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Abstract—Extraction of surface models of a hip joint fromCT
data is a pre-requisite step for computer assisted diagnosis and
planning (CADP) of periacetabular osteotomy (PAO). Most
of existing CADP systems are based on manual segmentation,
which is time-consuming and hard to achieve reproducible
results. In this paper, we present a Fully Automatic CT
Segmentation (FACTS) approach to simultaneously extract
both pelvic and femoral models. Our approach works by
combining fast random forest (RF) regression based landmark
detection, multi-atlas based segmentation, with articulated
statistical shape model (aSSM) based fitting. The two funda-
mental contributions of our approach are: (1) an improved
fast Gaussian transform (IFGT) is used within the RF
regression framework for a fast and accurate landmark
detection, which then allows for a fully automatic initializa-
tion of the multi-atlas based segmentation; and (2) aSSM
based fitting is used to preserve hip joint structure and to avoid
penetration between the pelvic and femoral models. Taking
manual segmentation as the ground truth, we evaluated the
present approach on 30 hip CT images (60 hips) with a 6-fold
cross validation.When the present approach was compared to
manual segmentation, a mean segmentation accuracy of 0.40,
0.36, and 0.36 mm was found for the pelvis, the left proximal
femur, and the right proximal femur, respectively. When the
models derived from both segmentations were used to
compute the PAO diagnosis parameters, a difference of
2.0 ± 1.5�, 2.1 ± 1.6�, and 3.5 ± 2.3% were found for ante-
version, inclination, and acetabular coverage, respectively.
The achieved accuracy is regarded as clinically accurate
enough for our target applications.

Keywords—Segmentation, Random forest regression, Gauss-
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INTRODUCTION

Developmental dysplasia of the hip (DDH) is a
congenital defect that has serious effects on patients.

DDH is characterized by mal-formed hip acetabulum
(socket) which is about 20% smaller than a normal
case, and therefore patients with DDH exhibit insuf-
ficient acetabular coverage (AC) and high joint contact
pressure.17 Here the AC is defined as a ratio between
the femoral head surface covered by the acetabulum
and the complete surface. Poor AC and high joint
contact pressure consequently lead to complications
such as degenerative osteoarthritis which affects
patients with limited range of motion and great pain.17

Among many DDH treatment options, periacetab-
ular osteotomy (PAO) has become a common surgical
intervention.8 Aiming to increase AC and reduce joint
contact pressure, PAO is implemented by reorienting
the acetabulum to realign it with the femoral head. In
PAO surgery, knowing the required rotation for
realignment of the acetabulum is very important since
poor reorientation will fail the surgery with unim-
proved AC. However, in clinical routine it is a chal-
lenge for surgeons to decide the optimal rotation
before surgery. Therefore, computer aided diagnosis
and planning (CADP) systems for PAO are expected
to address this challenge.16 With such a CADP system,
operation can be simulated by virtually rotating ace-
tabulum and analyzing the AC in different orienta-
tions. Thus, it is possible to find the optimal rotation
angle. One of the basic and critical functions of such a
system is to extract surface models of both pelvis and
proximal femur from hip CT data. Since manual seg-
mentation is time-consuming and hard to achieve
reproducible results, it is the goal of this study to
develop a fully automatic hip CT segmentation algo-
rithm.

The existing work on hip CT segmentation can be
largely classified into three categories: (a) intensity
based methods,4,10,13,29 (b) statistical shape model
(SSM) based methods,11,12,14,20,26,27 and (c) atlas based
methods.7,19 Due to the relatively higher intensity
values of bone tissues when compared to other
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surrounding tissues, there exist works focusing on bone
segmentation using basic image processing tech-
niques.4,10,13,29 These methods suffer from the diffi-
culty in handling gray level inhomogeneities and
diffused boundaries around the joint region, leading to
insufficient segmentation accuracy.

To address this challenge, both SSM based meth-
ods11,12,14,20,26,27 and atlas based methods 7,19 have
been introduced. The segmentation within these
methods is usually done with a two-step procedure.
Firstly, the target structures have to be detected in the
volume data and secondly, surface models of the target
structures need to be segmented. Existing work on hip
CT segmentation addresses the first step either by
assuming a user-supplied initialization with manually
specified anatomical landmarks 26,27 or by using gen-
eralized Hough transform (GHT).12,20 After that, the
segmentation can be performed automatically. SSM
based methods start with construction of a SSM of the
target structure from a given training population. The
constructed SSM is then subsequently fitted to a new
image to get the segmentation. Different from SSM
based methods, atlas based segmentation methods
employ prior knowledge about shape and intensity
distributions by registering a set of atlases to a given
volume. Here we define an atlas as a pair of data
consisting of a CT volume and its corresponding
manual segmentation. Both single atlas and multiple
atlases based methods have been proposed before.
Although the multi-atlases based methods have been
shown to achieve improved robustness and accuracy
over the single-atlas based method in brain tissue
segmentation,1 abdominal organ segmentations,5,23

and SSM creation,24 only single atlas based methods
have been used for hip CT segmentation.7,19

Most of existing methods on hip CT segmentation
focus on segmenting a single anatomical structure
without considering its relationship to the neighboring
structures.12,14,20,26,27 When those techniques would be
applied to segmentation of patient-specific models of a
hip joint, the segmented models may penetrate each
other due to narrowness of the hip joint space and
hence do not represent a true hip joint of the patient.
This has motivated the introduction of the so-called
articulated statistical shape model (aSSM).11 By
approximately modeling the hip joint as a ball-and-
socket joint, joint posture can be modeled as a
parameterized rotation of the femur around the joint
center. Fitting such an aSSM to a given hip CT volume
will have the advantage of preserving hip joint struc-
ture.

In this paper, we present a fully automatic hip CT
segmentation framework combing random forest (RF)
regression based landmark detection, multi-atlas based
segmentation, with aSSM based fitting. RF regression

based methods3 have been proved to be efficient in
landmark detection frommedical image6,15 and are also
known to be computationally intensive when applied to
3D data. Here we propose to use an improved fast
Gaussian transform (IFGT)25 within the RF regression
framework for a fast and accurate landmark detection.
The detected landmarks then allow for not only a
robust initialization of the atlases within the target
volume space but also an effective selection of a subset
of atlases for a fast and accurate atlas based segmen-
tation. Joint structure of the segmented models is
preserved by fitting an aSSM of the hip joint to the
multi-atlas based segmentation results.

MATERIALS AND METHODS

Figure 1 shows an overview of the complete work-
flow of our approach. It starts with the landmark
detection based on RF regression. The detected land-
marks allow one to conduct paired-point registrations
to align all atlases with the target image. After the
registration, a subset of atlases with the least paired-
point registration errors are then selected and used for
a multi-atlas based segmentation. Finally, the hip joint
surface models are extracted by fitting an aSSM to the
multi-atlas based segmentation results.

RF Regression Based Landmark Detection

RF regression based landmark detection works in
two stages: training stage and prediction stage. In the
training stage, we train a regressor using a set of
labeled training data. In the prediction stage, a land-
mark is detected by estimating the displacements from
a set of randomly sampled local image patches to the
unknown position of the landmark based on patch
appearance, and the individual predictions are then
combined in a voting scheme to predict the landmark
position.

(A) Basic Algorithm: We have a separate RF
landmark detector for each landmark. During training,
in each training image, we sample a set of image sub-
volumes around the known landmark position. Each
sampled sub-volumes is represented by its visual fea-
ture fi 2 Rdf and the displacement di 2 R3 from its
center to the landmark (Fig. 2a). Let us denote train-
ing data as fPi ¼ ðfi; diÞgi¼1...N (Fig. 2b). The goal is
then to learn a mapping function / : Rdf ! R3 from
the feature space to the displacement space. Princi-
pally, any regression method can be used. In this
paper, we utilize the random forest regressors.3

Once the regressor is trained, given a new image
(Fig. 2c) in the prediction stage, we randomly sample
another set of sub-volumes fP0

k ¼ ðf0k; c0kÞgi¼1...N0 all
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over the image (or a region of interest (ROI) if an
initial guess of the landmark position is known), where
f0k and c0k are the visual feature and the center coordi-
nate of the k-th sub-volume, respectively (Fig. 2d).
Using the trained regressor /, we can calculate dis-
placement d0k ¼ /ðf0kÞ and then d0k þ c0k becomes the
prediction of the landmark position by a single volume
P0
k (Fig. 2e). Note that each tree in the random forest

will return a prediction. Therefore, supposing that
there are t trees in the forest, we will get N0 � t pre-
dictions. These individual predictions are very noisy,
but when combined, they approach an accurate pre-
diction. To this end, we consider each single vote as a
small Gaussian distribution. We developed a fast
probability aggregating algorithm as described below
to sum these distributions to get a soft probability map

FIGURE 1. The flowchart of the present fully automatic segmentation approach.

FIGURE 2. A schematic illustration of the RF training and regression for landmark detection (illustrated on a 2D coronal slice for
an easy understanding but all computations are done in 3D). (a) A sub-volume sampled around the known landmark position in a
training atlas. (b) Multiple sampled sub-volumes from a training atlas. (c) A target image. (d) Sampled sub-volumes over the target
image. (e) Each sub-volume gives a single vote. (f) Response image calculated from all votes.
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called response image which gives, for every position of
the image, its probability of being the landmark
(Fig. 2f).

(B) Fast Probability Aggregating: As described
above, N0 � t predictions are produced to detect each
landmark. We consider each prediction a Gaussian
model N � ð�d0k;

P
ðd0kÞÞ and

P
ðd0kÞ ¼ diagðr2k;xr2k;yr2k;zÞ

are mean and covariance (which can be calculated
from the displacements of the training samples that
arrived at particular leaf node). All the N0 � t predic-
tions are accumulated to compute the response image
for each landmark. Once the response image has been
obtained for each landmark, the position mode is
selected as the landmark position.

The computation time of landmark detection
depends on multivariate Gaussian accumulation which
is usually computed using

G yið Þ ¼
XN0�t

k¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ3

P
d0k

�
�

�
�

q expð� 1

2
ðdyi � �d

0
kÞ

T

X
ðd0kÞ

�1ðdyi � �d
0
kÞ

ð1Þ

where dyi ¼ yi � c0k, yi is a voxel in target image and c0k
is the center of volume k. For all of the Nl landmarks,
such a calculation on a 3D CT image with M voxels
will result in prohibitively expensive computation time
of OðM�N0 � t�NlÞ. In this paper, we propose to
approximate Eq. (1) by:

G yið Þ ¼
XN0�t

k

Wk � eðjjdyi�
�d
0
kjj

2=h2Þ ð2Þ

Here we rewrite the Eq. (1) by introducing a con-
stant window size of h, and we move the variances out
of the exponential part by introducing a weight
Wk ¼ 1=ðrx;kry;krz;kÞ. With such an approximation,
we develop a fast strategy based on the improved fast
Gaussian transform (IFGT)25 to calculate the response
images with highly reduced computational time of
OððMþN0 � tÞ �NlÞ.

(C) Fast Visual Feature Computing: To calculate the
visual feature for the sampled sub-volumes, we first
divide each sampled sub-volume using a grid of
q� q� q blocks (Fig. 3). For each block within this
sampled sub-volume, we use mean and variance of
intensity as the feature, leading to a set of features with
dimension of 2q3 for each sampled sub-volume.

To accelerate the feature extraction within each
block, we use the well-known integrate image tech-
nique.22 Details about how to compute the integral
image of a quantity can be found in.22 The quantity
can be the voxel intensity value or any arithmetic
computation on the intensity value. Advantage of
using integral image lies in the fact that once we obtain
an integral image of the quantity over the complete hip
CT volume, the sum of the quantity in any sub-volume
can be calculated quickly in constant time O(1) no
matter how big the size of the volume is.22 Here we
assume that we already computed the integral images
of the voxel intensity I and the integral images of the
squared voxel intensity S of the complete hip CT vol-
ume using the technique introduced in.22 We then
compute the mean E X½ � and the variance Var Xð Þ of the
intensity value of any block (Fig. 3, right) as:

E X½ � ¼ ðI hð Þ � I dð Þ � I fð Þ � I gð Þ þ I bð Þ
þ I cð Þ þ I eð Þ � I að ÞÞ=N

E X2
� �

¼ ðS hð Þ � S dð Þ � S fð Þ � S gð Þ þ S bð Þ
þ S cð Þ þ S eð Þ � S að ÞÞ=N

ð3Þ

Var Xð Þ ¼ E X2
� �

� ðE½X�Þ2

where fa; . . . hg 2 R3 are the eight vertices of the block
and N is the number of voxels within the block.

Atlas Initialization and Selection

In this step, using the detected Nl anatomical land-
marks, paired-point scaled rigid registrations are per-

FIGURE 3. A schematic illustration on how to compute the visual feature of a sampled sub-volume for RF training and regression.
Left: a sub-volume is sampled from a hip joint CT volume. Middle: we divide the sampled sub-volume into q � q � q blocks. Right:
for each block, we compute its mean and variance using the integral image technique.
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formed to align all the NA atlases to the target image
space. Here, we speeded up the scaled rigid registra-
tions by aligning all the atlases and the target image to
the same reference image, which is randomly selected
as one of the training images. Since all the atlases have
already been aligned to the reference image prior to the
segmentation phase, we only need to transform target
image to the reference space. Based on the scaled rigid
registration results, we select NS atlases with the least
paired-point registration errors for the given target
image. The selected NS atlases are then registered to
the target image using a discrete optimization based
non-rigid registration.9

Multi-Atlas Based Segmentation

In this step, we first use the selected NS atlases after
registration to generate probabilistic atlas (PA) both
for background and hip bone tissues as shown in
Fig. 4. We then formulate the multi-atlas based seg-
mentation problem as a Maximum A Posteriori
(MAP) estimation which can be efficiently solved with
a graph cut based optimization method.2 Using the
known label of the selected atlases, PA of the target
image is computed as:

Kp lð Þ ¼
PNs

i¼0 xðAi; T ÞdðLp
i ; lÞPNs

i¼0 xðAi; T Þ
ð4Þ

where

d l; l0ð Þ ¼ 1 if l ¼ l0

0 otherwise

�

ð5Þ

Here, i represents the index of selected atlases, p

represents the voxel in CT image, l represents the label
of bones, L

p
i is the label of the voxel p in the atlasAi and

Kp lð Þ is probability that voxel p labeling as l. xðAi; T Þ is
the weight of atlas Ai which evaluated by the image
similarity between the atlas and the target image.We use
the normalized cross correlation (NCC) as the atlas-
target similarity. The probability Kp lð Þ is calculated for
every voxels in the target image for background (where
l = 0), pelvis (where l = 1), left femur (where l = 2),
and right femur (where l = 3), respectively.

For the given target image, a voxel-wise MAP esti-
mation is defined as

Lp ¼ argmax
l

PðljIpÞ ð6Þ

where Lp is the given label of the voxel p, Ip is the
intensity of the p, l is the label of each, and PðljIpÞ is the
posterior probability. The MAP estimation aims to
find a label l which can maximize the posterior prob-
ability. In other words, for a voxel p which has inten-
sity Ip, if the label l of any region can maximize the
posterior probability, the voxel will be assigned a label
of l. The posterior probability is computed according
the Bayes theory as PðljIpÞ / pðIpjlÞKp lð Þ, where Kp lð Þ
is the PA describing the prior probability and pðIpjlÞ is
the conditional probability that is computed as we did
in.5 The MAP estimation is then solved with the graph
cut method.2 For details, we refer to.2

Hip Joint Reconstruction Using a SSM Based Fitting

(A) SSM Definition: In order to build a SSM we
assume a set of n aligned training shapes si, where
i 2 f0; . . . ; n� 1g. Each shape si is described by a
vector containing m vertices: si ¼ fx0; y0; z0; x1; y1;
z1; . . . ; xm�1; ym�1; zm�1g:. By performing Principal
Component Analysis (PCA) on the training set, the
shape variations can be described by a linear model:

FIGURE 4. Example of generating PA for segmentation. Left: after non-rigidly registered two selected atlases to the target space.
Middle: generated PA. Right: segmented pelvis.
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S bð Þ ¼ �sþ
Xn�2

i¼0

bipi ð7Þ

where �s is the mean shape vector, pi the eigenvectors
spanning the principal directions of the shape space
and b ¼ ðb0; b1; . . . ; bn�2Þ the shape coefficient vector.

(B) aSSM Definition: A compound model was built
containing two objects P and F and a rotation center c.
Whereas object P and F represents the pelvis- and
femur-model respectively. We denote a vertex in a
shape instance S bð Þ as vj bð Þ; j 2 f0; 1; . . . ;m� 1g. vj bð Þ
with j 2 f0; 1; . . . ; u� 1g belong to object P, whereas u
denotes the number of vertices of P. Object F’s vertices
are vj bð Þ; j 2 u; uþ1; . . . ;m� 2f g, and the joint center is
defined as vc bð Þ and c ¼ m� 1. Following,11 we
approximate the relation between the femur and the
pelvis as a ball-and-socket joint, the joint posture is
explicitly parameterized by a rotation R of object F
around the joint center vc bð Þ which defines the relative
transformation of the femur to the pelvis. Further-
more, assuming a scaled rigid transformation T
between the shape space and the input image space,
our parameterized aSSM is described as

S b;T;Rð Þ ¼ ðT � RðvcðbÞÞÞðSðbÞÞ ð11Þ

where RðvcðbÞÞ describes the rotation of all vertices on
the proximal femur around the joint center vc bð Þ andwill
be only applied to those vertices vj bð Þ; j 2 u; uþ1;f
. . . ;m� 2g on the instantiated femoral object and T is
the scaled rigid transformation that will be applied to all
vertices on the instantiated compound model.

(C) aSSM Construction: The correspondences
between the training shapes were established using a
templating method. To obtain the same vertex order-
ing for each bone the training shapes were recon-
structed from a single template mesh by displacing its
vertices to other shapes in the training set with a non-
rigid transformation. To build the template mesh, one
of the CT volumes was selected as the initial reference.
The non-rigid transformation was calculated using the
diffeomorphic demons algorithm.21

(D) aSSM Based Model Instantiation: Given the
atlas based segmentation and the aSSM, we first
extract edge points from the binary segmentation and
then instantiate a compound model from the aSSM
and the extract edge points using the model instantia-
tion method introduced in11 but with a Mahalanobis
distance-based regularization as we did in.28 Two
adaptations, i.e., the transformation adaptation where
the scaled rigid transformation T and the rotation R
are estimated, and the shape adaptation where the
shape coefficient vector b is estimated, are alternatively
executed until convergence. For details, we refer to11

and.28

(E) Regularized Shape Deformation: The regular-
ized shape deformation is adapted from28 whereas for
the pelvic and the femoral models instantiated from the
last step the correspondences are set up individually
but the thin-plate spline (TPS) based shape deforma-
tion is solved using the information of both point sets.
For details, we refer to.28

Implementation Details

RF training was performed only once on a given set
of training atlases for 100 pre-defined anatomical
landmarks (50 for pelvis and 25 for each proximal
femur) and is independent from any target image. The
number of sub-volumes used in the training for each
atlas is 40,000 while the number of sub-volumes sam-
pled from a given target image in the landmark pre-
diction stage is 20,000. In both training and landmark
prediction stages, for each sampled sub-volume, we
divided the sub-volume with a grid size q3 ¼ 125. Then
for each block, we compute its mean and variance. All
the computed means and variances from the 125
blocks are concatenated into a vector which will be
used as the feature of the sampled volume.

For the atlases based segmentation, we select Ns ¼ 2
atlases, and we use k ¼ 50, c ¼ 0:5 for graph cut
optimization.

Experimental Design

Hip CT data of 30 patients (60 hip joints) were used
in our experiments after a local institution review
board (IRB) approval. Intra-slice resolutions range
from 0.576 mm to 0.744 mm while the inter-slice res-
olutions have a constant value of 1.6 mm. The number
of slices of per CT data ranges from 134 to 206 (on
average 159 slices per data). Images are roughly starts
from the center of lumbar spine until the lesser tro-
chanter. All CT data are semi-automatically segmented
by a trained rater with Amira (www.vsg3d.com/amira).

We designed and conducted a 6-fold cross valida-
tion study to evaluate the performance of the present
approach. In this study, the 30 CT data was randomly
partitioned into 6 equal size subsamples (each sub-
sample has 5 CT data). Of the 6 subsamples, each time
a single subsample was used as the test data while the
remaining 5 subsamples (the rest 25 CT data) were
used as training data. This process was repeated 6
folds, with each one of the 6 subsamples used exactly
once as the test data. In each fold, to evaluate the
performance of the present approach, we first calculate
the segmentation accuracy of the algorithm by com-
paring the automatic segmentation with the manual
segmentation. The widely used measurements of Dice
overlap coefficient (DOC)23 and average surface dis-

CHU et al.1252

http://www.vsg3d.com/amira


tance (ASD) are selected as the metrics for evaluation.
With L1 being the manual segmentation and L2 the
automatic segmentation, DOC is defined as DOC ¼
2jL1 \L2j=ð L1j j þ jL2jÞ. To compute the ASD, we first
generate a 3D mesh from binary data of each indi-
vidual segmentation. For each vertex on the surface
model derived from the automatic segmentation, we
found its shortest distance from the surface model
derived from the associated manual segmentation.
ASD was then computed as the average of all shortest
distances. In order to quantify the contribution of each
individual component of the present approach, we
computed both metrics in two consecutive stages, i.e.,
after the multi-atlas based segmentation and after the
aSSM based fitting.

In order to investigate the feasibility of using the
results from the aSSM based fitting for computer
assisted PAO diagnosis and planning, in each fold we
further compared differences of three PAO diagnosis
parameters, i.e., anteversion,18 inclination,18 and AC,16

when models derived from different segmentation
methods were used. All these PAO diagnosis and
planning parameters were computed using an in-house
developed program.16

RESULTS

Quantitative evaluation results for DOC and ASD
are presented in Tables 1 and Table 2, respectively.
After the multi-atlas based segmentation, a mean DOC

of 93.9 ± 1.5%, 96.5 ± 0.6%, and 96.4 ± 0.5% was
found for the pelvis, the left femur and the right femur,
respectively, when the results from the multi-atlas based
segmentation was compared to the associated manual
segmentation. The aSSMbased fitting further improved
the mean DOC to 95.7 ± 0.7%, 97.3 ± 1.0%, and
97.4 ± 0.7% for the pelvis, the left femur and the right
femur, respectively. When the surface models derived
from themulti-atlas based segmentationwere compared
to those derived from the manual segmentation, a mean
ASD of 0.52 ± 0.10 mm, 0.45 ± 0.10 mm and
0.48 ± 0.08 mm was obtained for the pelvis, the left
femur, and the right femur, respectively. After the aSSM
based fitting, a mean ASD of 0.40 ± 0.07 mm,
0.36 ± 0.13 mm and 0.36 ± 0.11 mmwas found for the
pelvis, the left femur and the right femur, respectively,
which demonstrated that the present approach achieved
good segmentation results for all hip bone structures.

In Fig. 5, we visually compare the manual segmen-
tation of a given target image with the result obtained
from the multi-atlas based segmentation before aSSM
based fitting. Figures 5d and 5g show the color-coded
error distributions of the segmented pelvic model and
the right femoral model, respectively. It can be seen
that overall the segmentation error is small but the
resultant surface models are noisy (see Fig. 5f and 5i).

The results from the multi-atlas based segmentation
were further refined by the aSSM based fitting. Similar
to what we did in Fig. 5, we visually compare the
manual segmentation of a given target image with the
result obtained from the aSSM based fitting in Fig. 6.

TABLE 1. Dice overlap coefficient (DOC) (%) between the automatic segmentation and the manual segmentation when evaluated
on 30 hip CT data (60 hips) with a 6-fold cross validation.

Structure Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Fold #6 Overall

After multi-atlas based segmentation

Pelvis 93.6 ± 2.1 94.5 ± 0.7 94.0 ± 1.1 93.1 ± 2.6 94.1 ± 0.9 94.9 ± 1.0 93.9 ± 1.5

Left femur 96.6 ± 0.5 96.8 ± 0.4 96.4 ± 0.9 96.2 ± 0.6 96.6 ± 0.3 96.5 ± 0.5 96.5 ± 0.6

Right femur 96.6 ± 0.2 96.6 ± 0.5 96.3 ± 0.7 95.9 ± 0.3 96.6 ± 0.2 96.6 ± 0.3 96.4 ± 0.5

After aSSM based fitting

Pelvis 96.0 ± 0.5 96.0 ± 0.5 95.6 ± 0.8 95.5 ± 0.9 95.9 ± 0.7 95.3 ± 0.6 95.7 ± 0.7

Left femur 97.2 ± 0.6 97.4 ± 0.6 97.0 ± 2.1 97.8 ± 0.2 97.3 ± 0.8 97.3 ± 0.6 97.3 ± 1.0

Right femur 97.5 ± 0.3 97.2 ± 0.6 97.2 ± 1.5 97.6 ± 0.5 97.6 ± 0.2 97.0 ± 0.8 97.4 ± 0.7

TABLE 2. Average surface distance (ASD) (mm) between the automatic segmentation and the manual segmentation when
evaluated on 30 hip CT data (60 hips) with a 6-fold cross validation.

Structure Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Fold #6 Overall

After multi-atlas based segmentation

Pelvis 0.55 ± 0.11 0.54 ± 0.08 0.54 ± 0.07 0.50 ± 0.15 0.49 ± 0.07 0.49 ± 0.13 0.52 ± 0.10

Left femur 0.46 ± 0.12 0.42 ± 0.08 0.49 ± 0.12 0.48 ± 0.14 0.40 ± 0.07 0.44 ± 0.10 0.45 ± 0.10

Right femur 0.48 ± 0.07 0.47 ± 0.10 0.52 ± 0.07 0.55 ± 0.06 0.44 ± 0.04 0.44 ± 0.08 0.48 ± 0.08

After aSSM based fitting

Pelvis 0.39 ± 0.09 0.41 ± 0.07 0.40 ± 0.03 0.42 ± 0.13 0.37 ± 0.06 0.41 ± 0.06 0.40 ± 0.07

Left femur 0.40 ± 0.10 0.38 ± 0.09 0.43 ± 0.27 0.29 ± 0.04 0.35 ± 0.11 0.35 ± 0.10 0.36 ± 0.13

Right femur 0.35 ± 0.05 0.41 ± 0.10 0.39 ± 0.20 0.32 ± 0.10 0.30 ± 0.03 0.40 ± 0.12 0.36 ± 0.11
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Figures 6d and 6g show the color-coded error distri-
butions of the segmented pelvic model and the right
femoral model, respectively. Comparing the results
shown in Fig. 6 with those in Fig. 5, one can clearly see
that the resultant surface models in Fig. 6 are visually
more similar to the associated ground truth surface
models than those in Fig. 5, reflected by the overall
decrease of the surface errors.

Figure 7 shows an example of the segmented left hip
joint both in 2D axial view and 3D rendering. In order
to observe if the joint spaces were preserved and no

penetration of the surfaces was present, we removed
parts of the surface and conducted a visual check.
From Fig. 7, it can be seen that even the joint space is
very narrow, hip joint are accurately reconstructed and
there is no penetration between the two surface mod-
els.

Quantitative evaluation results for the PAO diag-
nosis parameters are shown in Table 3. A mean dif-
ference of 2.0 ± 1.5� (range from 0.1� to 6.4�),
2.1 ± 1.6� (range from 0.2� to 6.7�) and 3.5 ± 2.3%
(range from 0.1 to 10.1%) were found for anteversion,

FIGURE 5. Comparison of the results obtained by the multi-atlas based automatic segmentation to manual segmentation of a
given target image. (a) An axial slice of the hip joint. (b, e, h) Manual segmentation (b), derived pelvic (e) and femoral (h) models. (c,
f, i) the multi-atlas based segmentation (c), derived pelvic (f) and femoral (i) models. Color-coded error distributions of the
automatically segmented pelvic surface model (d) and proximal femoral model (g) when compared to associated models derived
from manual segmentation.
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inclination, and AC, respectively, when PAO diagnosis
parameters derived from the surface models obtained
from the aSSM based fitting were compared to those
derived from the manual segmentation.

With a single thread-based, unoptimized C++
implementation, on average the run-time of the present
approach to segment a hip CT image is 15.8 min,
which is about 7.9 min for segmentation of a hip joint
on a computer with 3.0 GHz CPU and 12G RAM. As
suggested by Cheng et al.,4 an alternative measurement

of the speed of an algorithm is to compute the per slice
segmentation time. Our method requires about 6 s per
slice.

DISCUSSIONS AND CONCLUSIONS

Accurate extraction of the surface models of a hip
joint from CT data is a pre-requisite step for computer
assisted diagnosis and planning of PAO surgery. The

FIGURE 6. Comparison of the results obtained after the aSSM based fitting to manual segmentation of the target image shown in
Fig. 5. (a) An axial slice of the hip joint. (b, e, h) Manual segmentation (b), derived pelvic (e) and femoral (h) models. (c, f, i)
Segmentation results after aSSM based fitting (c), the fitted pelvic (f) and femoral (i) models. Color-coded error distributions of the
automatically extracted pelvic surface model (d) and proximal femoral model (g) when compared to associated models derived
from manual segmentation.
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goal of the present study is to develop and to validate a
fully automatic hip joint segmentation approach. The
results of the 6-fold cross validation experiments con-
ducted on 30 CT data (60 hip joints) demonstrated that
the present approach was able to accurately segment
hip joints. We have also investigated the feasibility of
using the automatically segmented models to compute
PAO diagnosis parameters such as acetabular orien-
tation (anteversion and inclination) and coverage. The
evaluation results demonstrated that the parameters
computed from the automatic segmentation were
comparable to those computed from the manual seg-
mentation.

The performance of the present approach is com-
pared with the state-of-the-art hip CT segmentation
methods.4,11,14,20,26,27,29 The comparison results are
summarized in Table 4, where for comparison pur-
pose, we convert the volumetric overlap error (OE)
reported in11 and20 to DOC. Details about the con-
version can be found in the Appendix.

It is worth to note that due to the fact that dif-
ferent datasets are used in evaluation of different
methods, direct comparison of different methods is
difficult. Thus, the comparison results in Table 4
should be interpreted cautiously, even though here
we only compared the results obtained from the
dataset which are similar to ours (patient data with
normal or mildly diseased hip joints). Nevertheless,

as shown in Table 4, our approach is comparable to
most of the existing work including the intensity
based methods4,29 and SSM based methods.14,20,26,27

One possible explanation why the present approach
achieves better results than the existing intensity
based methods4,29 is that due to the integration of
prior knowledge from atlases and aSSMs, regions
which are difficult to be segmented using only
intensity information could be accurately segmented
by our approach. In comparison to the SSM based
method,14,20,26,27 our approach also achieved superior
or equivalent results. One possible explanation is that
SSM based methods usually depend on a good shape
model. Thus the SSM fitting quality is variable. In
contrast, the present approach integrates prior
knowledge from atlases selected after a landmark
based registration and aSSMs, leading to not only a
more robust and accurate segmentation but also a
preservation of the hip joint structure. This has been
demonstrated in Figs. 4 and 7. Our finding goes
along with the results in11 where an equivalent
accuracy to our approach (i.e., the method in11

achieved a slightly better ASD but a slightly worse
average DOC than our approach) was reported. The
differences between our approach and the method
reported in 11 are: (a) we use a fast RF regression
based landmark detection to initialize the segmenta-
tion process while the method introduced in11 is
based on a generalized Hough transform; and (b) we
combine an atlas based segmentation method with an
aSSM-based fitting approach for a robust and accu-
rate segmentation while their method is based on the
image driven aSSM adaptation, solved with a graph
based optimization.11

From Table 4, one can see that from a per CT stack
or per hip computational time point of view our
approach is slower than the methods reported in,11,20

and4 but faster than other methods.26,27,29 Again, such
a comparison should be interpreted cautiously due to
the fact that different datasets with different resolu-
tions were used to evaluate different methods. An
alternative measurement of the speed of an algorithm,
as suggested by Cheng et al.,4 is to compute the per
slice segmentation time. If such a metric is used, the
speed of the present approach is comparable to most of
the state-of-the-art methods.4,26,27,29

FIGURE 7. The segmented models of pelvis (red) and left
proximal femur (cyan). Left: a 2D axial slice. Right: 3D surface
rendering. Part of the pelvic surface model is removed for
visualizing the reconstructed hip joint surface models. No
penetration between models of the neighboring structures is
found.

TABLE 3. PAO diagnosis and planning parameter differences when surface models derived from different segmentation methods
were used.

Parameters Manual segmentation Automatic segmentation Mean absolute differences

Anteversion (�) 13.7 ± 4.8 13.5 ± 4.7 2.0 ± 1.5 (range from 0.1–6.4)

Inclination (�) 49.2 ± 4.2 49.1 ± 3.0 2.1 ± 1.6 (range from 0.2–6.7)

Coverage (%) 82.2 ± 7.3 79.5 ± 5.7 3.5 ± 2.3 (range from 0.1–10.1)
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It is worth to mention the limitations of the present
study. First, the segmentation performance of our
approach is highly dependent on the atlas based seg-
mentation, which uses a discrete optimization based
non-rigid registration9 to register selected atlases to the
target image. Although our approach is robust to align
atlases to target image space globally, there might be
mis-registration in small local areas at the corner or
along the boundary of the bone. This can be observed
in Fig. 6 where the small area around the left sacroiliac
joint has relatively large errors. One possible solution
is to use local registration to improve the registration
performance, which has been proved to be useful for
soft tissue segmentation.5 Second, the present
approach was evaluated on limited patient data (60
hips) with normal or mildly diseased hip joints.
Nonetheless, the experimental results from the 6-fold
cross validation study demonstrated the accuracy and
the robustness of the present approach.

In summary, we presented a fully automatic method
for segmenting CT images of a hip joint for computer
assisted diagnosis and planning of PAO surgery. The
strength of the present approach lies in the combina-
tion of a fast RF regression based landmark detection,
atlas-base segmentation with an aSSM based model
instantiation. The present approach can be extended to
segment CT data of other anatomical structures.

APPENDIX

How to convert Volumetric Overlap Error (OE) to
Dice Overlap Coefficient (DOC)?

Let L1, L2 � R3 denote the ground truth segmen-
tation and the automatic segmentation, OE is calcu-
lated with the definition described in30:

OE ¼ 1� ðjL1 \L2jÞ
ðjL1 [L2jÞ

ð9Þ

And DOC is defined as

DOC ¼ 2� jL1 \L2j
ð L1j j þ jL2jÞ

ð10Þ

Since we have

L1 [L2j jð Þ ¼ ð L1j j þ L2j jÞ � jL1 \L2j ð11Þ

After some mathematic manipulations, one can
derive following relationship between OE and DOC:

DOC ¼ 2� ð1:0�OEÞ
ð2:0�OEÞ ð12Þ

For example, in Ref.,11 Kainmueller et al. reported
an average OE of 9.7% for segmenting right hip bone
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(RHB) (Table IV of Ref. 11). The corresponding DOC
is then 94.90%.
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