current

definition is characterised by several limitations. First, the value of the volume

percentage difference could be completely biased by the image FOV and by the

patient’s position within the scanner: being the muscles quite extended and

not always fully imaged within the FOV, a difference in volume might stem

from asymmetric coverage of the left and right hip sides due to patient’s pose,

rather than actual volume shrinkage. In other words, the same muscle might

be truncated at slightly different heights on the painful and on the contralat-

eral side. A standardisation of the FOV coverage at acquisition would thus

be required to make sure the whole muscle volumes are included. In addition,

this biomarker definition requires the identification of a non-implanted or at

least non-painful hip side to be used as a reference. This might not be trivial

or applicable in patients with bilateral hip implants.

Assuming the volume percentage difference from the manual segmentation as

a ground truth estimation, the error analysis shows a discrepancy between the

manual and the automated estimation up to the same order of magnitude of the

actual painful-contralateral differences to be captured. This suggests that the

error introduced by the automated method might further bias the biomarker

calculation, and thus make the quantification of the actual asymmetry not

trustworthy. Moreover, Takao et al. [172] reports significant asymmetry al-

ready pre-operatively, adding further difficulties in disentangling the effect of

the implant in the development of muscle wastage.

Taking all these considerations into account, at present the proposed vol-

ume percentage difference is not suitable as a clinical biomarker. Perhaps, a

measure of volume shrinkage between pre- and post-surgery in a longitudinal

analysis could be a potential future direction of investigation.
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6.2 Intramuscular Fat Fraction

The development of muscle atrophy is characterised not only by a reduction

of volume but also by increased fatty infiltration within the muscle region

(intramuscular fat). A standardised and quantitative assessment of fatty de-

generation could thus provide a relevant biomarker for muscle wastage.

The estimation of fatty infiltration has traditionally been derived from

water-fat separated MR imaging, using chemical-shift acquisition protocols [38,

39], and requiring manual annotation of the muscle region to consider. Such

protocols are however very sensitive to magnetic field inhomogeneities and

thus less reliable for patients with metal implants [23]. Automated muscle-

fat segmentation methods in T1-MR imaging have been introduced as well

[37, 41], still reporting the need for manual intervention in either defining the

ROI or selecting an appropriate thresholding to classify voxels as muscle or fat.

The use of CT radiodensity to measure the percentage of fat was also proposed

in the literature, showing correlation to muscle strength in patients with hip

osteoarthritis [42]. Previous studies however rely on manual segmentation

of muscles in CT, as the lack of intra-class contrast hampers the automated

segmentation of individual muscles.

In this work, given the availability of same-subject CT and MR images, I

propose an estimation of the intramuscular fat fraction which takes advantage

of multimodal information to characterise fatty infiltration in patients with hip

implants. The quantitative nature of CT and its clear separation between fat

and muscle intensities favour the automated tissue classification within regions

of interest [89]. This can be combined with the proposed automated segmenta-

tion pipeline to obtain accurate MRI-driven muscle boundary delineation also

in the CT space, even in the presence of strong artefact induced noise. In this

way, a quantification of fatty infiltration can be fully automatically derived

from the input CT and MR images.

In order to differentiate intramuscular fat and lean tissue within each muscle

ROI, the output of the presented segmentation pipeline needs to be further
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post-processed. Each muscle label is extracted independently from the multi-

label segmentation output, and considered as a mask of the ROI for the fatty

infiltration estimation. The mask is eroded by three voxels to ignore intermus-

cular fat at the volume boundary and potential segmentation inaccuracies [38].

Within each eroded ROI mask, the CT image is segmented by thresholding

at -30 HU [89], classifying each voxel as either adipose tissue or lean muscle.

From this classification, the percentage of fat tissue in the muscle gross volume

can be computed as Intramuscular Fat Fraction (IFF):

IFF = Vfat
Vlean +Vfat

(6.2)

where the volume V of fat/lean muscle is the total number of voxels classified

as fat/lean muscle multiplied by the voxel volume. In other words, MRI helps

define the boundaries of the different muscles, i.e. the different ROIs, while

CT helps differentiate fat and lean muscle tissue within each ROI.

Similarly to the analysis performed for the volume percentage difference,

the next paragraphs will firstly illustrate the quantification of error introduced

by the use of automated segmentation, and then the correlation of the proposed

IFF with the radiological score for muscle atrophy.

6.2.1 Automated vs manual segmentation comparison

The first experiments aim at quantifying the robustness of the approach against

the use of automated segmentation. The eleven template subjects were used

for this analysis, as they were the only cases with available manual segmen-

tation. As automated segmentation, I employed the results of the LOOCV

experiments (Sec. 5.3.1). For both segmentations, the IFF was automatically

computed according to Eq. 6.2, after the processing steps of erosion and

CT thresholding. Figure 6.4 plots the IFF obtained from the automated vs.

manual segmentation, the latter being considered as the ground truth value.

Results are grouped according to the presence/absence of hip implants (im-

planted/healthy hip side). The mean absolute errors for each abductor muscle
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Figure 6.4: Comparison between intramuscular fat fraction (IFF) estimated from
manual segmentation of muscles and IFF from automated segmentation as proposed
in this work. Healthy hip side results on the templates dataset are shown on the
left, implanted hip sides on the right. The identity line is displayed in black for
reference.

Mean Absolute Error
Healthy Implanted

GMAX 0.005 ± 0.003 0.016 ± 0.035
GMED 0.006 ± 0.007 0.052 ± 0.060
GMIN 0.015 ± 0.012 0.042 ± 0.043
Total 0.008 ± 0.009 0.037 ± 0.049

Table 6.4: Mean absolute error and associated standard deviation between the IFF
from manual and from automated segmentation on the 11 template subjects.

are summarised in Table 6.4. No significant difference was found for any of

the muscles when comparing the automated and manual estimation (Wilcoxon

signed rank test with significance level α = 0.05). The GMAX reported the

smallest error in both healthy and implanted hip sides, while GMED and

GMIN had a slightly higher error, especially on the implanted side. This

might be linked to the smaller size of these muscles (and thus more impacted

by a constant erosion factor of 3). Most likely, this is due to the proximity
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Figure 6.5: Examples of registered CT and MRI for each radiological score, and the
automated fat segmentation from the proposed method. The eroded gross muscle
boundary is reported in green. The fat segmentation is indicatedin yellow. The
derived IFF is also reported, showing an increase of fat infiltration in agreement
with the radiological score.

with the implant, and hence to the less accurate segmentation (already ob-

served in the LOOCV experiment, Fig. 5.4). Overall, the estimation of the

IFF from the automated segmentation appears fairly robust to segmentation

inaccuracies, with most errors within 5-10% of the corresponding IFF value.

6.2.2 Comparison with radiological scores

The proposed automated quantification of IFF was benchmarked against the

current radiological scores for muscle atrophy. The same 27-subject dataset

previously described (Sec. 6.1.3) was used for this analysis as well. The CT

and MR images of these subjects were automatically segmented and the IFF

for the pathological GMED was then derived. The association between the

computed IFF and the gold-standard radiological score was tested using the

one-way ANOVA F-test. Examples for each radiological score of the obtained

fat segmentation and the respective IFF values are reported in Fig. 6.5.

For the sake of comparison, I estimated the IFF from the MR images, i.e.

discarding the extra information that the CT could provide. In this case, I

manually identified a threshold for each subject to segment fat and lean muscle



6.2. Intramuscular Fat Fraction 155

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

Ra
di

ol
og

ic
al

 s
co

re

Implant IFF
(MRI, manual)

Implant IFF
(MRI, automated)

Implant IFF
(Multimodal, automated)

Figure 6.6: Intramuscular Fat Fraction of GMED (implanted side), estimated
with different thresholding methods and plotted against the corresponding visual
radiological score. Cases whose CT and MRI were acquired with more than 6-month
difference are reported as crosses.

within the GMED mask and I computed the IFF from this segmentation. The

same analysis was performed with an automated thresholding on MRI. The

automated threshold was estimated by: (1) manually thresholding the GMED-

masked MRI for the templates; (2) computing for each template,the percentile

of the GMED intensity distribution the threshold corresponds to; (3) deriving

the average percentile across templates. On this dataset, this corresponded

to the 41st percentile of the full range of intensities in the masked MRI. The

GMED muscles of the 27 subjects whose radiological score was available were

then automatically segmented into fat and lean muscle using this percentile

threshold, and the IFF was derived.

Figure 6.6 displays the association of the IFF values and the radiological

scores for the three analysed cases. The results of the performed statistical

analysis are reported in Table 6.5. These results show better inter-class

separation when IFF is computed from the CT image, suggesting a stronger

association between this IFF estimation method and the radiological score.

The Spearman’s rank-order correlation analysis also shows stronger significant

correlation with the radiological score when the IFF is computed using the

proposed multimodal approach. A fairly clear separation trend is also visible

in the manual fat segmentation from MRI, which is however cumbersome and

time-consuming. The use of an automated percentile thresholding in MRI
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MRI manual MRI automated Multimodal automated
(proposed)

p-values for pair-wise comparisons with two-sample t-test

0 vs 1 4.71E-01 5.68E-01 4.67E-01
0 vs 2 1.25E-01 2.02E-01 7.26E-02
0 vs 3 1.91E-04* 3.54E-05* 2.49E-07*
1 vs 2 5.27E-01 6.29E-01 3.34E-01
1 vs 3 3.14E-04* 2.59E-05* 8.91E-08*
2 vs 3 2.50E-02* 2.38E-03* 3.28E-05*

p-values for all groups comparison with One-way ANOVA

1.48E-04* 1.86E-05* 7.14E-08*

Spearman’s rank-order correlation

ρs 0.733 0.750 0.815
p-value 1.36E-05* 6.62E-06* 2.29E-07*

Table 6.5: Statistical analysis comparing the radiological scores and the IFF val-
ues obtained manually from MRI, automatically from MRI, and automatically with
the proposed multimodal approach. The statistical significance threshold was set
to 0.05 for all tests (significant values are indicated by *). The first block of the
table reports the p-values for the pair-wise comparison between the different classes,
grouped according to the radiological score. T-test was used, coupled with the
Tukey’s honestly significant difference procedure for multiple comparisons correc-
tion. The second block reports the p-values obtained with the One-way ANOVA
F-test comparing all group means. The last block reports the Spearman’s rank-
order correlation coefficient ρs and its associated p-value.

does not improve the class separation and the choice of the threshold might

not generalise well to other data. On the contrary, the thresholding in the

CT domain can be directly applied to any other CT image without loss of

generalisability. It can be noticed that the group with radiological score equal

to 1 is the most overlapping with other groups. This result is not unexpected,

as this analysis does not account for the inter- nor intra-rater variability of

this visual score. In fact, class 1 represents the intermediate situation where

no clear atrophy pattern can be distinguished in the image. Further analysis

will therefore be needed to better represent this intermediate class.
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6.2.3 Limitations

The presented analysis of Intramuscular Fat Fraction as an imaging biomarker

for muscle atrophy is currently limited by the following aspects.

Sample size. The IFF was benchmarked on 27 subjects and only for the glu-

teus medius. Despite the encouraging results, a more thorough validation is

required to assess its clinical relevance. This should include the estimation

of intra- and inter-rater variability of the current visual scoring system used

as gold standard, and extension of the approach to the other abductor mus-

cles. Confounding factors such as gender and unilateral/bilateral implant were

analysed and not found significantly relevant in this specific subset of patients.

However, a deeper investigation of other factors such as time from primary

surgery or presence of comorbidities would be useful to better characterise the

biomarker on a larger cohort.

CT-MRI time difference. A large time gap between the acquisition of the CT

and the MRI would jeopardize the reliability of the comparison between the

multimodal IFF estimation and the MRI radiological score, as muscle change

could have occured in between. However, clinical literature shows that signifi-

cant gluteus medius atrophy change appears after a mean interval of 11 months

between scans [8]. In the available dataset only six cases had a time difference

greater than 6 months, and except for one case with grade 2 atrophy, all the

others were associated with no or very little fatty infiltration. For this reason I

included all the available cases in the analysis, in order to maximise the sample

size. A very similar trend was indeed found even when the aforementioned six

cases were excluded.

Partial volume effects. The effect of partial volume or any residual metal

artefact hyper- or hypo-intensities was not explicitly modeled in the proposed

estimation of IFF. Attempts to address this limitation were performed with

a Gaussian Mixture Model (GMM) segmentation approach instead of simple

thresholding to separate the lean muscle and fat classes within a ROI. The

GMM would allow the modelling of partial volume effects by providing fuzzy
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membership of each voxel to each class. However, when analysed in relation-

ship with the radiological scores, no significant separation between groups was

obtained.

Despite these limitations, the proposed IFF showed a strong association

with the radiological score in the available dataset, and represents a suitable

candidate for the automated quantification of muscle atrophy. To further assess

its potential use as an imaging biomarker, I therefore investigated its relation-

ship with another relevant biomarker for implant failure: elevated blood metal

ion levels.

6.3 Muscle atrophy and blood metal ion levels

The follow-up of patients with MoM hip implants includes cross-sectional imag-

ing as well as monitoring of whole blood metal ion levels, as indicated by

the MHRA [11]. In particular, increased concentration of Cobalt ([Co]) and

Chromium ([Cr]) in blood might indicate the presence of metal wear and po-

tential risk of soft tissue reaction. Current indications require patients with

metal ion levels higher than 7 ppb (7 ng/mL) having closer follow-up and cross-

sectional imaging. However, there is no agreed ion levels threshold to auto-

matically instruct revision surgery, and patient-management decisions should

combine imaging findings, blood metal levels as well as patient’s factors and

implant type.

Metal wear determines local tissue reactions, associated with increased in-

flammatory response as the immune system develops hypersensitivity to metal

antigen components [9]. While the link to development of pseudotumours

is fairly well-understood, at present there is no evidence of relationship be-

tween increased metal wear and the development of muscle atrophy. Only one

study in the literature addressed this issue. They found no associaton between

gluteal muscle atrophy - assessed with the Bal and Lowe score - and Co or Cr

ion levels in blood [173], in a cohort of 263 patients with unilateral ASR XL

total hip replacement (posterior surgical approach). In line with our previous
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findings, they reported atrophy on GMED and GMIN to be more common

than in GMAX. However, only moderate-to-severe GMIN atrophy was found

significantly more prevalent in patients with [Cr] exceeding 5 ppb than in pa-

tients with low levels.

While the study design is robust and is based on a very homogeneous cohort

of subjects, the use of a crude visual scoring system such as Bal and Lowe

might make the analysis scarcely sensitive to atrophy variations. Also, the

blood metal ion levels were used only to separate the subjects into two classes:

cases with elevated concentration (either [Cr] or [Co] > 5 ppb) or low.

Under the hypothesis that the radiological score might be too crude of a mea-

sure to reveal association between muscle atrophy and metal wear, I performed

a correlation study between the IFF and the blood metal ion levels in the avail-

able dataset. The goal is to analyse the relationship between muscle atrophy

and metal wear and test whether the use of continuous measures might bet-

ter capture the presence of an association. The results, described in the next

paragraphs, are to be considered only an exploratory analysis, given the small

sample size and the heterogeneity in implant types and surgical approaches.

6.3.1 Correlation analysis

Dataset. In this project’s cohort, the blood metal ion levels information was

available for 35 subjects. However, 4 subjects had been previously selected

as templates, and another 4 had to be discarded due to lack of painful side

information. In total, 27 subjects were retained for this study and the demo-

graphics are reported in Table 6.6. As per previous experiments, the subjects

were automatically segmented with the proposed pipeline and the IFF was

derived according to the procedure in Sec. 6.2.

Results. The Pearson’s correlation coefficient was calculated between the IFF

of each muscle and the concentration of Cobalt and Chromium in blood. As

shown in Table 6.7, all muscles reported significant correlation with the blood

metal ion levels, with GMED showing the strongest (and most significant)

association. Cobalt and Chromium levels are strongly correlated with each
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Blood metal ion levels analysis
Females Males Total

Number of subjects 20 7 27
Unilateral cases 13 7 20
Bilateral cases 7 0 7

Mean [Range] age 55.10 [30, 74] 57.00 [42, 69] 55.59 [30, 74]

MRI within 1 month from CT 18 4 22
MRI within 6 months from CT 1 1 2
MRI within 12 months from CT 0 0 0
MRI within 24 months from CT 1 1 2
MRI within 37 months from CT 0 1 1

Table 6.6: Demographics of patients entering the association analysis between the
intramuscular fat fraction and the blood metal ion levels.

GMAX GMED GMIN
ρ p-value ρ p-value ρ p-value

Co 0.498 0.008 0.574 0.002 0.439 0.022
Cr 0.440 0.022 0.464 0.015 0.393 0.043

Table 6.7: Pearson’s correlation coefficient ρ between the intramuscular fat fraction
and the concentration of Cobalt (Co) and Chromium (Cr) in blood. All coefficients
are statistically significant at 0.05 significance level.

other (ρ = 0.882, with p-value = 5.34× 10−11). As all these comparisons are

performed on the same subjects, this analysis suggests that the Cobalt con-

centration might be slightly more strongly associated with the estimated IFF.

Available demographic and clinical information was inspected to uncover

the presence of confounding factors. Visually, no evident separations or clus-

ters were identified based on sex or implanted hip side (left, right or bilateral).

This was confirmed with a one-way ANOVA analysis to compare the IFF or the

blood metal ion concentrations across groups (i.e. female vs male, left vs right,

right vs bilateral, left vs bilateral). In all cases no significant difference was

found (5% significance level, corrected for multiple comparisons). Conversely,

the age of the patient was found significantly correlated with IFF in GMED
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Figure 6.7: Matrix plot showing the relationship between GMED IFF, age of the
patient, Cobalt and Chromium blood concentration levels. Red dotted lines show
the 7 ppb threshold currently used as indication for patient’s stricter follow-up.

(ρ= 0.490, p-value = 0.009) and GMIN (ρ= 0.461, p-value = 0.016). Similar

correlation coefficient was found between age and Cobalt blood concentration

(ρ= 0.399, p-value = 0.039), and between age and Chromium blood concentra-

tion (ρ = 0.373, p-value = 0.056), but only the former reached signficance. A

trend towards higher IFF was indeed noted for older patients, and this matched

also with increased blood metal ion levels. A matrix plot is shown in Figure

6.7 to illustrate the trends captured by the correlation analysis, associating

IFF for GMED, Cobalt and Chromium blood concentrations and the age of

the patients. GMAX and GMIN demonstrated very similar distributions, so

they are not reported here.

Overall, it was observed that the only two subjects with very low Co and

Cr levels (< 1ppb) reported low IFF in all three muscles (< 0.16). One case

had highest IFF in the GMAX and the other in GMED. At the other end of

the spectrum, the subjects with both [Co] and [Cr] above the 7 ppb thresh-
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GMAX GMED GMIN
[Co], [Cr] < 1 ppb (2) 0.106 0.088 0.039
[Co], [Cr] < 7 ppb (16) 0.164 0.135 0.179
[Co] ≥ 7 ppb or [Cr] ≥ 7 ppb (3) 0.155 0.328 0.265
[Co], [Cr] ≥ 7 ppb (6) 0.230 0.343 0.378

Table 6.8: Average Intramuscular Fat Fraction per muscle according to concentra-
tion ranges of Cobalt and Chromium levels. The number of cases per each group is
indicated in round brackets in the first column.

old consistently showed high IFF on all three muscles, with highest IFF in

GMIN (4 cases) and GMED (2 cases). The intermediate cases ([Co], [Cr] <

7 ppb) showed greater variability: 9 cases had highest IFF in GMAX, 2 cases

in GMED and 5 cases in GMIN. Finally, the three cases with only one of the

metal ion levels above the 7 ppb threshold showed increased IFF with respect

to the intermediate cases (1 case with highest IFF in GMAX, 1 in GMED

and 1 in GMIN). These results thus indicate that, while GMAX demonstrates

some degree of atrophy across all level groups, the highest concentrations of

Cobalt and Chromium are associated with GMED and GMIN as the most

atrophied muscles. The average IFF per group, shown in Table 6.8, further

confirms the observed trend of increasing IFF with increased blood metal ion

levels, particularly for GMED and GMIN. As these muscles are closest to the

implant, these findings might suggest a potential association between implant

wear and muscle atrophy.

6.3.2 Limitations

This analysis mostly aimed at providing descriptive information of the observed

relationships between IFF and blood metal ion levels. These results should be

considered only a preliminary exploratory phase and would require further

investigation. In addition to the limitations of the IFF calculation discussed

in Sec. 6.2.3, this study is hampered by the large heterogeneity of the sample

and the current lack of information to characterise it. Differently from the

study proposed by Reito et al. [173], the analysed cohort presents a variety of
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hip implants (eithr THR and HRA), a variety of surgical approaches and the

presence of both unilateral and bilateral cases. Moreover, the time difference

between the imaging and the blood tests could not be retrieved, although it is

reasonable to assume they were acquired as part of the same screening program,

under MHRA guidance. Finally, only a very small subset of patients had

both radiological score and blood metal ion levels available. This information

would help replicate the analysis of Reito et al. [173] and support/discard the

hypothesis of IFF being more sensitive than the radiological score in capturing

atrophy variations.

Nonetheless, the observed trends and correlations prompt further clinical

investigation to better understand whether there might be a link between metal

wear and muscle atrophy, and to more clearly analyse the role of confounding

factors, e.g. considering how physically active the patients are.

6.4 Discussion

Current assessment of muscle atrophy in hip arthroplasty is based on a crude

visual scoring system applied to MR images. Such a system is qualitative,

often subjective and reliant on only few 2D slices instead of considering the

whole muscular volume. The lack of automated techniques for ROI delineation

is the main bottleneck in extracting volumetric measures to assess muscular

conditions. In order to address this problem, I tested the feasibility of deriv-

ing imaging biomarkers for muscle atrophy from the automated segmentation

pipeline proposed in this thesis.

I first considered a quantification of volume asymmetry based on the vol-

ume percentage difference between the lateral (painful) and contralateral hip

side. This measure showed to suffer from an error comparable in magnitude

to the effect to capture. Also, in a cohort of 27 subjects, it was unable to

differentiate cases according to their radiological score classification. For these

reasons, the proposed measure for volume asymmetry was deemed unsuitable

as a muscle atrophy biomarker.
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A second measure, the Intramuscular Fat Fraction, was then derived to

characterise the fat infiltration in muscles. The proposed IFF estimation takes

advantage of the multimodality information to automatically and more ro-

bustly classify lean muscle and fat tissue. Whilst retaining the 3D nature

of muscles, this approach avoids the need for manual ROI selection, which

is currently the most common practice for 3D fatty infiltration estimation

[38, 40]. Differently from MR-based approaches, the use of a standardised

range of intensities makes the automated classification into lean muscle and

fat straightforward from the CT. The proposed measure can be estimated for

each hip side independently, and proved to be less sensitive to gross muscle

segmentation inaccuracies. Notably, it also showed strong association with the

radiological score assessing GMED muscle atrophy.

While promising, the presented analysis is still constrained by the limited

number of cases available for each radiological score. It would be of interest to

extend the IFF analysis to the other gluteal muscles, as well as to include an

estimation of the inter-rater variability of the current visual scoring system,

in order to assess the reliability of the clinical benchmark. It would also be

important to increase the dataset to better analyse the role of confounding fac-

tors, such as type of implant, time from primary surgery or the level of physical

activity of the patients. Nonetheless, the proposed multimodal muscle atrophy

estimation is advantageous as it combines the robustness of MRI-driven gross

muscle volume segmentation with a consistent and reproducible fat quantifi-

cation from CT.

Finally, a preliminary exploratory analysis investigated the relationship

between implant metal wear - as measured by blood concentration of Cobalt

and Chromium - and muscle atrophy - as measured by the IFF. The two

biomarkers were found significantly correlated. In particular, GMED and

GMIN reported the highest IFF in subjects with blood ion levels above the

MHRA-indicated threshold of 7 ppb. No effect of gender or implanted hip

side was observed in the distribution of the biomarkers, while age was found
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positively correlated with both IFF and the Cobalt blood metal ion levels.

Given the small sample size and its vast heterogeneity, no clinical conclusion

can be drawn on the association between metal wear and muscle atrophy.

However, these results may justify further investigation of this relationship

to improve our current understanding of implant failure and its impact on

muscular conditions.



Chapter 7

Multimodal metal artefact

reduction

Motivation

Metallic implants induce strong artefacts in hip CT and MR images,

hampering their diagnostic interpretation in the most clinically relevant

regions.

Contribution

Introduction of a novel CT-MR metal artefact reduction technique,

which takes advantage of multimodal information using an automated,

data-driven, unsupervised approach.

Metallic implants are one of the main causes for image quality degradation

in medical imaging of patients with hip implants. In Computed Tomography,

the metal’s higher attenuation coefficient causes signal corruption, resulting in

bright and dark streaks that irradiate from the metal source throughout the

reconstructed image. In Magnetic Resonance Imaging, metal objects induce

local magnetic field inhomogeneities that cause intensity and geometrical dis-

tortions in the reconstructed image. These susceptibility artefacts typically

appear as blackened areas close to the implant, partially shadowing the neigh-

bouring structures. Metal artefacts are more pronounced close to the implant,

thus reducing the diagnostic information provided by the images. This moti-

vates research efforts towards more effective metal artefact reduction (MAR)
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techniques in both CT and MRI.

Numerous approaches have been proposed in the literature for MAR in CT

[132]. Traditional physics-based or iterative reconstruction methods are now

being challenged by novel deep neural network approaches, which are data-

driven and less dependent on physical model assumptions. However, most

methods [137, 138] are trained in a supervised fashion, relying on either pre-

and post-operative paired data (not always available) or simulations (not re-

alistic enough). A solution to the supervised training setting was recently

proposed by Liao et al. [149]. They introduced an unsupervised adversarial

training scheme to disentangle the artefact from the anatomy appearance in

CT images, showing state-of-the-art performance on both synthetic and real

data. In MRI research, efforts have focused mostly on image acquisition im-

provements: Tailored MR sequences such as MARS [17] or SEMAC [155] have

proven effective in reducing the extension of the shadowing, but cannot com-

pletely eliminate it, preventing the visualisation of the implant in MRI.

In this Chapter, I introduce a novel unsupervised deep learning MAR

method for jointly correcting same-subject CT and MR hip images. The pro-

posed Multimodal Artefact Disentanglement Network (MADN) extends the

unsupervised approach of Liao et al. [149] by introducing a similarity loss that

induces the network to learn shared information between CT and MRI content.

As a result, the CT correction takes advantage of the sharper contrast of MRI

throughout the field of view, while the MRI correction is helped by implant

localisation information from the CT. As the appearance of the artefact is dif-

ferent in CT and MRI, it is hypothesised that making use of their contextual

complementary information would help better correct for the artefact in both

modalities.

This work represents a preliminary analysis of the feasibility and potential

benefits of a multimodal metal artefact reduction approach, and was accepted

for presentation at the IEEE International Symposium on Biomedical Imaging

2020 [174].
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Figure 7.1: Schematic representation of MADN. A multichannel ADN architec-
ture [149] was integrated with a novel similarity loss term to adapt it to the multi-
modal scenario.

7.1 From ADN to MADN
This work builds upon the Artefact Disentanglement Network (ADN) recently

proposed by Liao et al. [149] to perform unsupervised MAR on CT images.

The ADN uses two sets of unpaired images, one including metal artefact cor-

rupted CTs and one with clean non-corrupted images. The key idea is to use

encoder-decoder networks coupled with adversarial training to learn a latent

representation of the data where the artefact is disentangled from the anatom-

ical content. This separation allows to reconstruct the corrupted images using

only the latent content representation, therefore removing the artefact. It also

allows to reconstruct the denoised images with the latent artefact representa-

tion and thus synthesising corrupted images.

Let I and Ia be the domains of clean and corrupted images respectively.

The network architecture (Fig. 7.1) is composed as follows: Three encoders

(EI : I →C, EIa : Ia→C, Ea : Ia→A) map the input images to either the con-

tent C or the artefact A latent spaces; two decoders map the latent space back

to the image domain and work as generators (GI : C → I, GIa : C ×A→ Ia);

finally two discriminators (DI , DIa) define whether an input is real (i.e. com-

ing from the real distribution of I or Ia respectively) or fake (i.e. synthetically

generated by the decoders GI and GIa respectively). We refer the reader to

the original manuscript [149] for the layer-by-layer outline of the network.
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Given a corrupted image xa ∈ Ia and a clean image y ∈ I, we can define their

encoding as ca = EIa(xa),a= Ea(xa) and c= EI(y). Indicating byˆthe decoded

images, from xa we obtain a reconstructed corrupted image x̂a =GIa(ca,a) and

its corrected version x̂ = GI(ca). Similarly, ŷa = GIa(c,a) is the synthetically

corrupted image from the clean input and ŷ =GI(c) is the reconstructed clean

image. To guarantee the expected outputs, the network is trained to minimise

the following total loss function:

Ltot = λIadvLIadv +λIa
advL

Ia
adv +λrecLrec+λsrLsr +λartLart (7.1)

The first two terms are the traditional adversarial losses that promote a real-

istic generation of clean and corrupted images from GI and GIa :

LIadv = EI [logDI(y)] +EIa [1− logDI(x̂)]

LIa
adv = EIa [logDIa(x)] +EI,Ia [1− logDIa(ŷa)]

(7.2)

The reconstruction loss guarantees that same-branch encoding-decoding cor-

rectly reconstructs the input, thus ensuring the preservation of patient’s

anatomy:

Lrec = EI,Ia [||x̂a−xa||1 + ||ŷ−y||1] (7.3)

The self-reduction loss promotes cycle consistency within the cycle “clean -

corrupted - clean”:

Lsr = EI,Ia [||GI(EIa(ŷa))−y||1] (7.4)

Finally, the artefact consistency loss enforces that the artefact removed through

the denoising path is the same added from the artefact-synthesis path, de facto

training Ea to encode the artefact only:

Lart = EI,Ia [||(xa− x̂)− (ŷa−y)||1] (7.5)
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Each loss term is weighted by the respective hyper-parameter λ.

7.1.1 Multimodal Artefact Disentanglement Network

In this work, the ADN is extended to a multimodal case, using two-channel in-

puts xa and y, with CT image as first channel and respective registered MRI as

second channel. The network learns to correct for the artefact on both modal-

ities simultaneously, using multimodal information to encode the anatomical

content of the images. To further enforce this sharing of information between

the modalities, a loss term is introduced to maximise the similarity of the

artefact-corrected images. This is motivated by the idea that two different im-

ages of the same object appear less similar if corrupted by noise or artefacts,

especially when the artefacts present with different patterns in the two images.

Conversely, the two images should look more similar if artefact-free. The aim

is thus to improve the artefact reduction for both modalities by maximising

the similarity between the output channels: firstly, the high-frequency and

full-field-of-view nature of the artefact in the CT could be corrected through

comparison with artefact-free MRI regions; secondly, the implant lack of signal

in MRI could be compensated by the CT information, and better reconstruc-

tion should be achieved. Locally Normalised Cross Correlation (LNCC) was

chosen as a measure of similarity, as it is suitable for multimodal compari-

son and it can be efficiently incorporated onto a neural network framework

thanks to its convolution formulation [175]. The new similarity loss term is

thus defined as:

Lsim = 1−EIa [|LNCC(x̂CT , x̂MRI)|] (7.6)

In addition, we also consider a self-synthesis consistency loss for the cycle

“corrupted - clean - corrupted”, that constitutes a full cycle loss together with

the self-reduction loss:

Lcycle = Lsr +EIa [||GIa(EI(x̂),a)−xa||1] (7.7)
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Experimentally, this helps obtain sharper output images, especially with small

training set size. The final total loss for training the MADN architecture is

thus

Ltot = λIadvLIadv +λIa
advL

Ia
adv +λrecLrec+

λcycleLcycle+λartLart+λsimLsim (7.8)

7.2 Experimental setup
Dataset preparation . The dataset employed to train and test the MADN

architecture included 65 3D CT-T1 MARS MRI pairs from subjects with metal

hip implants, and 63 CT-T1 MRI clean pairs, with no metal artefacts.

The clean pairs were obtained from a dataset of whole-body CT and MRI

acquisition protocol. The CTs were acquired on a Discovery 710 GE scan-

ner (Tube voltage 140 kVp) with voxel size 1.37×1.37 ×3.27 mm3. The MR

images were acquired on a 3T Siemens Biograph mMR PET/MR scanner

(TE=1.23ms, TR=4.02ms and flip angle=10°) with voxel size 0.67×0.67×5

mm3. Pre-processing included bias field correction followed by fusion between

stages using a percentile-based intensity harmonisation. Each CT-MRI pair

was aligned with non-linear registration using a cubic b-spline free-form defor-

mation algorithm [166]. An affine groupwise registration was then performed

to align all the pairs into the same space, and all images were subsequently

cropped at the pelvic region.

The corrupted pairs were selected from the dataset originally described in

Chapter 3. With the exception of the 11 cases with manual ground truth seg-

mentation, all the other cases were selected randomly to approximately match

the number of 2D slices present in the clean dataset. Similarly to the clean

dataset, intra-subject alignment was performed with non-linear registration us-

ing a cubic b-spline free-form deformation algorithm. They were then affinely

remapped to the groupwise space generated from the clean dataset. Note that

the CT images were initially corrected with the Refined Metal Artefact Re-
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duction (RMAR) [134] for more accurate transformation estimation. However,

the uncorrected images were utilised in all the experiments subsequently de-

scribed.

11 pairs of corrupted CT-MRI were associated with manual segmentation of

four muscles - Gluteus Maximus (GMAX), Gluteus Medius (GMED), Gluteus

Minimus (GMIN) and Tensor Fasciae Latae (TFL). These subjects were thus

left out from training and used as test set. As the architecture is trained on 2D

slices, 12 randomly selected subjects from the clean CT-MRI pairs were also

excluded from the training, to balance the number of training slices from both

artefacted and artefact-free datasets. Overall, 54 CT-MRI pairs with artefacts

(corresponding to 2159 2D slices) and 51 CT-MRI pairs without artefacts were

used for training (corresponding to 2193 slices).

Evaluation strategy . Due to the lack of a ground truth, two different eval-

uation strategies were developed. To quantify the effect of the MAR on CT,

I computed the standard deviation of the intensities (σCT ) within the muscle

regions. The presence of metal artefact induces noise even farther from the

implant, causing fluctuations of the intensities from their true value, and there-

fore higher standard deviation. This analysis was performed before correction

(No MAR) and after correction with: (RMAR CT) a conventional MAR algo-

rithm [134]; (ADN CT) correction using an ADN model trained on CT only;

(Multichannel ADN) correction using an ADN two-channel model trained on

CT and MRI; (MADN) the proposed correction based on two-channel ADN

model with LNCC similarity loss. For the MRI, a segmentation propagation

experiment was performed: each test MRI was registered to all others using

an intensity-based free-form deformation algorithm [166], their manual seg-

mentation was propagated with the estimated transformation and compared

with the manual ground truth using the Dice score. In addition to No MAR,

Multichannel ADN and MADN, for this task I also trained an ADN model

using MR only (ADN MR).
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Implementation details . The architecture was developed in PyTorch, based

on the original ADN implementation [149]. A detailed representation of the

different components of the architecture is given in Fig. 7.2 (discriminator

architecture), in Fig. 7.3 (elementary building blocks of the encoder-decoder

paths, and in Fig. 7.4 (encoder and decoder diagrams).
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Figure 7.2: Both discriminators in the MADN have the same architecture, alter-
nating 2D convolutional layers (kernel size KxK and stride S) with Instance Nor-
malisation and Leaky ReLU.
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Normalisation
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+

Parameters:

P = Number of pixels for padding

K = Convolutional kernel size (KxK)

S = Convolutional stride

Convolutional Block Residual Block

Figure 7.3: Convolutional and Residual building blocks used in the encoders and
decoders of the MADN architecture.
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Figure 7.4: MADN encoders and decoders. Recalling Fig. 7.3, the blue blocks
are convolutional blocks and the yellow ones are residual blocks. The number of
feature channels is reported below each block. The upsampling layers (magenta) are
nearest-neighbour upsampling operations by the factor indicated in the box. The
three encoders EI , EIa , Ea (blocks on the left) use Instance Normalisation and ReLU
activation function in both convolutional and residual blocks. The two decoders GI ,
GIa have similar architecture, but the latter concatenates (+) artefact features from
the artefact encoder Ea. In both decoders, Instance Normalisation is used in the
residual blocks and Layer Normalisation in the convolutional blocks. Leaky ReLU
is used throughout the decoders, but for the last convolution where the hyperbolic
tangent is used instead.

All data-driven models were trained for 10 epochs on 2D slices with ADAM

optimiser and learning rate = 10−5. The loss weights were set to λIadv = λIa
adv =

1.0, λcycle = λrs = λrec = λart = 20.0. For the proposed MADN, we set λsim =

1.0, and LNCC estimated through a Gaussian kernel with σ = 5. A random

flipping data augmentation strategy was employed during training.
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Corrupted input

Clean input Artefact synthesis Self-reduction

Self-synthesisArtefact removal

Figure 7.5: Example of MADN outcomes during training (9-th epoch). One pair of
corrupted and one pair of clean images (from different subjects) are simultaneously
input to the network. Top row: the corrupted pair undergoes artefact removal and
subsequent artefact synthesis to produce the original input. Bottom row: the clean
pair is corrupted with the same artefact removed from the corrupted pair (artefact
synthesis) and then denoised again to produce the original input (self-reduction).
In reference with Fig. 7.1, pink indicates artefact removal and light blue artefact
synthesis.

7.3 Results

For the sake of illustrating the working principle of MADN, Fig. 7.5 shows

the intermediate outputs of the architecture during training. In particular,

it can be noticed how the artefact removed from the corrupted pair is trans-

ferred to the clean pair in the artefact synthesis. Vice versa, the artefact

removal produces images that are more similar to the clean pair in texture.

The self-synthesis and self-reduction steps further promote the disentangle-

ment of artefact and anatomical content, by generating images that reproduce

the respective inputs.

The results obtained after inference on the 11 unseen testing data are

summarised in Figs. 7.6, 7.7, 7.8 and Table 7.1. Figure 7.6 presents a visual

comparison of all the tested MAR methods on some exemplar test cases. On

the CT, the proposed MADN approach is the most effective in reducing the

streaks artefacts throughout the full field of view, as the correction is also

driven by non-corrupted MRI corresponding areas. This reduction is also

demonstrated by the decrease in σCT within the muscular tissue (Fig. 7.7), on

either the implanted and non-implanted hip sides. The bilateral case (example
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Figure 7.6: Visual comparison of MAR methods on CT and MRI. The implant is
highlighted in yellow in all the corrected CT images. No overlay is applied to the
MRI to better display the effect of the MAR. Red arrows indicate deconvolution
checkerboard artefacts, while purple ones the residual photon starvation artefact
which learning methods are unable to compensate for.

D in Fig. 7.6) shows however that all learning methods fail to compensate for

the strong photon starvation effect and to recover the signal within the two

implants. In this case, the RMAR is the most effective, although not fully able

to eliminate all the streak artefacts.

On the MRI, Fig. 7.6 shows that training with MR images only (ADN
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(a)

(b)

Figure 7.7: Standard deviation of CT intensity values within specific muscles.
Cases significantly different from MADN are indicated by * (two-tailed paired t-test
with p < 0.05). (a) Implanted hip side. (b) Non implanted hip side.

MR) is not sufficient to learn an embedding of the artefact and therefore cor-

rect for it. The multichannel ADN and MADN approaches instead identify the

corrupted area correctly and attempt to regress the signal in it. However, the

shape of the implant or the surrounding tissue is still not fully recovered. Fur-

thermore, as indicated by the red arrows, the learning methods might introduce

checkerboad artefacts which are typical of suboptimal upsampling strategies in

the CNN [176]. The quantitative experiments reported in Table 7.1 and Fig.

7.8 show that MADN provides slightly better alignment for GMAX and TFL,

but it performs worse on GMIN. It is worth noticing that the manual segmen-
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GMAX GMED GMIN TFL
No MAR 0.76±0.15 0.54±0.17 0.37±0.18 0.41±0.27
ADN MR 0.76±0.18 0.53±0.16 0.34±0.19 0.44±0.26
Multichannel ADN 0.77±0.17 0.53±0.16 0.31±0.19 0.46±0.27
MADN 0.77±0.16 0.54±0.15 0.32±0.19 0.50±0.26

Table 7.1: Mean and standard deviation of Dice score for MR-to-MR inter-subject
segmentation propagation task.

Figure 7.8: Dice score obtained from MR-to-MR inter-subject registration and
segmentation propagation. Cases significantly different from MADN are indicated
by *(two-tailed paired t-test with p < 0.05).

tations were performed on the non-corrected MRI, where GMIN is the most

affected by the artefact. This makes it challenging to determine whether such

result is due to less accurate registration or unreliable ground truth. Further

analysis is thus needed to better quantify the MAR impact on MRI.

7.4 Discussion
The work presented in this Chapter is a preliminary study on the potential

of a multimodal data-driven approach for metal artefact reduction. The idea

of a multimodal approach was motivated by the different appearance of the

artefact and thus by the hypothesis that one modality could compensate for

the missing/corrupted information in the other. A data-driven unsupervised

learning approach was chosen to compensate for the lack of paired corrupted-

clean data. This problem is indeed characterised by the lack of a clear ground

truth, due to the difficulty to obtain images with the implant but without the



7.4. Discussion 179

associated artefacts.

The proposed approach showed some improvements over standard MAR

and other unsupervised learning strategies on CT images with unilateral im-

plant. Sharing information with the respective MRI reduced the presence of

residual streak artefacts throughout the FOV, as also quantitatively shown

by the intensity standard deviation analysis (Fig. 7.7). The MRI is however

the modality that would benefit the most from an effective multimodal MAR

technique, since existing methods are mostly applied at acquisition and thus

limited by the physics of MRI. For this modality, the proposed MADN still

proved suboptimal, as the reconstructed signal in the implant area is little

informative compared to the uncorrected image. It is nonetheless encouraging

that the network is able to correctly recognise the corrupted region and that

this is clearly linked to the information sharing with CT. In fact, no effect

was noted in the output after artefact correction when training the ADN only

with MRI (column 3 in Fig. 7.6). This seems to suggest that the MADN

architecture might have the capability to further improve the metal artefact

reduction in MRI as well, but the model capacity was perhaps not adequately

dimensioned to the task at hand. One of the main limitations of the proposed

analysis is in fact the need for a more thorough architecture design. The ADN

architecture was not modified with respect to the original network [149], keep-

ing the same amount of parameters for either single- or multi-modality tests.

Further tailoring of the architecture might also help identify a more suitable

upsampling strategy, to eliminate the aforementioned checkerboard artefacts.

In addition, a more thorough hyperparameter search needs to be conducted,

ideally based on the identification of appropriate performance metrics eval-

uated on a validation set. Finally, different multimodal similarity measures

could also be implemented in place of LNCC (e.g. Cross Correlation or Nor-

malised Mutual Information) to test their impact on the reconstruction.

The generalisability of the proposed approach requires more extensive val-

idation, as the test set is currently limited in size due to lack of ground truth
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segmentation for quantitative analysis. The generalisability assessment also

includes a substantial analysis of the impact of CT-MRI registration errors.

Empirically, it was observed that, in the presence of large misalignments, an

excessive weight on the similarity measure loss term might induce geomet-

rical deformations in one of the two modalities, which compensate for the

misalignment. For this reason, cases with largely inaccurate registration had

precautionarily been removed from the training set, as the primary objective

of the study was solely the MAR. It does however require further investiga-

tion and potentially opens up further research questions on the possibility

of a data-driven approach for simultaneous registration and metal artefact

reduction. This aspect is also relevant for the potential integration of this

MAR technique on the automated segmentation pipeline presented in Chap-

ter 5. The MAR requires accurate intra-subject registration; vice versa the

intensity-based intra-subject registration would be improved by higher-quality

data. To compensate for this cyclic relationship, an iterative approach could

be implemented in the pipeline, alternating the MAR and the intra-subject

registration towards a refinement of both.

In conclusion, the qualitative examples and quantitative results on the

CT suggest that the use of the multimodal approach for MAR could be bene-

ficial, as it combines different information to learn a better embedding of the

anatomy and of the artefact. Future work will investigate further improve-

ments on the MRI correction and therefore better assess whether the benefits

of a multimodal approach could overweight the need for multiple modalities.



Chapter 8

Conclusions

8.1 Summary

This thesis has presented the development of automated medical image anal-

ysis tools to improve the clinical workflow in orthopaedics, and specifically

in the context of hip arthroplasty. It proposed solutions to address the need

for combining the complementary skeletal and muscular information provided

by CT and MRI, towards patient’s specific anatomical modelling and muscle

atrophy quantification.

To achieve the desired goals, a novel intra-subject registration algorithm

was presented in Chapter 4. The proposed method guarantees the preservation

of bone rigidity while allowing for local soft tissue deformations. Thus, it is

able to compensate for patient’s pose variations in CT and MRI, while still ap-

plying anatomically plausible deformations. This is achieved by incorporating

hard rigidity constraints into a stationary velocity field transformation model,

yielding also a desirable diffeomorphic behaviour. The algorithm was tested

on the intra-subject pelvic CT-MRI registration task, showing a significant

reduction of registration error compared to a fully non-linear transformation.

It also favoured robustness against the choice of the registration parameters

and against inaccuracies of the rigid region segmentation masks.

The registration algorithm was embedded into a composite pipeline for the

joint automated segmentation of CT and MRI in the presence of hip implants.
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The framework, introduced in Chapter 5, was built on three main blocks: (1)

image quality enhancement, to improve the quality of routinely acquired clini-

cal data; (2) CT-MR intra-subject registration, to provide robust alignment of

anatomically corresponding structures while preserving the biological plausibil-

ity of the deformations; (3) multi-atlas based segmentation, to automatically

derive musculoskeletal and implant segmentation while taking advantage of

population variability information. Although tested using only a small sam-

ple, the proposed approach performed comparably to automated segmentation

on a single modality, with the advantage of unifying muscular, skeletal and

implant segmentation. The obtained segmentation resulted in a median Dice

score of 0.90 for skeletal and 0.84 for muscular structures. This segmentation

accuracy is in line with state-of-the-art approaches [94, 112, 113, 171], which

mostly dealt with non-implanted hips and thus were not impacted by metal

artefacts.

The availability of an automated segmentation scheme reduces the burden

of manually tracing regions of interest. This favours both the visualisation of

patient-specific anatomy through 3D rendering of the segmentation, as well as

the extraction of quantitative biomarkers from the ROIs. This latter aspect

was investigated in Chapter 6, with particular focus on the quantification of

muscle atrophy. To this end, I proposed an imaging biomarker that calcu-

lates the percentage of fat in the muscular volume, called Intramuscular Fat

Fraction. This biomarker takes advantage of accurate ROI definition based

on the multimodal segmentation, and exploits the quantitative nature of CT

intensities, which makes it reproducible and easy to compute. For GMED, this

biomarker showed strong association with the radiological scoring system cur-

rently used in the clinical assessment of muscle atrophy. It was also found to

correlate with blood metal ion levels, another indicator of implant failure [11].

However, the small sample size of the available cohort currently limits the

strength of any conclusion from this analysis, thus further investigation on a

larger scale should be conducted to assess its actual clinical relevance.
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Although tailored to the hip arthroplasty application, the discussed regis-

tration, segmentation and biomarker extraction approaches are still partially

affected by the presence of metal artefacts. Residual streak artefacts in the CT

may bias the fat/lean muscle segmentation and thus the derived IFF. The dis-

tortions and lack of signal caused by the susceptibility artefacts in MRI mostly

impact the registration and the segmentation steps. A preliminary attempt to

address this limitation was presented in Chapter 7. A novel multimodal metal

artefact reduction was proposed, which uses an unsupervised data-driven strat-

egy to learn a latent representation of the artefact and disentangle it from the

anatomical content. This approach proved effective on the CT, and showed

its ability to exploit the multimodal information. However, it requires further

development to adequately correct the MR image. If proven beneficial for both

modalities, this technique could be integrated in the automated segmentation

framework and potentially lead to more accurate segmentation and biomarker

extraction.

All the contributions presented in this thesis are currently limited by too

little generalisability analysis, due to lack of data with associated ground truth.

A more thorough validation should therefore be performed to more deeply eval-

uate the potential clinical benefits of a multimodal analysis against the asso-

ciated imaging costs. Nonetheless, these tools showed potential value towards

the automation of image analysis. They could thus support and inform the

decision-making process about patient’s management, improving the clinical

services in MSK health in accordance with the indications of the World Health

Organization [1].

8.2 Future developments

Motivated by the current limitations of this work, two main directions could

be explored in future work: (1) the adoption and further development of deep

learning approaches to build upon the proposed image analysis pipeline, (2)

the assessment of further clinical applications of this pipeline in biomarker



8.2. Future developments 184

extractions and surgical planning/outcome measurement.

8.2.1 Deep learning in MSK

Deep learning is gaining popularity in the scientific community due to its out-

standing performance in classification, segmentation and regression tasks. At

present, its use in MSK is limited to monomodal imaging applications, mostly

in the detection and segmentation of vertebrae or knee cartilage segmentation

[53]. It can be anticipated that novel deep learning segmentation methods

will outperform atlas-based approaches in MSK as well, both in accuracy and

speed. However, the success of most deep learning algorithms still depends on

the availability of large annotated datasets that can be used for training. The

proposed multi-atlas based segmentation pipeline can thus play an important

part in helping the construction of such datasets.

Further methodological developments could also arise from the presented

work. In particular, I envisage two potentially relevant advancements that

take advantage of data-driven modelling.

Integrating image registration and MAR. Deep learning approaches have

the capacity of learning shared latent representations of the anatomical struc-

ture under study from multiple imaging modalities [177]. The preliminary

work presented in Chapter 7 demonstrated this ability towards a multimodal

approach for metal artefact reduction and paves the way for further research

in this direction. In particular, a strong interconnection between multimodal

MAR and intra-subject registration was observed when mis-alignment between

the input CT and MRI was present: the network would spatially deform one

of the two to maximise the similarity at the output. It would thus be interest-

ing to explore a multi-task learning approach that attempts at simultaneously

registering and correcting for the artefact. Deep learning approaches are be-

coming more popular in medical image registration as well [53, 178], and the

field of similarity learning [179, 180] could represent an interesting direction

of investigation in a multi-task setting. Currently, the proposed algorithm is

using NMI to drive the registration, being the standard similarity measure for
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multimodal registration. A deep similarity learning approach could provide

an alternative solution which is specific to the task and could be combined

with the disentanglement of artefact and anatomy. Similarity learning is also

advantageous as it can be integrated with traditional transformation models.

Combined with the proposed rigidly-constrained algorithm, it would promote

diffeomorphic and anatomically plausible transformations.

CT synthesis from MRI. Being associated to radiation exposure to the go-

nads, reducing the need for CT imaging while still providing the same amount

of anatomical information is of paramount clinical relevance. The proposed

framework offers a natural environment for the development of image synthe-

sis methods, by which the CT image could be synthetically computed from the

respective MRI without being acquired. Image synthesis is a flourishing field

especially in radiotherapy treatment planning [181], and also in this case deep

learning is establishing itself as the state-of-the-art approach [182, 183]. In hip

arthroplasty, the main challenge to address is the presence of the implant and

the respective artefacts in the image. The success of learning algorithms for

this task would thus rely on the ability to achieve sufficiently accurate CT-MRI

alignment in the training set and to train the network to compensate for the

MRI missing signal using the CT information.

8.2.2 Clinical applications

The proposed automated segmentation framework has the unexplored poten-

tial of supporting surgical planning, as it provides patient’s specific anatomical

rendering. Although developed for post-surgical assessments, the pipeline can

directly be applied on pre-operative data and thus provide relevant informa-

tion in both primary and revision surgery. Additionally, it could be employed

in longitudinal analyses, e.g. in pre-operative and post-operative comparisons

for surgical outcome assessment, or for post-operative patient monitoring.

The imaging biomarkers discussed in this work represent only an initial

step towards quantitative image analysis. Together with a more extended

clinical validation of the proposed intramuscular fat fraction, other measures
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could also be investigated. Particularly relevant could be the possibility of

detecting muscle-to-bone attachments to verify their integrity. A probabilistic

atlas-based estimation from CT only has been recently proposed by Fukuda

et al. [184] and could represent a starting point for similar analysis from our

framework. Another potential research direction is the use of these biomarkers

to study the association between implant position and muscle atrophy. The

work from Hart et al. [13] already showed how CT-derived measures of MoM

prosthesis components are linked to an increase of blood metal ion levels.

Whilst many factors contribute to the development of muscle atrophy and

should therefore be carefully taken into account, analysing implant position

and muscle damage could help characterise different surgical approaches and

identify healthy-tissue sparing methods.
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JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Medical Im-

age Computing and Computer Assisted Intervention – MICCAI 2018.

Cham: Springer International Publishing; 2018. p. 529–536.

[148] Hu Z, Jiang C, Sun F, Zhang Q, Ge Y, Yang Y, et al. Artifact correction

in low-dose dental CT imaging using Wasserstein generative adversarial

networks. Medical Physics. 2019;46(4):1686–1696.

211

https://doi.org/10.1117/12.2254091


[149] Liao H, Lin WA, Yuan J, Zhou SK, Luo J. Artifact Disentanglement

Network for Unsupervised Metal Artifact Reduction. In: Shen D, Liu T,

Peters TM, Staib LH, Essert C, Zhou S, et al., editors. Medical Image

Computing and Computer Assisted Intervention – MICCAI 2019. Cham:

Springer International Publishing; 2019. p. 203–211.

[150] Anderla A, Culibrk D, Delso G, Mirkovic M. MR Image Based Approach

for Metal Artifact Reduction in X-Ray CT. The Scientific World Journal.

2013;2013:1–8.

[151] Delso G, Wollenweber S, Lonn A, Wiesinger F, Veit-Haibach

P. MR-driven metal artifact reduction in PET/CT. Physics

in medicine and biology. 2013;58(7):2267–80. Available from:

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84875293082{&}partnerID=tZOtx3y1{%}5Cnhttp://www.ncbi.nlm.

nih.gov/pubmed/23478566.

[152] Park PC, Schreibmann E, Roper J, Elder E, Crocker I, Fox T, et al. MRI-

based computed tomography metal artifact correction method for im-

proving proton range calculation accuracy. International Journal of Ra-

diation Oncology Biology Physics. 2015;91(4):849–856. Available from:

http://dx.doi.org/10.1016/j.ijrobp.2014.12.027.

[153] Nielsen JS, Edmund JM, Leemput KV. CT metal artifact reduction using

MR image patches. In: Lo JY, Schmidt TG, Chen GH, editors. Medical

Imaging 2018: Physics of Medical Imaging. vol. 10573. International

Society for Optics and Photonics. SPIE; 2018. p. 190 – 199. Available

from: https://doi.org/10.1117/12.2293815.

[154] Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-

dimensional acquisition technique for imaging near metal implants.

Magnetic Resonance in Medicine. 2009;61(2):381–390. Available from:

https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21856.

212

http://www.scopus.com/inward/record.url?eid=2-s2.0-84875293082{&}partnerID=tZOtx3y1{%}5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23478566
http://www.scopus.com/inward/record.url?eid=2-s2.0-84875293082{&}partnerID=tZOtx3y1{%}5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23478566
http://www.scopus.com/inward/record.url?eid=2-s2.0-84875293082{&}partnerID=tZOtx3y1{%}5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23478566
http://dx.doi.org/10.1016/j.ijrobp.2014.12.027
https://doi.org/10.1117/12.2293815
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21856


[155] Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice

encoding for metal artifact correction in MRI. Magnetic Resonance in

Medicine. 2009;62(1):66–76.

[156] Lee MY, Song KH, Lee JW, Choe BY, Suh TS. Metal artifacts with den-

tal implants: Evaluation using a dedicated CT/MR oral phantom with

registration of the CT and MR images. Scientific Reports. 2019;9(1):1–

10. Available from: http://dx.doi.org/10.1038/s41598-018-36227-

0.

[157] Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA,

et al. N4ITK: Improved N3 bias correction. IEEE Transactions on

Medical Imaging. 2010;29(6):1310–1320.

[158] Ebner M, Chouhan M, Patel PA, Atkinson D, Amin Z, Read S, et al.

Point-Spread-Function-Aware Slice-to-Volume Registration: Application

to Upper Abdominal MRI Super-Resolution. In: Zuluaga MA, Bhatia

K, Kainz B, Moghari MH, Pace DF, editors. Reconstruction, Segmen-

tation, and Analysis of Medical Images. Cham: Springer International

Publishing; 2017. p. 3–13.

[159] Ranzini MBM, Ebner M, Cardoso MJ, Fotiadou A, Vercauteren T,

Henckel J, et al. Joint Multimodal Segmentation of Clinical CT and MR

from Hip Arthroplasty Patients. In: Glocker B, Yao J, Vrtovec T, Frangi

A, Zheng G, editors. Computational Methods and Clinical Applications

in Musculoskeletal Imaging. Cham: Springer International Publishing;

2018. p. 72–84. Available from: https://doi.org/10.1007/978-3-

319-74113-0_7.

[160] Ranzini MBM, Henckel J, Ebner M, Cardoso MJ, Isaac A, Vercauteren

T, et al. Automated postoperative muscle assessment of hip arthro-

plasty patients using multimodal imaging joint segmentation. Computer

213

http://dx.doi.org/10.1038/s41598-018-36227-0
http://dx.doi.org/10.1038/s41598-018-36227-0
https://doi.org/10.1007/978-3-319-74113-0_7
https://doi.org/10.1007/978-3-319-74113-0_7


Methods and Programs in Biomedicine. 2020;183:105062. Available from:

https://doi.org/10.1016/j.cmpb.2019.105062.

[161] Arsigny V, Commowick O, Pennec X, Ayache N. A Log-Euclidean

Framework for Statistics on Diffeomorphisms. In: Larsen R, Nielsen M,

Sporring J, editors. Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2006. Berlin, Heidelberg: Springer Berlin Hei-

delberg; 2006. p. 924–931.

[162] Ashburner J. A fast diffeomorphic image registration algorithm. Neu-

roImage. 2007;38(1):95–113.

[163] Ourselin S, Roche A, Subsol G, Pennec X, Ayache N. Reconstructing a

3D structure from serial histological sections. Image and Vision Com-

puting. 2001;19(1):25 – 31.

[164] Modat M, Cash DM, Daga P, Winston GP, Duncan JS, Ourselin

S. Global image registration using a symmetric block-matching ap-

proach. Journal of medical imaging. 2014;1(2):024003. Available

from: http://medicalimaging.spiedigitallibrary.org/article.

aspx?articleid=1909636.

[165] Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Non-

rigid registration using free-form deformations: application to breast

MR images. IEEE Transactions on Medical Imaging. 1999;18(8):712–21.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/10534053.

[166] Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes

DJ, et al. Fast free-form deformation using graphics processing units.

Computer Methods and Programs in Biomedicine. 2010;98(3):278–284.

[167] Modat M, Daga P, Cardoso MJ, Ourselin S, Ridgway GR, Ashburner

J. Parametric non-rigid registration using a stationary velocity field. In:

Proceedings of the Workshop on Mathematical Methods in Biomedical

Image Analysis; 2012. p. 145–150.

214

https://doi.org/10.1016/j.cmpb.2019.105062
http://medicalimaging.spiedigitallibrary.org/article.aspx?articleid=1909636
http://medicalimaging.spiedigitallibrary.org/article.aspx?articleid=1909636
http://www.ncbi.nlm.nih.gov/pubmed/10534053


[168] Gorgolewski K, Burns C, Madison C, Clark D, Halchenko Y, Waskom

M, et al. Nipype: A Flexible, Lightweight and Extensible Neuroimaging

Data Processing Framework in Python. Frontiers in Neuroinformatics.

2011;5:13.

[169] Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy mea-

sure of 3D medical image alignment. Pattern Recognition. 1999;.

[170] Ranzini MBM. The use of 3D imaging for musculoskeletal disease com-

putational anatomy [Master’s thesis]. University College London; 2016.

[171] Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Prince JL, et al.

Cross-modality image synthesis from unpaired data using CycleGAN:

Effects of gradient consistency loss and training data size. arXiv e-prints.

2018 Mar;p. arXiv:1803.06629.

[172] Takao M, Ogawa T, Yokota F, Otake Y, Hamada H, T S, et al. Pre-

operative fatty degeneration of gluteus minimus predicts falls after tha.

Bone Joint J. 2017;99(SUPP 6):39–39.

[173] Reito A, Elo P, Nieminen J, Puolakka T, Eskelinen A. Gluteal muscle

fatty atrophy is not associated with elevated blood metal ions or pseu-

dotumors in patients with a unilateral metal-on-metal hip replacement.

Acta Orthopaedica. 2016;87(1):29–35.
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