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ABSTRACT

Situ, Yingchong PhD, Purdue University, December 2014. Scaling Finite Difference
Methods in Large Eddy Simulation of Jet Engine Noise to the Petascale: Numerical
Methods and Their Efficient and Automated Implementation. Major Professor:
Zhiyuan Li.

Reduction of jet engine noise has recently become a new arena of competition

between aircraft manufacturers. As a relatively new field of research in computational

fluid dynamics (CFD), computational aeroacoustics (CAA) prediction of jet engine

noise based on large eddy simulation (LES) is a robust and accurate tool that com-

plements the existing theoretical and experimental approaches. In order to satisfy

the stringent requirements of CAA on numerical accuracy, finite difference methods

in LES-based jet engine noise prediction rely on the implicitly formulated compact

spatial partial differentiation and spatial filtering schemes, a crucial component of

which is an embedded solver for tridiagonal linear systems spatially oriented along

the three coordinate directions of the computational space. Traditionally, researchers

and engineers in CAA have employed manually crafted implementations of solvers

including the transposition method, the multiblock method and the Schur complement

method. Algorithmically, these solvers force a trade-off between numerical accuracy

and parallel scalability. Programmingwise, implementing them for each of the three

coordinate directions is tediously repetitive and error-prone.

In this study, we attempt to tackle both of these two challenges faced by researchers

and engineers. We first describe an accurate and scalable tridiagonal linear system

solver as a specialization of the truncated SPIKE algorithm and strategies for efficient

implementation of the compact spatial partial differentiation and spatial filtering

schemes. We then elaborate on two programming models tailored for composing

regular grid-based numerical applications including finite difference-based LES of jet



xiv

engine noise, one based on generalized elemental subroutines and the other based

on functional array programming, and the accompanying code optimization and

generation methodologies. Through empirical experiments, we demonstrate that

truncated SPIKE-based spatial partial differentiation and spatial filtering deliver

the theoretically promised optimal scalability in weak scaling conditions and can

be implemented using the two programming models with performance on par with

handwritten code while significantly reducing the required programming effort.



1

1 COMPUTATIONAL AND PROGRAMMING CHALLENGES OF FINITE

DIFFERENCE METHODS IN JET ENGINE NOISE PREDICTION

1.1 Practices of jet engine noise prediction

In the recent decades, aviation has assumed a critical role in supporting global

economic growth thanks to its ability to transport people and goods at speeds un-

paralleled by other means of transportation. Aircraft noise, a byproduct of aviation,

however, is proving to have a tangible negative impact on the overall benefit of avia-

tion, which ranges from physical damages to the human body to financial penalties

imposed on its originators and costs of noise mitigation measures. The demand for

quieter aircraft has expanded the already fierce competition between major aircraft

manufacturers to a new arena. In civil aviation, low-noise in-flight experience is

gaining emphasis in advertising campaigns targeting ordinary customers. In military

scenarios, injury-incurring sound levels near aircraft also corroborate the necessity of

noise reduction in aircraft design.

Traditionally, prediction of sound levels generated by jet engines is conducted

using theoretical derivations and empirical experiments. The modern discipline of

aeroacoustics originates from [41, 42], which date back to the early 1950s, when

researchers started to subject the mechanisms of noise generation by jet engines to

scientific scrutiny. The theoretical approaches of aeroacoustics are based on acoustic

analogies, where the Navier–Stokes equations are recast as wave equations which

describe perturbations in air density and pressure in terms of some acoustic source

terms. Based on their formulations, the acoustic source terms are then likened to

idealized noise sources, from which theoretical results are derived such as the celebrated

Lighthill’s noise scaling law that the radiated power scales as the eighth power of

the jet velocity. What challenges the rigorousness of theoretical aeroacoustics is the
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fact the acoustic source terms in the recast Navier–Stokes equations are ultimately

unknown variables themselves, and no formal relationship between them and the noise-

generating turbulent structures have been established. In the mean time, empirical

experiments for determining noise levels generated by jet engines typically involve

putting scaled models of jet engines inside anechoic chambers and measuring the

sound levels at different locations using microphones. While empirical experiments

can lead to realistic measurements, the monetary and time costs of manufacturing

models, ensuring the result accuracy and operating the apparatus are prohibitively

expensive for rapid design iteration.

Since the 1980s, computational aeroacoustics (CAA) has developed as a robust

and accurate tool that complements the traditional theoretical and experimental

approaches for jet engine noise prediction. CAA is a relatively new discipline of

computational fluid dynamics (CFD) which focuses on prediction of sound levels

generated by aircraft airframes and engines. It applies the principles of theoretical

acoustic analogies and uses realistic CFD simulations to resolve the precise dynamics

of the acoustic source terms. Unlike the general practices in the broader field of

CFD, CAA relies heavily on the accurate prediction of small-amplitude acoustic

fluctuations and their correct propagation to the far field. To accomplish its mission,

CAA imposes tight restrictions on the underlying numerical methods. An appropriate

numerical method for CAA is expected to provide high accuracy and good spectral

resolution while maintaining a low level of dispersion and diffusion errors. Such

stringent requirements pose serious challenges to CAA researchers.

The state of the art of CAA prediction of far-field jet engine noise is based on time-

dependent CFD simulation of the noise-generating turbulent flows. Postprocessing

integral methods based on acoustic analogies [47] are then used to propagate the

near-field noise computed by the CFD simulation to the observer location at the

far field. Traditionally, such numerical simulations are carried out by solving the

Reynolds-averaged Navier–Stokes equations (RANS). In RANS, the effect of the entire

spectrum of turbulent scales is represented by empirical turbulence models. Capturing
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the effect of all turbulent scales through modeling enables RANS to be computationally

inexpensive but sacrifices physical fidelity. Turbulence information of significance to

the acoustics is lost during the averaging process that characterizes RANS. At the

opposite end to the methodology of RANS, direct numerical simulation (DNS) aims

for the highest possible physical fidelity by explicitly resolving all relevant turbulent

length scales. However, the computational cost of DNS grows rapidly as the Reynolds

number increases due to the fact that higher Reynolds numbers require finer grid

spacing to fully capture the dynamics of the relevant turbulent scales. Furthermore,

finer grid spacing requires proportionally smaller time steps during time integration

as prescribed by the Courant–Friedrichs–Lewy (CFL) condition to preserve numerical

stability. As a consequence, DNS is typically limited to turbulent flows of low Reynolds

numbers. For CAA problems of practical interest, neither RANS nor DNS provides a

satisfactory solution that offers both accuracy and efficiency.

Large eddy simulation (LES) embodies a pragmatic eclecticism between RANS

and DNS. In LES, small turbulent scales, which have a more universal behavior, are

modeled as in RANS, whereas large turbulent scales, which are more flow-dependent,

are completely resolved as in DNS. LES exploits the fact that small-scale turbulence

tends to be self-similar and thus is very suitable for modeling; in the meantime, it

retains all the physical characteristics of the larger eddies. Such a philosophy enables

LES to use coarser grids than DNS to significantly reduce the computational cost but

avoid the loss of valuable turbulent information as in RANS simulations. We refer the

reader to [26, 63] for general treatments on LES.

Using the CAA methodology coupled with LES described above, many researchers

have conducted simulations for jet engine noise prediction. References [76, 77, 78] use a

multiblock solver with overlapping grid partitions to perform high-fidelity simulations

of subsonic jets with nozzles, both with and without chevrons, on grids with up

to 500 million grid points. References [11, 12] use high-order methods on meshes

with 252 million points to study the effect of important parameters on the noise in

subsonic conditions. Compared to subsonic jet simulations, there are comparatively
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few high-fidelity supersonic jet simulations [1]. High-accuracy simulations which

include the turbulent boundary layer in the nozzle have recently been completed to

study of impact of beveling the nozzle exit [3]. While structured solvers remain the

dominant tool for LES, there has been a push towards unstructured solvers recently in

search for greater flexibility in meshing and simplicity in geometric modeling, though

at the expense of accuracy. Existing work includes simulations of round jets from

converging–diverging nozzles with chevrons [14, 50] and rectangular jets with and

without chevrons [55]. These simulations utilize hundreds of millions of grid points

and up to 163,840 processors on the Intrepid cluster hosted at the Argonne National

Laboratory. Reference [34] provides the details of their numerical methods.

1.2 Finite difference methods in three-dimensional large eddy simulation of jet engine

noise

The essence of three-dimensional LES [26, 63] for jet engine noise prediction is to

solve a system of Favre-filtered unsteady, compressible nondimensionalized Navier–

Stokes equations formulated in the conservative form. Because the Navier–Stokes

equations are mathematically continuous, for practical purposes, the region of interest

of the physical domain is mapped to a computational space in which the Navier–Stokes

equations are discretized. In [74], the system of Navier–Stokes equations expressed in

the coordinate system of the computational space is succinctly written as

1

J

∂Q

∂t
+

∂

∂ξ



F − Fv

J



+
∂

∂η



G−Gv

J



+
∂

∂ζ



H −Hv

J



= 0. (1.1)

The meanings of the symbols in Equation (1.1) are listed in Table 1.1. Reference [74]

provides a detailed description of their precise definitions. Equation (1.1) applies

uniformly to each individual point in the computational space. Each term in the

equation is a vector of five components parameterized on the coordinates (ξ, η, ζ). To

discretize the equation for numerical solution, the physical domain is represented by a

three-dimensional curvilinear grid, and the continuous time is replaced by discrete time
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Table 1.1.
Meanings of symbols in the governing equation of three-dimensional
large eddy simulation in Equation (1.1)

Symbol Meaning

t Time

ξ, η, ζ Generalized curvilinear coordinates in the computational space

J Jacobian determinant of the coordinate transformation from the
physical domain to the computational space

Q Vector of conservative flow variables (density, three components of
momentum and energy)

F , G, H Inviscid flux vectors in the ξ-, η- and ζ-directions

Fv, Gv, Hv Viscous flux vectors in the ξ-, η- and ζ-directions
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steps. In order to simplify the formulation of the discretized problem, it is a common

practice to choose a mapping from the physical domain to the computational space

such that the curvilinear grid in the physical domain is mapped to a uniform grid in

the computational space with unit grid spacing. The immediate consequence of such

discretization is that the spatial partial derivatives in Equation (1.1) are approximated

by finite differences.

Equation (1.1) can be rearranged as

∂Q

∂t
= RHS(Q; t) (1.2)

where

RHS(Q; t) = −J



∂

∂ξ



F − Fv

J



+
∂

∂η



G−Gv

J



+
∂

∂ζ



H −Hv

J



. (1.3)

In LES, Equation (1.1) is solved by integrating RHS(Q; t) over time starting from

a prescribed initial condition. For the purpose of jet engine noise prediction, the

integration process is divided into two stages. The first stage propagates the effect of

the inflow boundary condition in the downstream direction to drive the transient flow

state induced by the initial condition out of the simulated region. It concludes when

the flow field reaches a statistically stable state. The second stage takes up where the

first stage left off and continues the integration, during which the state of the flow

field is sampled periodically for later use in the acoustic postprocessing. It terminates

when sufficient samples have been collected.

The choice of the method for integrating RHS(Q; t) over time has fundamental

ramifications on the rest of the numerical method of LES. Explicit methods, of which

the Runge–Kutta family of integration schemes is a prime example, usually leads to

greater overall simplicity in the numerical method as it requires only straightforward

evaluation of RHS(Q; t) with different values of Q and t. In contrast, implicit

methods, of which the Beam–Warming scheme [8] is a well-known representative,

requires an embedded iterative scheme to solve a system of nonlinear equations in
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order to advance from one time step to the next. In general, explicit methods are

inferior in time-dependent numerical stability. Consequently, time integration must

proceed in smaller time steps than in implicit methods and thus takes more time

steps to reach the same simulation time. On the contrary, the computational cost

per time step of implicit methods is more expensive than that of explicit methods.

Linear systems arising from linearization of the nonlinear iteration system also to tend

to be ill-conditioned. Their accurate, reliable and efficient solution is itself a major

challenge. For the purpose of this study, we assume that time integration is performed

using a Runge–Kutta method.

Depending on the parameters of the actual physical problem to be solved (e.g.,

heated or unheated jet, with or without a nozzle), the boundary conditions specified at

domain boundaries change as does the size of the simulated region. In the downstream

portion of the grid, the nonreflective boundary conditions from [9, 70] are frequently

used. When the nozzle is not simulated, a laminar inflow velocity profile can be

used, and a vortex ring forcing approach can be employed to promote the transition

of the shear layer to turbulent flow [10]. When the nozzle is explicitly included

in the simulation, there are adiabatic viscous [35, 36], extrapolation-based [44] and

approximate turbulent wall model [2] boundary conditions that can be utilized; a

digital filter-based turbulent inflow boundary condition can also be used to prescribe

an initial turbulent wall boundary layer [19, 37, 73, 85].

Evaluation of RHS(Q; t) as defined in Equation (1.3) relies on spatial partial

differentiation along each of the ξ-, η- and ζ-directions. For jet engine noise prediction,

compact finite difference schemes described in [39] are usually preferred over the

traditional central difference schemes. As illustrated in Figure 1.1, compared to the

corresponding central difference schemes of the same orders, compact difference schemes

have lower dispersion errors as they better approximate exact differentiation under

Fourier analysis. Unlike the explicit central difference schemes, compact difference
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schemes are implicit. Consider the nondissipative sixth-order compact difference

scheme for example. Assuming unit grid spacing, it is formulated as

1

3
f ′

i−1 + f ′
i +

1

3
f ′

i+1 =
7

9
(fi+1 − fi−1) +

1

36
(fi+2 − fi−2) (1.4)

where fi is the value of the function f to be differentiated at the ith grid point in a

grid line, and f ′
i is the approximation of the first spatial partial derivative of f at the

same grid point. Due to the five-point stencil in its right-hand side, Equation (1.4)

cannot be applied to grid points at domain boundaries. For the boundary grid points

at i = 1, 2, it is replaced by the following third-order one-sided and fourth-order

central compact difference schemes [74]:

f ′
1 + 2f ′

2 = −
5

2
f1 + 2f2 +

1

2
f3, (1.5a)

1

4
f ′

1 + f ′
2 +

1

4
f ′

3 =
3

4
(f3 − f1). (1.5b)

Correspondingly, the reflected formulations of Equations (1.5a) and (1.5b) are applied

to the boundary grid points at i = N − 1, N where N is the number of grid points

in the grid line. Equations (1.4) and (1.5) give rise to a tridiagonal linear system

which must be solved to obtain the value of each f ′
i . Similar tridiagonal linear systems

also occur in the formulations of the fourth- and eight-order compact finite difference

schemes.

Numerical artifacts may arise from boundary conditions, unresolved turbulent

scales and mesh nonuniformity. They can exert negative impact on the numerical

stability of LES as analyzed in [38]. Therefore, it is necessary to perform spatial

filtering to suppress these unfavorable artifacts. Reference [81] suggests the following

symmetric sixth-order three-term low-pass filter:

αf f̄i−1 + f̄i + αf f̄i+1 =
3
∑

n=0

an

2
(fi−n + fi+n) (1.6)
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where f̄i is the filtered value of fi, and αf is a user-defined parameter. The coefficients

an depend on αf , and we refer the reader to [81] for the details of their definitions.

The parameter αf must satisfy the inequality ♣αf ♣ ≤ 0.5. The farther αf is away

from 0.5, the stronger the filter is; when αf = 0.5, the filter has no effect. As with

the sixth-order compact difference scheme, Equation (1.6) cannot be applied to the

grid points at domain boundaries due to the seven-point stencil in its right-hand side.

Reference [81] suggests the following alternative formulation in the form of a biased

seven-point stencil for the grid points at i = 2, 3:

αf f̄i−1 + f̄i + αf f̄i+1 =
7
∑

n=1

an,ifi (1.7)

where an,i are also coefficients which depend on αf . Similarly, the reflected formulation

of Equation (1.7) is applied to the grid points at i = N − 3, N − 2. The grid points

at the very domain boundaries, i.e., where i = 1, N , are left unfiltered. In sum, the

above spatial filtering scheme also gives rise to a tridiagonal linear system.

During simulations of supersonic jets, shock waves may develop in the flow field and

cause the values of the flow variables to exhibit discontinuities in some locations. The

high-order compact spatial partial differentiation and spatial filtering schemes described

above, when applied without modifications, can introduce spurious oscillations near

the discontinuities. In order to appropriately capture the shock waves, they can be

extended to incorporate characteristic filters [1, 25, 45, 86] into their formulations.

In brief terms, this involves locating discontinuities in the flow field using a shock

detector and reducing the orders of the spatial filtering scheme in the neighborhoods

of those locations. Compared to simulations of subsonic jets, where shock waves are

absent, the linear systems resulting from these numerical schemes change in space and

time. However, they still preserve the tridiagonal and stencil-based formulations of

the original schemes.
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1.3 Tridiagonal linear system solvers used in large eddy simulation

In three-dimensional LES for jet engine noise prediction, it is a major computational

task to solve the tridiagonal linear systems arising from spatial partial differentiation

and spatial filtering. To put it into perspective, consider the full numerical method of

three-dimensional LES formulated in [74]. Reference [74] uses the classical fourth-order

Runge–Kutta method to integrate RHS(Q; t) in Equation (1.3) over time. Within

each time step, the three spatial partial differential operators, ∂
∂ξ

, ∂
∂η

and ∂
∂ζ

, are each

evaluated nine times. At the end of the time step, the flow field is spatially filtered

along each of the ξ-, η- and ζ-directions. Assuming that the dimensions of the grid

are N ×N ×N , each of these operations is applied to 5N2 vectors of order N where

the constant factor 5 comes from the number of flow variables. This translates to

tridiagonal linear systems being solved thirty times per time step, each time with

5N2 right-hand side vectors. Hence, an accurate and efficient solver for those linear

systems plays a critical role in the success of three-dimensional LES.

On sequential computing platforms, solving tridiagonal linear systems is straight-

forward as the classical Thomas algorithm, a variant of LU factorization specialized

for tridiagonal linear systems, well serves the purpose. However, the computational

power and storage space required by realistic jet engine noise prediction exceed the

capacities of even today’s most advanced monolithic computing devices by a wide

margin and necessitate distribution among multiple processors comprising a parallel

computing platform. Therefore, dedicated parallel tridiagonal linear system solvers

must be employed to operate on the distributed data and fully exploit the aggregate

computational power of the computing platform. To that end, CAA researchers have

traditionally utilized methods including the transposition method [74], the multiblock

method [87] and the Schur complement method [40].
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1.3.1 Transposition method

Recognizing the success of the Thomas algorithm as an effective solver for tridiag-

onal linear systems, the transposition method seeks to use it without modification.

However, this is immediately met with the hurdle that data belonging to one right-hand

side vector can be scattered across multiple processors. The strategy adopted by the

transposition method to overcome this difficulty is to temporarily gather the scattered

data onto a single processor, solve the tridiagonal linear system and redistribute the

data onto multiple processors.

Reference [74] describes an implementation of the transposition method applied to

three-dimensional jet engine noise simulations with rectangular computational spaces.

Given an Nξ ×Nη ×Nζ Cartesian grid and p processors, it partitions the grid into p

slabs of dimensions Nξ ×Nη × (Nζ/p) and assigns each slab to a distinct processor.

Tridiagonal linear systems along the ξ- and η-directions can be solved by directly

applying the Thomas algorithm to individual vectors with perfect parallelism because

the vectors are not partitioned among multiple processors. However, the same method

cannot be applied to the systems along the ζ-direction, where each right-hand side

vector is distributed among the p processors. In order to make the Thomas algorithm

applicable, the grid partitioning is temporarily transposed over the η–ζ plane as

illustrated in Figure 1.2. After the transposition, the grid becomes partitioned in

the η-direction. In the meantime, partitions of each right-hand side vector along the

ζ-direction are gathered onto a single processor and concatenated, after which the

Thomas algorithm becomes applicable. The transposition method then proceeds to

solve the tridiagonal linear systems along the ζ-direction. Upon completion of the

Thomas algorithm, the solution vectors go through a reverse transposition process

to be redistributed among the processors so that they become partitioned in the

ζ-direction, restoring the original data distribution scheme.

Reference [74] reports that the transposition method was able to attain linear

scaling on up to 160 processors on LeMieux, a Compaq AlphaServer SC45 cluster
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hosted at the Pittsburgh Supercomputing Center. In a scalability test performed on an

unnamed IBM SP POWER3 cluster hosted at Indiana University, the method achieved

a 76 % parallel efficiency on 160 processors relative to a baseline of 20 processors.

However, over a decade has passed since those experiments were conducted, which

necessarily damages the credibility of any performance claims derived from them in

the context of today’s supercomputing landscape. From a theoretical perspective, the

transposition method has two major disadvantages. First, it imposes the constraint

that p ≤ Nζ since each processor needs to possess at least one plane of grid points.

This limits the amount of parallelsim that the method can exploit because Nζ rarely

exceeds 1,000 even in today’s high-fidelity jet simulations. Second, the transposition

process essentially shuffles data of the entire flow field among all processors, which

implies a significant communication penalty. Even though the first disadvantage can

be mitigated by partitioning the grid also along the ξ- and η-directions, the second

disadvantage is not circumventable. In fact, [48] reports that the transposition-induced

communication cost can be as high as 50 % of the total computational cost of LES,

which corroborates the above theoretical argument.

1.3.2 Multiblock method

While the transposition method aims to solve the tridiagonal linear systems

accurately even at the expense of global data shuffles among all processors, the

multiblock method opts to trade numerical accuracy for program efficiency. The

strategy which it adopts is to truncate the compact spatial partial differentiation and

spatial filtering schemes to the boundaries of individual partitions of the grid, where

they are replaced by one-sided and lower-order formulations. Due to such truncation,

the resulting tridiagonal linear systems no longer span multiple grid partitions and

thus can be solved straightforwardly using the Thomas algorithm. However, in its

crudest form, the method will lead to unphysical simulation results because truncation

of the spatial partial differentiation and spatial filtering schemes essentially disconnects
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the grid partitions from one another and effectively prevents turbulent fluctuations

from propagating in the flow field.

In order to allow the turbulence information to be exchanged between grid par-

titions, a practical implementation of the multiblock method uses overlapping grid

partitions. Typically, for the sixth-order compact spatial partial differentiation and

spatial filtering schemes, neighboring grid partitions overlap by four planes of grid

points as illustrated in Figure 1.3. Furthermore, within each grid partition, the four

grid points at the boundaries of each grid line, two at each end, are declared as fringe

points. The values of the flow variables and their spatial partial derivatives at the

fringe points are replaced with those at their coinciding counterparts in neighboring

grid partitions. This serves to let the turbulence information propagate from each

grid partition to its neighbors. It also replaces the values computed by the one-sided

and lower-order formulations for boundary grid points with more accurate values

computed by the higher-order formulations for interior grid points.

The multiblock method is experimented in [87] using benchmark aeroacoustics

problems and LES of a turbulent jet plume with good simulation results. It is also

applied in [75] for simulation of a chevron nozzle jet flow, where neighboring grid

partitions overlap by seven planes of grid points. However, preliminary experimental

results in [48] show that the multiblock method is only slightly faster than the

transposition method. This can be attributed to the redundant computation introduced

by overlapping grid partitions, especially when the grid partition size is relatively

small. For example, when neighboring grid partitions overlap by four planes of grid

points, if the transposition method uses grid partitions of dimensions 32× 32× 32,

the dimensions of the grid partitions used by the multiblock method will become

36× 36× 36, which is over 40 % larger in total size.
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1.3.3 Schur complement method

Development of the Schur complement method is driven by the desire to overcome

the shortcomings of the transposition method and the multiblock method, namely

the high communication cost of the former and the compromised numerical accuracy

and redundant computation of the latter. Mathematically, the Schur complement

method is equivalent to the traditional divide-and-conquer parallel narrow-banded

linear system solver applied to tridiagonal linear systems. The algorithm used by the

PDDTTRF and PDDTTRS subroutines of ScaLAPACK [15] is a variant of the method.

In order to solve a tridiagonal linear system, the Schur complement method

designates the last (or first) grid point of a grid line within each grid partition as

the interface for capturing the interaction between neighboring grid partitions. It

then attempts to reduce the coupling between neighboring grid partitions to that

between the interface grid points using LU factorization. Figures 1.4, 1.5 and 1.6

illustrate the process. The partitioned system is shown in Figure 1.4, where the

elements directly related to the interface grid points are represented by filled circles.

In Figure 1.5, those elements are permuted to the end of the system to separate them

from the rest. In an actual implementation, such permutation and separation need to

be carried out only conceptually. The upper left part of Figure 1.5 can obviously be

LU-factorized with perfect parallelism. The result of the factorization is then used

to form a Schur complement as shown in the lower right part of Figure 1.6. As with

the original system, the Schur complement is also tridiagonal. It captures precisely

the coupling between the interface grid points with the their interdependence with

the other grid points eliminated. Hence, the Schur complement method effectively

reduces a tridiagonal linear system of order N to a smaller one of order p where p is

the number of processors. After the Schur complement system is solved, the values of

the elements in the solution vector associated with the noninterface grid points can

be retrieved again with perfect parallelism.
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Figure 1.4. System to be solved by the Schur complement method
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Figure 1.5. System in Figure 1.4 after permutation
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Figure 1.6. System in Figure 1.4 after permutation and partial LU
factorization
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The exact method used to solve the Schur complement system determines the

efficiency of the Schur complement method for any fixed grid partition size. Refer-

ence [40] gathers the system onto a single processor and solves it sequentially. This is

leads to a suboptimal O(p) asymptotic running time but can benefit from optimized

software and hardware implementations of collective communication. Reference [52],

which uses direct forward substitution instead of LU factorization to form the Schur

complement system, implements the Thomas algorithm directly on multiple processors

even though there is no parallelism at all. It also leads to an O(p) asymptotic run-

ning time. The PDDTTRF and PDDTTRS subroutines of ScaLAPACK use parallel cyclic

reduction [31], which has an O(log p) running time but must be manually synthesized

from point-to-point communication.

1.3.4 Need for a more scalable tridiagonal linear system solver

While the transposition method, the multiblock method and the Schur complement

method briefly described in sections 1.3.1, 1.3.2 and 1.3.3 have been successfully

applied to jet engine noise prediction in existing literature, the emergence of petascale

high-performance computing (HPC) platforms have recreated the need to develop

new tridiagonal linear system solvers. The most conspicuous characteristics of today’s

petascale HPC platforms for scientific computing is their large numbers of processor

cores. In the June 2014 edition of the Top500 List [72], every one of the top ten systems,

which all achieve at least 3.14 PFLOPS in the LINPACK benchmark, is equipped with

at least 220,000 processor cores except for the sixth-placed Piz Daint, which also boasts

115,984 processor cores. As the development of interconnect technologies continue

to trail the growth of processor speeds, in the absence of algorithmic improvements,

the dramatically increased numbers of processor cores in these petascale scientific

computing platforms will significantly inflate the cost of communication between

processors relative to the total computational cost.
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By inspecting qualitatively the communication cost of the three methods mentioned

in sections 1.3.1, 1.3.2 and 1.3.3 for solving tridiagonal linear systems on parallel

computing platforms, we can conclude that the transposition method is very unlikely

to successfully adapt to today’s petascale computing systems due to the global data

shuffles in the transposition process. On the contrary, the multiblock method is the

most scalable because only a constant of data per right-hand side vector needs to be

exchanged between neighboring grid partitions, and it does not rely on the globally

synchronizing collective communication. The Schur complement method, assuming

that the reduced Schur complement system is solved using parallel cyclic reduction,

has a communication cost which lies between those of the previous two methods. The

embedded parallel cyclic reduction has the same synchronizing effect and asymptotic

cost as an all-to-all reduction. An ideal tridiagonal linear system solver for jet engine

noise prediction should offer the best of the two worldsŮthe low communication cost

of the multiblock method and the high numerical accuracy of the transposition method

and the Schur complement method.

1.4 Programming Ąnite diference-based large eddy simulation of jet engine noise

1.4.1 Programming challenges in authoring numerical applications

In the Ąeld of scientiĄc computing, it is a common practice for researchers and

engineers to rely on established external software libraries to achieve high perfor-

mance as well as high reliability in their numerical applications. Examples of such

software libraries include LAPACK [5] for dense numerical linear algebra problems

and FFTW [24] for discrete Fourier transforms. In many situations, this can be a

successful strategy because these reputed software libraries are typically Ąne-tuned for

performance and broadly tested for reliability in real-world environments. However,

as with any other code which originates from external sources, these software libraries

also come with their own collections of limitations. Oftentimes, they tend to be

general-purpose because they are generally intended to be competitive, in terms of
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both functionality and performance, for the generic classes of numerical problems

which they target. In practice, however, specialized software tailored for the speciĄc

numerical problems occurring in the context of concrete numerical applications can

usually take advantage of the special numerical properties exposed by the numerical

applications and deliver performance which is not otherwise attainable by generic

software. Furthermore, eicient integration of external software libraries into existing

in-house code written by research and engineers can also prove to be plagued with

diiculties. An example of the most prominent obstacles is the incompatibility of data

structures, i.e., a numerical application stores its data in a memory layout which is

not immediately accepted by an external software library. Bridging such an interface

mismatch in a simplistic fashion may lead to additional data copying and shuling,

which incurs extra performance overhead and increases the memory footprint of the

application.

These limitations which arise from utilization of external software libraries fre-

quently force researchers and engineers to investigate new numerical algorithms and

new implementations of their own which cater to the speciĄc requirements of their

numerical applications. However, neither is such algorithmic and implementation

exploration free of diiculties of its own. Quite the contrary, it entails signiĄcant pro-

gramming challenges to the researchers and engineers, especially those whose primary

academic backgrounds are not computer science (CS). This is because converting a

numerical algorithm from its descriptions in papers and/or textbooks into code which

is ready to be integrated into a numerical application is a nontrivial undertaking.

The conversion process involves translating the algorithm into a sequence of language

constructs which is not only correct in semantics but also eicient in performance.

In particular, the programmer needs to consider multiple issues which have crucial

impact on the empirical performance of the algorithm:

• design of data structures which not only smoothly interface with existing data

structures of the numerical application but also enable eicient implementation

of the numerical algorithm,
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• expression of computational operations in forms which induce the compiler into

generating eicient code for the target computing platform,

• organization of communication operations in parallel algorithms in order that

the computationŰcommunication parallelism is efectively exploited.

Correct programming decisions regarding these issues rely on comprehensive knowledge

about the operational behaviors and performance characteristics of the diferent

components of diverse scales of the computing platform which include the processor

microarchitecture, the memory hierarchy and the interconnection network. This

renders them arguably diicult topics even for researchers and engineers with a

primary academic background in CS.

The fact that non-CS researchers and engineers have to double as professional

programmers for the sake of scientiĄc computing-related research has proved to take

its toll on the research itself. When we audited the codebases which backed the

work in [40] and [74], we discovered programming issues ranging from maintainability-

damaging antipatterns in software engineering to performance-punishing misuses of

communication primitives. Furthermore, judging from the sheer sizes of the codebases,

we can conclude that signiĄcant programming eforts were invested during their

development. While the former point may be isolated occurrences speciĄc to these

two codebases, the latter point is very likely true for many other large-scale numerical

applications. With the emergence and proliferation of petascale HPC platforms,

we can expect to witness a continued trend of growth in the level of sophistication

and complexity of numerical applications for scientiĄc computing as researchers and

engineers strive to adapt their applications to those computing platforms. The

ensuing increase in the programming burden will contribute an even greater amount of

distraction than it does now and prevent the researchers and engineers from focusing

on their Şreal sciencesŤ.
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1.4.2 Need for dedicated programming tools for Ąnite diference-based large eddy

simulation of jet engine noise

SpeciĄcally to large eddy simulation-based jet engine noise prediction, the challenges

which arise in the programming practices of researchers and engineers mainly originate

from two sources. The Ąrst is the intrinsic complexity of the underlying numerical

methods, while the second is the lack of dedicated programming tools. SimpliĄcation

of the numerical methods of jet engine noise prediction depends on the advancement

of the science of aeroacoustics. Comparing with the empirical measurements obtained

from experiments using physical models of jet engines in anechoic chambers, the latest

methodologies of high-Ądelity LES of jet engine noise [1, 48] still produce simulation

results which contain errors on the order of a few decibels in the predicted overall

sound pressure level (OASPL). In terms of the perceived loudness of jet engine noise,

predictions with errors of such magnitudes can be considered excellent approximations

of the reality since the human perception system generally has a logarithmic response

to the strength of stimuli, a phenomenon reĆected by the expression of the OASPL in

the logarithmic decibel scale. When it comes to the physical damage to the human

body which the noise can cause, however, the same predictions have to be deemed in

need of signiĄcant improvement. The reason lies in the fact that the amount of physical

damage is determined by the total mechanical energy level, which is measured in the

linear scale as opposed to the logarithmic scale. Given the lack of a fully developed

theory of the generation mechanisms of jet engine noise in aeroacoustics of the current

time, simpliĄcation of the numerical methods is unlikely to occur at least in the short

term. This topic is also beyond the scope of this study. Consequently, in order to

simplify the programming tasks in LES of jet engine noise from the perspective of CS,

we have to investigate new programming tools which provide dedicated support for

this particular type of numerical applications.

Currently there exist commercially and freely available software libraries and

applications which attempt to provide one-stop solutions to CFD simulations. For
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instance, OpenFOAM [32] is a C++ library which provides almost fully automated

functionalities encompassing grid generation, problem speciĄcation and simulation

execution. However, attempting to rely on a Ąxed repertoire of black-box function

units to assemble a CFD simulation program for jet engine noise prediction is unlikely

to be a successful strategy. CAA is an art which combines science and engineering.

While its essential theoretical foundation boils down to the NavierŰStokes equations,

in practice, a functional CAA application depends on many more special numerical

components. Just to name a few speciĄc examples, [74] uses a randomized inĆow

vortex ring forcing method to promote the transition from laminar Ćow to turbulent

Ćow. References [1, 40, 48, 74] attach an outĆow sponge zone to the downstream end

of the computational space to dampen the oscillations leaving the physical domain

according to an artiĄcial cubic fall-of proĄle. References [19] places an inĆow sponge

zone inside the simulated nozzle to suppress the spurious oscillations caused by the

inĆow boundary condition. None of these special-purpose treatments has a well-

deĄned counterpart in the physical setting of a jet engine, but their inclusion in

jet simulations is none the less crucial to ensuring that the numerical results are

meaningful approximation to the real-world physics of jet engine noise and preventing

the numerical artifacts inherent to the Ąnite-precision Ćoating-point arithmetic from

leading to inĄnite values or NaNs. Due to their ad hoc nature, few, if there is any, of

the packaged software libraries or applications would include them as ready-to-use

components. Therefore, a programming tool dedicated to LES of jet engine noise must

ofer the possibility to manually specify the details of any involved numerical methods.

At the Ąrst glance, the fact that the programmerŠs need for the capability to specify

arbitrary numerical methods may seem to reduce the researchersŠ and engineersŠ choices

of programming tools back to traditional general-purpose programming tools such as

Fortran, C and C++. This is not necessarily the case. In particular, we recognize

one aspect of programming in which researchers and engineers can beneĄt from new

programming tools. Recall that the governing equation of three-dimensional LES

in Equation (1.1) applies uniformly to every individual point in the computational
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space. In numerical programming, this is referred to as elemental computation, which

involves matching up the corresponding elements of multiple multidimensional arrays

of identical shapes and carrying out a uniform sequence of scalar arithmetic operations

on each individual combination of matched-up array elements. Besides elemental

computation, Equation (1.1) also exhibits a second notable pattern of computation,

which is represented by the three spatial partial diferential operators ∂
∂ξ

, ∂
∂η

and ∂
∂ζ

.

Mathematically, these three spatial partial diferential operators are fundamentally

identical in deĄnition. As we have explained in section 1.2, they are also to be

approximated in empirical jet engine noise prediction applications using the same

compact spatial partial diferentiation scheme. The only diferences among them are

their spatial orientations. Put in terms of the data structures on which they are to be

implemented, the operations which comprise their deĄnitions are applied along diferent

array dimensions but are otherwise identical. If we construe elemental computation as

a mechanism of repetition, then the latter pattern of computation can be regarded

as a generalized form of elemental computation where slices of arbitrary dimensions,

instead of merely scalar elements, of multiple multidimensional arrays are matched

into combinations, and a uniform sequence of possibly nonscalar arithmetic operations

are executed on each such combination. Viewed from an alternative perspective, it

can also be interpreted as a procedure which maps an lower-dimensional numerical

algorithm into a higher-dimensional computational space and augments the semantics

of the algorithm with uniform repetition according to a certain dimension map.

Elemental computation, in its basic form, has long received support from pro-

gramming languages and software libraries. As core syntactical features, the array

section notation and elemental procedures have been available in Fortran since the

Fortran 90 and 95 revisions, respectively. C and C++ have also recently received

similar enhancements via external language extensions including OpenMP 4.0 [56] and

Intel Cilk Plus [61]. By encapsulating arrays in specialized data types, programming

languages which allow operator overloading such as C++ and Python can emulate

the support of the array section notation for array expressions through library-only
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solutions such as the std::valarray class template in the C++ Standard Library

and NumPy [21]. In particular, taking advantage of template metaprogramming,

especially the technique of expression templates [79], std::valarray enables the

emulated array expressions to avoid representing intermediate arithmetic results using

temporary arrays, a performance optimization critical to the practical usability of the

class template. Beyond the compile-time features of existing programming languages,

Intel Array Building Blocks (ArBB) [54] and ispc [58] provide the programming

capabilities for elemental computation by means of domain-speciĄc languages (DSLs)

and place emphasis on automatic vectorization and thread-level parallelization during

code generation.

Compared to the basic form, the generalized form of elemental computation enjoys

much more sporadic support from existing programming methodologies and tools.

The Alpha programming language [83, 84] supports a very generic form of elemental

computation where array slices need not be rectangular-shaped or rectilinearly aligned

and can be extracted from polyhedron-shaped multidimensional arrays via arbitrary

aine maps. The axis control notation [29] of Single Assignment C (SaC) [28]

follows a more canonical approach where array slices must be rectangular-shaped and

rectilinearly aligned. Semanticswise, both Alpha and SaC are suicient for specifying

the computational operations involved in LES of jet engine noise. Due to the fact that

they belong to the category of functional programming languages, communication

primitives are not included in their underlying programming models. While they

are be construed as members of the family of implicitly distributed programming

languages represented by High Performance Fortran (HPF) [46] and ZPL [43], and their

implementations are responsible for partitioning the arrays appearing in programs and

distributing them to multiple processors, without explicit communication operations, it

is challenging, if that is possible at all, to express the tridiagonal linear system solvers

needed by LES-based jet engine noise prediction applications. This is because eicient

solvers such as those in [15, 66, 67] are usually developed based on the assumption that

the programming model ofers a single-program multiple-data (SPMD) programming
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style with an explicit notion of processors. They also actively exploit the assumption

in the derivation of their respective numerical methods.

Based on the above arguments, we can summarize the desired features of any

new programming tool dedicated to supporting composition of three-dimensional

LES-based jet engine noise prediction applications as follows:

• It should provide a mechanism to express the computation pattern where lower-

dimensional algorithms are applied in higher-dimensional contexts as previously

described.

• It should support an SPMD programming style and encompass computation as

well as communication in its expressive power.

• It should allow incremental adoption by researchers and engineers.

The last feature listed above is necessary because in many cases, the researchers and

engineers already have readily functional applications at hand. It is impractical to

require them to rewrite their applications from scratch just because they want to take

advantage of a new programming tool.



30

2 AN EFFICIENT TRIDIAGONAL LINEAR SYSTEM SOLVER BASED ON

THE TRUNCATED SPIKE ALGORITHM

2.1 General SPIKE algorithm applied to tridiagonal linear systems

The SPIKE algorithm [20, 59] is a parallel hybrid solver for narrow-banded linear

systems. It is based on a philosophy similar to that of the Schur complement method

described in section 1.3.3 in the sense that it also attempts to reduce the coupling

between neighboring grid partitions to that between some designated interface grid

points. Compared to the Schur complement method, it is diferent in that it uses

both the Ąrst and the last grid points of a grid line within each grid partition as the

interface grid points. It also avoids global LU factorization and employs an alternative

method to eliminate the noninterface grid points from the coupling relations.

We specialize the general SPIKE algorithm for the purpose of solving the tridiagonal

linear systems arising from LES of jet engine noise [69]. To illustrate the algorithm,

we use the example of solving the linear system arising from computing spatial partial

diferentation on a grid line of 36 grid points evenly partitioned among six processors.

Generalization is straightforward.

Let the tridiagonal linear system be

Ax = f (2.1)

where the coeicient matrix A is depicted in Figure 2.1. The annotations Ş(P1)Ť

through Ş(P6)Ť are symbolic names of the grid partitions. They can also be interpreted

as the processors which own each of the grid partitions. Each small square in Figure 2.1

represents a nonzero element of A and is colored with a shade of gray whose visual

darkness, as a fraction of pure black, is approximately porportional to the magnitude
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A =

(P1)

(P2)

(P3)

(P4)

(P5)

(P6)

Figure 2.1. Coeicient matrix of 36-point spatial partial diferentiation
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of that element. Elements of magnitudes greater than one are drawn as fully black

squares. We will adopt the same coloring scheme in other matrix plots to highlight

the variation in the magnitudes of the matrix elements.

To solve the system Ax = f , the SPIKE algorithm Ąrst extracts the 6×6 diagonal

blocks of A to form a block diagonal matrix D depicted in Figure 2.2. The removed

elements in D compared to A are marked by dotted circles in Figure 2.2. The

algorithm then computes a factorization

A = DS. (2.2)

The factor S = D−1A assumes the form shown in Figure 2.3. It has a unit main

diagonal, from which single-column ŞspikesŤ extend both downwards and upwards. It

is thus called the spike matrix, and Equation (2.2) is called the spike factorization.

Using Equation (2.2), solving the tridiagonal linear system Ax = f becomes equivalent

to solving a new system Sx = g where g = D−1f . Both D and g can be computed

with perfect parallelism thanks to the block diagonal nature of D.

A key insight of the SPIKE algorithm that the coupling between neighboring

partitions of S is entirely captured by the Ąrst and the last elements of the partitions,

i.e., the elements immediately above and below the partition boundaries. Figure 2.4

highlights these elements in red. These elements, along with the corresponding

elements in x and g, can be extracted from Sx = g independently of the other

elements to form a smaller linear system

Ŝx̂ = ĝ (2.3)

where the coeicient matrix Ŝ is pentadiagonal. Figure 2.5 depicts the coeicient

matrix Ŝ. We refer to Equation (2.3) as the reduced system. Once this reduced system

is solved, the Ąrst and the last elements of x with each partition are known and can

be backsubstituted into Sx = g to retrieve the complete solution vector with perfect

parallelism.
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D =

Figure 2.2. Diagonal blocks of the coeicient matrix A in Figure 2.1



34

S = 0.38196
0.38196

−0.14589

−0.14589

0.05570

0.05570

−0.02122

−0.02122

0.00796

0.00796

−0.00265

−0.00265

Figure 2.3. Spike matrix S in the spike factorization of the matrix A

in Figure 2.1
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S =

Figure 2.4. Elements of the spike matrix S in Figure 2.3 representing
coupling between partitions
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Ŝ =

(P1)

(P2)

(P3)

(P4)

(P5)

(P6)

Figure 2.5. Coeicient matrix Ŝ of the SPIKE reduced system in
Equation (2.3)
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Algorithm 2.1 provides a concise summary of the general SPIKE algorithm. It is

worth noting that the general SPIKE algorithm leaves the precise method for solving

the reduced system in Equation (2.3) unspeciĄed. As a consequence, the choice of a

particular method will lead to a speciĄc variant of the SPIKE algorithm. Therefore,

it is referred to as a polyalgorithm in [59, 60]. References [59, 60] describe three

variants of the general SPIKE algorithm, namely the recursive, truncated and on-the-

Ćy SPIKE algorithms. The recursive SPIKE algorithm is designed for narrow-banded

linear systems which are dense within the band. It solves the reduced system via

recursive halving by repeatedly merging pairs of neighboring partitions and in this

sense bears resemblance to the parallel cyclic reduction used in the Schur complement

method described in section 1.3.3. On the contrary, the on-the-Ćy SPIKE algorithm

is designed for narrow-banded linear systems which are sparse within the band. In

order to preserve the sparsity, it relies on a direct sparse linear system solver such as

PARDISO [64], MUMPS [4] and SuperLU [18]. It also avoids explicitly forming the

spike matrix and the reduced system and uses an iterative method to solve the reduced

system. However, neither of these two variants of the general SPIKE algorithm is

likely to lead to eicient solvers for tridiagonal linear systems arising from LES of

jet engine noise. The recursive SPIKE algorithm takes an O((log p)2) asymptotic

running time to solve the reduced system for a single right-hand side vector where

p is the number of processors. This immediately renders it inferior to the Schur

complement method since the asymptotic running time of parallel cyclic reduction is

only O(log p). The on-the-Ćy SPIKE algorithm is simply unnatural to be applied to

tridiagonal linear systems to due latterŠs simple but dense-within-the-band structure.

This efectively leaves the truncated SPIKE algorithm as the only option among the

three variants of the general SPIKE algorithm to explore for deriving an eicient

solver for tridiagonal linear systems. As it turns out, the truncated SPIKE algorithm

does lead to a tridiagonal linear system solver which ofers the desired features of an

ideal solver mentioned in section 1.3.4. This solver is to be detailed in Section 2.2.
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Algorithm 2.1. General SPIKE algorithm

1: procedure Spike-Factorize(A)

2: Extract the diagonal blocks from A to form D

3: Compute the spike matrix S = D−1A

4: Form the coeicient matrix Ŝ from S of the reduced system

5: Preprocess Ŝ for solution of the reduced system

6: end procedure

7: procedure Spike-Solve(D, S, Ŝ, f)

8: Compute g = D−1f

9: Form and solve the reduced system Ŝx̂ = ĝ

10: Backsubstitute x̂ into Sx = g to retrieve x

11: end procedure
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2.2 Eicient solution of tridiagonal linear systems using the truncated SPIKE algo-

rithm

2.2.1 Basic truncated SPIKE algorithm

Recall that the tridiagonal linear systems arising from LES of jet engine noise come

from the compact spatial partial diferentiation and spatial Ąltering schemes. Equa-

tions (1.4), (1.5), (1.6) and (1.7) are the formulations of the sixth-order formulations

of these schemes. An important feature of these formulations is that their left-hand

sides all lead to diagonally dominant rows in the resulting coeicient matrices with

the sole exception of the formulae for the Ąrst and the last points of a grid line in the

case of spatial partial diferentiation. Not limited to just the sixth-order formulations,

this feature is also shared by formulations of other orders. Such diagonal dominance

has a consequential implication on the magnitudes of the elements on the spikes in

the spike matrix S in Figure 2.3. Observe that in Figure 2.3, as the elements lie

further away from the main diagonal, the shade of gray of the small squares which

represent them quickly diminishes into pure white, which indicates a steady decay in

their magnitudes. As revealed by the element value annotations in the same Ągure, the

decay in the element magnitude is in fact exponential. More rigorously speaking, as

proved in [51], the rate of decay is lower-bounded by the degree of diagonal dominance

of the coeicient matrix A in Figure 2.1, which is deĄned as

d = min
i

{

♣aii♣
∑

j ̸=i ♣aij♣

}

. (2.4)

In practice, the actual rate of decay is oftentimes a lot higher than what is predicted

by Equation (2.4). For example, for the two spikes at the center of Figure 2.3, the

magnitudes of the two elements at the spike tips are approximately −0.0026525. In

the meantime, estimation based on Equation (2.4) using d = 3/2 evaluates to a very

loose upper bound on their magnitudes of 1/d6 ≈ 0.087791.
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The exponentially small magnitudes of the elements at the spike tips in the spike

matrix S makes it reasonable to ignore those elements. This efectively truncates the

spikes by one element and leads to the truncated SPIKE algorithm. Translating the

efect of such truncation from S to the coeicient matrix Ŝ of the reduced system,

the elements which lie outside of the 2 × 2 diagonal blocks are removed, which

simpliĄes the reduced system from pentadiagonal to block diagonal with 2×2 diagonal

blocks. The resulting coeicient matrix S̃ is depicted in Figure 2.6. To solve this

modiĄed reduced system, only a constant amount of data needs to be exchanged

between neighboring partitions, and the following computation can be performed with

perfect parallelism. This enables the truncated SPIKE algorithm to achieve the same

performance characteristics as the multiblock method described in section 1.3.2.

2.2.2 Truncated SPIKE algorithm enhanced with block Jacobi iteration

Truncation of the spikes in the spike matrix S and the ensuing efect on the

coeicient matrix Ŝ of the reduced system necessary cause the reduced system to

be solved only approximately. The degree of approximation depends on the actual

magnitudes of the elements at the truncated spike tips. In the case of the tridiagonal

linear systems arising from LES of jet engine noise, it is fully determined by the orders

of the compact spatial partial diferential and spatial Ąltering schemes, the parameter

αf of the spatial Ąltering scheme and the partition size. As we have explained in

Section 1.1, LES, or CAA in a broader scope, imposes very stringent requirements on

the numerical accuracy of the underlying numerical methods. Therefore, the numerical

inaccuracy introduced into the linear systems by the truncation of the spike tips must

be remedied.

In [59], it is suggested that, when high numerical accuracy is desired, the truncated

SPIKE algorithm can be wrapped inside an outer iterative scheme. In this case, the

truncated SPIKE algorithm functions as a preconditioner of the outer iterative scheme.

Popular choices of the outer iterative scheme include GMRES [62], QMR [23] and
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S̃ =

Figure 2.6. Coeicient matrix S̃ of the SPIKE reduced system after
truncation
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BiCGSTAB [82]. However, since they all belong to the family of Krylov subspace

methods, they share the vector dot product as a common fundamental component in

their deĄnitions and inevitably rely on the globally synchronizing all-to-all reduction

communication primitive. If the truncated SPIKE algorithm is wrapped inside any

of these methods, although it is reasonable to assume that the number of iterations

required for convergence is relatively small, the all-to-all reductions will nevertheless

degrade the asymptotic running time of the truncated SPIKE algorithm to the

same level as the Schur complement method with embedded parallel cyclic reduction

described in section 1.3.3. In order to avoid the all-to-all reductions, we must use an

outer iterative scheme which does not rely on vector dot products. For our purposes,

we choose the much less sophisticated block Jacobi iteration as the outer iterative

scheme, which requires only local-scoped, nonsynchronizing communication between

neighboring partitions. We perform 2×2 block Jacobi iteration on the reduced system.

An important element of any iterative scheme is determining when to terminate

the iteration process. Usually, the relative residual corresponding to the iterate vector

is monitored during every iteration. Once it drops below a predeĄned tolerance level,

the iteration process is terminated, and the iterate vector of the last executed iteration

is declared as converged. Unfortunately, the relative residual is deĄned in terms of

the norm of the iterate vector, which is in turn deĄned in terms of the vector dot

product. Hence, attempting to keep track of the relative residual at run-time will end

up reintroducing the all-to-all reductions eliminated by adoption of the block Jacobi

iteration. Instead, we resort to an alternative method based on the matrix norm to

estimate a priori the minimum number of iterations after which the relative residual

is guaranteed to drop below the predeĄned tolerance level. The feasibility of this

method relies on two crucial properties of the tridiagonal linear systems arising from

LES of jet engine noise. First, these linear systems are diagonally dominant except

for the Ąrst and the last rows in the case of the compact spatial partial diferentiation

schemes. This ensures that the block Jacobi iteration is free from numerical instability

and requires only a few iterations to converge. Second, these linear systems have a
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very simple and regular structure. This provides us with a convenient way to compute

the matrix norm of interest.

We estimate the minimum of block Jacobi iterations needed to guarantee conver-

gence as follows. Denote the iterate vector of the reduced system after n iterations by

x̂(n) and the corresponding residual vector by r̂(n) = ĝ− Ŝx̂(n). Each step of the block

Jacobi iteration updates the iterate and residual vectors via the recurrence relation

x(n+1) = x(n) + S̃−1r̂(n), (2.5a)

r̂(n+1) = ĝ − Ŝx̂(n+1). (2.5b)

Eliminating ĝ and x̂(n+1) from Equation (2.5b) gives

r(n+1) = (I − ŜS̃−1)r(n), (2.6)

which implies

∥r̂(n+1)∥ ≤ ∥I − ŜS̃−1∥ · ∥r̂(n)∥

≤ ∥I − ŜS̃−1∥2 · ∥r̂(n−1)∥

...

≤ ∥I − ŜS̃−1∥n+1 · ∥r̂(0)∥. (2.7)

Hence, in general, the residual vector after n iterations, r̂(n), satisĄes

∥r̂(n)∥

∥r̂(0)∥
≤ ∥I − ŜS̃−1∥n. (2.8)

If we let the initial guess x̂(0) be a zero vector, then the initial residual vector r̂(0)

is equal to ĝ, and thus the initial relative residual is simply one. As long as we can

determine ∥I− ŜS̃−1∥, given any tolerance level ϵ, we are guaranteed that the relative

residual will not exceed ϵ after

τ =

⌈

log ϵ

log ∥I − ŜS̃−1∥

⌉

(2.9)
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iterations. In an actual implementation of the truncated SPIKE algorithm for the

purpose of LES of jet engine noise using the IEEE-754 double-precision Ćoating-point

arithmetic, we use ϵ = 2−52 ≈ 2.2204 × 10−16, the machine epsilon, to ensure that

the numerical accuracy of the block Jacobi iteration is comparable to that of a direct

solver based on the LU factorization.

In order to compute ∥I − ŜS̃−1∥, we Ąrst shift the boundaries of the partitioning

of Ŝ upwards by one row, leading to the form shown in Figure 2.7, then transpose the

partitioning so that Ŝ becomes partitioned by columns, ending in the form shown in

Figure 2.8. The corresponding S̃ also receives the same data redistribution treatment.

This process ensures that none of the 2× 2 diagonal blocks of Ŝ and S̃ straddles two

neighboring partitions. It also allows the matrix I − ŜS̃−1, depicted in Figure 2.9,

to be formed conveniently. Observe that as illustrated in Figure 2.9, I − ŜS̃−1 is

comprised of 1× 2 blocks each occupying a distinct row. Hence, for commonly used

matrix norms including ∥·∥1, ∥·∥2 and ∥·∥∞, each processor can compact the one or

two 1 × 2 blocks in its possession into a 1 × 2 or 2 × 2 small matrix, compute the

norm of that matrix and perform an all-to-all reduction with all other processors to

determine ∥I − ŜS̃−1∥. Once ∥I − ŜS̃−1∥ is known, τ can be calculated according to

Equation (2.9) and saved for later use.

The value of τ determines the actual performance of the truncated SPIKE algorithm

enhanced with block Jacobi iteration in practice. Table 2.1 lists the computed values

of τ for scenarios of the sixth-order compact spatial partial diferentiation and spatial

Ąltering schemes where a grid line is divided into partitions of 8, 16, 32 and 64 grid

points. The parameter αf of the spatial Ąltering scheme is set to 0.47. The data

are computed from cases where the grid line consists of 128, 256, 512 and 1,024 grid

points. All these cases lead to the same value of τ for each partition size. Hence,

we show only one value in the table for all the cases. As is evident in Table 2.1, the

number of block Jacobi iterations needed to guarantee convergence for scenarios where

each partition consists of 16 or more grid points are so small that iterative methods
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Ŝ =

(P2)

(P3)

(P4)

(P5)

(P6)

Figure 2.7. Shifted partitioning of the coeicient matrix Ŝ of the
SPIKE reduced system

Ŝ =

(P2) (P3)

(P4) (P5) (P6)

Figure 2.8. Transposed partitioning of the coeicient matrix Ŝ of the
SPIKE reduced system
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I − ŜS̃−1 =

Figure 2.9. Iteration matrix I − ŜS̃−1 of the residual vector of the
SPIKE reduced system

Table 2.1.
Computed numbers of block Jacobi iterations needed by the truncated
SPIKE algorithm

Points/partition Diferentiation Filtering

8 6 15

16 2 6

32 1 3

64 0 1
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more sophisticated than the block Jacobi iteration such as the previously mentioned

GMRES, QMR and BiCGSTAB are rendered completely unnecessary.

2.3 Theoretical scalability analysis of the truncated SPIKE algorithm

We analyze the theoretical scalability of the truncated SPIKE algorithm enhanced

with block Jacobi iteration in the context of three-dimensional LES of jet engine

noise following the approach of isoeiciency analysis proposed in [27]. We compare

the analysis result of the truncated SPIKE algorithm with those of the transposition

method and the Schur complement method with embedded parallel cyclic reduction

described in sections 1.3.1 and 1.3.3.

In the isoeiciency analysis of a parallel algorithm, one attempts to determine N ,

the size of the computational problem, as a function of p, the number of processors,

which maintains a constant parallel eiciency as the latter increases. The parallel

eiciency of an algorithm is deĄned as

E(p) =
T (1)

p · T (p)
(2.10)

where T (p) is the running time of the algorithm when it is executed on p processors.

The product p · T (p) represents the aggregate running time of the algorithm across all

p processors. In particular, when p = 1, T (1) represents its sequential running time.

A parallel algorithm is deemed scalable if N needs to grow only mildly with respect

to p in order to maintain a constant E(p).

For sake of clarity in our analysis of the three tridiagonal linear system solvers for

three-dimensional LES, we make the following assumptions and simplications. First,

we assume that an N × N × N grid is used to represent the computational space,

and p3 processors arranged in a p× p× p grid is used to perform the simulation. We

further assume that the interconnection between the processors has a perfect three-

dimensional Cartesian topology. This is a realistic approximation of the processor grid

topologies which can be commonly achieved on todayŠs petascale scientiĄc computing
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platforms. Furthermore, although the problem size of three-dimensional LES and the

number of processors are N3 and p3, respectively, we attempt to determine a relation

between N and p instead. This alternative approach is mathematically equivalent but

notationally simpler. Finally, due to the presence of platform-dependent constants

such as the relative costs of the computation and communication operations, we

consider the isoeiciency analysis in the asymptotic sense. SpeciĄcally, we consider

only the asymptotic growth of N with respect to p such that E(p3) = O(1).

Before proceeding to the more complex parts of the individual analyses of the

three tridiagonal linear system solvers, we point out that they share the common

asymptotic sequential running time T (1) = O(N3) because they are all reduced to

the Thomas algorithm when executed sequentially.

2.3.1 Analysis of the truncated SPIKE algorithm

In the truncated SPIKE algorithm, the total aggregate running time of obtaining

the reduced systems and retrieving the complete solution vectors after the reduced

systems are solved is O(N3) because the computation is completely local to each

processor, and linear-time numerical methods are used for these parts. The aggregate

running time of solving the reduced systems is O(τ ×p3× (N/p)2) = O(τN2p) because

there are τ block Jacobi iterations, and within each iteration, (N/p)2 numbers are

exchanged between neighboring grid partitions and used in constant-time computation.

Therefore, the total aggregate running time of the truncated SPIKE algorithm is

T (p) = O(N3 + τN2p). (2.11)

In order to establish a relation between N and p, we need to eliminate τ from

Equation (2.11). Given the deĄnition of τ in Equation (2.9), we have to determine an

expression which deĄnes ∥I − ŜS̃−1∥ in terms of N and p where ∥·∥ can be any of

∥·∥1, ∥·∥2 and ∥·∥∞. More concretely speaking, we want to Ąnd an asymptotic upper
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bound on ∥I − ŜS̃−1∥. For that purpose, we Ąrst rewrite I − ŜS̃−1 as (S̃ − Ŝ)S̃−1

and then estimate ∥I − ŜS̃−1∥ via

∥I − ŜS̃−1∥ = ∥(S̃ − Ŝ)S̃−1∥

≤ ∥S̃ − Ŝ∥ · ∥S̃−1∥. (2.12)

The matrix S̃ − Ŝ, depicted in Figure 2.10, consists of the elements which originate

from the spike tips in the spike matrix S illustrated in Figure 2.3. As a result, the

magnitude of each of the individual nonzero elements of S̃ − Ŝ is O(1/dN/p) where

d is the degree of diagonal dominance deĄned in Equation (2.4). Observe that in

Figure 2.10, each of the nonzero elements of S̃ − Ŝ occupies a distinct row and a

distinct column. Therefore, it is possible to permute the matrix into a diagonal matrix,

and thus ∥S̃−Ŝ∥ is simply the absolute value of its largest-magnitude nonzero element,

which is O(1/dN/p). For ∥S̃−1∥, since S̃ is a block diagonal matrix, S̃−1 is also block

diagonal. Let a diagonal block of S̃ be







1 v

w 1






,

then both v and w are O(1/d) due to the exponential decay in element magnitudes

along the spikes in the spike matrix S, and the corresponding diagonal block in S̃−1

is






1 v

w 1







−1

=
1

1− vw







1 −v

−w 1






. (2.13)

Hence, assuming that Equation (2.13) represents the largest-norm diagonal block of

S̃−1,

∥S̃∥ =

∥

∥

∥

∥

∥

∥

∥

1

1− vw







1 −v

−w 1







∥

∥

∥

∥

∥

∥

∥

= O



1

1− (1/d)2
· (1 + 1/d)



= O(1) (2.14)
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Ŝ =

Figure 2.10. Matrix S̃ − Ŝ representing the truncated spike tips
removed from matrix S̃
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since d is a constant for any given tridiagonal linear system. Plugging

∥S̃ − Ŝ∥ = O(1/dN/p), (2.15a)

∥S̃−1∥ = O(1) (2.15b)

into Inequality 2.12, we conclude that

∥I − ŜS̃−1∥ = O(1/dN/p), (2.16)

and consequently,

τ = O(p/N), (2.17)

T (p) = O(N3 + Np2). (2.18)

With these results, we arrive at

E(p3) = O



N3

N3 + Np2



= O



1

1 + (p/N)2



, (2.19)

which becomesO(1) when N = O(p). This means that the truncated SPIKE algorithm,

even when augmented with the block Jacobi iteration, attains an asymptotically

constant parallel eiciency under weak scaling conditions. It is therefore as scalable as

the multiblock method described in section 1.3.2 yet solves tridiagonal linear systems

accurately.

2.3.2 Analysis of the transposition method

In the transposition method, tridiagonal linear systems are essentially solved by

the Thomas algorithm, and transposition is used for only data redistribution which

ensures that each right-hand side vector is not partitioned across multiple processors

as required by the Thomas algorithm. The aggregate running time of the Thomas
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algorithm across all processors is obviously O(N3). Now we need to account the

aggregate running time of the transposition process.

Figure 2.11 illustrates the transposition process in the transposition method.

Without loss of generality, we assume that the transposition is to be carried out over

the ξŰζ plane. Before the transposition takes place, each processor owns a separate

grid partition of dimension (N/p)× (N/p)× (N/p). During the transposition process,

each processor Ąrst slices the grid partition in its possession into p slabs of dimensions

(N/p)× (N/p)× (N/p2). Among these slabs, exactly one remains in the possession

of its current owner, and each of the other slabs are exchanged with a distinct peer

processor. When all pairwise slab exchanges between the processors have completed,

each processor keeps one of its original slabs and receives p− 1 new slabs from the

other processors. These p slabs are concatenated to form a larger slab of dimensions

N × (N/p) × (N/p2) which contains all data belonging to N2/p3 right-hand side

vectors to be supplied to the Thomas algorithm. After the tridiagonal linear systems

are solved, the transposition process is performed in the reverse order to restore the

original data distribution.

To calculate the communication cost of the transposition process, we consider a

bisection of the p×p×p processor grid into two halves each of dimensions (p/2)×p×p.

The aggregate network bandwidth across these two halves of the processor grid is

O(p2) since they are connected by p2 network links. Due to the nature of the

transposition process being an aggregation of all-to-all communication operations

among processors belonging to each individual grid line, O(N3) data need to transferred

across the interface between the two halves. Hence, the aggregate running time of the

transposition process is O(p3 ×N3/p2) = O(N3p). As a result, the total aggregate

running time of the transposition method is O(N3p). Correspondingly, its parallel

eiciency is

E(p3) = O



N3

N3p



= O(1/p), (2.20)
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Initial data distribution

Partitions sliced into slabs

Slabs exchanged and merged into new partitions

Figure 2.11. Transposition process in the transposition method
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which is always asymptotically smaller than O(1) and in fact diminishes to zero as

p increases. This indicates that the transposition method can never maintain an

asymptotically constant parallel eiciency no matter how large the computational

problem becomes.

2.3.3 Analysis of the Schur complement method

In the Schur complement method, the coeicient matrix of the tridiagonal linear

systems to be solved is permuted and partially LU-factorized to form a smaller

tridiagonal Schur complement system of order p. Due to the form of the partial LU

factorization, which is illustrated in Figure 1.6, the total aggregate running time

across all processors of any computation not directly related to solving the Schur

complement system is O(N3). Since we assume that the Schur complement system is

solved using parallel cyclic reduction, which has O(log p) stages each taking constant

time for a single right-hand side vector, the associated aggregate running time is

O(p3 × (N2/p2)× log p) = O(N2p log p). Therefore, the total aggregate running time

of the Schur complement method is O(N3 + N2p log p), and corresponding parallel

eiciency is

E(p3) = O



N3

N3 + N2p log p



= O



1

1 + (p log p)/N



, (2.21)

which becomes O(1) when N = O(p log p). Compared to the truncated SPIKE

algorithm enhanced with block Jacobi iteration, this is asymptotically larger by a

logarithmic factor.

2.4 Empirical scalability veriĄcation

To verify our theoretical argument, we conduct a series of weak scaling experiments

on Kraken, a Cray XT5 cluster hosted at the National Institute of Computational
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Sciences (NICS) at the University of Tennessee. We implement the algorithm using

MPI as the communication API. The experiments share a common grid partition size

of 32 × 32 × 32 but use diferent numbers of processor cores ranging from 2,744 to

42,875. Each processor cores runs a separate MPI rank. Experimental results are

collected separately for each of the ξ-, η- and ζ-directions.

Table 2.2 lists the measured empirical running times of the truncated SPIKE

algorithm. We note that the performance diferences between the ξ-, η- and ζ-

directions are mainly due to the fact that the MPI_CART_CREATE subroutine, which

we use to establish the mapping from MPI processes to processor cores, happens to

favor the ζ-direction while disadvantaging the ξ-direction. Although the Ągures in

Table 2.2 show Ćuctuations as the number of processor cores changes, those anomalies

can be attributed to nondeterministic factors in the experiments including the run-

time allocation of compute nodes and the network traic of other jobs executing

concurrently on the cluster. Overall, the running times do not exhibit signiĄcant

increasing trends as the number of processor cores increases, which is consistent with

the theoretically predicted scalability results.
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Table 2.2.
Empirical running times of the truncated SPIKE algorithm in weak
scaling experiments on Kraken

Core conĄguration ξ-direction (ms) η-direction (ms) ζ-direction (ms)

14× 14× 14 4.52 3.72 2.37

15× 15× 15 8.54 5.43 1.87

18× 18× 18 6.03 3.86 2.08

21× 21× 21 6.11 3.86 2.45

30× 30× 30 8.74 5.31 2.00

35× 35× 35 8.44 4.28 1.02
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3 EFFICIENT IMPLEMENTATION OF FINITE DIFFERENCE-BASED

THREE-DIMENSIONAL LARGE EDDY SIMULATION OF JET ENGINE NOISE

3.1 Software engineering considerations

During earlier stages of this study [66, 67], we inherited a codebase from [74]

written largely in a mix of Fortran 77 and Fortran 90. The codebase was based

on the transposition method described in section 1.3.1. With this codebase, we

experimented with the truncated SPIKE algorithm described in detail in Chapter 2.

We followed an incremental code development methodology, modifying only the

parts of interest while leaving the majority of the code intact. This strategy proved

feasible because we focused our attention on a comparison of the truncated SPIKE

algorithm against the transposition method. Furthermore, the codebase dealt with

only a simple one-dimensional computational space partitioning. However, as our

research progresses towards the more realistic three-dimensional computational space

partitioning, even though we have access to an alternative codebase from [40] based

on the Schur complement method described in section 1.3.3, the complexity of the

two codebases and the numerical methods of LES renders the incremental approach

diicult to carry forward. Therefore, we decide to rewrite the entire LES-based jet

engine noise prediction application from scratch with code portability, maintainability

and reusability in mind.

To be speciĄc, we use Fortran 2003 as the primary programming language and

MPI as the communication API. We restrict the use of the programming language and

software libraries to those which have mature support across the multiple computing

platforms which we use for development and experiments. The emphasis on code

portability enables us to develop and test our new codebase using small multicore

servers and carry out large-scale experiments on petascale clusters. We extensively
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use broadly supported modern Fortran language features such as modules and derived

types with the intention to decompose the code so that it can be maintained in small

functional units. The result of these eforts is a highly modularized implementation of

LES-based jet engine noise prediction. We expect many of its components to remain

reusable even after the current research project concludes.

3.2 Managing the three-dimensional computational spacing partitioning

We partition the three-dimensional computational space using the most straightfor-

ward strategy. Given a computational space which is discretized into a computational

grid of dimensions Nξ×Nη×Nζ , we form a logical grid of processor cores of dimensions

pξ × pη × pζ . We divide the computational grid into pξ × pη × pζ contiguous grid

partitions of dimensions (Nξ/pξ)× (Nη/pζ)× (Nζ/pζ) and assign each grid partition

to the processor core located at the corresponding position in the logical grid of

processor cores. Given the total number of processor cores p = pξpηpζ , we always

choose a combination (pξ, pη, pζ) such that Nξ/pξ, Nη/pη and Nζ/pζ are as close to

one another as possible. In other words, we always try to make the shape of each

grid partition as close to a cube as possible. This decreases the surface-to-volume

ratio of the computational space partitioning. Due to the communication patterns of

the truncated SPIKE algorithm and the stencil computation involved in the compact

spatial partial diferentiation and spatial Ąltering schemes, this surface-to-volume

ratio determines the total communication volume of the jet engine noise prediction

application. Decreasing the surface-to-volume ratio also reduces the communication

cost.

We rely on the communication API and the run-time environment to establish the

mapping from physical processor cores to their corresponding locations in the logical

grid of processor cores. In the case of MPI, this is realized using the MPI_CART_CREATE

subroutine. The MPI_CART_CREATE subroutine returns at each processor core an MPI

communicator which represents the topology of the entire logical grid of processor
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cores and is then split into three separate communicators using the MPI_CART_SUB

subroutine. Each of these three communicators represents a grid line of processor

cores along one of the ξ-, η- and ζ-directions. They are the actual MPI communicators

used for the communication in the compact spatial partial diferentiation and spatial

Ąltering schemes.

3.3 Communication optimizations

3.3.1 Overlapping computation and communication in stencil computation

Overlapping computation and communication to hide the communication latency by

means of nonblocking communication primitives is a common optimization technique

from which many scientiĄc computing applications can beneĄt. Our LES-based jet

engine noise prediction application is no exception. In LES, the primary source

of opportunities of computationŰcommunication overlapping is computation of the

right-hand side vectors of the tridiagonal linear systems arising from the compact

spatial partial diferentiation and spatial Ąltering schemes.

Due to the manner in which the computational space is partitioned, computation

of the right-hand side vectors of the tridiagonal linear systems for spatial partial

diferentiation and spatial Ąltering requires only communication between processor

cores which are neighbors in the logical grid of processor cores. Depending on the

operation being spatial partial diferentiation or spatial Ąltering, for each right-hand

side vector, a processor core needs to exchange the Ćow variable values at grid points

belonging to the two or three boundary planes at each face of the grid partition in

its possession with the corresponding neighboring processor core. Furthermore, since

only the values of the right-hand side vectors at the same boundary locations depend

on Ćow variable values from the neighboring processor cores, the other values can be

computed when while the messages being exchanged are in-Ćight.
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Algorithm 3.1 provides a precise listing of operations assuming that the grid lines

of grid points in the Ćow Ąeld and of the involved processor cores are aligned along

the vertical direction.

3.3.2 Reducing communication overhead in block Jacobi iteration

In modern MPI implementations, messages transmitted during point-to-point

communication (as opposed to collective communication) in the standard mode are

delivered using either an eager protocol or a rendezvous protocol. In the eager protocol,

the sender delivers a message to the receiver without waiting for the latter to post

a request to receive data. The delivered message is bufered internally by the MPI

implementation and copied to the receive bufer supplied by the programmer after

the matching receive operation has started. Meanwhile, in the rendezvous protocol,

the sender not does deliver the message to the receiver until the latter has posted

the request to receive data. Comparing the two protocols, the eager protocol avoids

any handshake between the sender and the receiver but requires additional bufering,

whereas the rendezvous protocol allows the MPI implementation to omit any internal

bufering and deliver the data directly to the receive bufer supplied by the programmer.

Due to their respective characteristics, the eager protocol is typically used for short

messages, while the rendezvous protocol is usually used for long messages.

The trade-of between the overhead of internal bufering and that of handshake

is necessitated by the fact that in standard-mode point-to-point communication, the

sender does not make any assumption about when the receiver is ready to receive

the message and thus must be prepared for all possible scenarios. However, in

situations where the sender knows that the receiver is ready, it is desirable to have the

functionality to deliver the message without delay as in the eager protocol and also

avoid message bufering as in the rendezvous protocol. The ready-mode point-to-point

communication of MPI provides exactly such a capability.
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Algorithm 3.1. Stencil computation of right-hand side vectors in spatial partial
diferentiation and spatial Ąltering

1: Post nonblocking receive requests to neighboring processor cores immediately
above and below

2: Initiate nonblocking send operations to both neighbors

3: Complete all local portions of stencil computation

4: repeat

5: Wait for either receive operation to complete

6: if the completed receive operation was from above then

7: Fix up the values at grid points at the top boundary

8: else ▷ The completed receive operation was from below

9: Fix up the values at grid points at the bottom boundary

10: end if

11: until both receive operations have completed
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As detailed in Chapter 2, the truncated SPIKE algorithm uses block Jacobi

iteration to solve the reduced system in Equation (2.3). During each block Jacobi

iteration, each pair of neighboring processor cores exchanges a pair of messages. If we

prepost the requests to receive data for all iterations before any iteration is executed,

starting with the second iteration, we are assured that the receivers are always ready to

receive data and can thus take advantage of ready-mode point-to-point communication

to reduce the communication overhead. In practice, however, preposting all requests

to receive data at once will require the receive bufers for all iterations to coexist. This

inĆates the memory consumption. It is also unnecessary because the send operations

of every second iterations cannot overlap due to the data dependence in the block

Jacobi iteration. Therefore, we allocate only two receive bufers for each destination

neighboring processor core and use them in an alternating fashion. Algorithm 3.2 lists

the exact algorithmic steps.

3.4 Computation optimizations

We use the standard structure-of-arrays (SOA) data layout the store the values

of the Ąve Ćow variables at all grid points. The data structure is implemented as

collections of four-dimensional arrays of dimensions (Nξ/pξ)× (Nη/pη)× (Nζ/pζ)× 5.

Under the column-major dimension order of Fortran arrays, the Ąrst three dimensions of

each four-dimensional array correspond to the coordinates (ξ, η, ζ) of the computational

space, while the last dimension serves to distinguish the diferent Ćow variables.

Since computation other than the compact spatial partial diferentiation and spatial

Ąltering schemes is entirely pointwise and typically accounts for a relatively small

portion of the total computational cost, it allows little headroom for improvement.

Therefore, we make only some minor eforts in its optimization. This includes collapsing

each loop nest iterating over the entire coordinate space into a single Ćattened loop

and annotating it as free of loop-carried dependence using compiler directives. Both

measures help the compiler better vectorize those loops.
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We invest the majority of our computation optimization eforts in the compact

spatial partial diferentiation and spatial Ąltering schemes. Conceptually, both spatial

partial diferentiation and spatial Ąltering entail the same sequence of operations:

1. evaluation of right-hand side vectors via stencil computation;

2. solution of tridiagonal linear systems using the truncated SPIKE algorithm.

Computation local to each processor core and independent of any communication can

be categorized into the following three main kind:

• local portions of stencil computation during evaluation of the right-hand side

vectors;

• the embedded Thomas algorithm in the truncated SPIKE algorithm;

• retrieval of complete solution vectors in the truncated SPIKE algorithm.

The Ąrst kind is part of the computation of the right-hand side vectors in Algorithm 3.1,

whereas the other two kinds comprise the Ąrst and the last steps of the SPIKE-Solve

procedure in Algorithm 2.1. We manually optimize the Ąrst two kinds while leaving

the simpler third kind to the compiler.

3.4.1 Manipulating four-dimensional arrays using two-dimensional computational

kernels

Although the compact spatial partial diferentiation and spatial Ąltering schemes

are deĄned on individual vectors, in three-dimensional LES, they are applied to

collections of vectors stored in four-dimensional arrays. The vectors in one collection

share the same size and the same spatial orientation, but that orientation can be

aligned with any of the ξ-, η- and ζ-directions of the computational space. From

the perspective of their application to the data structure, on a column-major four-

dimensional array used to store the Ćow variable values, the aforementioned operations

are applied to along one of the Ąrst three dimensions and repeated uniformly across
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the remaining dimensions. In theory, taking advantage of the built-in support for array

slicing of Fortran in the form of its array section notation, we can straightforwardly

implement the communication-free computation of the two operations using one-

dimensional computation kernels and let the compiler optimize the application of

those one-dimensional computation kernels on four-dimensional arrays. In practice,

however, the compiler is usually incapable of performing reliable and efective code

optimizations for such scenarios because that involves a series of nontrivial loop nest

transformations. In particular, it is typically unable to interleave the operations

applied to multiple vectors to promote data locality and exploit opportunities of

vectorization because such a capability is generally limited to elemental computation.

This situation necessitates manual optimization. Our manually optimized imple-

mentation is based on two-dimensional computation kernels. For each computation

kernel, we prepare two versions, namely a columnwise version and a rowwise version.

When the computation implemented by a computation kernel is applied along the ξ-

direction, we divide each four-dimensional array to operate on into slabs of dimensions

(Nξ/pξ)× (Nη/pη) and repeatedly apply the columnwise version of the computation

kernel on each slab. When the computation is applied along the η- and ζ-directions,

we divide each four-dimensional array into slabs of dimensions (Nξ/pξ) × (Nη/pη)

and (Nξ/pξ)× (Nζ/pζ), respectively, and repeatedly apply the rowwise version of the

computation kernel on each slab. Figure 3.1 illustrates the three cases.

3.4.2 Optimizing the two-dimensional computation kernels

In all cases, the two-dimensional slabs retain the Ąrst dimension of the four-

dimensional array as their Ąrst dimensions and thus are stored contiguously in memory

in those dimensions. We optimize the two-dimensional computation kernels involved

in the compact spatial partial diferentiation and spatial Ąltering schemes from the

perspectives of vectorization and loop tiling.
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Optimization of the rowwise versions of the computation kernels is relatively

simple because they operate uniformly on array elements belonging to the same

columns of the two-dimensional slabs. Those array elements occupy contiguous

storage in memory and thus enable the computational kernels to be straightforwardly

vectorizable. Such vectorization is well within the reach of the capabilities of modern

optimizing compilers. Hence, we only need to organize the loop nests into forms

such that automatic vectorization is not impeded. In comparison, optimization of the

columnwise versions of the computation kernels is more complicated. To begin with,

naïve vectorization which accesses all columns of a two-dimensional slab will induce

very ineicient strided memory access patterns. On the other hand, complete avoidance

of vectorization misses the opportunity to take advantage of the single-instruction

multiple-data (SIMD) capabilities of modern high-performance processors. Therefore,

an eclectic approach is necessary. The strategy which we adopt is to use explicit loop

tiling to limit the vector length and reduce the impact of the strided memory access

patterns.

Consider for example the optimized implementation of the columnwise version of

the Thomas algorithm illustrated in Listing 3.1. Observe that it operates on b vectors

simultaneously where b is a constant tiling factor. By introducing scalar temporary

variables to induce the compiler to generate the minimum number of memory access

instructions, the compiled code of the procedure TiledThomasSolve in Listing 3.1

performs 1.5b Ćoating-point operations and 3b + 1.5 memory accesses per iteration

of the two inner i-loops on average. If b = 1, the code degenerates into an untiled

version where each Ćoating-point operation requires three memory accesses. On

modern processor microarchitectures, where Ćoating-point operations and memory

accesses hitting the top-level data cache have similar throughput and latency, this

memory-to-Ćoating point ratio is far more than the top-level data cache can keep up

with. In contrast, if b = 4, every Ćoating-point operation requires only 2.25 memory

accesses, which is much closer to the theoretical lower bound of two. However, the

value of b should not be made arbitrarily large since the available vector registers are
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Listing 3.1. Loop-tiled implementation of the columnwise version of the Thomas
algorithm

1 SUBROUTINE TiledThomasSolve(l, d, u, X)

2

3 DOUBLE PRECISION, INTENT(IN) :: l(:), d(:), u(:)

4 DOUBLE PRECISION, INTENT(INOUT) :: X(:, :)

5

6 INTEGER :: n, m, i, j, k

7

8 n = SIZE(X, 1)

9 m = SIZE(X, 2)

10

11 ! Let b be a constant tiling factor

12

13 DO j = 1, m, b

14 DO i = 2, n

15 DO k = 0, b - 1

16 X(i, j + k) = X(i, j + k) - l(i) * X(i - 1, j + k)

17 END DO

18 END DO

19 DO k = 0, b - 1

20 X(n, j + k) = X(n, j + k) / d(n)

21 END DO

22 DO i = n - 1, 1, -1

23 DO k = 0, b - 1

24 X(i, j + k) = (X(i, j + k) - u(i) * X(i + 1, j + k)) / d(i)

25 END DO

26 END DO

27 END DO

28

29 END SUBROUTINE
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limited in both length and number. Too large a value of b will cause spills to memory

and introduce extra memory accesses. Furthermore, when the number of vectors in

a slab is not an exact multiple of b, there can be any number from zero up to b− 1

vectors which need to be handled by an untiled remainder loop. Also, the marginal

decrease in the memory-to-Ćoating point ratio,

3b + 1.5

1.5b
−

3(b + 1) + 1.5

1.5(b + 1)
=

1

b(b + 1)
, (3.1)

diminishes quadratically as b increases.

The optimal value of the tiling factor b depends on the computing platform and the

computation kernel and thus needs to be determined via benchmarking. In Figure 3.2,

we plot the speedup achieved by the loop-tiled implementation of the columnwise

version of the Thomas algorithm using loop tiling factors b = 1, 2, . . . , 20 with respect

to the case where b = 1. We consider two scenarios where the four-dimensional arrays

are of dimensions 90×90×90×5 and 28×28×28×5, respectively. The measurements

are conducted using an AMD Opteron 8350 processor. We can make the following

observations regarding Figure 3.2:

• In general, optimal performance is achieved when b is a divisor of Nη/pη since

the untiled remainder loop is avoided. To the contrary, when (Nη/pη) mod b is

close to b− 1, the performance is degraded because the remainder loop needs to

execute many iterations.

• In the range where b is relatively small, larger values of b achieve higher per-

formance because cross-column vectorization helps hide the memory access

latency.

• In the range where b is relatively large, the performance is suboptimal even when

the remainder loop is avoided due to the greater register pressure and spills to

memory.
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Since no single value of b works the best for all cases, in our actual implementation,

we use four diferent loop tiling factors. The vectors are processed using an eight-wide

vectorized code path, and the remainder loop is implemented in terms of a four-wide

vectorized, a two-wide vectorized and an unvectorized code path.

Although the above discussion is focused on the Thomas algorithm, the same

optimization technique can also be applied to the stencil computation involved in

evaluation of the right-hand side vectors in the compact spatial partial diferentiation

and spatial Ąltering schemes. Other than vectorization, we apply an additional level of

loop tiling along the the span direction of the stencil. By tiling stencil computation by

the half width of the stencil, we ensure that each array element is loaded and stored

exactly once.

3.5 Implementation validation

We validate our implementation of the three-dimensional LES-based jet engine

noise prediction application on Kraken, Ranger and Carter, three clusters hosted

at the National Institute of Computational Sciences (NICS) at the University of

Tennessee, the Texas Advanced Computing Center (TACC) at the University of

Texas at Austin, and the Rosen Center for Advanced Computing (RCAC) at Purdue

University, respectively.

We consider nine validation problems based on the experimental case SP07 from [71]

with grids of dimensions 292× 128× 128, 500× 218× 218 and 810× 354× 354. The

largest problems use grids consisting of over 100 million grid points and are considered

production-class problems. We run each of the validation problems to completion,

taking between 210,000 and 600,000 time steps during time integration depending on

the grid size and the problem conĄguration. The experimental results validate the

implementation. We refer the reader to [49] for details of the experimental setup and

interpretation of the numerical results.
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3.6 Performance experiments

3.6.1 Experimental setup

We evaluate the performance of our implementation of the LES-based jet engine

noise prediction application using a series of strong scaling experiments. We use a

test problem which has a grid of dimensions 1,260× 1,260× 1,260 consisting of just

over two billion grid points. Although a full jet simulation on a grid of this large a

size typically needs to last for between 500,000 and 1,000,000 time integration steps

and requires checkpointing to guard against hardware failures, we limit the number of

time integration steps and disable checkpointing to shorten the turnaround times of

the performance experiments.

We conduct the performance experiments on Kraken and Ranger. Their hardware

conĄgurations are listed in Table 3.1. On Kraken, we vary the total number of processor

cores participating in computation in a wide range and use seven conĄgurations of

between 2,744 and 91,125 processor cores. On Ranger, we use the same conĄgurations

except the largest one due to its lower total count of processor cores. We replace

that conĄguration with one of 54,872 processor cores. The 2,744-core conĄguration

is considered the baseline for performance evaluation. In every conĄguration, the

processor cores are organized into a three-dimensional Cartesian logical grid with

the same number of processor cores in each dimension. Performance statistics are

measured using a combination of various performance monitoring tools including the

MPI_WTIME function, PAPI [53], CrayPat [17] and a custom performance monitoring

module.

3.6.2 Experimental results

Figures 3.3 and 3.4 plot the parallel speedup and eiciency achieved by our

implementation of the LES-based jet engine noise prediction application. As is evident

from Figure 3.3, the application maintains a steady trend of speedup growth as the
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Table 3.1.
Hardware conĄgurations of Kraken and Ranger

Kraken Ranger

System Cray XT5 Sun Blade

Nodes 9,408 3,936

Cores 112,896 62,976

Processor model AMD Opteron 2435 AMD Opteron 8354

Frequency 2.6 GHz 2.3 GHz

L1 data cache/core 64 KB 64 KB

L2 cache/core 512 KB 512 KB

L3 cache/core 6 MB 2 MB

Cores/socket 6 4

Sockets/node 2 4

Memory/node 16 GB 32 GB

Interconnect Cray SeaStar2+ Sun Constellation
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number of processor cores increases. Figure 3.4 provides an even clearer picture of the

eiciency of the application in utilizing large numbers of processor cores. Compared to

the 2,744-core baseline cases, the parallel eiciency decreases only modestly, reaching

74 % at 91,125 processor cores on Kraken and 80 % at 54,872 processor cores on

Ranger.

In addition to the measured parallel eiciency, in Figure 3.4, we also include the

theoretically predicted relative parallel eiciency derived from Ątting

Erel(p
3) =



1

1 + c(p/N)2

/

1

1 + c(pbase/N)2



(3.2)

to the measured data where N = 1,260 and p are the respective sizes of the dimensions

of the computational grid and the logical grid of processor cores, and pbase corresponds

to the baseline cases where p = 12. Equation (3.2) originates from the isoeiciency

function of the truncated SPIKE algorithm in Equation (2.19) and takes into account

the fact that the calculated parallel eiciency is relative to the baseline cases. In

Equation (3.2), c is a constant factor determined by minimizing

∣

∣

∣

∏

Erel(p
3
k)− 1

∣

∣

∣

where pk assumes all values of p. As Figure 3.4 shows, the parallel eiciency predicted

by the theoretical scalability analysis in section 2.3 closely matches the empirical

measurements.

Finally, we compare the performance of the truncated SPIKE algorithm against

that of the transposition method described in Section 1.3.1 in Figure 3.5. Since, the

implementation of the transposition method in the codebase from [74] is based on

a one-dimensional computational partitioning, we have to create our own reference

implementation of the method. We modify our implementation of the LES-based

jet engine noise prediction application to replace the truncated SPIKE algorithm

with the transposition method in the compact spatial partial diferentiation module.

We leave the spatial Ąltering module unchanged even though it is also based on the
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truncated SPIKE algorithm because its contribution to the total computational cost

is insigniĄcant. We measure the running times of the two implementations of ours in

four strong scaling experiments using between 9,261 and 42,875 processor cores. We

normalize the measured data with respect to the running time of the implementation

based on the transposition method in the 9,261-core experiment. As Figure 3.5 shows,

the speedup growth of the transposition method quickly Ćatlines as the number of

processor cores increases, while the truncated SPIKE algorithm maintains a steady

upward trend and exhibits an increasing performance advantage over the transposition

method.
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4 A PROGRAMMING MODEL BASED ON GENERALIZED ELEMENTAL

SUBROUTINES FOR REGULAR GRID-BASED NUMERICAL APPLICATIONS

4.1 Introduction

Three-dimensional LES-based jet engine noise prediction belongs to a category

of numerical applications which we can refer to as the regular grid-based numerical

applications. In a regular grid-based numerical application, the computational grid

which represents the computational space is divided into grid partitions each of which

assumes the topology of a regular grid. The regularity of the structure of the grid

partitions enables the application, when implemented in the SPMD programming

style, to efectively take advantage of multidimensional arrays, which in term paves

the ground for generalizing elemental computation, a programming model feature the

desire for which has been explained in section 1.4.2.

In this chapter, we describe a programming model which realizes the generalization

of elemental subroutines in a straightforward fashion [68]. We discuss the seman-

tic model of the generalized elemental subroutines in detail and present the code

transformation processes for implementing them through source code rewriting.

4.2 Semantic model and proof-of-concept implementation of generalized elemental

subroutines

4.2.1 Semantic model

Consider a subroutine f accepting n parameters ⟨x1, x2, . . . , xn⟩ which is intended to

be used as a generalized elemental subroutine. For our purposes, we allow x1, x2, . . . , xn

to be arrays in addition to scalars. Subroutine f can access the parameters as well

as local variables deĄned in its subroutine body. The lifetime of any local variable
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is required to terminate when the control Ćow leaves the subroutine. Within the

subroutine body, we allow the common arithmetic operations as well as constructs

which afect the control Ćow including DO loops and IF conditions. We also allow

invocation of other generalized elemental subroutines, but recursion in any direct or

indirect forms is not supported. Finally, some forms of communication operations

which do not impact the persistent program state other than the parameters (e.g.,

global variables and local variables with static lifetimes) are supported. As a syntactic

mechanism to enforce this last restriction, we require that matching pairs of send and

receive operations must be contained in f . This requirement ensures that it is not

possible to have a dangling send or receive operation when execution of f terminates.

The semantics of invoking the generalized elemental subroutine f with arguments

⟨Y1, Y2, . . . , Yn⟩ is deĄned by a process which repeatedly invokes f regarding it as an

ordinary subroutine. Each combinations of arguments ⟨y1, y2, . . . , yn⟩ to be used as

⟨x1, x2, . . . , xn⟩ during the repeated invocation is taken from ⟨Y1, Y2, . . . , Yn⟩ following

the rules explained below. To deĄne the rules precisely, we Ąrst introduce several

formal notations. For each xk, we identify its dimensions with a unique sequence of

symbols

Ik = ⟨i
(xk)
1 , i

(xk)
2 , . . . , i

(xk)
dk
⟩ (4.1)

where dk is its dimensionality. We call these symbols dimension identifiers. Depending

on the occasion, we also interpret Ik as a set for the sake of simplicity in notations.

We also introduce an extra set of dimension identiĄers

J = ¶ j1, j2, . . . , jm ♢ (4.2)

which are not tied to any of the dimensions of x1, x2, . . . , xn. When f is invoked

with the arguments ⟨Y1, Y2, . . . , Yn⟩, for each Yk, the programmer assigns a distinct

dimension identiĄer from the set Ik ∪ J to each of its dimensions. We require that all

elements of Ik appear in the dimension identiĄer assignment for Yk. This implies that

the dimensionality of Yk must be no less than that of xk. The dimension identiĄer
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assignment deĄnes an injective dimension map from the dimensions of xk to those of Yk.

By choosing an index for each dimension of Yk which is not the image corresponding

to a dimension of xk in the dimension map, i.e., each dimension of Yk which is assigned

a dimension identiĄer from J , an array slice yk can be extracted from Yk that can

be used as xk for during invocation of f . Furthermore, since Y1, Y2, . . . , Yn share the

same set of extra dimension identiĄers, we can naturally consider several dimensions

from diferent members of ¶Y1, Y2, . . . , Yn ♢ which are assigned the same dimension

identiĄers to be linked and traverse them using a single index.

Given the above construction, we are now ready to deĄne the precise semantics of

invoking the generalized elemental subroutine f with the arguments ⟨Y1, Y2, . . . , Yn⟩.

For each dimension identiĄer jk ∈ J , the programmer selects an index range

Lk = ¶ 1, 2, . . . , lk ♢ . (4.3)

Then for each multidimensional index in the Cartesian range L1 × L2 × · · · × Lm, we

extract an array slice yk from Yk following the aforementioned rules and invoke f with

arguments ⟨y1, y2, . . . , yn⟩, using it as an ordinary subroutine. To enable aggressive

code optimizations, we allow instances of repeated invocation of f to be executed in

any order and operations belonging to diferent instances of repeated invocation to be

interleaved arbitrarily. Both of these two behavioral characteristics are inherited from

the semantics of traditional elemental subroutines.

Here we provide a concrete example to illustrate the above description. We choose

matrix multiplication as our example. While matrix multiplication is not generally

considered a regular grid-based numerical application, it suices for the purpose of

demonstrating the concepts of generalized elemental subroutines. Listing 4.1 shows

a simple generalized elemental subroutine Dot for the vector dot product written

using the Fortran syntax. The arguments have the following dimension identiĄers,
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Listing 4.1. Generalized elemental subroutine for the vector dot product

1 SUBROUTINE Dot(n, a, b, c)

2

3 INTEGER :: n

4 REAL :: a(:), b(:), c

5

6 INTEGER :: i

7

8 DO i = 1, n

9 c = c + a(i) * b(i)

10 END DO

11

12 END SUBROUTINE
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respectively:

n→ ∅,

a→ ⟨i
(a)
1 ⟩ ,

b→ ⟨i
(b)
1 ⟩ ,

c→ ∅.

In order to use this subroutine to implement the matrix multiplication C = A * B + C

where A, B and C are all two-dimensional arrays, we specify the following dimension

identiĄer assignment:

n→ ∅,

a→ ⟨j1, i
(a)
1 ⟩ ,

b→ ⟨i
(b)
1 , j2⟩ ,

c→ ⟨j1, j2⟩ .

Notice that this dimension identiĄer assignment links the two dimensions of C to the

Ąrst dimension of A and the second dimension of B, respectively, while mapping the

remaining dimensions of A and B to the only dimensions of a and b, respectively. Thus,

each element of C is deĄned by an appropriate dot product of a row of A and a column

of B, and the desired semantics of matrix multiplication is delivered.

4.2.2 Proof-of-concept implementation

To demonstrate the capabilities of generalized elemental subroutines, we implement

a proof-of-concept programming tool which generates code that can be immediately

integrated into regular grid-based numerical applications. The programming tool is

implemented as a source code rewriter with a front end generated by ANTLR [57]

and a custom code optimizer and generator written in Java. It processes generalized

elemental subroutines deĄned in a domain-speciĄc input language according to the
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dimension identiĄer assignments speciĄed by the programmer and generates standard-

compliant Fortran 90 code which implements the semantics of their invocations.

We borrow the core language syntax and semantics from Fortran 90 to form the

foundation of our domain-speciĄc input language. In this proof-of-concept implemen-

tation, we support only the intrinsic data types and ignore the derived types. To

further simplify the language, we remove language constructs which either can be

replaced by simple equivalents (e.g., the DO WHILE loops) or have disallowed semantics

(e.g., the ALLOCATABLE and SAVE attributes). The support for communication is

modeled after MPI. Communication primitives such as COMM_SIZE, COMM_RANK, SEND

and RECV are provided as extension intrinsic subroutines for querying information

about communicators as well as carrying out the actual communication operations.

The programming tool understands the semantics of the communication primitives

and is capable of performing optimizations on their invocations by assuming them

as generalized elemental subroutines as well. To facilitate the recognition of the

matching pairs of send and receive operations, we require the programmer to annotate

each occurrence of the send and receive primitives with a compile-time constant tag.

Pairs of send and receive primitives annotated with the same tag are considered to

be matching. Of course, for broadcast and reduce primitives, which contain both

send and receive semantics, such tags are unnecessary. An external runtime library

provides implementations of these extension intrinsic subroutines for integration into

applications.

4.3 Generating optimized code for generalized elemental subroutines

As can be inferred intuitively from the semantic model of generalized elemental

subroutines, invoking them with arguments of higher dimensionalities than their

parameters can be achieved trivially by constructing several multiply nested loops

to iterate over the Cartesian index ranges and repeatedly executing their original

subroutine bodies on array slices taken from the arguments. However, this simplistic
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approach is very likely to lead to unsatisfactory performance levels in practical

scenarios due to a number of reasons including ineicient memory access patterns and

high communication overhead. Hence, in order to ensure that our proof-of-concept

programming tool delivers suicient performance so that they are practical for use in

implementation of regular-grid based numerical applications, we devise and implement

several code optimizations which take advantage of the domain-speciĄc high-level

knowledge about the semantic model of generalized elemental subroutines. To be

more speciĄc, the code optimization process proceeds in three stages, namely loop

nest generation, local variable transformation and subroutine invocation aggregation.

We elaborate on each of these code optimizations in the following sections.

4.3.1 Loop nest generation

As mentioned above, one possible method of generating code that implements the

semantics of an invocation of a generalized elemental subroutine is to simply wrap

the subroutine body inside a loop nest which iterates over the Cartesian index range

selected by the programmer. Although the resulting code will likely be ineicient

in general, it nevertheless serves as a good starting point for a series of loop nest

transformations which can enable highly eicient code.

Algorithm 4.1 lists the main algorithmic steps of the loop nest generation process.

To disambiguate the terminologies, in Algorithm 4.1, we refer to a loop speciĄed by

the programmer in the generalized elemental subroutine as an existing loop and a loop

generated for iteration over the Cartesian index range as a new loop. The algorithm

assumes that each local variable in the subroutine has been implicitly augmented with

a new dimension for each new loop to accommodate the potentially diferent array

element values generated by diferent loop iterations. As the Ąrst step, it establishes a

single initial loop nest consisting of all new loops, which forms the basis for further

loop transformations. Then it carries out the the loop transformations in two phases.

The Ąrst phase of loop nest generation performs loop distribution on the initial loop
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nest. The algorithm processes the new loops one by one starting with the innermost

one. In general, the algorithm adopts a comparatively conservative strategy for loop

distribution because as we will discuss in section 4.3.2, excessively aggressive loop

distribution can unnecessarily inĆate the memory footprint of the generated code.

However, the algorithm does attempt to be aggressive when communication is involved,

or the memory access pattern is unfavorable. Loop distribution in these cases can

create opportunities for communication aggregation as we will discuss in section 4.3.3

and avoid strided memory accesses. The second phase of loop nest generation performs

loop permutation and loop tiling as well as IF condition hosting. It also attempts

to discover more code optimization opportunities by recursively invoking the entire

Algorithm 4.1 on the loop bodies and IF branches which became immediately enclosed

in new loops after the loop transformations.

In order to allow the programmer to explicitly inĆuence the loop nest generation

process, we provide four special directives in the programming tool. First, we have a

pair of directives for enforcing and preventing distribution of the new loops at certain

locations in a generalized elemental subroutine. They can be speciĄed to be selective

and apply to only a subset of the new loops but not the remaining ones. While the

prevent-distribution directive is always semantically valid, the enforce-distribution

directive may violate the semantics of generalized elemental subroutines in some

occasions and is automatically ignored in such cases. The other two directives enable

the programmer to declare semantic assumptions concerning the existing loops in

the subroutine. One is used to indicate that an existing loop nest behaves like a

generalized elemental subroutine, i.e., its iterations can be arbitrarily ordered and

interleaved. The other one is used to specify a tiling factor for an existing loop.

Together, these four directives provide the programmer with the ability to request

certain loop transformations at speciĄc locations when our programming tool fails to

recognize some optimization opportunities.
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4.3.2 Local variable transformation

In section 4.3.1, the methodology of loop nest generation assumes that each

local variable of the generalized elemental subroutine is augmented with implicit new

dimensions so that the semantics of repeated invocation is preserved during the process

in which the initial loop nest is transformed. For the purpose of code generation,

these implicit dimensions need to be made explicit, but not in all cases are they

actually needed. For example, a local variable can have an implicit dimension of its

ignored if its element values are private with respect to all distributed instances of the

corresponding new loop. Furthermore, the dimension identiĄer assignment speciĄed

by the programmer may cause the dimensions of the parameters in the generated

code to be in a diferent order than in the original subroutine. In this case, the

dimensions of the local variables also have to be reordered in order to improve the

memory access eiciency. We devise two separate algorithms to tackle these two

problems, respectively.

We Ąrst consider the simpler problem of reordering the dimensions of the local

variables. Algorithm 4.2 summarizes the basic methodology for our algorithm for the

problem. To unify the terminologies, in the following discussion, we refer to both the

parameters and the local variables of the generalized elemental subroutine as variables.

To understand the method, consider the following simple example. Suppose that A and

B are two two-dimensional arrays appearing in the same statement in two nested loops

whose loop variables are i and j, respectively. If A is referenced in the form A(i, j),

intuitively, we would prefer that the dimensions of B be ordered in a way such that B is

referenced in the form B(i, j), i.e., its subscripts are in the same order as those of A,

because otherwise strided memory accesses will be incurred on at least one of A and B

regardless of the order in which the two loops are nested. Viewed from an alternative

perspective, if we regard A as a reference variable for B when considering the dimension

order of the latter, compared to B(j, i), B(i, j) has a smaller number of reversely

ordered dimension pairs with respect to A and is thus favored. Extending this idea
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Algorithm 4.2. Local variable dimension reordering for generalized elemental
subroutines

1: Construct an undirected graph containing all variables appearing in the generalized
elemental subroutine as vertices where two variables are connected if they appear
in the same context

2: Partition the variables into layers by their distances in the graph from any of the
parameters

3: Reorder dimensions of each local variable in layer order using neighbors in the
previous layer as reference variables
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to cases where variables have more than two dimensions, for each local variable X,

if we can deĄne a set of reference variables whose dimension orders have been Ąxed

and recognize a correspondence relation between the dimensions of X and those of its

reference variables, then we can determine the dimension order of X by minimizing

the total number of reversely ordered dimension pairs with respect to the reference

variables.

In Algorithm 4.2, we choose the set of reference variables for each local variable

by considering pairs of variables which appear in the same contexts. A context for

this purpose can be either a single statement or a matching pair of send and receive

primitives. The appear-in-the-same-context relation between the variables deĄnes an

undirected graph. We can propagate the dimension ordering information from the

parameters to all local variables along the edges of the graph. To do this, we perform

a breadth-Ąrst search (BFS) on the graph starting from the parameters and partition

the variables into layers according to their distances from the parameters in the graph.

Then variables in one layer can used as the reference variables for their neighbors in

the next layer.

Having solved the problem of local variable dimension reordering, we now consider

the more complex problem of eliminating the unneeded implicit new dimensions from

the local variables. To eliminate a new dimension implicitly assumed for a local

variable during loop nest generation, we consider the following two conditions:

Constantness: The element values of the local variable are identical across that

dimension.

Privateness: The local variable can be considered private to the distributed instances

of the new loop corresponding to that dimension.

Apart from these two intuitive conditions, we need an additional condition to ensure

that the semantics of generalized elemental subroutines is not violated:
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No upward exposure: The element value of the local variable generated in any

iteration of a distributed instance of the new loop is not upward exposed to later

iterations.

In order for an implicit dimension to be eligible for elimination, it must satisfy at

least one of the constantness and the privateness conditions as well as the no upward

exposure condition.

Using the standard data Ćow analysis techniques including the variable liveness,

reaching deĄnition and program dependence analyses, the three aforementioned condi-

tions can be checked using Algorithm 4.3. Notice that as reĆected by the last line

of Algorithm 4.3, passing the tests of the algorithm does not mean that the implicit

dimension in question can be immediately eliminated. In order for the elimination

to be actually viable, all distributed instances of the new loop containing references

of the local variable must be eligible for removal. Conversely, in order for those loop

instances to be eligible for removal, every variable referenced in their loop bodies must

either not have a corresponding dimension or have that dimension deemed eligible for

elimination by Algorithm 4.3. This is the structural requirement for local variable

dimension elimination. Forcing the involved loop instances to be removed ensures

that dimension elimination cannot incidentally result in a reduction semantics on the

local variable.

4.3.3 Subroutine invocation aggregation

Subroutine invocation aggregation is a relatively simple code transformation. It

looks for each tight loop nest whose loop body consists of a single CALL statement

and aggregate the repeated subroutine invocations into a single invocation. Since only

invocations of generalized elemental subroutines are allowed in the programming model,

the target subroutine of the aggregated invocation can be automatically generated by

inferring a dimension identiĄer assignment from the loop nest and the CALL statement

and carrying out the code transformation process recursively. An important function of
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this subroutine invocation aggregation is that it aggregates all applicable invocations of

the communication primitives, which are handled as if they were generalized elemental

subroutines by our programming tool.

4.3.4 Example

Now we demonstrate the efect of the aforementioned code transformations using

a simple but complete example. Listing 4.2 shows a generalized elemental subroutine

Stencil for computing the following accumulative stencil operation:

yi := yi +



































x2 if i = 1

xi−1 + xi+1 if 1 < i < n,

xn−1 if i = n.

(4.6)

The subroutine accepts a communicator comm, a vector length n, an input vector x

and an accumulator vector y as its parameters. Suppose that we want to apply then

stencil operation to vectors aligned along the third dimension of the computational

space of a three-dimensional regular grid-based numerical application. In this case, the

arguments X and Y to be supplied to the subroutine as x and y are three-dimensional

arrays. For this purpose, with respect to the dimension identiĄers

comm→ ∅,

n→ ∅,

x→ ⟨i
(x)
1 ⟩ ,

y→ ⟨i
(y)
1 ⟩ ,
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Listing 4.2. Generalized elemental subroutine for stencil computation

1 SUBROUTINE Stencil(comm, n, x, y)

2

3 INTEGER :: comm, n

4 DOUBLE PRECISION :: x(:), y(:)

5

6 INTEGER :: nprc, rank, k

7 DOUBLE PRECISION :: xprev, xnext

8

9 CALL COMM_SIZE(comm, nprc)

10 CALL COMM_RANK(comm, rank)

11

12 IF (rank /= nprc - 1) THEN

13 CALL SEND(x(n), rank + 1, comm, 0) ! 0 is a tag

14 END IF

15 IF (rank /= 0) THEN

16 CALL SEND(x(1), rank - 1, comm, 1) ! 1 is a tag

17 END IF

18

19 y(1) = y(1) + x(2)

20 DO k = 2, n - 1

21 y(k) = y(k) + x(k - 1) + x(k + 1)

22 END DO

23 y(n) = y(n) + x(n - 1)

24

25 IF (rank /= 0) THEN

26 CALL RECV(xprev, rank - 1, comm, 0) ! 0 is a tag

27 y(1) = y(1) + xprev

28 END IF

29 IF (rank /= nprc - 1) THEN

30 CALL RECV(xnext, rank + 1, comm, 1) ! 1 is a tag

31 y(n) = y(n) + xnext

32 END IF

33

34 END SUBROUTINE
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we specify the following dimension identiĄer assignment:

comm→ ∅,

n→ ∅,

X→ ⟨j1, j2, i
(x)
1 ⟩ ,

Y→ ⟨j1, j2, i
(y)
1 ⟩ .

In this dimension identiĄer assignment, the third dimensions of X and Y are mapped

to x and y, respectively. The stencil operation is repeated uniformly across the Ąrst

dimensions of x and y.

Listing 4.3 shows the generated code which implements the semantics of the

invocation of the generalized elemental subroutine Stencil. We have edited the code

to replace the automatically generated variable names with easier-to-understand ones

and removed the unnecessary loop labels. Other than these editorial modiĄcations,

the code remains identical. Our programming tool introduces two extra parameter

m1 and m2 to represent the sizes of the Ąrst two dimensions of the transformed x and

y. They also deĄne the Cartesian index range to be iterated over. The scalar local

variables xprev and xnext are changed into two-dimensional arrays. In the meantime,

the other local variables are kept as scalars because they are proved to have constant

values during repeated invocation. Two new i- and j-loops are introduced for the

semantics of repeated execution. They enclose all the computation statements but

are collapsed around the communication primitives to become aggregated subroutine

invocations. Without any algorithmic changes, the generated code is exactly what the

programmer is expected to produce by hand.

4.4 Empirical evaluation

We evaluate the practical feasibility of generalized elemental subroutines in the

context of the three-dimensional LES-based jet engine noise prediction application
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Listing 4.3. Code for stencil computation in the three-dimensional space generated
using generalized elemental subroutines

1 SUBROUTINE Stencil(comm, n, x, y, m1, m2)

2

3 INTEGER :: comm, n, m1, m2

4 DOUBLE PRECISION :: x(:, :, :), y(:, :, :)

5

6 INTEGER :: nprc, rank, k, i, j

7 DOUBLE PRECISION :: xprev(m1, m2), xnext(m1, m2)

8

9 CALL COMM_SIZE(comm, nprc)

10 CALL COMM_RANK(comm, rank)

11

12 IF (rank /= nprc - 1) THEN

13 CALL SEND(x(1 : m1, 1 : m2, n), rank + 1, comm, 0)

14 END IF

15 IF (rank /= 0) THEN

16 CALL SEND(x(1 : m1, 1 : m2, 1), rank - 1, comm, 1)

17 END IF

18

19 DO j = 1, m2; DO i = 1, m1

20 y(i, j, 1) = y(i, j, 1) + x(i, j, 2)

21 END DO; END DO

22 DO k = 2, n - 1; DO j = 1, m2; DO i = 1, m1

23 y(i, j, k) = y(i, j, k) + x(i, j, k - 1) + x(i, j, k + 1)

24 END DO

25 DO j = 1, m2; DO i = 1, m1

26 y(i, j, n) = y(i, j, n) + x(i, j, n - 1)

27 END DO; END DO

28

29 IF (rank /= 0) THEN

30 CALL RECV(xprev(1 : m1, 1 : m2), rank - 1, comm, 0)

31 DO j = 1, m2; DO i = 1, m1

32 y(i, j, 1) = y(i, j, 1) + xprev(i, j)

33 END DO; END DO

34 END IF

35 IF (rank /= nprc - 1) THEN

36 CALL RECV(xnext(1 : m1, 1 : m2), rank + 1, comm, 1)

37 DO j = 1, m2; DO i = 1, m1

38 y(i, j, n) = y(i, j, n) + xnext(i, j)

39 END DO; END DO

40 END IF

41

42 END SUBROUTINE
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described in [49]. We consider implementation of the Thomas algorithm for solving

tridiagonal linear systems and the sixth-order compact spatial partial diferentiation

scheme using generalized elemental subroutines and their integration into the existing

codebase from [49]. We use two metrics in the evaluation. First, we measure the

performance of the automatically generated code. We need to conĄrm that our

programming tool is capable of delivering a competitive level of performance so that it

is practical to use in composing regular grid-based numerical applications. Second, we

estimate the diiculty of programming. SpeciĄcally, we use of the count of lines of code

as our metric. Since we implement all the test cases ourselves and include a pretty-

printer in the code generator of our programming tool which closely imitates our own

code style, this metric should fairly accurately reĆect the diiculty of programming.

4.4.1 Thomas algorithm

First, we consider implementing the Thomas algorithm for solving tridiagonal

linear systems. As has been explained in section 1.2, in a three-dimensional LES-based

jet engine noise prediction application, tridiagonal linear systems are solved with

right-hand side vectors aligned along each of the ξ-, η- and ζ-directions. Although

the Thomas algorithm consists of a factorization step and a solve step, since the

factorization step is executed only once and also computationally inexpensive, we

consider only the solve step. Using generalized elemental subroutines, we only need to

provide an implementation of the algorithm which assumes a single right-hand side

vector. The code for the implementation is shown in Listing 4.4.

We use a test case with a grid of dimensions 500×500×500. We run the algorithm

along each of the three dimensions. Thus, each run involves 500× 500 right-hand side

vectors each of order 500. We compare two implementations of the Thomas algorithm,

namely one generated by our programming tool by processing the generalized elemental

subroutine ThomasSolve in Listing 4.4 and another one which repeatedly executes

ThomasSolve in a simplistic manner without the code optimizations presented in
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Listing 4.4. Generalized elemental subroutine for the Thomas algorithm

1 SUBROUTINE ThomasSolve(n, dl, d, du, x)

2

3 INTEGER :: n

4 DOUBLE PRECISION :: dl(:), d(:), du(:), x(:)

5

6 INTEGER :: i

7

8 DO i = 1, n - 1

9 x(i + 1) = x(i + 1) - dl(i) * x(i)

10 END DO

11 x(n) = d(n) * x(n)

12 DO i = n - 1, 1, -1

13 x(i) = d(i) * x(i) - du(i) * x(i + 1)

14 END DO

15

16 END SUBROUTINE
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section 4.3. As illustrated in Figure 4.1, our programming tool generates code which

signiĄcant outperforms the simplest possible handwritten code while taking mostly the

same amount of programming efort. The speedup ranges from 1.9 to 8.1 depending

on along which direction the algorithm is run. The performance gain mainly comes

from the appropriate interleaving of the arithmetic operations pertaining to multiple

vectors, which reduces cache misses and enables automatic vectorization.

4.4.2 Sixth-order compact spatial partial diferentiation scheme

Next, we consider the sixth-order compact spatial partial diferentiation scheme

in Equation (1.4). Implementation of the Ąve-point stencil in the right-hand side

of Equation (1.4) is straightforward. The tridiagonal linear system deĄned by the

left-hand side of Equation (1.4) is solved using the truncated SPIKE algorithm detailed

in Chapter 2.

We implement the sixth-order compact spatial partial diferentiation scheme using

the following six generalized elemental subroutines:

• diferentiation driver,

• right-hand side stencil,

• SPIKE driver,

• Thomas algorithm,

• SPIKE reduced system,

• SPIKE solution retrieval.

All of these subroutines are implemented to handle just a single vector, and we use

our programming tool to generate code that handles multiple vectors aligned along

each of the three dimensions of the computational space.

As with the previous evaluation scenario, we also compare an implementation

generated by our programming tool with an implementation which uses simple repeated
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Figure 4.1. Speedup achieved by generalized elemental subroutines for
the Thomas algorithm over simple repeated subroutine invocation
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subroutine invocation. We run both implementations on a grid of dimensions 400×

400× 400 using 512 processor cores arranged into a logical grid of dimensions 8× 8× 8,

assigning a distinct grid partition of dimensions 50× 50× 50 to each processor core.

Figure 4.2 shows the speedup achieved by the automatically optimized implementation

with respect to the unoptimized implementation. Notice that the code generated by

our programming tool is over 100 times faster than the simplest possible handwritten

code for each of the three directions. The main contributor in such impressive boost

in performance is communication aggregation. Instead of sending and receiving the

data pertaining to a single vector at a time, the optimized implementation performs

communication in batches of 400 × 400 vectors and thus is much more eicient in

terms of the communication initiation cost and network bandwidth utilization.

4.4.3 Application in Ąnite diference-based three-dimensional large eddy simulation

of jet engine noise

Finally, we look at the application of generalized elemental subroutines in three-

dimensional LES of jet engine noise. We again focus on the compact spatial partial

diferentiation scheme because in the implementation of the application from [49], it

accounts for about two thirds of the total computational cost, of which one half comes

from arithmetic operations, and the other half is due to communication. Compared to

the synthetic scenario in section 4.4.2, spatial partial diferentiation in this real-world

application is applied on four-dimensional arrays whose added fourth dimensions

are used to distinguish the diferent Ćow variables. Because our programming tool

for generalized elemental subroutines outputs Fortran code, we are able to modify

the application incrementally by substituting only the modules which implement the

compact spatial partial diferentiation scheme.

For empirical performance experiments, we consider two test scenarios. First, we

use a microbenchmark which executes 100 successive spatial partial diferentiation

tasks along each of the three dimensions of the computational space. We use a grid
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Figure 4.2. Speedup achieved by generalized elemental subroutines
for the sixth-order compact spatial partial diferentiation scheme over
simple repeated subroutine invocation
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of dimensions 512× 512× 512 and 4,096 processor cores arranged into a logical grid

of dimensions 16× 16× 16 for this microbenchmark. Second, we use a realistic jet

simulation problem with a grid of dimensions 896× 384× 384. We run the problem

using 4,032 processor cores arranged into a logical grid of dimensions 28× 12× 12.

In both scenarios, we assign a distinct grid partition of dimensions 32× 32× 32 to

each processor core. Because we focus on only the computational eiciency of the

simulation proper, we limit the simulation to last for just ten time integration steps,

disable checkpointing and exclude the cost of initiation and termination. We measure

all performance statistics using PAPI.

We compare the performance of using three diferent implementations of the com-

pact spatial partial diferentiation scheme in the LES-based jet engine noise prediction

application. The Ąrst implementation uses code generated by our programming tool

using an approach similar to that in section 4.4.2. The second implementation is

the one presented in [49]. Its code is completely handwritten and include extensive

optimizations speciĄc to Kraken, the computing platform used for these performance

experiments, to induce the compiler to generate the desired sequences of instructions.

The third implementation uses the transposition method described in section 1.3.1

and serves as the baseline for performance comparison. We name these three im-

plementations GES, HAND and XPOSE, respectively, to simplify references to them

below.

Figure 4.3 shows the running times of the spatial partial diferentiation microbench-

mark. We note that the performance discrepancy between spatial partial diferentiation

along the three directions of the computational spaces is caused by the MPI process-

to-processor core mapping computed by the MPI_CART_CREATE subroutine, which

happens to favor the ζ-direction on Kraken. From Figure 4.3, it is evident that the

truncated SPIKE algorithm delivers much better performance than the transposi-

tion method. Furthermore, the implementation of the truncated SPIKE algorithm

generated by our programming tool displays performance advantages of 6.3 % and

7.0 % over the handwritten implementation for spatial partial diferentiation tasks
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along the ξ- and η-directions, respectively. For the ζ-direction, the generated code

is 58 % slower because the handwritten code chooses an unusual loop nesting order

for the embedded Thomas algorithm which puts a loop which iterates over the third

dimensions of four-dimensional arrays inside another loop which iterates over the

second dimensions of the same arrays. Such a loop nesting order greatly improves the

L1 data cache reuse because it reduces the maximum size of the working set so that

the backward sweep of the Thomas algorithm can take advantage of the data which

have already been loaded into the L1 data cache by the forward sweep. The loop nest

generation algorithm in Algorithm 4.1 is unable to discover this loop nesting order.

But since this computation pattern is speciĄc to the Thomas algorithm, we believe

that the general efectiveness of the loop nest generation algorithm, as demonstrated

by the spatial partial diferentiation performance along the Ąrst two directions, is not

signiĄcantly impacted.

Figure 4.4 shows the performance of the LES-based jet engine noise prediction

application using each of the three implementations of the compact spatial partial

diferentiation scheme in the jet simulation problem. Again, the truncated SPIKE

algorithm is shown to have a signiĄcant performance advantage over the transposition

method. When integrated into the full application, compared to the handwritten

code, the code generated by our programming tool is only 9.6 % and 14 % slower

in computation and communication, respectively, and 12 % slower overall, which

represents a decent level of performance considering the greatly reduced programming

efort required as to be discussed below.

Lastly, we look at the programming efort involved in creating the three implemen-

tations of the sixth-order compact spatial partial diferentiation scheme. Table 4.1

lists the counts of lines of code needed by the individual components of the compact

spatial partial diferentiation scheme in the three implementations. It is evident from

Table 4.1 that the implementation using generalized elemental subroutines is very

concise compared to the other two implementations. It is also much more maintainable

thanks to its simplicity because it essentially implements the underlying numerical
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Figure 4.4. Running times of the three-dimensional large eddy
simulation-based jet engine noise prediction using the three imple-
mentations of the sixth-order compact spatial partial diferentiation
scheme

Table 4.1.
Lines of code needed by the individual components of the sixth-order
compact spatial partial diferentiation scheme in the three implemen-
tations

GES HAND XPOSE

Diferentiation driver 17 10

Right-hand side stencil 84 433

SPIKE driver 25 39

Thomas algorithm 17 123

SPIKE reduced system 55 299

SPIKE solution retrieval 13 131

Transposition method 750

Total 211 1,035 750
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algorithms for only single vectors. In comparison, the handwritten code requires

almost Ąve times as many lines of code to deliver an extra 12 % of performance.
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5 A FUNCTIONAL ARRAY PROGRAMMING MODEL FOR REGULAR

GRID-BASED NUMERICAL APPLICATIONS

5.1 Introduction

In Chapter 4, we discussed a programming model based on the idea of generalizing

the elemental subroutines found in programming languages traditionally used in

scientiĄc computing to simplify the programming tasks of authoring regular grid-

based numerical applications. We also demonstrated its practical feasibility through a

proof-of-concept implementation in the form of a programming tool which rewrites

Fortran source code. As shown in section 4.4, the programming tool is capable of

delivering a decent level of performance, generating code which trails the equivalent

handwritten code by only about 10 % in performance, while requiring a signiĄcantly

reduced amount of programming efort. However, when it comes to the pursuit for the

highest possible program eiciency, it is desirable that this performance gap between

an automated programming tool and manual programming be closed.

There are two areas in which the programming model based on generalized elemental

subroutines is arguably imperfect. First, the expressiveness of the input language

is excessively broad. Due to the imperative nature of the programming model, it is

diicult to constrain the expressiveness of the input language. As implemented by the

proof-of-concept programming tool, despite the syntactic restrictions compared to the

full Fortran 90 language, it is still possible to specify arbitrary patterns of computation.

As a consequence, the code optimization process is relatively conservative with regard

to the existing elements of the generalized elemental subroutine. For example, it

makes no attempt to adjust the relative order of the existing statements in the

subroutines. Second, while the programming model has some built-in knowledge about

communication which enables automatic communication aggregation, the programmer
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still largely has to manually handle many other aspects of communication such as

managing communicators and annotating matching pairs of send and receive operations.

In this chapter, we present an SPMD-style functional array programming model [65]

which attempts to address these problems of generalized elemental subroutines. By

being functional and array-based, it has suicient Ćexibility to express the computation

patterns occurring in many regular grid-based numerical applications, especially LES-

based jet engine noise prediction, but also enables more aggressive code optimizations.

It also has communication fully integrated into its construction and liberates the

programmer from the mundane details such as managing communicators. We describe

an accompanying code generation process which translates programs speciĄed using

the programming model into imperative code for incremental adoption in existing

applications.

5.2 Basic concepts

A regular grid-based numerical application considered by our functional array pro-

gramming model is deĄned in a d-dimensional computational space whose dimensions

are numbered from 1 to d and denoted by

∆ = ¶ δ1, δ2, . . . , δd ♢ . (5.1)

These dimensions need not have spatial counterparts in the physical setting of the

computational problem which the application targets. Nonspatial dimensions can

be deĄned to distinguish homogeneous attributes associated with the points in the

computational space. For example, the diferent Ćow variables in a Ćow Ąeld can be

represented by a fourth dimension in addition to the three dimensions of the physical

space. The computational space is discretized into a grid that is in turn divided into

partitions each of which assumes the topology of a regular grid. For each grid partition,

we denote its size in each δk ∈ ∆ by nk, a symbolic constant whose exact value is

to be determined at run-time. A grid partition can be connected to another grid
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partition at each of its 2d faces. It is required that any two neighboring grid partitions,

when considered as a whole, must form a larger regular grid. As a consequence,

starting from any grid partition, it is possible to traverse in both directions of a

dimension and identify a chain of grid partitions which form either a rectangle or a

torus. The application assigns each grid partition to a separate processor. Due to this

one-to-one correspondence between grid partitions and processors, the topology of

the connectivity between the grid partitions is isomorphic to that of the logical grid

of processors. Hence, for each processor, it is possible to similarly identify in each

dimension a either linear or circular chain of processors to which it belongs. Such

chains will serve as the basis for deĄning communication in the programming model.

A program speciĄed using this programming model consists of a collection of

functional procedures. Each procedure uses a tuple of input variables to compute

a tuple of output variables and may use a set of local variables to represent some

intermediate results. The only available data type is multidimensional arrays of

primitive scalar types such as real, integer and boolean. An array A can have no

or exactly one dimension which corresponds to each δk ∈ ∆. As a result, there is

no need to distinguish the dimensions of A and those of the computational space.

Thus, we denote the set of dimensions of A by dims(A) ⊆ ∆. The size of A in each

δk ∈ ∆, denoted by sizek(A), can be either a compile-time integral constant or nk.

If dims(A) = ∅, A degenerates into a scalar variable. The semantics of a procedure

is deĄned via deĄnitions of array values by means of arithmetic, communication,

procedure invocation and procedure iteration. Since the procedures are functional,

each array can have only one deĄnition, and its value cannot be changed once that

has been computed.
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5.3 Types of array deĄnitions

5.3.1 DeĄnition by arithmetic

The value of an array A can be deĄned by elemental arithmetic expressions. For

this purpose, for each δk ∈ dims(A), we allow two nonnegative compile-time integral

constants topk(A) and bottomk(A) satisfying

topk(A) + bottomk(A) ≤ sizek(A) (5.2)

to be speciĄed which partition the indices of A in δk into

idxk(A) = idxT
k (A) ∪ ¶ ik ♢ ∪ idxB

k (A) (5.3)

where

idxT
k (A) = ¶ i ♣ 1 ≤ i ≤ topk(A) ♢ , (5.4)

idxB
k (A) = ¶ i ♣ sizek(A)− bottomk(A) + 1 ≤ i ≤ sizek(A) ♢ , (5.5)

and ik is a symbolic index which represents all indices not in idxT
k (A)∪ idxB

k (A). This

makes it possible to separate the elements located at the array boundaries from those

in the interior and use diferent expressions than that for the latter to deĄne their

values. This is a common need which arise from the boundary conditions of the

numerical methods of many regular grid-based numerical applications.

For each index

j(A) = ⟨j
(A)
k1

, j
(A)
k2

, . . . , j
(A)
km
⟩

∈
∏

δk∈dims(A)

idxk(A), (5.6)

the expression for the element A[j(A)] can contain commonplace mathematical operators

and functions. Conditional expressions are supported by incorporating the MERGE

intrinsic function of Fortran. Operands in an expression can be compile-time constants,

symbolic run-time constants and array elements. Symbolic run-time constants are

mainly used to convey information whose exact contents can only be determined at
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run-time such as the location of the processor in the logical grid of processors. If an

array element B[j(B)] with

j(B) = ⟨j
(B)
k1

, j
(B)
k2

, . . . , j
(B)
km
⟩

∈
∏

δk∈dims(B)

idxk(B), (5.7)

is referenced in the expression, the index component j
(B)
k should be a linear combination

of ¶ sizek(B), j
(A)
k , 1 ♢ if δk ∈ dims(A) or a linear combination of ¶ sizek(B), 1 ♢ if

δk /∈ dims(A).

An array A can also be deĄned arithmetically via reduction on another array

B such that dims(A) ⊂ dims(B). It is required that sizek(A) = sizek(B) for all

δk ∈ dims(A). Then using a commutative and associative reduction operator
⊙

such

as addition and multiplication, each element A[j(A)] is assigned the value

A[j(A)] =

sizek1
(B)

⊙

j
(B)
k1

=1

sizek2
(B)

⊙

j
(B)
k2

=1

· · ·
sizekm

(B)
⊙

j
(B)
km

=1

B[j(B)] (5.8)

where

¶ δk1 , δk2 , . . . , δkm
♢ = dims(B) \ dims(A), (5.9)

j
(B)
k = j

(A)
k , ∀δk ∈ dims(A). (5.10)

DeĄnition by arithmetic is the only type of array deĄnitions that allows circular

references among arrays. In general, an array A can directly or indrectly use some

of its elements to deĄne the other elements, but circular references at the level of

individual array elements are prohibited.

5.3.2 DeĄnition by communication

For our functional array programming model, without imposing extra assumptions

on the grid topology, we consider only one-dimensional communication primitives. If

further assumptions can be made regarding the grid topology such as existence of
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embedded higher-dimensional Cartesian topologies, corresponding higher-dimensional

communication primitives can also be incorporated.

Two types of one-dimensional communication primitives are provided. The Ąrst

type is shift. Given a direction aligned with one of the dimensions of the computational

space and a hop count, the shift primitive deĄnes a destination array on a remote

processor as an exact copy of a source array on the local processor. Both the remote

and the local processors belong to the same chain of processors that lies in the

dimension in which the shift occurs. A shift can either linear or circular. The linear

shift is inapplicable if the chain of processors is circular. In contrast, the circular shift

can be applied when the chain of processors is linear by hypothetically joining the

two ends of the chain.

The second type of one-dimensional communication primitives is all-to-all reduce.

As with shift, all-to-all reduce also needs a direction aligned with a dimension of

the computational space. It collapses the values of the source arrays on processors

belonging to the same chain that lies in that dimension using a commutative and

associative elemental reduction operator and duplicates the result in the destination

arrays on the same set of processors.

As a natural constraint, the source arrays and the destination array should share

the same dimensions and the same size in each of those dimensions.

5.3.3 DeĄnition by procedure invocation

We allow nonrecursive procedure invocation in our functional array programming

model. For a procedure P , we denote its tuples of input and output parameters by

in(P ) = ⟨I ′
1, I ′

2, . . . , I ′
♣in(P )♣⟩ , (5.11)

out(P ) = ⟨O′
1, O′

2, . . . , O′
♣out(P )♣⟩ , (5.12)
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respectively. We can invoke P with the input ⟨I1, I2, . . . , I♣in(P )♣⟩ to obtain the output

⟨O1, O2, . . . , O♣out(P )♣⟩, provided that each input or output argumentŰparameter pair

⟨Im, I ′
m⟩ or ⟨Ol, O′

l⟩, if represented commonly by ⟨A, A′⟩, satisĄes that

dims(A) = dims(A′), (5.13)

sizek(A) = sizek(A′), ∀δk ∈ dims(A). (5.14)

5.3.4 DeĄnition by procedure iteration

Procedure iteration is an augmented version of procedure invocation designed for

expressing iterative algorithms. Suppose that for a procedure P , ♣in(P )♣ ≥ ♣out(P )♣.

Procedure iteration deĄnes a recurrence relation

⟨O
(τ)
1 , O

(τ)
2 , . . . , O

(τ)
♣out(P )♣⟩

=















⟨I1, I2, . . . , I♣out(P )♣⟩ if τ = 0,

P (O
(τ−1)
1 , O

(τ−1)
2 , . . . , O

(τ−1)
♣out(P )♣, I♣out(P )♣+1, I♣out(P )♣+2, . . . , I♣in(P )♣) if τ ≥ 1.

(5.15)

The iteration terminates at some τ = τ ∗ such that

⟨O1, O2, . . . , O♣out(P )♣⟩ = ⟨O
(τ∗)
1 , O

(τ∗)
2 , . . . , O

(τ∗)
♣out(P )♣⟩ (5.16)

satisĄes a stopping criterion speciĄed as a boolean expression.
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5.3.5 Examples

Using an expository syntax for our functional array programming model, Listings 5.1

and 5.2 illustrate the implementations of the Thomas algorithm for tridiagonal linear

systems and the Ąrst-order central diference scheme

yi =
xi+1 − xi−1

2h
(5.17)

in a periodic one-dimensional computational space. The Ştop:size:bottomŤ notation

such as Ş1:n:0Ť in the declaration of an array A speciĄes the values of topk(A),

sizek(A) and bottomk(A) for each δk ∈ dims(A); if the ŞtopŤ and ŞbottomŤ parts are

omitted, it is implied that topk(A) = bottomk(A) = 0. If the notation is replaced

by an Ş*Ť, the corresponding dimension is not in dims(A). The ŞcshiftŤ keyword

indicates an array deĄnition by circular shift with the following signed number in

square brackets specifying the shift direction and hop count.

5.4 Extending procedure invocation and procedure iteration to enable application of

lower-dimensional algorithms in higher-dimensional contexts

So far, we have not included the capability to apply lower-dimensional algorithms in

higher-dimensional contexts in our functional array programming model. We separate

its description from that of the basic construction of the programming model so that

it enjoys an emphasized discourse. Our strategy for enabling such a functionality is to

extend the semantics of procedure invocation and procedure iteration.

5.4.1 Extension of procedure invocation

In order to allow expression application of a lower-dimensional algorithm in a higher-

dimensional computational space, we need a mechanism to map the computational

space used in deĄning the former onto the latter and introduce the necessary semantics

of repeated invocation. To achieve this goal, we Ąrst let each procedure have its own
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Listing 5.1. SpeciĄcation of the Thomas algorithm in the functional array program-
ming model

1 PROCEDURE ThomasFactorize

2 INPUT { l[n], d[n], u[n] : real }

3 OUTPUT { l_[1:n:0], d_[1:n:0], u_[0:n:1] : real }

4

5 l_[i] = l[i] / d_[i-1] # 2 <= i <= n

6 d_[1] = d[1]

7 d_[i] = d[i] - l_[i] * u_[i-1] # 2 <= i <= n

8 u_[i] = u[i] # 1 <= i <= n-1

9

10

11 PROCEDURE ThomasSolve

12 INPUT { y[n], l[n], d[n], u[n] : real }

13 LOCAL { z[1:n:0] : real }

14 OUTPUT { x[0:n:1] : real }

15

16 z[1] = y[1]

17 z[i] = y[i] - l[i] * z[i-1] # 2 <= i <= n

18 x[i] = (z[i] - u[i] * x[i+1]) / d[i] # 1 <= i <= n-1

19 x[n] = z[n] / d[n]

20

21

22 PROCEDURE Thomas

23 INPUT { y[n], l[n], d[n], u[n] : real }

24 LOCAL { l_[n], d_[n], u_[n] : real }

25 OUTPUT { x[n] : real }

26

27 {l_, d_, u_} = ThomasFactorize(l, d, u)

28 {x} = ThomasSolve(y, l_, d_, u_)
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Listing 5.2. SpeciĄcation of the periodic Ąrst-order central diference scheme in the
functional array programming model

1 PROCEDURE PeriodicCentralDifference

2 INPUT { x[n], h[*] : real }

3 LOCAL { x1[*], xn[*], x0[*], xn1[*] : real }

4 OUTPUT { y[1:n:1] : real }

5

6 x1 = x[1]

7 xn = x[n]

8 x0 = cshift[+1](xn)

9 xn1 = cshift[-1](x1)

10 y[1] = (x[2] - x0) / (2 * h)

11 y[i] = (x[i+1] - x[i-1]) / (2 * h) # 2 <= i <= n-1

12 y[n] = (xn1 - x[n-1]) / (2 * h)
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computational space instead of assuming that of the entire application. The reference

computational space of each array deĄnition then becomes that of its containing

procedure. Furthermore, because symbolic run-time constants can be used to convey

dimension-related information in array deĄnitions by arithmetic, we allow them to be

associated with subsets of the dimensions of the computational space of the procedure

so that they can be transformed when the computational spacing mapping takes place.

To simplify the notations below, we extend the notations dims(·) and sizek(·) to cover

any object with associated dimensions and/or dimensions sizes such as procedures

and arrays.

Now we are ready to deĄne the desired mechanism which enables application

of lower-dimensional algorithms in higher-dimensional contexts. Suppose that a

procedure P invokes another procedure P ′ with the input and output arguments

⟨I1, I2, . . . , I♣in(P )♣⟩ and ⟨O1, O2, . . . , O♣out(P )♣⟩. Let the corresponding input and output

parameters of P ′ be

in(P ′) = ⟨I ′
1, I ′

2, . . . , I ′
♣in(P ′)♣⟩ , (5.18)

out(P ′) = ⟨O′
1, O′

2, . . . , O′
♣out(P ′)♣⟩ , (5.19)

respectively. When we do not distinguish their purposes, we use

⟨A1, A2, . . . , A♣in(P ′)♣+♣out(P ′)♣⟩

and

⟨A′
1, A′

2, . . . , A′
♣in(P ′)♣+♣out(P ′)♣⟩

to refer to all the arguments and parameters, respectively. To map the computational

space of P ′ onto that of P , an injective dimension map

f : dims(P ′)→ dims(P )



118

is speciĄed, which implicitly requires that ♣dims(P )♣ ≥ ♣dims(P ′)♣. The function f

efectively partitions dims(P ) into two parts. The Ąrst part, f(dims(P ′)), is used for

computational space mapping. Each δk ∈ f(dims(P ′)) will be used as the corresponding

δ′
k′ = f−1(δk) during the procedure invocation. Meanwhile, the second part, dims(P ) \

f(dims(P ′)), is used to introduce repeated invocation.

We impose the following constraints on the arguments and parameters to ensure

that the procedure invocation has well-deĄned semantics:

• For each pair ⟨Am, A′
m⟩,

– f−1(dims(Am)) = dims(A′
m);

– for all δ′
k′ ∈ dims(A′

m) and δk = f(δ′
k′), sizek(Am) = sizek′(A′

m) assuming

that nk and n′
k′ , the respective sizes of the corresponding grid partitions in

δk and δ′
k′ , are equal.

• For each pair ⟨Im, Ol⟩, if O′
l directly or indirectly depends on I ′

m in P ′, then

dims(Ol) \ f(dims(P ′)) ⊇ dims(Im) \ f(dims(P ′)).

• For each δk ∈ dims(P ) \ f(dims(P ′)), sizek(Am) is the same for all Am such that

δk ∈ dims(Am).

Informally, the Ąrst constraint ensures that when each Am is used as the corresponding

A′
m during the procedure invocation, the sizes of its dimensions in f(dims(P ′)) match

those of A′
m in P ′. The second constraint ensures that each output parameter has the

necessary extra dimensions to accommodate all diferent values that will be generated

by the repeated invocation. The last constraint ensures that for each dimension not

participating in computational space mapping, all the arguments are either scalars or

have a consistent size in that dimension.

Taking advantage of the above constraints, a Cartesian index range R can be

established such that

dims(R) =
⋃

m

dims(Am) \ f(dims(P ′)). (5.20)
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The index range R is bounded in each δk ∈ dims(R) by sizek(Am) for any Am such that

δk ∈ dims(Am). Each index in R identiĄes, with the inapplicable components ignored,

a lower-dimensional slice lying in f(dims(P ′)) of each Am. The lower-dimensional slices

of all the arguments identiĄed by the same index can then be used in an invocation

of P ′ subject to computational space mapping. Such invocations are repeated for all

the indices in R. Each output parameter Ol such that dims(Ol) ⊂ dims(R) will be

deĄned multiple times due to repetition over the dimensions in dims(R) \ dims(Ol).

However, due to the functional nature of the programming model, the aforementioned

constraints guarantee that these deĄnitions are identical duplicates and can be trivially

consolidated into a single deĄnition.

5.4.2 Extension of procedure iteration

Since procedure iteration is an augmented version of procedure invocation, it can

receive the same extension as the latter. Compared to procedure invocation, procedure

iteration has an stopping criterion additionally. After the semantics of repetition

is introduced, the stopping criterion can evaluate to diferent values in the same

iteration depending on which lower-dimensional slices of the arguments are used in

the embedded procedure invocation. Difering values of the stopping criterion indicate

that some instances of repetition can exit the iterative process while the rest must

continue. There are several possible strategies to handle such discrepancy. One may

choose to terminate each individual instance of repetition as soon as it satisĄes the

stopping criterion. This minimizes the total amount of computation but requires

a mechanism to consolidate the multiple deĄnitions of a single output parameter

resulting from diferent numbers of iterations (e.g., keeping all of them or selecting just

one according to a certain rule). Alternatively, one may also choose to let all instances

of repetition continue until they all satisfy the stopping criterion. This imposes an

additional assumption on the iterative process that the iteration is convergent, i.e.,

once the stopping criterion is satisĄed, it will remain satisĄed even if the iteration
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continues. Consolidation of duplicate array deĄnitions is trivial in this case because

all instances of repetition execute the same number of iterations. We adopt the latter

approach because it ofers regularity in the iterated procedure invocation, which can

potentially enable more aggressive optimizations during code generation.

5.4.3 Examples

Listing 5.3 illustrates an application of the procedure Thomas in Listing 5.1 in a

three-dimensional computational space. The number Ş3Ť following the procedure name

ŞThomasŤ indicates that the only dimension of the computational space of procedure

Thomas is mapped the third dimension of that of procedure ThomasIn3D. Since the

array x and y are not scalars in the Ąrst two dimensions, the Thomas algorithm is

repeated on n1n2 right-hand side vectors stored along the third dimension of y to

compute the corresponding solution vectors in x. Listing 5.4 is a similar example for

the Ąrst-order central diference scheme implemented in Listing 5.2.

5.5 Code generation and optimization

A consequence of our array programming model being functional is that it fully

speciĄes what needs to be computed but leaves out most details about how the

computation is to be performed. An implementation of the programming model is

free to schedule the operations speciĄed by procedures and choose the data structures

for storing the operation results. The code generation and optimization strategies

described in this section exploit the features and assumptions of the programming

model to automatically carry out code transformations which a programmer equipped

with architectural knowledge about the target computing platform would otherwise

manually perform.
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Listing 5.3. Application of the Thomas algorithm speciĄed in the functional array
programming model in a three-dimensional computational space

1 PROCEDURE ThomasIn3D

2 INPUT { y[n1, n2, n3], l[*, *, n3],

3 d[*, *, n3], u[*, *, n3] : real }

4 OUTPUT { x[n1, n2, n3] : real }

5

6 {x} = Thomas[3](y, l, d, u)

Listing 5.4. Application of the Ąrst-order central diference scheme speciĄed in the
functional array programming model in a three-dimensional computational space

1 PROCEDURE PeriodicCentralDifferenceIn3D

2 INPUT { x[n1, n2, n3] : real }

3 OUTPUT { y[n1, n2, n3] : real }

4

5 {y} = PeriodicCentralDifference[3](x)
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5.5.1 Dimensional procedure rewriting

Section 5.4 extends procedure invocation and procedure iteration the our functional

array programming model with the semantics of repeated invocation. A naïve strategy

strategy for implementing the repetition is to literally iterate over the Cartesian index

range deĄned in section 5.4.1 and invoke the procedure once per iteration. While

very simple, its implications on program eiciency, in terms of both computation and

communication, can be disastrous. Consider the examples in Listings 5.3 and 5.4

assuming that the array dimensions are in a column-major order as they appear in

the listings. For the Thomas algorithm, a skilled programmer would Ąrst avoid the

unnecessary repeated invocation of the procedure ThomasFactorize in Listing 5.1.

He/she would then devise a three-level loop nest which batches the right-hand side

vectors by the Ąrst dimensions of the arrays in the innermost loops to enable SIMD

parallelism. He/she would also counterintuitively iterate over the second dimensions

of the arrays in the outermost loop in order to exploit the data locality of the forward

and backward sweeps of the algorithm. For the Ąrst-order central diference scheme,

the programmer would aggregate the two circular shifts in Listing 5.2 to reduce the

total communication initiation cost. Naïve repetition is unable to take advantage of

any of these optimization opportunities.

Dimensional procedure rewriting is a process which creates the possibility to apply

all of the above code optimizations by factoring the semantics of repeated invocation

into the speciĄcations of the invoked procedures. Suppose that a procedure P invokes

another procedure P ′ with a dimension map f . The rewriting process Ąrst lets P ′ adopt

the computational space of P by renaming the members of dims(P ′) according to f

and adding the dimensions in dims(P ) \ f(dims(P ′)), after which dims(P ′) becomes

equivalent to dims(P ), and f can be replaced by an identify map and is ignored

hereafter. Accordingly, each parameter A′
m of P ′ adopts the dimensions and sizes of

the corresponding argument Am in P . For each local array L of P ′ and each dimension

δk newly added to dims(P ′), if L directly or indirectly depends on an input parameter
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I ′
m such that δk ∈ dims(I ′

m), δk is also added to L with sizek(L) = sizek(I ′
m). After all

the arrays in P ′ have been transformed, their deĄnitions are modiĄed accordingly to

reĆect the semantics of repeated invocation.

Listings 5.5 and 5.6 show the results of rewriting the examples in Listings 5.1,

5.2, 5.3 and 5.4. Notice that the rewriting process already avoids repeated invocation

of procedure ThomasFactorize and aggregates the two circular shifts in procedure

PeriodicCentralDifference.

5.5.2 ComputationŰcommunication interleaving

After a procedure is rewritten, the semantics of repeated invocation introduced by

the extended procedure invocation and procedure iteration becomes explicit in the

body of the procedure. The operations speciĄed within are then ready to be scheduled.

Scheduling occurs in two stages. The Ąrst stage is computationŰcommunication

interleaving, which creates opportunities to overlap the two types of operations.

When we consider computationŰcommunication interleaving, we regard individual

arrays as the smallest scheduling unit. There are also groups of arrays which must each

be considered as an atomic whole. These include arrays deĄned by arithmetic which

circularly reference one another in their deĄnitions and the output parameters which

appear in the same procedure invocation or procedure iteration. The inseparability

of the latter is obvious, while that of the former is due to the fact that the elements

of those arrays need to be evaluated in an intertwined order. We represent arrays

which can be scheduled separately by singleton groups and use the term array group

as the uniĄed terminology for the scheduling units in computationŰcommunication

interleaving.

The dependence relation between array groups of a procedure deĄnes a directed

dependence graph G(V, E). Because there cannot be circular references between

array groups, G is acyclic. The goal of computationŰcommunication interleaving is

to determine a topological ordering of V optimized for computationŰcommunication
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Listing 5.5. Rewritten speciĄcation of the Thomas algorithm in the functional array
programming model

1 PROCEDURE ThomasFactorize

2 INPUT { l[*, *, n3], d[*, *, n3], u[*, *, n3] : real }

3 OUTPUT { l_[*, *, 1:n3:0], d_[*, *, 1:n3:0],

4 u_[*, *, 0:n3:1] : real }

5

6 l_[i3] = l[i3] / d_[i3-1]

7 d_[1] = d[1]

8 d_[i3] = d[i3] - l_[i3] * u_[i3-1]

9 u_[i3] = u[i3]

10

11

12 PROCEDURE ThomasSolve

13 INPUT { y[n1, n2, n3], l[*, *, n3], d[*, *, n3],

14 u[*, *, n3] : real }

15 LOCAL { z[n1, n2, 1:n3:0] : real }

16 OUTPUT { x[n1, n2, 0:n3:1] : real }

17

18 z[i1, i2, 1] = y[i1, i2, 1]

19 z[i1, i2, i3] = y[i1, i2, i3] - l[i3] * z[i1, i2, i3-1]

20 x[i1, i2, i3] = (z[i1, i2, i3] - u[i3] * x[i1, i2, i3+1]) / d[i3]

21 x[i1, i2, n3] = z[i1, i2, n3] / d[n3]

22

23

24 PROCEDURE Thomas

25 INPUT { y[n1, n2, n3], l[*, *, n3],

26 d[*, *, n3], u[*, *, n3] : real }

27 LOCAL { l_[*, *, n3], d_[*, *, n3], u_[*, *, n3] : real }

28 OUTPUT { x[n1, n2, n3] : real }

29

30 {l_, d_, u_} = ThomasFactorize(l, d, u)

31 {x} = ThomasSolve(y, l_, d_, u_)

32

33

34 PROCEDURE ThomasIn3D

35 INPUT { y[n1, n2, n3], l[*, *, n3],

36 d[*, *, n3], u[*, *, n3] : real }

37 OUTPUT { x[n1, n2, n3] : real }

38

39 {x} = Thomas(y, l, d, u)
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Listing 5.6. Rewritten speciĄcation of the Ąrst-order central diference scheme in
the functional array programming model

1 PROCEDURE PeriodicCentralDifference

2 INPUT { x[n1, n2, n3], h[*, *, *] : real }

3 LOCAL { x1[n1, n2, *], xn[n1, n2, *],

4 x0[n1, n2, *], xn1[n1, n2, *] : real }

5 OUTPUT { y[n1, n2, 1:n3:1] : real }

6

7 x1[i1, i2] = x[i1, i2, 1]

8 xn[i1, i2] = x[i1, i2, n3]

9 x0 = cshift[*, *, +1](xn)

10 xn1 = cshift[*, *, -1](x1)

11 y[i1, i2, 1] = (x[i1, i2, 2] - x0[i1, i2]) / (2 * h)

12 y[i1, i2, i3] = (x[i1, i2, i3+1] - x[i1, i2, i3-1]) / (2 * h)

13 y[i1, i2, n3] = (xn1[i1, i2] - x[i1, i2, n3-1]) / (2 * h)

14

15

16 PROCEDURE PeriodicCentralDifferenceIn3D

17 INPUT { x[n1, n2, n3] : real }

18 OUTPUT { y[n1, n2, n3] : real }

19

20 {y} = PeriodicCentralDifference(x)
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overlapping. A greedy strategy is to initiate each communication operation as early

as possible and complete the operation as late as possible. This maximizes the time

between the start and the end of the operation and allows more computation to be

performed in parallel during that time. However, this strategy works against itself

when a communication operation depends on another one, because delaying completion

of the latter also delays initiation of the former. Therefore, instead of adopting this

simplistic strategy, we solve the computationŰcommunication interleaving problem as

a formal optimization problem.

In preparation for formulating the optimization problem, we model the target

computing platform in an idealized fashion where computation is strictly sequential,

while communication has unlimited parallelism. For estimating the cost of each

computation or communication operation, we assume that an implementation of the

programming model has built-in knowledge about the performance characteristics of

the target computing platform. Application-speciĄc information such as the average

dimensions of the grid partitions and the expected numbers of iterations needed by

each procedure iteration is requested from the programmer, who in turn may determine

it from practical needs and empirical proĄling.

We formulate the optimization problem using mixed integer linear programming

(MILP). For each array group Γ ∈ V , we represent the start time of its computation or

communication by a nonnegative continuous variable tΓ. We use a continuous variable

t to represent the end time of execution of the procedure. The objective of the MILP

problem is to minimize t. The problem contains the following constraints:

Dependence: For each ⟨Γ1, Γ2⟩ ∈ E,

tΓ2 ≥ tΓ1 + cΓ1 (5.21)

where cΓ1 is the computation or communication cost of Γ1.
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Computational sequentiality: For each ¶Γ1, Γ2 ♢ ⊆ V such that Γ1 and Γ2 are

mutually unreachable in G,

tΓ1 ≥ tΓ2 + 1comp(Γ2)cΓ2 ∨ tΓ2 ≥ tΓ1 + 1comp(Γ1)cΓ1 (5.22)

where 1comp(·) is a binary indicator function of whether an array group is deĄned

by computation as opposed to communication. To conform to the restrictions of

MILP, this disjunctive form is expressed as two separate constraints:

tΓ1 ≥ tΓ2 + 1comp(Γ2)cΓ2 + bΓ1,Γ2M , (5.23)

tΓ2 ≥ tΓ1 + 1comp(Γ1)cΓ1 + b̄Γ1,Γ2M (5.24)

where bΓ1,Γ2 is a binary variable, b̄Γ1,Γ2 = 1− bΓ1,Γ2 , and M is a suiciently large

constant such as

M =
∑

Γ∈V

cΓ. (5.25)

End of procedure execution: For each Γ ∈ V ,

t ≥ tΓ + cΓ. (5.26)

We sort the array groups Γ ∈ V in increasing order of the values of tΓ in the solution

to the MILP problem, breaking ties by prioritizing communication over computation.

The result is a rough sketch of the code to be generated for the procedure. Only

at this point do we apply the aforementioned greedy strategy and a communication

completion operation before the Ąrst use of each array deĄned by communication.

5.5.3 Computation scheduling

The second stage of computationŰcommunication scheduling is computation

scheduling. In the code sketch produced by computationŰcommunication interleav-
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ing, the only missing details are in which order element values of arrays deĄned by

arithmetic are evaluated. Deriving evaluation schemes for those arrays is the goal of

computation scheduling.

In computation scheduling, we identify each consecutive chunk of array groups

deĄned by arithmetic in the code sketch and consider each such chunk separately. For

the arrays in a chunk, we can derive a dependence relation between their individual

elements. The formulation of array deĄnitions by arithmetic guarantees that the

dependence relation is aine. Generating code from aine dependence relations is

prior art [6, 13, 30, 33]. Therefore, we avoid reinventing the wheel here and assume

that an implementation of the programming model will reuse existing methodologies

and software.

After computation scheduling, the code sketch is functionally complete and can be

mechanically translated into forms accepted by normal compilation workĆows such as

source code written in a high-level programming language.

5.5.4 Array dimension elimination

During dimensional procedure rewriting, new dimensions are added to the local

arrays of procedures to accommodate all diferent values generated during repeated

invocation. These dimensions are added using a conservative strategy which considers

only the dependence between arrays. However, depending on the exact contents of

the code sketches produced by computationŰcommunication scheduling, some of these

dimensions may in fact be redundant. For instance, consider the Fortran code in

Listing 5.7 for the procedure ThomasSolve in Listing 5.5. It is obvious that the second

dimension of z is redundant as the values distinguished by that dimension do not have

overlapping lifetimes. It is not possible for dimensional procedure rewriting to omit

the redundant dimensions in foresight because it lacks the information to justify such

omission, which is not available until after computation scheduling has completed.
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Listing 5.7. Fortran code for the procedure ThomasSolve in Listing 5.5

1 SUBROUTINE ThomasSolve(y, l, d, u, x)

2

3 REAL, INTENT(IN) :: y(n1, n2, n3), l(n3), d(n3), u(n3)

4 REAL, INTENT(OUT) :: x(n1, n2, n3)

5

6 REAL :: z(n1, n2, n3)

7 INTEGER :: i1, i2, i3

8

9 DO i2 = 1, n2

10 DO i1 = 1, n1

11 z(i1, i2, 1) = y(i1, i2, 1)

12 END DO

13 DO i3 = 2, n3

14 DO i1 = 1, n1

15 z(i1, i2, i3) = y(i1, i2, i3) - l(i3) * z(i1, i2, i3-1)

16 END DO

17 END DO

18 DO i1 = 1, n1

19 x(i1, i2, n3) = z(i1, i2, n3) / d(n3)

20 END DO

21 DO i3 = n3 - 1, 1, -1

22 DO i1 = 1, n1

23 x(i1, i2, i3) = &

24 (z(i1, i2, i3) - u(i3) * x(i1, i2, i3+1)) / d(i3)

25 END DO

26 END DO

27 END DO

28

29 END SUBROUTINE
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Array dimension elimination locates and removes the aforementioned redundant

dimensions from the local arrays of a procedure. The process is based on the live range

analysis of individual array elements using the polyhedral model. It Ąrst labels all

the statements in the code sketch of the procedure with unique symbolic timestamps.

Listing 5.8 and Figure 5.1 illustrate the labeling method. After the code sketch is

converted into an abstract syntax tree (AST), each node of the AST which is not the

root is labeled with its position among its siblings. If a node represents a loop, its label

has a second component which is the loop variable. The timestamp of a statement is

the concatenation of the labels of the corresponding node in the AST and its nonroot

ancestors in top-down order, zero-padded so that the timestamps of all statements

have the same length. For Listing 5.8, the timestamps of the statements are

S1 : ⟨0, 0, 0, 0, 0⟩ ,

S2 : ⟨1, i2, 0, i1, 0⟩ ,

S3 : ⟨1, i2, 1, 0, 0⟩ ,

respectively, where 1 ≤ i1 ≤ n1, and 1 ≤ i2 ≤ n2. Assuming without loss of generality

that the loop step sizes are positive, the lexicographical order of the timestamps

is exactly the same as the dynamic execution order of the statements. Thus, these

timestamps can be used to depict precisely the deĄnition and use histories of individual

array elements. Let the space of timestamps be T . For any array A, we denote its

index range by idx(A) and represent its elementwise deĄnition and use histories using

two relations def(A), use(A) ⊆ idx(A)× T .

For each subset ∆ ⊆ dims(A), we want to determine whether its members are

redundant as a whole. Consider two indices j(1), j(2) ∈ idx(A) which difer in at least

one component which corresponds to a dimension in ∆ but are equal in all components

that correspond to dimensions not in ∆. If the dimensions in ∆ are removed from A,

the elements A[j(1)] and A[j(2)] will be aliased to each other. Hence, the removal is

legal if their live ranges do not overlap. Due to the functional nature of our array
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Listing 5.8. A code sketch represented using the Fortran syntax

1 S1

2 DO i2 = 1, n2

3 DO i1 = 1, n1

4 S2

5 END DO

6 S3

7 END DO

Root

S1 : ⟨0⟩ L1 : ⟨1, i2⟩

L2 : ⟨0, i1⟩

S2 : ⟨0⟩

S3 : ⟨1⟩

Figure 5.1. Abstract syntax tree of the code sketch in Listing 5.8
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programming model, each array element can have only one deĄnition, and all its uses

depend on that deĄnition. Therefore, overlapping live ranges can be detected by

determining the existence of three timestamps t1 ≤ t2 ≤ t3 in lexicographical order

such that

⟨j(1), t1⟩ , ⟨j
(2), t2⟩ ∈ def(A), (5.28)

⟨j(1), t3⟩ ∈ use(A). (5.29)

Since dims(A) has a Ąnite number of members, the maximal ∆ can be via enumeration,

and we denote that by elim(A). For input and output arrays, we let elim(A) = ∅.

Listing 5.9 shows the result of applying array dimension elimination to the Fortran

code for procedure ThomasSolve in Listing 5.7. Notice that the second dimension of

array z has been removed. It is also the only dimension whose removal is legal.

5.5.5 Array coalescing

Consider the subroutine ThomasSolve in Listing 5.7 again. Array dimension

elimination is able to remove the second dimension of array z as a programmer would

do manually. However, the resulting code is still suboptimal. There is no need to

use three separate arrays x, y and z because they can be coalesced into a single

array, which makes the implementation in-place and shrinks its memory footprint

by a factor of three. The need for such coalescing is even more pressing when the

efective semantics of a procedure modiĄes an array only partially as in cases such as

the boundary conditions in numerical methods. Out-of-place implementations will the

unchanged elements to be copied and end up incurring unnecessary but signiĄcant

overhead. Array coalescing seeks to mitigate situations like these.

Detection of coalescible arrays uses an array element live range analysis similar to

that in array dimension elimination. Two arrays A1 and A2 with the same dimensions

and sizes can be coalesced if for each index j ∈ idx(A1) = idx(A2), there do not exist
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Listing 5.9. Fortran code for the procedure ThomasSolve in Listing 5.5 after array
dimension elimination

1 SUBROUTINE ThomasSolve(y, l, d, u, x)

2

3 REAL, INTENT(IN) :: y(n1, n2, n3), l(n3), d(n3), u(n3)

4 REAL, INTENT(OUT) :: x(n1, n2, n3)

5

6 REAL :: z(n1, n3)

7 INTEGER :: i1, i2, i3

8

9 DO i2 = 1, n2

10 DO i1 = 1, n1

11 z(i1, 1) = y(i1, i2, 1)

12 END DO

13 DO i3 = 2, n3

14 DO i1 = 1, n1

15 z(i1, i3) = y(i1, i2, i3) - l(i3) * z(i1, i3-1)

16 END DO

17 END DO

18 DO i1 = 1, n1

19 x(i1, i2, n3) = z(i1, n3) / d(n3)

20 END DO

21 DO i3 = n3 - 1, 1, -1

22 DO i1 = 1, n1

23 x(i1, i2, i3) = &

24 (z(i1, i3) - u(i3) * x(i1, i2, i3+1)) / d(i3)

25 END DO

26 END DO

27 END DO

28

29 END SUBROUTINE
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three timestamps t1 ≤ t2 ≤ t3 in lexicographical order such that the live ranges of the

elements A1[j] and A2[j] overlap, or, put mathematically,

⟨j, t1⟩ ∈ def(A1), (5.30)

⟨j, t2⟩ ∈ def(A2), (5.31)

⟨j, t3⟩ ∈ use(A1). (5.32)

However, applying this criterion to Listing 5.9 will miss the opportunities to coalesce

array z with arrays x and y because array dimension elimination has altered the

shape of z. Therefore, we also need to consider partial elimination of the redundant

dimensions from the local arrays. For this purpose, we deĄne the concept of a slot to

represent the potential storage space for one or more arrays. Arrays sharing the same

slot are coalesced. For each array A, we create a slot S for every subset ∆ ⊆ elim(A)

such that dims(S) = dims(A) \∆, and sizek(S) = sizek(A) for all δk ∈ dims(S). An

array A can be assigned to a slot S if there exists a viable dimension-eliminated version

of A which has the dimensions and sizes as S. But we prevent assignment of arrays

reducible to scalar variables to nonscalar slots because scalar variables are better

handled by traditional compiler optimizations. Assuming that application-speciĄc

information has been obtained from the programmer to calculate the sizes of the slots,

our goal is to minimize the total size of the occupied slots.

As with computationŰcommunication interleaving, we formulate the minimization

problem using MILP. For each slot S, we create denote the candidate arrays which can

be assigned to it by cand(S). For each arrayŰslot pair ⟨A, S⟩, we represent whether A

is assigned to S by a binary variable bA,S. For each slot S, we represented whether

it is occupied by a continuous variable tS. The objective of the MILP problem is to

minimize
∑

S

cStS
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where

cS =
∏

δk∈dims(S)

sizek(S) (5.33)

is the size of a slot S. The problem contains the following constraints:

Array–slot assignment: For each array A,

∑

S

bA,S = 1, (5.34)

and for each slot S such that A /∈ cand(S),

bA,S = 0. (5.35)

Coalescing restriction: For each array pair ⟨A1, A2⟩ which cannot be assigned to a

slot S simultaneously,

bA1,S + bA2,S ≤ 1. (5.36)

For each input array I and each local array L such that I, L ∈ cand(S) for a

slot S,

bI,S + bL,S = 2→ ∃O : bO,S = 1 (5.37)

where O is an output array. This prevents coalescing between coalescing between

an input array and a local array unless the former is already coalesced with

one or more output arrays. This constraint guarantees that the involved input

arrays can be safely overwritten. In an MILP-conformant form, this constraint

is expressed as

bI,S + bL,S ≤ 2
∑

O

bO,S + 1. (5.38)

Slot occupancy: For each arrayŰslot pair ⟨A, S⟩,

tS ≥ bA,S. (5.39)
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Coalescing an input array with an output array converts an out-of-place procedure

into an in-place procedure. A practical issue arises concerning the actual beneĄt of such

conversion in the interaction between the invoker and invokee procedures. Suppose

that a procedure P invokes another procedure P ′ with input and output arguments

I and O whose counterparts in P ′ are I ′ and O′. Array coalescing is beneĄcial only

when both pairs of inputŰoutput arrays are coalescible because when only one pair is

coalesced, the uncoalesced pair will force an array copy. Such a situation warrants

considering the array coalescing of P and P ′ jointly. But this risks inĆating the size

of the MILP problem, which has no known polynomial-time algorithms. Therefore,

we use a two-pass approximation. First, we compute a tentative array coalescing of

P assuming that I ′ and O′ can be coalesced in P ′. If I and O are not tentatively

coalesced, we disallow coalescing of I ′ and O′ in P ′. Next, we compute the array

coalescing of P ′ recursively. Last, we compute the deĄnitive array coalescing of P ,

disallowing coalescing of I and O if I ′ and O′ are not coalesced in P ′.

After the array coalescing of a procedure has been computed, the procedure is

modiĄed to include the necessary changes. In particular, assignments which have

become in-place copies are removed.

Listing 5.10 shows the Fortran code for the procedure ThomasSolve in Listing 5.5

after both array dimension elimination and array coalescing have been applied. It has

the smallest possible memory footprint for the algorithm and is also computationally

eicient.

5.6 Empirical evaluation

5.6.1 Prototype implementation

We evaluate our functional array programming model and the accompanying code

generation and optimization strategies using a prototype programming tool written

in Python. The input syntax is similar to that of the listings in sections 5.3, 5.4

and 5.5. The output language is Fortran, and MPI is used for communication. For
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Listing 5.10. Fortran code for the procedure ThomasSolve in Listing 5.5 after array
dimension elimination and array coalescing

1 SUBROUTINE ThomasSolve(x, l, d, u)

2

3 REAL, INTENT(INOUT) :: x(n1, n2, n3)

4 REAL, INTENT(IN) :: l(n3), d(n3), u(n3)

5

6 INTEGER :: i1, i2, i3

7

8 DO i2 = 1, n2

9 DO i3 = 2, n3

10 DO i1 = 1, n1

11 x(i1, i2, i3) = x(i1, i2, i3) - l(i3) * x(i1, i2, i3-1)

12 END DO

13 END DO

14 DO i1 = 1, n1

15 x(i1, i2, n3) = x(i1, i2, n3) / d(n3)

16 END DO

17 DO i3 = n3 - 1, 1, -1

18 DO i1 = 1, n1

19 x(i1, i2, i3) = &

20 (x(i1, i2, i3) - u(i3) * x(i1, i2, i3+1)) / d(i3)

21 END DO

22 END DO

23 END DO

24

25 END SUBROUTINE
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solving the MILP problems of computationŰcommunication interleaving and array

coalescing, we use the GNU Linear Programming Kit (GLPK) [22] and COIN-OR

Branch-and-Cut (CBC) [16] solvers, respectively. We use two diferent solvers because

we found cases where CBC produces invalid solutions for computationŰcommunication

interleaving, and GLPK is much too ineicient for array coalescing. To represent

the aine dependence relations between array elements and their deĄnition and use

histories and detect overlapping lifetimes of element values in computation scheduling,

array dimension elimination and array coalescing, we use the Integer Set Library

(ISL) [80]. Code generation from aine dependence relations in computation scheduling

is accomplished by combining ISL and CLooG [7].

As an implementation detail in computation scheduling, we use ISL to derive the

scattering functions required by CLooG. To derive the scattering functions, ISL uses

not only an aine dependence relation but also a proximity relation. It attempts to

minimize the dependence distance over the latter while respecting the former. We

specify the proximity relation as the union of the aine dependence relation and the

linear element order of the Ąrst two dimensions of all involved arrays. Experiments

show that restricting the element order component of the proximity relation to just

the Ąrst two dimensions of the arrays leads to more eicient code than other choices

such as expanding the coverage to all dimensions.

5.6.2 Benchmarks for experimental evaluation

We use the following Ąve benchmarks to demonstrate the efect of the code

generation and optimization strategies presented in section 5.5:

conpq: Pointwise primitive-to-conservative conversion of the Ćow variables in three-

dimensional LES of jet engine noise.

deriv: Application of the sixth-order compact spatial partial diferentiation scheme

along all three directions of a three-dimensional Cartesian grid. The truncated

SPIKE algorithm is chosen as the embedded tridiagonal linear system solvers.
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matmul: Matrix multiplication expressed as an dimension-expanded version of the

vector dot product.

thomas: Application of the Thomas algorithm along all three directions of a three-

dimensional Cartesian grid.

interlv: A synthetic benchmark designed for demonstrating the efect of computationŰ

communication interleaving.

We run the benchmarks on Carter, an InĄniBand-interconnected dual-Intel Sandy

Bridge cluster hosted at the Rosen Center for Advanced Computing (RCAC) at Purdue

University. Among them, conpq, matmul and thomas are run sequentially, whereas

deriv and interlv are each run on four nodes using 64 processor cores and MPI processes.

For each benchmark, we measure the running times using ten evenly spaced grid

partition sizes. The grid partitions are always cube-shaped. The grid partition sizes,

which we refer to as n below, range from 24 to 240 for conpq, deriv and thomas, from

100 to 1,000 for matmul and from 10 to 100 for interlv.

5.6.3 Efect of dimensional procedure rewriting

In Figures 5.2, 5.3, 5.4 and 5.5, we plot the running times of the benchmarks

conpq, deriv, matmul and thomas with dimensional procedure rewriting disabled. The

data are normalized to those of running the benchmarks with dimensional procedure

rewriting enabled. Disabling the rewriting processes is equivalent to the situation

where the programmer expresses the semantics of his/her application in the most

concise possible form using programming tools without dedicated support for regular

grid-based numerical applications.

Except for conpq, our programming tool achieves signiĄcant speedup. Existing

programming tools are suicient for conpq because its minimum implementation

essentially consists of straight-line scalar code, which is easy for the Fortran compiler

to inline and transform. Meanwhile, the other three benchmarks contain loops
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Figure 5.4. Normalized running times of benchmark matmul with
dimensional procedure rewriting disabled
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and procedure invocations, which tend to prevent aggressive compiler optimizations.

Furthermore, Figures 5.2, 5.3, 5.4 and 5.5 also show how diferent types of numerical

applications react to dimensional procedure rewriting being disabled. Benchmark deriv

is communication-bound for small n and thus sufers heavy penalties when there is no

communication aggregation; matmul is computation-bound but requires loop tiling to

hide the memory access cost; thomas is memory bandwidth-bound, whose relatively

constant performance loss results from lack of vectorization. Explicitly rewritten

procedures are necessary to enable all these optimizations. Our programming tool

automatically performs the rewriting and keeps the programmerŠs programming burden

to the minimum.

5.6.4 Efect of computationŰcommunication interleaving

In section 5.5.2, we mentioned that a greedy strategy for interleaving computation

and communication is to initiate the communication operations as early as possible

and complete them as late as possible. We use the benchmark interlv to demonstrate

the advantage of our MILP-based method over this greedy strategy. In interlv, there

are two separate dependence chains

X0 → X1 → X2 → X3 → X4 → X5 → X6,

Y0 → Y1 → Y2 → Y3 → Y4 → Y5 → Y6

where each Xk depends on Xk−1 by O(n3) computation, and each Yk depends on Yk−1

byO(n2) communication. The greedy strategy Ąrst starts the communication operation

of Y1, then Ąnishes the computation of all Xk before completing the communication

operations of all Yk. In contrast, our MILP-based method perfectly interleaves the

two dependence chains.

Figure 5.6 shows the running times of the greedy strategy normalized to those of

our MILP-based method. The zigzag pattern is due to the fact that our method has

greater Ćuctuation in performance than the greedy strategy. Our method is slower by
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more than 5 % in only two cases and up to 38 % faster in the best case. Overall, our

method shows an average speedup of 1.13 over the greedy strategy.

5.6.5 Efect of array dimension elimination and array coalescing

We demonstrate the necessity of applying both array dimension elimination and

array coalescing to the code sketches produced by dimensional procedure rewriting and

computationŰcommunication scheduling using the benchmarks conpq, deriv, matmul

and thomas. We consider all four cases wher array dimension elimination and array

coalescing are turned on and of independently. We also include optimized handwritten

implementations of the benchmarks in the comparison.

We plot the running times of the four benchmarks under diferent conditions in

Figure 5.7. The data are normalized to those of running the benchmarks with both

array dimension elimination and array coalescing enabled. When both optimizations

are disabled, the code sketches are translated into Fortran literally, preserving the

immutable nature of functional programming and all array dimensions conservatively

introduced by dimensional procedure rewriting. In particular, the resulting code

physically stores all intermediate computation results as arrays. For programs involv-

ing asymptotically more intermediate values than input and output values such as

conpq and matmul, this leads to very signiĄcant slowdown. Also, notice that not all

benchmarks need both optimizationsŮarray dimension elimination has no signiĄcant

efect on deriv and is undone by array coalescing in thomas, while array coalescing

is inapplicable in matmul. However, in order to cover all possible situations, both of

them must be enabled.

Compared to handwritten code, our programming tool achieves essentially the

same level of performance in conpq, matmul and thomas. For deriv, the average speedup

is a somewhat surprising 1.13. Since the algorithms and data structures are identical,

and employ essentially the same optimization techniques as our programming tool

in the handwritten code, we suspect that it is diferences in the implementation
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details that caused the Fortran compiler to generate code with diferent eiciency. But

because deriv is communication- and memory bandwidth-bound, the headroom for

further optimization is limited. Therefore, we can claim that our programming tool is

competitive in terms of program eiciency compared to manual programming.

5.6.6 Applicability in Ąnite diference-based three-dimensional large eddy simulation

of jet engine noise

Table 5.1 summarizes the major components of the three-dimensional LES-based

jet engine noise prediction application in [48]. The application consists of a mix of

elemental and vector algorithms. The physics-related components have elemental

formulations, but their deĄnitions depend on spatial partial diferentiation of the Ćow

variables, which is deĄned on vectors. The spatial Ąltering scheme is also vector-based

in nature.

Our programming tool can be used to implement all the major components of the

jet engine noise prediction application except for a transposition step in the centerline

treatment which temporarily reslices and redistributes the grid partitions among

the processors, a computation pattern beyond the expressiveness of our functional

array programming model. When it comes to evaluating the programming efort,

due to the syntactic diferences between the input language of our programming tool

and Fortran, a direct quantitative comparison based on counts of lines of code has

limited value. Therefore, we use a qualitative comparison instead. For elemental

algorithms, our programming tool does not enable much reduction in the programming

efort because their implementations in Fortran is also every simple. For vector

algorithms, our programming tool signiĄcantly reduces the programming efort because

it needs only one implementation which operates on a single vector for each algorithm.

In comparison, when implemented in Fortran, in order to deliver the maximum

performance, each algorithm requires two two-dimensional computation kernels, namely

a columnwise version and a rowwise version; more boilerplate code is needed to
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Table 5.1.
Major algorithmic components of large eddy simulation-based jet
engine noise prediction

Component Type of algorithm

Time integration Elemental

Spatial partial diferentiation Vector

NavierŰStokes equations Elemental

Boundary conditions Elemental

OutĆow damping Elemental

Spatial Ąltering Vector

Acoustic statistics Elemental
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repeatedly invoke those computation kernels on three- and four-dimensional arrays

and handle communication of arrays with diferent numbers of dimensions.
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6 CONCLUSIONS AND SUGGESTED DIRECTIONS FOR FUTURE

EXPLORATION

6.1 Conclusions

In this study, we examined the numerical methods and programming practices of

Ąnite diference-based three-dimensional LES of jet engine noise. Two speciĄc issues

pose challenges to researchers and engineers in the development of high-Ądelity LES-

based jet engine noise prediction applications. First, due to the stringent requirements

on numerical accuracy of CAA, Ąnite diference methods in LES of jet engine noise

must rely on an implicitly formulated compact scheme for spatial partial diferentiation.

A performance-critical component of the compact spatial partial diferentiation scheme

is the embedded tridiagonal linear system solver. Previously, researchers and engineers

have utilized methods including the transposition method, the multiblock method

and the Schur complement method to solve the tridiagonal linear systems. Each of

these methods makes diferent trade-of between numerical accuracy and empirical

eiciency, both of which are the desired features of an ideal solver. Second, the

aforementioned compact spatial partial diferentiation scheme needs to be applied to

the computational grid along the three coordinate directions of the computational

space. So does a compact spatial Ąltering scheme applied to the stabilize the otherwise

divergent numerical method of Ąnite diference-based LES. Without programming

tools which provide dedicated support for regular grid-based numerical application, the

programming tasks of implementing these numerical schemes are tediously repetitive

and error-prone, especially for non-CS researchers and engineers.

To tackle the challenges posed by these two issues, we Ąrst described an eicient

parallel tridiagonal linear system solver based on the truncated SPIKE algorithm.

Our algorithm avoids the unscalable grid reslicing and redistribution present in the
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transposition method and is methodologically closer to the Schur complement method

in the sense that our algorithm also reduces the original system to a smaller reduced

system. Taking advantage of the diagonal dominance of the tridiagonal linear systems

which arise from the compact spatial partial diferentiation and spatial Ąltering schemes,

it uses block Jacobi iteration instead of parallel cyclic reduction or more complex

iterative methods such as the Krylov subspace methods to solve the reduced system

and consequently requires only communication between neighboring processors in the

logical grid of processors. The resulting solver solves the tridiagonal linear systems

accurately as the transposition method and the Schur complement method do and

ofers theoretically provable and empirically conĄrmed optimal scalability in weak

scaling scenarios as the multiblock method does. In addition to presenting the theory

of our tridiagonal linear system solver, we also described strategies for implementing

the compact spatial partial diferentiation and spatial Ąltering schemes eiciently in a

practical LES-based jet engine noise prediction application. Experimental performance

measurements show that our new implementation of the application achieves signiĄcant

speedup over an implementation based on the transposition method, especially when

the number of processor cores participating in the computation is large.

Next, we presented two programming models and the associated code optimization

and generation methods which enable simple expression of application of lower-

dimensional algorithms in higher-dimensional contexts, a pattern of computation

frequently found in regular grid-based numerical applications. The Ąrst programming

model is imperative and is based on generalization of Fortran elemental subroutines.

An ordinary Fortran elemental subroutine repeatedly applies the same sequence scalar

operations on combinations of individual elements taken from one or more arrays. In

what we refer to as a generalized elemental subroutine, we allow the elemental data

objects to be, in addition to individual array elements, array slices of arbitrary dimen-

sions and deĄne an appropriate semantics of repetition accordingly. Through loop nest

generation, local variable transformation and subroutine invocation aggregation, we

demonstrated that generalized elemental subroutines can enable a level of performance
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in the generated code close to that of handwritten code while signiĄcantly reducing the

amount of programming efort. However, the code optimization methods designed for

generalized elemental subroutines are relatively conservative due to the fact that the

programming model does not make any assumptions about the elemental semantics of

the subroutines. This motivated us to consider a second programming model. The

latter programming model is functional and restricts the expressible semantics to

several patterns that are suiciently expressive to specify the computation needed by

Ąnite diference-based LES but compact enough that the semantics can be analyzed

precisely using the polyhedral model. This design enabled us to employ the more

advanced polyhedral model-based computation scheduling methods compared to the

heuristic-driven loop nest generation method of generalized elemental subroutines and

additionally consider computationŰcommunication interleaving and array coalescing in

the code optimization and generation process. As a result, we were able to match the

performance level of handwritten code with automatically generated code in empirical

experiments.

6.2 Suggested directions for future exploration

6.2.1 Eicient numerical methods and implementation of Ąnite diference-based large

eddy simulation of jet engine noise using implicit time integration

As we have mentioned in section 1.1, the CFL condition dictates that the time

integration step size in LES must scale proportionally to the unit grid spacing in

order to maintain numerical stability. This implies that the Ąner the grid spacing,

the more time steps are needed to complete the time integration. Consequently, the

computational cost of LES for the same jet simulation problem increases superlinearly

with respect to the total size of the computational grid. For high-Ądelity LES, such

superlinear scaling can render the computation prohibitively expensive. One possible

mitigation to this limitation in the time integration step size is use an implicit time

integration method as opposed to the explicit RungeŰKutta methods. The feasibility
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of implicit time integration is rooted in the fact that while the CFL condition links

the integration step size to the unit grid spacing, it does so only qualitatively and does

not prescribe a concrete quantitative relation between the two quantities. Therefore,

although the CFL condition is fundamentally uncircumventable, it is possibly to

exploit the extra numerical stability provided by implicit time integration methods

over the explicit methods to increase the time integration step size.

The formulation of LES with implicit time integration in [48], which is an extension

of the method proposed in [8] to three-dimensional simulation problems, uses a linear

multistep method (LMM) based on the second-order backward diference formula

(BDF). Being an alternating-direction implicit (ADI) method, it avoids the need to

solve linear systems which couple the three coordinate directions of the computational

space and instead relies on linear systems deĄned on grid lines as in the case of explicit

time integration. Notable characteristics of the linear systems include:

• Each linear system involves all Ąve Ćow variables, and its coeicient matrix is

comprised of 5× 5 blocks capturing the interactions between the Ćow variables.

• In order to achieve fourth-order and sixth-order spatial accuracy, the coeicient

matrices need to be block tridiagonal and block pentadiagonal, respectively.

• The coeicient matrices are not diagonally dominant. Quite the contrary, the

main diagonals are likely the lightest-weighted in terms of element magnitudes

among all diagonals.

• The coeicient matrices are time- and space-dependent, i.e., they vary from one

time integration step to another and from one grid line to another.

These characteristics necessarily challenge the feasibility of straightforward gener-

alization of our specialized version of the truncated SPIKE algorithm to the block

tridiagonal and block pentagonal linear systems. If a new linear system solver is to

be applied, it must be numerically stable and suiciently eicient so that the net

performance gain from the increased time integration step sizes minus the added

computational cost due to the more complex mathematical formulation is not negated.
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6.2.2 Extension of the semantic model and code optimization strategies of the

functional array programming model

While the functional array programming model described in Chapter 5 are suicient

for expressing the major patterns of computation in Ąnite diference-based LES of jet

engine noise and capable of generating code whose eiciency with performance on

par with handwritten code, the following extensions to its semantic model and code

optimization strategies which expands its coverage of regular grid-based numerical

applications are worth considering:

• The syntactic rules of array deĄnitions by arithmetic can be relaxed. The

syntactic restrictions in section 5.3.1 only cater to the needs of Ąnite diference-

based LES, but the complexity of the permissible syntaxes for array deĄnitions

by arithmetic is really only constrained by the operation scheduling method

used by computation scheduling and the deĄnitionŰuse chain analysis method

used by array dimension elimination and array coalescing. If these methods are

readily able or can be extended to handle the more complex syntaxes, there is

no need to stay conĄned to the current design.

• Flexible array dimension sizes and recursive procedure invocation can be in-

troduced. As an importance class of regular grid-based numerical applications,

multigrid (MG) methods cannot be expressed by our functional array program-

ming model. In order to represent the grid hierarchy, especially in the restriction

and prolongation steps, array dimension sizes must not be limited to compile-

time constants and the symbolic run-time constants nk. Recursion in procedure

invocation is also necessary for full multigrid (FMG) methods, which additionally

implies the need for predicated versions of array deĄnitions.

• Array dimension elimination and array coalescing can take loop tiling into

consideration. For array dimension elimination, this means to detect the smallest

size that a dimension of an array can be reduced to if that dimension cannot
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be completely eliminated. When loop tiling is present, array elements accessed

in diferent loop tiles may not have overlapping lifetimes even if those accessed

in the same loop tiles do. This creates opportunities to reduce the sizes of the

involved array dimensions to the tile sizes. For array coalescing, this means to

use loop tiling combined with proper computation scheduling to work around

overlapping lifetimes between arrays in stencil-like computation, which can

potentially enable in-place implementations.
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