138 research outputs found

    Scaling finite difference methods in large eddy simulation of jet engine noise to the petascale: numerical methods and their efficient and automated implementation

    Get PDF
    Reduction of jet engine noise has recently become a new arena of competition between aircraft manufacturers. As a relatively new field of research in computational fluid dynamics (CFD), computational aeroacoustics (CAA) prediction of jet engine noise based on large eddy simulation (LES) is a robust and accurate tool that complements the existing theoretical and experimental approaches. In order to satisfy the stringent requirements of CAA on numerical accuracy, finite difference methods in LES-based jet engine noise prediction rely on the implicitly formulated compact spatial partial differentiation and spatial filtering schemes, a crucial component of which is an embedded solver for tridiagonal linear systems spatially oriented along the three coordinate directions of the computational space. Traditionally, researchers and engineers in CAA have employed manually crafted implementations of solvers including the transposition method, the multiblock method and the Schur complement method. Algorithmically, these solvers force a trade-off between numerical accuracy and parallel scalability. Programmingwise, implementing them for each of the three coordinate directions is tediously repetitive and error-prone. ^ In this study, we attempt to tackle both of these two challenges faced by researchers and engineers. We first describe an accurate and scalable tridiagonal linear system solver as a specialization of the truncated SPIKE algorithm and strategies for efficient implementation of the compact spatial partial differentiation and spatial filtering schemes. We then elaborate on two programming models tailored for composing regular grid-based numerical applications including finite difference-based LES of jet engine noise, one based on generalized elemental subroutines and the other based on functional array programming, and the accompanying code optimization and generation methodologies. Through empirical experiments, we demonstrate that truncated SPIKE-based spatial partial differentiation and spatial filtering deliver the theoretically promised optimal scalability in weak scaling conditions and can be implemented using the two programming models with performance on par with handwritten code while significantly reducing the required programming effort

    Reduced-order modeling of power electronics components and systems

    Get PDF
    This dissertation addresses the seemingly inevitable compromise between modeling fidelity and simulation speed in power electronics. Higher-order effects are considered at the component and system levels. Order-reduction techniques are applied to provide insight into accurate, computationally efficient component-level (via reduced-order physics-based model) and system-level simulations (via multiresolution simulation). Proposed high-order models, verified with hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models for both small- and large-signal excitations. At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques are introduced for linear magnetic systems, saturated systems, systems with relative motion, and multiple-winding systems, to extract the desired essential system dynamics. Finite-element models of magnetic components incorporating relative motion are set forth and then reduced. At the system level, a framework for multiresolution simulation of switching converters is developed. Multiresolution simulation provides an alternative method to analyze power converters by providing an appropriate amount of detail based on the time scale and phenomenon being considered. A detailed full-order converter model is built based upon high-order component models and accurate switching transitions. Efficient order-reduction techniques are used to extract several lower-order models for the desired resolution of the simulation. This simulation framework is extended to higher-order converters, converters with nonlinear elements, and closed-loop systems. The resulting rapid-to-integrate component models and flexible simulation frameworks could form the computational core of future virtual prototyping design and analysis environments for energy processing units

    CIRA annual report 2003-2004

    Get PDF

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing.Comment: Submitted as a roadmap article to Modelling and Simulation in Materials Science and Engineering; Address any correspondence to Vikram Gavini ([email protected]) and Danny Perez ([email protected]

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing

    CIRA annual report 2007-2008

    Get PDF

    Research Reports: 1984 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faulty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1984. Topics covered include: (1) data base management; (2) computational fluid dynamics; (3) space debris; (4) X-ray gratings; (5) atomic oxygen exposure; (6) protective coatings for SSME; (7) cryogenics; (8) thermal analysis measurements; (9) solar wind modelling; and (10) binary systems

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    Get PDF
    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30
    • …
    corecore