213 research outputs found

    Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy

    Get PDF
    Automated image processing has the potential to assist in the early detection of diabetes, by detecting changes in blood vessel diameter and patterns in the retina. This paper describes the development of segmentation methodology in the processing of retinal blood vessel images obtained using non-mydriatic colour photography. The methods used include wavelet analysis, supervised classifier probabilities and adaptive threshold procedures, as well as morphology-based techniques. We show highly accurate identification of blood vessels for the purpose of studying changes in the vessel network that can be utilized for detecting blood vessel diameter changes associated with the pathophysiology of diabetes. In conjunction with suitable feature extraction and automated classification methods, our segmentation method could form the basis of a quick and accurate test for diabetic retinopathy, which would have huge benefits in terms of improved access to screening people for risk or presence of diabetes

    Psychiatric Case Record

    Get PDF
    Bipolar Disorder-Mania: Patient was apparently normal one-month back, Then all of a sudden he developed sleep disturbances –mainly difficult in initiation of sleep. He also started abusing his family members for unwanted things. Subsequently, he started talking excessively and irritable. Sometimes he sings film songs and dances. He used to say that God Supreme exists in himself and so he has all the powers of Almighty. With that superior power he says that he can solve all the problems in this world. He also says that he has invented herbs to keep people young. For the past one week, he talks excessively without having an hour of sleep & wanders here and there & found excessively smoking. He becomes excessively spiritual and goes to near by villages for offering prayers to God. He takes only a little food everyday and he is very much keen in personal cleanliness. Paranoid Schizophrenia: She was apparently normal 8 months back, then she developed sleep disturbances in the form of difficult in falling asleep. She was found talking & smiling to herself at night & day with mirror gazing. She started saying that her neighbour & relatives are planning to kill herself by poisoning. In this context she had frequent quarrels with them and she refused to take food prepared by her mother in law. She left the home at night without informing any one and started wandering in the road side near her home. She was complaining that she hears voices as if her neighbour & relatives were talking about her among themselves She was not doing house hold activities for past 6 months and she was not taking care of her child. Her personal hygiene was very much deteriorated slowly as she used to take bath & brush, only if she was asked to do so. She started abusing & assaulting the strangers and family members. Generalised Anxiety Disorder: Six months back he was apparently normal. He is working as a system analyst in a private bank . He had once, made a mistake in his bank work for which he was given charges by his employer, followed this event he becomes very tense and afraid whenever his boss called him. He is very cautious that he should not commit any mistakes. Even though he is not doing so, he fears that he may commit some mistake in his work. At that moment he develops palpitation, giddiness, breathlessness, excessive sweating over palms and soles. Slowly these symptoms present through out the day even when he was not in his office, and he could not control his fearfulness. For the past 6 months he didn’t sleep well. His sleep is disturbed by bad dreams. Recurrent Depressive Disorder: Patient was apparently alright 2 months back. Then she developed sleep disturbances particularly early morning awakening, she use to wake up by 3.00 am and use to brood about herself and started crying. She was not doing her domestic work as before, as she felt excess tiredness and use to take frequent rests. She developed poor communication. She had lost her interest in pleasurable activities and was not interested in watching TV, and attending family gatherings. She stayed aloof most of the time & calm, quiet and withdrawn. She was expressing her helplessness and hopelessness about the future. She started to have decline in maintaining self care. 15 days back, she frequently expressed suicidal ideas and she had attempted suicide by hanging herself and was rescued by neighbours. 5 days back, she started talking in an irrelevant manner. She was smiling to self. She was assaulting her family members. She was suspicious that her neighbour had done black magic on her and also saying that people are talking about her. She reported hearing the voice of her neighbour scolding and threatening her. Organic Brain Syndrome – Dementia: Ten months back he was apparently alright. Then his relatives noticed himself frequently misplaces things inside his home. Then he started behaving aggressively. He was beating his wife without reason. He was roaming here and there, running out of home and wandering aimlessly. He was not able to come back home when he goes out. He was brought back to home by his relatives. Slowly he developed fearfulness and tremulousness while he was staying alone. He also started saying that his family members & neighbours were talking about himself, in this context he would make frequent quarrels with them. He also started hearing voices of known male voices abusing himself in third person. He sleeps for few hour only. He is passing urine and motion inside the house. He is asking about his brother and mother-in-law who were expired long back. He behaves abnormally such as pouring water in the plate while eating. And his relatives found the symptoms were worsened by evening. All these symptoms started insidiously, increased in severity through time and attained the present state. No history of loss of appetite / crying spells / suicidal tendencies / convulsions / fever / head injury

    Use of smartphones for detecting diabetic retinopathy: a protocol for a scoping review of diagnostic test accuracy studies

    Get PDF
    Introduction: Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus and the leading cause of impaired vision in adults worldwide. Early detection and treatment for DR could improve patient outcomes. Traditional methods of detecting DR include the gold standard Early Treatment Diabetic Retinopathy Study (ETDRS) seven standard fields fundus photography, ophthalmoscopy and slit-lamp biomicroscopy. These modalities can be expensive, difficult to access and require involvement of specialised healthcare professionals. With the development of mobile phone technology, there is a growing interest in their use for DR identification as this approach is potentially more affordable, accessible and easier to use. Smartphones can be employed in a variety of ways for ophthalmoscopy including the use of smartphone camera, various attachments and artificial intelligence for obtaining and grading of retinal images. The aim of this scoping review is to determine the diagnostic test accuracy of various smartphone ophthalmoscopy approaches for detecting DR in diabetic patients. Methods and analysis: We will perform an electronic search of MEDLINE, Embase and Cochrane Library for literature published from 2000 onwards. Two reviewers will independently analyse studies for eligibility and assess study quality using the QUADAS-2 tool. Data for a 2⨉2 contingency table will be extracted. If possible, we will pool sensitivity and specificity data using the random-effects model and construct a summary receiver operating characteristic (SROC) curve. In case of high heterogeneity, we will present the findings narratively. Subgroup analysis and sensitivity analysis will be performed where appropriate. Ethics and dissemination: This scoping review aims to provide an overview of smartphone ophthalmoscopy in DR identification. It will present findings on the accuracy of smartphone ophthalmoscopy in detecting DR, identify gaps in the literature and provide recommendations for future research. This review does not require ethical approval as we will not collect primary data

    Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images.

    Get PDF
    Background: Photographic diabetic retinopathy screening requires labour-intensive grading of retinal images by humans. Automated retinal image analysis software (ARIAS) could provide an alternative to human grading. We compare the performance of an ARIAS using true-colour, wide-field confocal scanning images and standard fundus images in the English National Diabetic Eye Screening Programme (NDESP) against human grading. Methods: Cross-sectional study with consecutive recruitment of patients attending annual diabetic eye screening. Imaging with mydriasis was performed (two-field protocol) with the EIDON platform (CenterVue, Padua, Italy) and standard NDESP cameras. Human grading was carried out according to NDESP protocol. Images were processed by EyeArt V.2.1.0 (Eyenuk Inc, Woodland Hills, California). The reference standard for analysis was the human grade of standard NDESP images. Results: We included 1257 patients. Sensitivity estimates for retinopathy grades were: EIDON images; 92.27% (95% CI: 88.43% to 94.69%) for any retinopathy, 99% (95% CI: 95.35% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. For NDESP images: 92.26% (95% CI: 88.37% to 94.69%) for any retinopathy, 100% (95% CI: 99.53% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. One case of vision-threatening retinopathy (R1M1) was missed by the EyeArt when analysing the EIDON images, but identified by the human graders. The EyeArt identified all cases of vision-threatening retinopathy in the standard images. Conclusion: EyeArt identified diabetic retinopathy in EIDON images with similar sensitivity to standard images in a large-scale screening programme, exceeding the sensitivity threshold recommended for a screening test. Further work to optimise the identification of ‘no retinopathy’ and to understand the differential lesion detection in the two imaging systems would enhance the use of these two innovative technologies in a diabetic retinopathy screening setting

    A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems: Eye Microbiome

    Get PDF
    In the field of computer science, Artificial Intelligence can be considered one of the branches that study the development of algorithms that mimic certain aspects of human intelligence. Over the past few years, there has been a rapid advancement in the technology of computer-aided diagnosis (CAD). This in turn has led to an increase in the use of deep learning methods in a variety of applications. For us to be able to understand how AI can be used in order to recognize eye diseases, it is crucial that we have a deep understanding of how AI works in its core concepts. This paper aims to describe the most recent and applicable uses of artificial intelligence in the various fields of ophthalmology disease

    A Review on Detection of Diabetic Retinopathy using Deep Learning and Transfer Learning based Strategies

    Get PDF
    Diabetic Retinopathy (DR) is considered to be one of the most widely observed and a complex variation of diabetes and stands as a leading cause of blindness globally. The occurrence of DR causes impairment in the retinal blood vessels and leads to unusual growth of blood arteries in the eye. Manual examinations and analysis suggests that the prevalence of DR has been enormously growing at an exponential rate and has already registered for more than 160 million cases worldwide. On the other hand, its diagnostic screening is not only challenging, but also computationally expensive at the same time. Due to the highlighting importance of its early diagnosis in terms of treatment, multiple concepts to DR detection have been used in the past few years. However, research in recent times has resulted in the fact that deep learning based CNN structures and Transfer Learning based MedNets have been popularly used in DR detection, due to its superior performance in the medical domain. As a result of such advancements in Deep Learning methodologies, this article proposes a review on automated approaches used to detect diabetic retinopathy using image processing and disease classification techniques. The review is further preceded with a comprehensive analysis on training a model with an already pre-trained network whose primary goal is to generate useful information and provide it to diabetic researchers, medical practitioners and patients

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET

    The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review

    Get PDF
    Artificial intelligence (AI) is a subset of computer science dealing with the development and training of algorithms that try to replicate human intelligence. We report a clinical overview of the basic principles of AI that are fundamental to appreciating its application to ophthalmology practice. Here, we review the most common eye diseases, focusing on some of the potential challenges and limitations emerging with the development and application of this new technology into ophthalmology

    A deep learning model to assess and enhance eye fundus image quality

    Get PDF
    Engineering aims to design, build, and implement solutions that will increase and/or improve the life quality of human beings. Likewise, from medicine, solutions are generated for the same purposes, enabling these two knowledge areas to converge for a common goal. With the thesis work “A Deep Learning Model to Assess and Enhance Eye Fundus Image Quality", a model was proposed and implement a model that allows us to evaluate and enhance the quality of fundus images, which contributes to improving the efficiency and effectiveness of a subsequent diagnosis based on these images. On the one hand, for the evaluation of these images, a model based on a lightweight convolutional neural network architecture was developed, termed as Mobile Fundus Quality Network (MFQ-Net). This model has approximately 90% fewer parameters than those of the latest generation. For its evaluation, the Kaggle public data set was used with two sets of quality annotations, binary (good and bad) and three classes (good, usable and bad) obtaining an accuracy of 0.911 and 0.856 in the binary mode and three classes respectively in the classification of the fundus image quality. On the other hand, a method was developed for eye fundus quality enhancement termed as Pix2Pix Fundus Oculi Quality Enhancement (P2P-FOQE). This method is based on three stages which are; pre-enhancement: for color adjustment, enhancement: with a Pix2Pix network (which is a Conditional Generative Adversarial Network) as the core of the method and post-enhancement: which is a CLAHE adjustment for contrast and detail enhancement. This method was evaluated on a subset of quality annotations for the Kaggle public database which was re-classified for three categories (good, usable, and poor) by a specialist from the Fundación Oftalmolóica Nacional. With this method, the quality of these images for the good class was improved by 72.33%. Likewise, the image quality improved from the bad class to the usable class, and from the bad class to the good class by 56.21% and 29.49% respectively.La ingeniería busca diseñar, construir e implementar soluciones que permitan aumentar y/o mejorar la calidad de vida de los seres humanos. Igualmente, desde la medicina son generadas soluciones con los mismos fines, posibilitando que estas dos áreas del conocimiento convergan por un bien común. Con el trabajo de tesis “A Deep Learning Model to Assess and Enhance Eye Fundus Image Quality”, se propuso e implementó un modelo que permite evaluar y mejorar la calidad de las imágenes de fondo de ojo, lo cual contribuye a mejorar la eficiencia y eficacia de un posterior diagnóstico basado en estas imágenes. Para la evaluación de estás imágenes, se desarrolló un modelo basado en una arquitectura de red neuronal convolucional ligera, la cual fue llamada Mobile Fundus Quality Network (MFQ-Net). Este modelo posee aproximadamente 90% menos parámetros que aquellos de última generación. Para su evaluación se utilizó el conjunto de datos públicos de Kaggle con dos sets de anotaciones de calidad, binario (buena y mala) y tres clases (buena, usable y mala) obteniendo en la tareas de clasificación de la calidad de la imagen de fondo de ojo una exactitud de 0.911 y 0.856 en la modalidad binaria y tres clases respectivamente. Por otra parte, se desarrolló un método el cual realiza una mejora de la calidad de imágenes de fondo de ojo llamado Pix2Pix Fundus Oculi Quality Enhacement (P2P-FOQE). Este método está basado en tres etapas las cuales son; premejora: para ajuste de color, mejora: con una red Pix2Pix (la cual es una Conditional Generative Adversarial Network) como núcleo del método y postmejora: la cual es un ajuste CLAHE para contraste y realce de detalles. Este método fue evaluado en un subconjunto de anotaciones de calidad para la base de datos pública de Kaggle el cual fue re clasificado por un especialista de la Fundación Oftalmológica Nacional para tres categorías (buena, usable y mala). Con este método fue mejorada la calidad de estas imágenes para la clase buena en un 72,33%. Así mismo, la calidad de imagen mejoró de la clase mala a la clase utilizable, y de la clase mala a clase buena en 56.21% y 29.49% respectivamente.Línea de investigación: Visión por computadora para análisis de imágenes médicasMaestrí
    corecore