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Thesis or degree work presented as a partial requirement to apply for the title of:

Magister en Ingenieŕıa Biomédica
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Resumen

La ingenieŕıa busca diseñar, construir e implementar soluciones que permitan aumentar y/o

mejorar la calidad de vida de los seres humanos. Igualmente, desde la medicina son gen-

eradas soluciones con los mismos fines, posibilitando que estas dos áreas del conocimiento

convergan por un bien común. Con el trabajo de tesis “A Deep Learning Model to Assess

and Enhance Eye Fundus Image Quality”, se propuso e implementó un modelo que permite

evaluar y mejorar la calidad de las imágenes de fondo de ojo, lo cual contribuye a mejorar

la eficiencia y eficacia de un posterior diagnóstico basado en estas imágenes. Para la evalu-

ación de estás imágenes, se desarrolló un modelo basado en una arquitectura de red neuronal

convolucional ligera, la cual fue llamada Mobile Fundus Quality Network (MFQ-Net). Este

modelo posee aproximadamente 90 % menos parámetros que aquellos de última generación.

Para su evaluación se utilizó el conjunto de datos públicos de Kaggle con dos sets de anota-

ciones de calidad, binario (buena y mala) y tres clases (buena, usable y mala) obteniendo en

la tareas de clasificación de la calidad de la imagen de fondo de ojo una exactitud de 0.911 y

0.856 en la modalidad binaria y tres clases respectivamente. Por otra parte, se desarrolló un

método el cual realiza una mejora de la calidad de imágenes de fondo de ojo llamado Pix2Pix

Fundus Oculi Quality Enhacement (P2P-FOQE). Este método está basado en tres etapas

las cuales son; premejora: para ajuste de color, mejora: con una red Pix2Pix (la cual es una

Conditional Generative Adversarial Network) como núcleo del método y postmejora: la cual

es un ajuste CLAHE para contraste y realce de detalles. Este método fue evaluado en un

subconjunto de anotaciones de calidad para la base de datos pública de Kaggle el cual fue re

clasificado por un especialista de la Fundación Oftalmológica Nacional para tres categoŕıas

(buena, usable y mala). Con este método fue mejorada la calidad de estas imágenes para la

clase buena en un 72,33 %. Aśı mismo, la calidad de imagen mejoró de la clase mala a la

clase utilizable, y de la clase mala a clase buena en 56.21 % y 29.49 % respectivamente.

Palabras clave: Calidad de Imagen, Evaluación de Calidad, Fondo de Ojo, Calidad de

Imagen sin Referencia, IA Móvil, Aprendizaje Profundo, Clasificación, Degradación

Sintética de la Calidad, Mejora de la Imagen, Red de Adversarios Generativos Condi-

cional.

Abstract

Engineering aims to design, build, and implement solutions that will increase and/or improve

the life quality of human beings. Likewise, from medicine, solutions are generated for the

same purposes, enabling these two knowledge areas to converge for a common goal. With

the thesis work “A Deep Learning Model to Assess and Enhance Eye Fundus Image Qual-
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ity”, a model was proposed and implement a model that allows us to evaluate and enhance

the quality of fundus images, which contributes to improving the efficiency and effectiveness

of a subsequent diagnosis based on these images. On the one hand, for the evaluation of

these images, a model based on a lightweight convolutional neural network architecture was

developed, termed as Mobile Fundus Quality Network (MFQ-Net). This model has approx-

imately 90 % fewer parameters than those of the latest generation. For its evaluation, the

Kaggle public data set was used with two sets of quality annotations, binary (good and bad)

and three classes (good, usable and bad) obtaining an accuracy of 0.911 and 0.856 in the

binary mode and three classes respectively in the classification of the fundus image quality.

On the other hand, a method was developed for eye fundus quality enhancement termed as

Pix2Pix Fundus Oculi Quality Enhancement (P2P-FOQE). This method is based on three

stages which are; pre-enhancement: for color adjustment, enhancement: with a Pix2Pix

network (which is a Conditional Generative Adversarial Network) as the core of the method

and post-enhancement: which is a CLAHE adjustment for contrast and detail enhancement.

This method was evaluated on a subset of quality annotations for the Kaggle public database

which was re-classified for three categories (good, usable, and poor) by a specialist from the

Fundación Oftalmolóica Nacional. With this method, the quality of these images for the

good class was improved by 72.33 %. Likewise, the image quality improved from the bad

class to the usable class, and from the bad class to the good class by 56.21 % and 29.49 %

respectively.

Keywords: Image Quality, Quality Assessment, Eye Fundus, Non-reference Image

Quality, Mobile AI, Deep Learning, Classification, Synthetic Quality Degradation,

Image Enhancement, Conditional Generative Adversarial Network.
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1 Introduction

The acquisition and analysis of images in fields such as astronomy, engineering and photog-

raphy, among others make it possible to record, represent and study behaviors of natural

and artificial phenomena. Likewise, in the medical field they constitute a valuable tool for

specialists to improve their work, largely in terms of time and associated costs, generating

a quick, accurate and economic diagnosis. Some of the most widely used medical imag-

ing techniques and technologies today are computed tomography (CT), magnetic resonance

imaging (MRI), ultrasound and ophthalmoscopy. Within ophthalmological studies, which

consist of the exploration of the fundus through the pupil; the transparent means of the eye-

ball; the retina and the optic disc [1], the use of fundus images is essential for the diagnosis

and treatment of various eye diseases such as diabetic macular edema, age-related macular

degeneration and diabetic retinopathy, as well as for the detection of elements such as ex-

udates, micro aneurysms and hemorrhages, among others [2]. Being Diabetic Retinopathy

(DR) [3] the most common cause of vision loss among people with diabetes and the leading

cause of vision impairment and blindness among working-age adults [3] converts this disease

in one area of great interest for studies today.

There are various devices, fixed, portable, commercial and non-commercial for obtaining fun-

dus images. Within these devices, the most used are: Retinograph [4], Slit Lamp [5], D-Eye

Portable Retinal System [6], Smartphone y lente 20 D [6], Portable Eye Examination Kit [6],

SmartScope/Pictor Plus [6], Horus Scope [6], Ocular CellScope [6] and iExaminer [6].

It is evident that, although fixed models are superior in terms of quality of the images

obtained, they have disadvantages over mobile or portable models such as their high acquisi-

tion costs. Moreover, mobile devices, although they are cheaper than fixed devices, present a

greater variability at the moment of capturing a fundus image, affecting the quality of these

images, compromising their usefulness for an adequate study or diagnosis.

Currently, regarding the quality of fundus images according to the “Essential Elements in

Developing a Diabetic Retinopathy Screening Program” [7], they have developed a series of

guidelines on which ophthalmology specialists can rely to determine the quality of a fundus

image.

In this thesis, an original application of DL techniques was developed, producing a general

model both for eye fundus image assessment and enhancement as shown in Figure 1-1. This

model receives as an input an eye fundus image to verify its quality. Once the quality is

verified, if the model classifies it as poor (bad) or partially good (usable), the quality en-

hancement model performs processing in order to upgrade its quality. Otherwise, the image
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is not enhanced and is presented in its original format.

Figure 1-1: Graphical summary for the eye fundus assessment and enhancement end-to-end

model

1.1 Problem Identification

According to the World Health Organization in 2015 around 415 million adults were living

with Diabetes Mellitus (DM), 145 million suffer from some type of Diabetic Retinopathy

(DR). The disease prevalence in 2040 is estimated to be 642 million people with DM and

224 million with complications related to DR.

Ophthalmology specialists have to perform the diagnosis process of ocular diseases using

eye fundus images. Although ophthalmologist’s centers define acquisition protocols, several

problems are presented yet. In specific, the proper quality of fundus images that ensures a

reliability diagnostic, mainly in scenarios where the acquisition is performed by mobile or

portable camera devices is still a challenge.

In Colombia, the ocular screening of the population of hard-to-reach and rural areas is

carried out ophthalmic brigades using these portable devices. However, an incorrect fundus

image quality could lead to inappropriate health interventions in the people and poor public

politics.

On the other hand, the design of methods to enhance public and private datasets of ophthal-

mologist’s centers with regular or bad quality is poorly tackled by researchers. Besides, to

our knowledge, no method integrates both evaluation and enhancement of the fundus image

quality through deep learning techniques.

Therefore, the following research questions arise in the framework of this proposal:

• How can the quality of the fundus image be automatically evaluated and improved by

means of models based on deep learning?
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• Which method based on deep learning allows for an adequate evaluation of fundus

images?

• How can the quality of the fundus image be improved automatically using deep learning

models?

• How can quality assessment and quality improvement models be combined into a single

end-to-end deep learning model?

1.2 Main and Specific Goals

1.2.1 Main Goals

To implement and to evaluate an end-to-end deep learning method to estimate and to im-

prove fundus image quality.

1.2.2 Specific Goals

• To propose a pre-processing strategy for fundus images.

• To propose/adapt a deep learning method to evaluate the quality of the fundus images.

• To propose/adapt a deep learning method to improve retinal images with poor quality.

• To propose an end-to-end model that integrates the evaluation and enhancement of

eye fundus images quality.

• Systematically validate and evaluate the proposed methods with real data.

1.3 Contributions

With this work culmination, it was contributed to diverse materials in terms of conference

papers, software, and datasets. The following is the outline of the main contributions of this

work.

1.3.1 Conference papers

The following is a list of papers that have been published and submitted during the devel-

opment of this research:

• A lightweight deep learning model for mobile eye fundus image quality assessment [8].
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• A conditional generative adversarial network-based method for eye fundus image qual-

ity enhancement [9].

• SOPHIA: System for OPHthalmic image acquisition, transmission, Intelligent Analysis

and decision support of ophthalmic images [10].

1.3.2 Software

It was contributed with two developed Python-based systems which can work both indepen-

dently and together as follows:

• A system for eye fundus image quality assessment. This system besides being developed

for two modalities (binary and three-class) it also has its respective mobile version.

• A system for eye fundus image quality enhancement.

1.3.3 Datasets

• A processed and re-classified Kaggle 1 sub-sampled dataset. The dataset comprises

5,628 eye fundus images with different resolutions and quality levels spread in three-

class category annotations provided by the specialist in Ophthalmology, Hernán Andrés

Ŕıos.

The annotations file is publicly available at https://github.com/adpzz/Eye-fundus-

image-quality-assessment-and-enhancement.

1.4 Thesis Structure

This thesis is structured as follows: The first chapter presents the thesis introduction, the

problem identification, the main and specific goals and the study contributions as well. The

second chapter presents the background and related works. The third chapter presents the

first problem tackled: the automatic assessment of the eye fundus images quality. The

fourth chapter presents the second problem: the enhancement of the eye fundus images

quality. Finally, the fifth chapter presents the thesis conclusions and ideas for future work.

1https://www.kaggle.com/c/diabetic-retinopathy-detection
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2.1 Quality Assessment

Image quality assessment is a fairly important research topic which has been studied for a

long time from diverse viewpoints. Some of these viewpoints are embodied in works such as

the one done by Yeadon et al. [11] in 1972 describing the modulation transfer function (MTF)

measurements on channel image intensifiers (one of the most important ways for image qual-

ity during that time). Hopkins [12] in his 1974 work talked about some of the basic aspects

of geometrical and diffraction optics that were relevant during the time for image evaluation

problems. Finley et al. [13] in 1977 presented a system which automatically matches scene

edge to a physical matrix of test edges for the purpose of estimating image quality. Gliatti

et al. [14] presented a review for the usual USAs’ Air Force-methods used to measure image

resolution which includes Tribar-Resolving Power, Maximum Magnification Factor (MMF),

Visual Edge Matching (VEM), Edge Trace Methods and Modulation Transfer Function

(MTF) Analysis. In this line, Tiziani [15] in 1978 proposed an image quality criteria for

aerial survey lenses based on MTF measurement. In 1980, Kuperman [16] realized a review

comparing twelve quality estimators among which are Inverse Square Law (ISL), MTF, Sun’s

Equation, Resolving Power (RP), Visual Image Evaluation (VIE), Acutance, Edge Width,

Reciprocal Edge Spread (RES), and two MTF/Aerial Image Modulations (MTF/AIM). In

this regard, Overington [17] in 1981 analyzed the image quality and observer performance

with relative visual efficiency which is based on modulation transfer function (MTF).

Later, in 1985 Nill [18] proposed a visual model weighted cosine transformation for image

compression and quality assessment based on an image cosine transformation with a Human

Visual - system model which used a Mean square error (MSE) measurement between the

original unprocessed image and the processed image. In addition, Buffett [19] in 1986 studied

the visual perception of simultaneous luminance contrast for subjective quality measures. In

1990, Sharp [20] published a study named Quantifying Image Quality. In this study, the main

goal was to look for mechanisms to solve the problem of measuring only the performance

of the displayed data. It is important to keep in mind that during that time, there was

no accepted way of quantitatively assessing image quality. In the same year, Barrett et

al. [21] presented a study related with the effects of quantum noise and object variability in

terms of SNR’s and ways for choosing and calculating appropriate SNR’s, both, for system

evaluation and optimization. As a continuation of this previous study, three years later, in

1993, Barrett et al. [22] divulged a model based on linear discriminant analysis termed the
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Hotelling Observer.

Related to the quality requirements, there are different works and methods regarding its

minimums. In this respect, one of the most notable works was carried out in 1994 by

Eskicioglu et al. [23] which evaluates diverse quality measures such as: Average Differ-

ence, Structural Content, N. Cross-correlation, Correlation Quality, N. Mean Square Error,

Hosaka plot, and Histogram, among others. The authors found out an interesting rela-

tion by combining numerical and graphical measures in grayscale image compression. Five

years later, Månsson [24] published an interesting and complete review of image quality

evaluation methods which are classified in physical, psychophysical and observer/diagnostic

performance categories. Keeping this research line, in 2002 Wang et al. [25] proposed an

universal objective image quality index to calculate and apply to various image processing

applications. In 2004, Wang et al. [26] introduced an alternative framework for evaluating

image quality based on the degradation of structural information. Additionally, in 2006,

Sheikh et al. [27] induced an information fidelity criterion that quantifies the Shannon in-

formation shared between the reference image and the images distorted in relation to the

information contained in the reference image itself.

So far, it has seen that there is a tendency for image quality assessment which involves

reference images for the analysis. Nevertheless, reference fundus images do not usually exist

when a diagnosis is made, therefore, an image quality assessment/rating can be performed

without reference (NR-IQA / IQG).

In 2011, there is a methodology transformation proposed by Marrugo et al, [28]. In a

comparative study, they implemented the use of non-reference quality metrics for fundus

imaging concentrating on autofocus and quality assessment as applications. This was key

to the correct operation of a fundus imaging system. With this new methodology in mind,

Mittal et al. [29] developed an algorithm for evaluating the quality of the natural scene NR

that operates in the spatial domain. In 2013, Köhler et al. [30], also, presented a non-reference

quality metric to quantify image noise and blur and its application to the evaluation of the

quality of the fundus image. Besides that, in 2014, Sevik et al.[31] developed a two-step

based retinal image quality assessment method using classical image processing and feature

extraction techniques. In the same year, Pires et al. [32] presented a general framework with

eye fundus quality assessment capabilities, based on a field definition and blur detection

strategy. Likewise, Yan et al. [33] introduced a no-reference quality assessment method for

retinal image based on supervised classification using a random forest classifier after a custom

preprocessing strategy. Mahapatra et al. [34] published a classification of retinal image

quality using neurobiological models of the human visual system, that combines unsupervised

information from local salience maps and supervised information from trained convolutional

neural networks (CNNs) to make a final decision on the image quality. Similarly, Tennakoon

et al. [35] proposed a method that leverages learned supervised information using CNN,

thus avoiding hand-engineered features. Abdel-Hamid et al. [36] introduced a quality index

without reference for retinal color images from the decomposition of wavelet images as well.
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Meanwhile, Sun et al. [37] presented a jointly fine-tuned CNN with a total loss equal to the

summation of the losses of all channels. Costa et al. [38] suggested an explainable evaluation

of the image quality of the retina. In the same year, Yu et al. [39] proposed an algorithm

that combines unsupervised features from saliency maps and supervised features coming

from convolutional neural networks (CNN).

Furthermore, in 2018, Zhou et al. [40] presented a central loss weighted softmax activation

function to resolve the unbalanced distribution of data in medical imaging. Zago et al. [41]

implemented an Inception-V3 [42] along with a fine-tuning strategy. Saha et al. [43] used

an Alexnet [44] CNN architecture by using a hinge loss as the loss function. Lately, Coyner

et al. [45] presented the implementation of a deep CNN for automated evaluation of the

quality of the fundus image in retinopathy of prematurity and Fu et al. [46] developed a

deep network based on the integration of different representations of color spaces.

It is really interesting the potential and the capacity of adaptability that these new models

have achieved when allowing to abstract the characteristics of non-referenced fundus images

for the execution of tasks like the quality assessment of these images. With regard to

its results, those have become more generalizable, thus reliability and validity rates have

increased.

2.2 Quality Enhancement

Image quality enhancement can be defined as a pre-processing technique that aims to sup-

press factors that affect image quality, while preserving the characteristics and other relevant

image information. To pursue this, Drago et al. [47] came up with a fast, high-quality tone

mapping technique based on logarithmic compression of luminance values, which imitates

the human response to light. In 2004, Mecocci et al. [48] combined one of the most effective

Retina algorithm (McCann99 [49]) with the Gray World transformation applied at a multi-

ple resolutions with an additional post-processing which improved color balance and range

results.

Stoica et al. [50] presented a two parts methodology: in the first part, they performed a labo-

ratory evaluation of the HVS model by the contrast sensitivity function (CSF), meanwhile, in

the second part, they implemented a technique of visual weightings for the JPEG2000 scheme

using the evaluated HVS model in the Fourier domain of the color image. Two years later,

Aibinu et al. [51] developed a new method of compensating uneven illumination in fundus

images termed global-local adaptive histogram equalization, which used partially-overlapped

windows (GLAPOW). In 2009, Cvetkovic et al. [52] presented a multi-scale high-frequency

enhancement scheme, using as gain a non-linear function of the detail energy.

Fundus images are generally degraded by noise suffering from low contrast problems. These

problems make it difficult for an ophthalmologist to detect and interpret diseases in the fun-

dus images (Sahu et al., [53]). In cases where these factors affect the recording of the fundus

image and poor quality images are obtained, it is necessary to provide alternative solutions to
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guarantee the best conditions for an accurate diagnosis. Therefore, some related works have

been developed such as the one proposed by Qidwai et al. [54] in 2010, in which he presented

a blind deconvolution method using the maximum probability estimation approach. Simi-

larly, in 2011 Kolar et al. [54] discussed how to correct non-uniform illumination of fundus

images based on a surface approximation with the B-Spline technique. Likewise, in 2011,

Marrugo et al. [55] presents how to restore the retinal image to color using a multi-channel

blind deconvolution approach.

Also, Yi et al. [56] in 2011, published a method of not uniformly luminosity and contrast

normalization present in the background retina images for quality enhancement. In 2013,

Datta et al. [57], shares what he defines as an effective approach for quality enhancement

in fundus images with non-dilated retina for detection tasks of microaneurysms using the

CLAHE technique. Lu et al. [58] presented a method to improve the quality of fundus image

using mathematical morphology, together, with a mixture of combined filters and Gabor

operations. In 2018, Vu et al. [59] publishes a study on fast and efficient enhancement

of image quality through desubpixel spiral neural networks as well. Wahid et al. [60], in

2018, developed a two-step approach by combining a histogram-based enhancement algo-

rithm (FHBE) and contrast-limited adaptive histogram equalization (CLAHE) to improve

the visual quality of fundus images. Also, in 2018 Joshi et al. [61] performed a detailed review

of preprocessing techniques that can be used to reduce blur in fundus images as they are

captured. Mitra et al. [62] in 2018, in turn, carried out work to improve and restore fundus

images with non-uniform illumination of the retina obtained through a thin layer of cataracts.

Finally, among the recent works (2019) on fundus images quality enhancement, there are

those developed by Qureshi et al. [63] and Sahu et al. [53] where the first one focuses on the

development of a hybrid multi-stage image processing framework for quality enhancement.

Sahu focused on addressing noise and contrast using the CLAHE filter to improve fundus

image quality. In the same manner, Yoo et al. [64] presented a cycleGANs-based method

for fundus quality enhancement which consists of the use of non-paired eye fundus images

with good quality to extract its latent features to apply those features over bad quality eye

fundus images.

2.3 Deep Learning

The study of artificial neural networks begins with the work of Warren McCulloch and Wal-

ter Pitts in 1943 [65], where they proposed a theory on the functioning of neurons, thus

succeeding in modeling a simple neural network by implementing electrical circuits. In re-

cent years, Deep Learning (DL) [66], which corresponds to neural network models with a

large number of layers for extraction and abstraction of higher-level features on raw data,

have had great success in a diverse range of problems including: text analysis, voice analysis,
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sequence analysis, image analysis.

One of the most important characteristics of DL is the possibility of being able to learn the

representation of raw data directly. Models with this capability are generally denoted as

end-to-end models as they directly receive the data in its original representation. They are

also capable of simultaneously learning the representation while solving the specific task (eg.

image classification).

One crucial component in DL-based modeling is the use of Convolutional Neural Networks

(CNN), which basically consist of networks that perform mathematical convolution opera-

tions across the different layers of the network. These are two-dimensional representations

of batch matrices that are windowed on the input data received by each layer of the network,

resulting in an abstracted representation of the original information [67].

Deep Learning, in ophthalmology, thanks to its surprising compatibility with regard to its

combination with medical domain images, has been implemented in fundus photographs, op-

tical coherence tomography, and visual fields achieving a robust classification in the detection

of diabetic retinopathy and retinopathy of prematurity, glaucoma disc, macular edema, and

age-related macular degeneration [68]. A great advantage of DL in ocular imaging lies in that

it can be used in conjunction with telemedicine as a possible solution to examine, diagnose

and monitor the main ocular diseases of patients in primary care and community settings [69].

Below, in Tables 2-1 and 2-2 are summarized the last 20 years of state-of-the-art works

related with eye fundus image quality assessment and enhancement respectively.

Table 2-1: State-of-the-art summary for eye fundus image quality assessment
Year Reference Modality Method Dataset

2000 Lalonde et al. [70]
Eye-fundus
image

Decision score based on
edge magnitude and
intensity distribution

Private

2001
Gagnon et al. [71]

Eye-fundus image
with masking,
vessel extraction
and macula detection

Histograms comparison Private

LalondeÝ et al. [72] Eye-fundus image
Histogram matching for
discriminator classification

Private

2003 Usher et al. [73]
Eye-fundus image
with vessel
segmentation

Classification based
threshold vessel
relevance

Private

2005 Toniappa et al. [74] Retinal Image
Histogram asymmetry
measurement

Private

2006 Fleming et al. [75] Retinal Image
Image clarity and field
definition scoring

Private

2007 Wen et al. [76] Retinal Image Vessels driven quality score CDHB

2009
Bartling et al. [77] Eye-fundus image

Quality score based on
sharpness and illumination

Private

Davis et al. [78] Retinal Image Feature based scoring
Private
Public: MESSIDOR

2010
Giancardo et al. [79]

Retinal Image with
vessel segmentation

SVM based on elliptical
local vessel density features

Private

Paulus et al. [80] Retinal Image
SVM based on clustering,
sharpness metric and
Haralick texture features

Private
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Table 2-1 continued from previous page
Moscaritolo et al. [81] Optic Disc Images Image sharpness score Private

2011
Marrugo et al. [28] Eye-fundus image No-reference metrics Private

Hunter et al. [82] Retinal Image
Contrast and vessel
quantification

Private

2012

Yu et al. [83]
Retinal Image with
vessel segmentation

Partial Least Squares classifier
based on vessels, histogram,
textural and local sharpness
features

Private

Dias et al. [84] Retinal Image

Multiple Feed-Forward
Backpropagation Neural Network
based on color, focus, contrast and
illumination features

Public: DRIVE,
MESSIDOR,
ROC and STARE

Huang et al. [85] OCT images
Maximum tissue contrast index,
histogram density modeling and
decomposition score

Private

Pires et al. [86] Retinal Image SVM based on similarity features Private

2013
Köhler et al. [30]

Retinal Image with
vessel segmentation

Quality metric Qv based on
noise and blur

DRIVE

Katuwal et al. [87]
Retinal Image
based on vessel
segmentation

SVM based on vessel features Private

2014

Dias et al. [88] Retinal Image Generic image indicators

Private
Public: DRIVE,
MESSIDOR,
ROC and STARE

Fasih et al. [89] Retinal Image SVM based on generic features Private
Nugroho et al. [90] Retinal Image Contrast measurement Public: HEI-MED

Sevik et al. [31]
Retinal Image with
vessel segmentation

SVM based on vessels, fovea
and optic disc features

Public: DRIMDB

Veiga et al. [91]
Eye-fundus image
with masks
representations

Fuzzy classifier using Wavelet,
Moment and Statistics-based
focus measures features

Private

Public: MESSIDOR
Fasih M. [92] Retinal Image SVM Private

2015

Wang et al. [93] Eye-fundus image
SVM and Decision Tree based
on three features of the visual
human system

Private
Public: DRIMDB
and DRIVE

Imani et al. [94] Retinal Image Shearlet Transform
Public: MESSIDOR
and Khatam-Al-Anbia

Giraddi et al. [95] Eye-fundus image
SVM based on energy, mean and
variance features

Public: DIARETDB0

Hamid et al. [96] Retinal image Wavelet score
Public: DRIMDF
and HRF

2016

Welikala et al. [97]
Retinal Image with
vessel segmentation

SVM based on vessel segmentation
Public:
UK Biobank dataset

Yao et al. [98] Eye-fundus image SVM based on generic features Private

Abdel-Hamid et al. [99] Retinal image

SVM based on sharpness,
illumination, homogeneity,
field definition, and content
features

Public: DRIMDB,
DR1, DR2, HRF
and MESSIDOR

Mahapatra et al. [100] Retinal image DL CNN: Custom network Public: DRISHTI

2017

Galdran et al. [101] Eye-fundus image
Mean-Subtracted Contrast-Normalized
scoring

Public: DRIMDB

Costa et al. [38] Eye-fundus image DL CNN: Multiple Instance Learning
Public: ARSN
and DRIMDB

Saha et al. [102] Eye-fundus image DL CNN: Alexnet Public: EyePACS
Yu et al. [39] Eye-fundus image Saliency Map and DCNN and SVM Kaggle

Costa et al. [103] Eye-fundus image
QvandImageStructureClustering
scores

Public: DRIVE
and MESSIDOR
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Table 2-1 continued from previous page

Shao et al. [104]
Eye-fundus image
and vessel
segmentation

SVM, Decision Tree
and Dictionary Learning based on
Illumination, Naturalness and
Structure levels

Public: MESSIDOR,
STARE, MUMS-DB,
CHASE DB, DRIVE,
DRIMDB
and EyePACS

2018

Zago et al. [41] Retinal image DL CNN: Inception-V3
Public: DRIMDB
and ELSA-Brasil

Saha et al. [43] Eye-fundus image DL CNN: Alexnet Public: EyePACS

Rodrigues et al. [105] Retinal image DL CNN: Custom network

Private
Public: IDRiD,
EyePACS, STARE,
ROC and HRF

Zhou et al. [40] Eye-fundus image
DL CNN: Inception-ResNet-V2
with multitask approach

Public: Kaggle

2019

Raj et al. [106]

Eye-fundus image
quality assessment
survey, challenges
and future scope

State-of-the-art review -

Fu et al. [46] Retinal image
DL CNN: Multiple color-space
fusion

Public: EyePACS

Coyner et al. [45] Retinal image DL CNN: Inception-V3 Private
Lauermann et al. [107] OCT image Multi-layer DCNN Private

Wang et al. [108] Eye-fundus image DL CNN: DenseNet
Public: DRIMDB
and DR1

Jimenez et al. [109] Retinal image
MLP Network based on
hand-extracted features

Private

2020

Pérez et al. [8] Eye-fundus image DL CNN: lightweight MFQ-Net Public: Kaggle

Alais et al. [110] Retinal image
DL CNN: lightweight based on
fovea location

Public: e-ophtha

Bhatkalkar et al. [111] Eye-fundus image DL CNN: Custom network
Public: STARE,
DRIMDB,
ONHSD and KMC

Liu et al. [112] Eye-fundus image
Gcforest for small samples
based on color and texture
features

Public: DRIMDB
and ACRIMA

Oraá et al. [113] Eye-fundus image DL CNN: InceptionResNetV2-based
Private
Public: DRIMDB

Shen et al. [114] Eye-fundus image
DL: Semi-tied adversarial
discriminative domain adaptation
model

Private
Public: IDRiD

Table 2-2: State-of-the-art summary for eye fundus image quality enhancement
Year Reference Modality Method Dataset

2001 Asmuth et al. [115]
Slit lamp biomicroscopic
fundus

Pairwise image alignment Private

2002
Lin et al. [116] Retinal vessels images

Background subtraction
of retinal blood vessels

Private

Wanas et al. [117] Retinal vessels images
Set of cascaded linear
directional filters

Private

2005 Sander et al. [118] OCT images Multiple scan averaging Private

2006
Belkacem et al. [119] Retinal image

Multi-scale spatial
decomposition

Private

Youssif et al. [120] Eye-fundus image
Contrast and illumination
equalization

Public: DRIVE
and STARE

Chang et al. [121] OCT images

Intensity Demodulation
of the Interlayer, compensation
of phase-shifting error
and camera calibration

Private
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Table 2-2 continued from previous page
2007 Bueno et al. [122] Eye-fundus image Mueller matrix elements based Private

2008
Joshi et al. [123] Retinal image

Domain knowledge
for non-uniform sampling
to estimate the degradation
and produce a correction factor

Public: DIARETDB1

Intajag et al. [124] Retinal image Indices of fuzziness Public: DRIVE

2009 Gu et al. [125] Eye-fundus image
Rough set to enhance subgraphs
from image wavelet equivalent

Private

2010 Qidwai et al. [54] Retinal image
Blind deconvolution using
maximum likelihood estimation

Public: STARE

2011 Giancardo et al. [126] Retinal image
Multiple images for high quality
image

Private

2012 Russell et al. [127] Retinal image Scattering based model Private

2013
Datta et al. [57] Retinal image CLAHE per patches Private

Sree et al. [128] Retinal image

Brightness control,
Contrast stretching
and Histogram equalization
on FPGA

Private

Setiawan et al. [129] Retinal image CLAHE over G channel Private

2014

Ab Rahim et al. [130] Eye-fundus image
Histogram Equalization, CLAHE
and Mahalanobis Distance

Public: DRIVE

Kulcsár et al. [131] Eye-fundus image
Fast optical flow estimation
compensation

Private

Jintasuttisak et al. [132] Retinal image
Nonlinear hue-saturation-intensity
color modeI
with Rayleigh CLAHE

Public: DIARETDB

Ravichandran et al. [133] Vessel image Gabor filtering based and CLAHE
Public: DRIVE
and STARE

2015
Datta et al. [134] Retinal image

Fuzzy histogram over
green channel
and intensity
and brightness equalization

Public: DRIVE,
STARE,
DIARETDB0
and DIARETDB1

Bartczak et al. [135]
Eye-fundus image
device assisted

Spectrally tunable light source
based on a digital micro-mirror
device

Private

2016

Yadav et al. [136]
Eye-fundus image
comparative study

HE, ADHE, CLAHE and ESIHE Private

Lu et al. [58] Vessel enhancement

Morphological filtering, CLAHE,
Multi-scale morphological
bottom-hat transformation
and weighted sum

Private

Soomro et al. [137]
Fundus Fluoresce in
Angiogram images

Morphological operation with
threshold based stationary wavelet
transformation and CLAHE

Public: Fundus
Fluorescein
Angiogram
Photographs of
Diabetic Patients,
HRF
and Colour Fundus
Images of Healthy
Persons and Patients
with Diabetic
Retinopathy Database

Krylov et al. [138] 3D fundus image Grid warping based Private

2017

He et al. [139] Retinal image
Scale-invariant feature
transformation based

Private

Bandara et al. [140] Retinal image
Speeded up adaptive contrast
enhancement

Public: STARE
and DRIVE
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Table 2-2 continued from previous page

Zhou et al. [141] Retinal image

Luminosity
and contrast enhancement
by gain matrix
and CLAHE over single channel

Private

Anam et al. [142] Eye-fundus image
Maximum entropy
and Perona-Malik
diffusion filter

Private

2018

Reddy et al. [143] Retinal image
Piecewise gamma-corrected
dominant orientation-based
histogram equalization

Private

Elloumi et al. [144]
Renita detction
and image
enhancement

Filter transformations
and CLAHE equalization

Private:
Smartphone-Captured
Retinal Image
Database

Jin et al. [145] Eye-fundus image
CLAHE over LAB color space
representation

Private

Mitra et al. [62] Eye-fundus image
Blurriness subtraction,
Hue Saturation Intensity
and min-max color adjustment

Public: DRIVE
and STARE

Wahid et al. [60] Eye-fundus image
FHBE-CLAHE
and CLAHE-FHBE

Public: DIARETDB
and DIARETDB1

Krylov et al. [146] Fundus Vessel Image DL SRCNN Public: DRIVE

Dhal et al. [147] Retinal image
Weighted and entropy-based
thresholded histogram
equalisation

Private

Mazlan et al. [148] Retinal image
Min filtering with
morphological enhancement

Public: e-ophtha

Sabri et al. [149] Retinal image
A seven preprocessing steps
method based on filters
and transformations

Public: e-ophtha
and MESSIDOR

2019

Sahu et al. [53] Retinal image
Filters for noise removal
and CLAHE transformation

Public: STARE

You et al. [150] Eye-fundus image
DL cycleGAN with attention
block module

Private
Public: EyePACS

Wahid et al. [151] Retina vessel Image CLAHE - FHBE based
Public: DRIVE
and STARE

Subramani et al. [152]
Medical images with
eye-fundus image

Fuzzy contextual dissimilarity
adaptive histogram equalization

Private

Zulfahmi et al. [153] Retinal image CLAHE with diverse filters Public: STARE

Xia et al. [154]
Medical images with
eye-fundus image

Correction strategy in
wavelet transform domain

Private

2020

Sharif et al. [155] Retinal image

Histogram equalization,
contrast stretching,
image negative,
brightness enhances,
low light image
and gray level slicing

Private

dos Santos et al. [156] Eye-fundus image CLAHE and MLP Public: DRIVE

Palanisamy et al. [157] Retinal image
Shearlet transform and adaptive
gamma-correction with CLAHE

Private

ElMahmoudy et al. [158] Retinal image Wavelet-based Private

Kandpal et al. [159] Retinal image
Edge- based texture histogram
equalization

Public: STARE,
DIARET DB0,
DIARET DB1
and CHASE

Yoo et al. [64] Retinal image DL cycleGAN Public: Custom



3 Eye Fundus Image Quality Assessment

This chapter explores the eye fundus quality assessment task, both for a binary and multi-

class scenario. This classification aims to grade the image quality from Kaggle dataset.

Previous works such as Saha et al. [102], who adapted the AlexNet [44] architecture (which

is a 62M parameters and 8 layers CNN) performs an automated quality assessment of color.

In like manner, Coyner et al. [45] presented a work with an Inception-V314 CNN imple-

mentation assessing the eye fundus image quality in retinopathy of prematurity. Likewise,

Mahapatra et al. [34] described models that combine unsupervised information from lo-

cal saliency maps and supervised information from trained CNNs for retinal image quality

classification. Costa et al. [38] proposed for the image quality of the retina an explicable

evaluation. Meanwhile, Zhou et al. [40] used a weighted softmax activation function with

a central loss to resolve the unbalanced distribution of data in medical images. With this

work, it was developed a deep learning-based method to analyze eye fundus image quality

based on a light-weight CNN suitable to be run on mobile devices, termed Mobile Fundus

Quality Network (MFQ-Net).

This work was published in the International Symposium on Medical Information Processing

and Analysis, 2019.

3.1 Introduction

The acquisition and automatic analysis of images in fields such as astronomy, engineering,

and photography, among others make it possible to record, represent and study the behav-

ior of natural and artificial phenomena. In the medical field, images are a valuable tool

for specialists to support their work in diagnosis tasks based on ophthalmological studies.

These include the exploration through the pupil of the fundus of the eye; the transparent

means of the eyeball; the retina and the optical disc [160]. The use of fundus images is

essential for the follow-up and treatment of various ocular diseases such as diabetic macular

edema, age-related macular degeneration, and diabetic retinopathy through the detection of

elements such as exudates, microaneurisms and hemorrhages, among others [2].

The UK National Screening Committee [7] defines the guidelines which ophthalmologists

can use to determine the fundus image quality. The main reason for this kind of guidelines

is to report the minimum conditions to guarantee an appropriate exam so the specialists can

perform a better diagnosis. The image quality is usually assessed by the specialist, however,
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having automatic methods for quality assessment may help to improve the overall quality of

images taken by non-specialist (such as those acquired during medical brigades and screening

studies) as well as to reduce the time invested on quality control.

3.2 Materials and methods

Figure 3-1 shows the overall architecture of MFQ-Net. The model is based on a CNN which

is trained in a supervised fashion.

Figure 3-1: The graphical summary for the MFQ-Net architecture with two stages for the

training process of the proposed method
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3.2.1 Mobile Fundus Quality Network

This network consists of a fifteen CNN layers, which are structured on two main blocks: patch

feature extraction (PFE) block and the image classification (IC) block. The first block is

pre-trained with 224×224×3 patches extracted from the original images. The second block

takes the output of the first block, which is extended from patches to full images, and makes

the prediction for a full 896 × 896 × 3 image.

The overall architecture of the MFQ-Net is shown in Table 3-1. The extended first block re-

ceives 896×896×3 full images followed by three sub-blocks contains convolution/maxpooling

layers with 16, 32 and 64 filters, and the kernel size for each sub-block was of 11× 11, 9× 9,

and 7× 7 respectively. The second block has a convolution/batchnormalization/maxpooling

sub-block with 64 filters and a kernel size of 6×6, followed by a final convolution/maxpooling

sub-block with 64 filters and a kernel size of 6× 6 to finally incorporate two fully-connected

layers of 256 and 64 respectively. The output classification layer has 1 neuron and a sig-

moid activation function for binary classification and 3 neurons with softmax activation for

three-class classification. In total, the network has approximately 607K parameters.

Table 3-1: MFQ-Net summary, were PFE and IC refers to the blocks for patch feature

extraction and image classification respectively

Block Layer Size Channels Kernel size Pool size

PFE

Input

Conv 1

MaxPool 1

Conv 2

MaxPool 2

Conv 3

MaxPool 3

896x896

886x886

443x443

435x435

87x87

81x81

27x27

3

16

-

32

-

64

-

-

11x11

-

9x9

-

7x7

-

-

-

2x2

-

3x3

-

3x3

IC

Conv 4

BatchNorm

MaxPool 4

Conv 5

MaxPool 5

FullyCon 1

FullyCon 2

FullyCon 3

22x22

22x22

11x11

6x6

3x3

-

-

-

64

-

-

64

-

256

64

(1) - (3)

6x6

-

-

6x6

-

-

-

-

-

-

2x2

-

2x2

-

-

-

The model is trained in two stages. The idea is to train an initial smaller model on image

patches and later extend it to full images. For the first stage, each image is scaled to

896× 896× 3 size. Then it was split into 16 patches of 224× 224× 3 pixel resolution. These

patches are used to train the initial smaller model by adding an output binary layer that



3.2 Materials and methods 17

uses a sigmoid as an activation function and a binary cross-entropy as the loss function.

For the second stage, the second maxpooling pool size in the initial smaller model is modified

from 5× 5 to 3× 3 in order to avoid the float point number of parameters. Then, the model

is extended by adding the IC block and trained with the 896×896×3 scaled images as input,

using for the binary classification task a binary output layer with a sigmoid as activation

function and a binary cross-entropy as the loss function. For the three-class classification

task a three output layer uses a softmax as activation function and a categorical cross-entropy

as the loss function.

3.2.2 Dataset

There is a good variety of available eye fundus image datasets used commonly for pathology

classification and segmentation tasks. However, the number of available/public eye fundus

quality datasets is limited. Besides, some of them present issues such as category imbalance,

a very low number of samples, and an extremely differentiated quality separability.

The Kaggle DR dataset 1 was selected due to its resolution diversity; a wider number of

samples (35126 for training and 53576 for test sets); and its diverse images quality (good

and bad image quality likewise image with artifacts such as bright areas). Based on the

quality-labels reported for the Kaggle dataset, two different tasks were defined: a binary

classification task [40] and a three-classes classification task [46].

For this task, each image was resized to a resolution of 896 × 896 pixel with RGB channels

keeping its aspect ratio to later be split into 16 patches, of 224 × 224 pixel resolution each

one. From the set of patches it was randomly sampled a subset for training, validation, and

test keeping the class balance. A summary of the datasets used for this work is given in

table 3-2.

Table 3-2: Summary of used Kaggle annotation datasets

Dataset Quality label Training set Validation set Test set

Kaggle with

binary labels [40]

Accepted 1285 226 873

Rejected 1285 226 873

Kaggle with

three-classes

labels [46]

Good 6678 1669 8471

Usable 1501 375 4558

Bad 1856 464 3220

Some samples for Accepted and Rejected images from Zhou et al. [40] and Good, Usable

and Bad images from Fu et al. [46] are shown in figures 3-2 and 3-3 respectively.

1https://www.kaggle.com/c/diabetic-retinopathy-detection



18 3 Eye Fundus Image Quality Assessment

Figure 3-2: Image samples from Kaggle dataset with binary labels. a) Accepted quality. b)

Rejected quality.

Figure 3-3: Image samples from Kaggle dataset with 3-class labels. a) Good quality. b)

Usable quality. c) Bad quality.
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3.2.3 Experimental Setup

As described in the Subsection 3.2.1, the model is trained in two stages. For the first stage,

a hyperparameter exploration is carried out with a fix number of 20 epochs, varying both

the batch size, 2m for 1 ≤ m < 6 and the learning rate, between 7e−3 and 9e−7. This is only

performed on the binary dataset.

In the second stage, two models are trained: one for the binary and the other for the three-

classes classification task. In both cases, the patch feature extraction block is initialized

with the weights obtained in the first stage. The models are trained with Adam Optimizer

using a learning rate of 1e−6 along 25 epochs, freezing the first 6 layers to avoid weights

updating. Later, a fine-tuning process is done during 150 epochs by unfreezing the whole

architecture layers and using a learning rate of 1e−7. Each training was carried out using

an Nvidia GeForce RTX 2080 Ti graphic card, completing the whole training for the binary

classifier in approximately 6.10 hours and approximately 35.85 hours for the three-class

classifier.

3.3 Experimentation and Results

This section has a tow parts approach in order to evaluate, both, effectivity and efficiency

method performance.

3.3.1 Effectivity Evaluation

For each training stages and steps accuracy, loss, validation accuracy and validation loss (as

shown in table 3-3) were monitored. These gave as a result a learning rate of 8.496 e−5 and

batch size of 8 for best hyperparameters in the exploration stage.

Table 3-3: Models training performance, here PFE refers to the patch feature extraction

block

Model Loss Accuracy Validation Loss Validation Accuracy

PFE 0.3627 0.8401 0.3952 0.8303

MFQ-Net

(Binary)
0.1701 0.9413 0.2614 0.9107

MFQ-Net

(Three-class)
0.2236 0.9738 0.2412 0.9102

After the model’s performance evaluation, the obtained results were: for binary classification

tasks an accuracy of 0.9117 after fine-tuning and 0.8565 ACC for three-class classification
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after transfer learning. For the binary classification: sensitivity (SE), specificity (SP), ac-

curacy (ACC), positive prediction value (PPV), negative prediction value (NPV), and area

under the curve (AUC) were calculated, and for the three-class classification: ACC, precision

(PS), recall (RC) and, f-score (FS) were determined as shown in table 3-4.

Table 3-4: Performance for each method and model on testing sets

Model SE SP ACC PS RC FS PPV NPV AUC

Zhou et al. 0.954 0.976 0.965 0.999 - - - - -

MFQ-Net

(Binary)
0.9421 0.8853 0.9117 0.8774 0.9421 - 0.8774 0.9461 0.9595

Fu et al. - - 0.9175 0.8645 0.8497 0.8551 - - -

MFQ-Net

(Three-class)
- - 0.8565 0.8564 0.8564 0.8564 - - -

In the three-classes classifier, for the first class (good) just the 0.31% of the data was classified

as bad quality and 5.32% as usable quality. Besides, for the bad class just the 1.71% were

miss-classified as good quality and 12.33% as usable quality. However, the results for the

class usable presented the highest miss classification results with 18.19% miss-classified

samples as good quality and 12.59% of the images as bad quality.

3.3.2 Efficiency Evaluation

Additionally, it was wanted to evaluate the performance of the MFQ-Net model in a mobile

device. We measured the classification average elapsed time in milliseconds (AVG-ET) per-

formance. For the binary and 3-classes models over 5 randomly chosen images per class by

running on an Android 9.0 OS version smart-phone. It was compared against a MobileNet-

v2 implementation with 64 neurons fully connected layer. It was also measured the size of

each model in terms of the amount of Megabytes for both for Keras (K-S) and Tensorflow

lite representation (TFLite-S), the number of parameters for each model (PMS), and the

accuracy for each model (ACC) as shown in table 3-5. The results show a difference around

of 331 ms between models being the MobileNet-v2 model the faster one, however, in terms

of size and effectivity our MFQ-Net presents a better performance for this type of task.

Table 3-5: Models performance on Android OS

Model K-S TFLite-S PMS AVG-ET ACC

MFQ-Net (Binary)
5.89 2.32

607K 2195.80 0.9117

MFQ-Net (Three-class) 607K 2202.89 0.8565

MobileNet-v2 (Binary)
27.3 8.75

2.34M 1872.49 0.7399

MobileNet-v2 (Three-class) 2.34M 1863.45 0.7218
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3.4 Discussion

The first approach proposed for quality assessment was based on full-sized direct image clas-

sification. However, this approach was, on one hand computationally expensive limiting its

possibilities of being applied over mobile devices, and on the other hand, its capability to

abstract significant patterns for acceptable image quality was limited. Nonetheless, it was

noticed that a local-to-general transfer learning-fine tuned strategy produced even better

results, which showed a useful starting point for fundus image quality classification tasks by

complementing each other.

Second, the combination of the convolutional-maxpooling layers when performing a kernel

reduction with a factor of two allows the network to emulate a multi-scale (bottle-neck)

feature extraction refining in this way the type and characteristics learned about the image.

Third, the MFQ-Net was validated with two different datasets achieving accuracy results of

0.911 and 0.856 for binary and three-class classification respectively, which represents com-

parable results with the actual state-of-the-art methods and models in terms of effectivity.

Finally, regarding to the classification results for the three-classes, the usable class pre-

sented the most difficult decision criterion with similar miss classification results both on

images classified as good quality and images classified as poor quality.



4 Eye Fundus Image Quality

Enhancement

This chapter explores the eye fundus quality enhancement task for a multi-class scenario.

This method aims to enhance the quality of a new reclassified (by a specialist) dataset,

which is a sample from the Kaggle dataset 1. Some works have been previously addressed

these issues offering enhancement or adjustment methods in order to improve the available

data to guarantee the specialist diagnosis. Recently, different deep learning techniques for

the quality enhancement of natural images have been proposed. In particular, Yang et

al. [161] developed a Multi-Frame Convolutional Neural Network (MF-CNN) to enhance the

quality of the compressed video. Vu et al. [59] exposes a convolutional neural network for

image quality enhancement which also can be trained for super-resolution imaging. Yoo et

al. [64] presented a cycleGANs-based method for fundus quality enhancement. One of the

most popular is the Pix2Pix, proposed by Isola et al. [162] which consists of a Conditional

Generative Adversarial Network (cGAN) that generates new samples from a pre-establish

(conditional) condition provided during its training. This approach requires paired images

(good and bad quality) which is difficult to find in a common medical environment. With

this work is presented a deep learning-based method for eye fundus quality enhancement

termed Pix2Pix-Fundus Oculi Quality Enhancer (P2P-FOQE).

This work was published in the Workshop on Ophthalmic Medical Image Analysis from the

International Conference on Medical Image Computing and Computer Assisted Intervention,

MICCAI 2020.

4.1 Introduction

Deep learning models used for eye screening based on eye fundus images have obtained

outstanding results in the classification of retinal diseases, such as Diabetic Retinopathy

(DR), Diabetic Macular Edema (DME), and Age-Related Macular Degeneration (AMD)

among others [163].

These models have improved the prognosis of ocular diseases, increasing the number of early

and proper treatments positively impacting people’s life quality [164]. For that reason, the

need to ensure optimal working conditions in the screening facilities and medical devices

1https://www.kaggle.com/c/diabetic-retinopathy-detection
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is mandatory. However, acquisition devices often are affected by external factors such as

found noise, blurring, missed focus, illumination, and contrast issues hindering the detec-

tion by experts. The mishandling of these factors affects the ability of experts and deep

learning model performance [53, 141]. Some works have been previously addressed these

issues offering enhancement or adjustment methods in order to improve the available data

to guarantee the specialist diagnosis. Sahu et al. [53] proposed a noise removal and contrast

enhancement method based on contrast limited adaptive histogram equalization (CLAHE).

Singh et al. [165] described the use of median filters with Histogram Equalization (HE) and

CLAHE use with Curvelet Transformation for image enhancement in segmentation tasks.

Bandara et al. [140] presented an enhancement technique based in a Coye [166] algorithm

variant improved with a Hough line transform that is based on vessel reconstruction. Raja et

al. [167] explains the use of multi-directional local histogram equalization. Wahid et al. [60]

explained the combination of fuzzy logic and histogram-based enhancement algorithm with

CLAHE for eye fundus visual quality enhancement. Finally, Zhou et al. [141] detailed a two

steps method for eye fundus quality enhancement based on a color gain matrix with gamma

correction factor adjustment and an L channel CLAHE implementation.

Recently, different deep learning techniques for quality enhancement of natural images have

been suggested. In particular, Yang et al. [161] developed a Multi-Frame Convolutional

Neural Network (MF-CNN) to enhance the quality of the compressed video. Vu et al. [59]

exposes a CNN for image quality enhancement which also can be trained for super-resolution

imaging. One of the most popular networks for image reconstruction and image generation

due to its versatility and adaptability to different tasks is the Pix2Pix model proposed by

Isola et al. [162]. This method consists of a Conditional Generative Adversarial Network

(cGAN) that generates new samples from a pre-establish (conditional) condition provided

during its training. With regards to eye fundus quality enhancement, one of the newest

and relevant works is proposed by Yoo et al. [64]. His method is based on CycleGANs that

provide a solution for quality enhancement without the need for paired images (good and

bad quality) which is difficult to find in a common medical environment.

4.2 Materials and methods

Figure 4-1 shows the overall pipeline of the proposed method for eye fundus image quality

enhancement. P2P-FOQE has three sequential stages. The first stage deals with the image

resizing and luminosity-contrast adjustment. The second stage handles the core image en-

hancement. Finally, the third stage applies a CLAHE transformation for limited contrast

adjustment. The following subsections discuss the details of the three stages.
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Figure 4-1: Box diagram for our suggested P2P-FOQE. Stage 1) Pre-enhancement; Stage

2) Pix2Pix Enhancement; Stage 3) Post-enhancement

4.2.1 Pix2Pix-Fundus Oculi Quality Enhancer

• Pre-enhancement

This stage receives a resized color fundus image to a resolution of 256 × 256 × 3

keeping its aspect ratio. Then, the image pre-enhancement is performed using our

implementation from the color retinal image enhancement method presented by Zhou et

al. [141]. First, the method focuses on luminosity enhancement, working over the value

channel from the HSV color space representation together with a gamma correction to

ensure the luminosity-channel independence generating a luminance gain matrix. In

specific, that is applied over the original R(x,y), G(x,y) & B(x,y) image components,

obtaining the r'(x,y), g'(x,y) & b'(x,y) luminosity enhanced. Then, the second step

enhance the contrast, by applying a CLAHE transformation over the L channel from a

LAB color space by obtaining a new split channel representation designated as follows:

r''(x,y), g''(x,y) & b''(x,y). Finally, these arrays are stacked into one single array

obtaining a final pre-enhanced image shape of 256×256×3. This pre-enhanced image

is used as input for the P2P-FOQE model which consists of a Pix2Pix architecture.

• Pix2Pix Enhancement

Pix2Pix is one of the most widely used deep learning models in the last years. It has

been used for synthesizing photos from label maps, colorizing images and reconstructing

objects from diverse representations, among others. The Pix2Pix model was used for

eye-fundus image enhancement by mapping good quality features from good quality

images to bad quality images. In this process, a quality enhanced representation is

transferred from one image to a bad quality image. The architecture is summarized

in two blocks: the conditional GAN Generator (G) is constituted by a modified U-Net

following skip connections, helping the generator to avoid the information bottleneck.

Then, the conditional GAN Discriminator (D) is a GAN termed as Patch-GAN which

is based on patches scale, similar to obtain local styling. This Patch-GAN forces low-

frequency correctness by the use of an L1 term to avoid noise such as blurring over the

enhancement. At last, a discriminator output patch size of 30 × 30 × 1 is obtained to
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classify a 70×70×1 image portion aiming to produce the enhanced eye fundus image.

• Post-enhancement

This final stage receives a partial enhanced fundus image with a 256×256×3 resolution,

where a CLAHE is applied through the RGB channels to limit its contrast amplification

by a factor of 1.5 (this value was obtained in a grid search) to reduce the problem of

noise-amplification commonly noticeable in adaptive histogram equalization (AHE).

• Training the P2P-FOQE model

Figure 4-2: Box diagram for training our proposed P2P-FOQE method

The training of P2P-FOQE model requires as input two eye fundus images from the

patient’s eye with good and bad quality as shown in Figure 4-2. However, free public

data-sets of eye fundus images with these requirements is not available. Due to this

limitation, it was devised a synthetic-quality-degradation strategy that generates bad

quality versions of good quality images. The P2P-FOQE applies a set of transfor-

mations such as blurring and brightness at random levels to obtain noisy/degraded

versions of the original good quality images. Besides, random areas were cropped for

fovea-decentering and an outer light halo was added to create synthetical bad quality

images. Then, the Pix2Pix enhancement model is trained using the pair of images:

the original image and the synthetically degraded image. One of the main advantages

of this approach is the possible use of both private and public datasets from previous

studies. In the same manner, the generation of a synthetic controlled representation

helps to minimize the risk of overfitting caused by the imbalance between the generator

and discriminator during training.
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4.2.2 Dataset

Kaggle dataset 2 provides a set of 88702 real-world eye fundus images with diverse resolutions

and pathologies. In particular, the Kaggle dataset contains varied image quality features

(such as luminance, contrast, and artifacts, among others). Fu et al. [46] defined three

classes to evaluate the quality in this dataset (good, usable and bad). However, for this

study the image quality is defined according to the compliance of specific characteristics with

a more stringent criterion using the same three categories explained in details as follows:

• Good: Optimal quality focus on the foveal region and optic nerve, regular illumination

of the entire field with full presence of the optic nerve and macula; with the presence

of the entire route the temporal arches at the macular level. Without the presence of

artifacts.

• Usable: Non-optimal quality focus on the foveal region and optic nerve, irregular

illumination of the entire field with full presence of the optic nerve and macula; with

the presence of at least 3/4 parts of the route the temporal arches at the macular level.

It may have few artifacts that are not or confused with real injuries.

• Bad: Poor quality, there is no focus on the foveal or optic nerve regions, irregular illu-

mination with the incomplete presence of the optic nerve or macula, with the presence

of less than 3/4 parts of the temporal arches at the macular level. The significant pres-

ence of artifacts that avoid evaluating the macular region or optic nerve, or artifacts

that simulate retinal lesions.

From the Kaggle dataset with Fu et al. [46] criterion, 1876 images per quality category,

which were reviewed and re-classified (according to our classification criterion) as follows:

927-good, 1890-usable and 2811-bad by an ophthalmology specialist were randomly selected.

When comparing the new labels to the ones provided by Fu et al. [46] the level of coincidence

obtained, using Kappa measure, was 0.64.

4.2.3 Synthetical Image Degrading

The color fundus images were resized to a resolution of 256×256 pixels keeping its aspect ratio

both to feed the Pix2Pix model and speed-up the training process. Images were transformed

applying different quality degradation transformations: blurring, brightness, fovea-centering

(randomly applied during the training), light halo, and a mixture of these previous trans-

formations as presented in Figure 4-3. This process produced a synthetic dataset of paired

good-bad quality images with 927 images per category, which was randomly sub-sampled

and divided into training and validation sets in an 80-20%-near ratio.

2https://www.kaggle.com/c/diabetic-retinopathy-detection
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Figure 4-3: Synthetic quality degradation samples comparison. a) Raw image. b) Blurring

degradation. c) Brightness degradation. d) Mixing of blurring, brightness and

halo light

4.2.4 Experimental Setup

The Pix2Pix model was trained during 250 epochs using an Adam optimizer for generator

and discriminator with a learning rate of 2e−4 and with a momentum of 0.5 and 0.999 for

beta1 and beta2 respectively. This training was done using an Nvidia GeForce RTX 2070

Super with a runtime of approximately 9.02 hours.

The quality of enhanced images was assessed using two quality evaluation / classification

baselines. The first one is a quality classifier method termed MFQ-Net by Pérez et al. [8],

which was trained with images labeled with the new ophthalmology specialist criteria to

estimate the quality of an input eye fundus image. This model classifies an image into three

categories: bad, usable, and good. Besides, the quality of generated images was evaluated

using the Automatic Quality Evaluation (AQE) method proposed by Bartling et al. [77]

which focuses on sharpness and illuminance classifying the quality in four categories: very

good, good, acceptable, and not acceptable.

4.3 Experimentation and Results

The whole dataset reported in subsection 4.2.2 was enhanced using our proposed method

(P2P-FOQE) and six enhancement state-of-the-art methods such as CLAHE with 1.5 clip

limit [168], color gain matrix with gamma correction factor adjustment and an L channel-

CLAHE (L-CLAHE) by Zhou et al. [141], Pix2Pix enhancement by Isola et al. [162], Cycle-

GANs enhancement by Yoo et al. [64], and combinations of channel-CLAHE plus Pix2Pix,

and Pix2Pix plus CLAHE. Then, seven new data sets of images were generated with the

application of the previous enhancement methods. The illustration over a sample image for

these enhancements is shown in Figure 4-4.

The generated seven data sets were evaluated using the MFQ-Net trained according to

ophthalmologist criteria and, the AQE method that classifies according to sharpness and

illuminance criteria as explained in detail in subsection 4.2.2.
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Figure 4-4: Illustration of different enhancement methods over the same image. a) Original

color fundus image; b) CLAHE; c) color gain matrix with gamma correction

and CLAHE; d) Pix2Pix; e) cycleGANs; f) Channel-CLAHE with Pix2Pix; g)

Pix2Pix with CLAHE; and h) P2P-FOQE proposed method.

The generated seven data sets were evaluated using the MFQ-Net trained according to

ophthalmologist criteria and, the AQE method that classifies according to sharpness and

illuminance criteria as explained in detail in subsections 4.2.2 and 4.2.4.

The quality classification results obtained using the MFQ-Net on the seven enhanced data

sets and the image dataset without enhancement (Non-enhance) are summarized in Table 4-

1. This table contains the percentage of samples for each original category: Original-Good

(OG), Original-Usable (OU), and Original-Bad (OB), and the classification into three subcat-

egories according to the re-classification given by the classifier. The first row corresponding

to the no-enhance method, where the OG images were reclassified by the MFQ-Net classifier

in 84.79 %, 14.89 %, and 0.32 % for good, usable, and bad categories respectively. The

OU images were reclassified in 14.18 %, 75.03 %, and 10.79 %, for good, usable, and bad

categories respectively. Finally, the OB images were reclassified in 0.85 %, 11.99 %, and

87.13 %, for good, usable, and bad categories respectively. The enhancement obtained with

the P2P-FOQE method was the highest for Good label into the three main categories as

reported in Table 4-1. Moreover, the P2P-FOQE method outperforms the quality classifi-

cation results of non-enhanced and state-of-the-art methods in OU and OB categories with

percentages of 72.33 % and 29.49 % respectively, compared to the non-enhance method with

14.18 % and 0.85 % for OU and OB categories respectively, Pix2Pix + CLAHE method for

OU category of 66.77 % and, cycleGANs method [64] in OB category of 23.94 % as reported

in Table 4-1.
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Table 4-1: MFQ-Net evaluation results and enhancement methods comparison. OG, OU

and OB refer to the original Good, Usable and Bad categories respectively. Each

original category is subdivided into a new classification. In bold, the two highest

percentages for each good subcategory.

OG OU OB

Method Good Usable Bad Good Usable Bad Good Usable Bad

Non-enhance 84.79 14.89 0.32 14.18 75.03 10.79 0.85 11.99 87.16

CLAHE [168] 98.06 1.94 0.00 64.44 33.92 1.64 12.20 32.23 55.57

L-CLAHE [141] 89.97 10.03 0.00 25.61 69.15 5.24 4.41 31.95 63.96

Pix2Pix [162] 77.02 22.22 0.76 13.97 74.13 11.90 0.92 18.43 80.65

L-CLAHE + Pix2Pix 85.44 14.56 0.00 24.60 70.95 4.44 3.91 41.66 54.43

Pix2Pix + CLAHE 97.95 2.05 0.00 66.77 32.17 1.06 18.25 40.66 41.09

cycleGANs [64] 88.46 11.43 0.11 47.78 50.79 1.43 23.94 61.86 14.19

P2P-FOQE 98.06 1.94 0.00 72.33 27.41 0.26 29.49 56.21 14.30

The classification results obtained using the AQE method on the seven enhanced data sets

and the image dataset without enhancement are presented in Table 4-2. Unlike the Table 4-

1, the Table 4-2 contains four sub-categories: Very Good (VG), Good (G), Acceptable (A),

and Not-Acceptable (NA), for each category according to AQE criteria as presented in the

subsection 4.2.4. The first row corresponding to the non-enhance method, where the OG

images were reclassified by the AQE classifier in 0.22 %, 9.06 %, 85.87 %, and 0.00 % for VG,

G, A, and NA categories respectively. The OU images were reclassified in 0.00 %, 3.28 %,

74.02 %, and 22.70 % for VG, G, A, and NA categories respectively. Finally, the OB images

were reclassified in 0.00 %, 0.39 %, 35.75 %, and 63.86 % for VG, G, A, and NA categories

respectively.

Table 4-2: AQE evaluation results and enhancement methods comparison OG, OU, and

OB refers to the original Good, Usable and Bad categories respectively. Each

original category is subdivided into a new classification. In bold, the two highest

percentages for VG and G subcategories.
OG OU OB

Method VG G A NA VG G A NA VG G A NA

Non-enhance 0.22 9.06 85.87 4.85 0.00 3.28 74.02 22.70 0.00 0.39 35.75 63.86

CLAHE [168] 48.87 48.65 2.48 0.00 26.83 57.25 15.71 0.21 2.13 25.86 51.01 20.99

L-CLAHE [141] 0.11 25.03 74.33 0.54 0.00 9.79 77.30 12.91 0.18 3.45 59.84 36.54

Pix2Pix [162] 0.00 0.76 80.04 19.20 0.00 0.26 54.97 44.76 0.00 0.07 17.47 82.46

L-CLAHE + Pix2Pix 0.00 2.59 91.80 5.61 0.00 0.69 74.50 24.81 0.07 0.28 45.89 53.75

Pix2Pix + CLAHE 19.96 70.77 9.28 0.00 8.15 63.97 27.62 0.26 0.39 20.38 65.07 14.16

cycleGANs [64] 7.01 16.40 73.79 2.80 8.15 32.38 56.40 3.07 3.59 21.10 55.96 19.35

P2P-FOQE 37.65 60.52 1.83 0.00 21.06 72.22 6.67 0.05 6.30 68.23 25.15 0.32

The whole enhanced image data set obtained with our P2P-FOQE method was qualitatively
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evaluated by experts. The expert found that the proposed method enhanced some features

in the color fundus images as depicted in Figure 4-5

Figure 4-5: Expert comparison of enhanced images. [Left] Color fundus images; [Center]

enhanced images using cycleGANs [64] and, [Right] enhanced images using

P2P-FOQE proposed method.

4.4 Discussion

The P2P-FOQE method had an outstanding performance in the quality classification of VG

and G classes compared to non-enhanced and state-of-the-art methods in OU and OB cate-

gories. Besides, the proposed method presented the best results in VG and G classes in the

OB category and, the lowest percentages of NA class in the three categories as presented in

Table 4-2.

The application of a synthetic data degradation strategy allows the use of a paired model

(good-bad quality) as well as contributing to the generalization of the Pix2Pix model with

information related to the characteristic factors corresponding to the concept of bad quality.
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This is evidenced by both the results obtained in Tables 4-1 and 4-2 as well as described

by the specialist in the comparison between the improvement models.

It is important to use a post-processing stage using a CLAHE filter to ensure contrast en-

hancement and thus enhance and/or demarcate important details that may not have been

enhanced or overshadowed either in the pre-upgrade or model enhancement stage.

The comparison has shown that L-CLAHE + Pix2Pix method is close to producing a de-

tailed image, noise-controlling provided by CLAHE at near-constant regions of the image

is required. On the other hand, the proposed method minimizes the negative impact of

the images and preserves relevant quality features to support the proper diagnosis. The

expert found that the proposed method enhanced some features in the color fundus images

as depicted in Figure 4-5. In particular, the two first fundus images (a-b center) generated

patterns that looks like intraretinal hemorrhages and the vessels have irregular walls with

interrupting paths. However, our proposed method (a-b right) presented hypo-pigmented

findings accentuated and the neuroretinal ring is better preserved. Moreover, the fundus

image (c-center) produced a notorious black spot that could be diagnosed as a melanoma-

like lesion (cancer of the choroid) in comparison with the enhanced image obtained by our

method that attenuates the black spot (c-right).



5 Conclusion and future works

This research studied and explored several deep learning approaches to provide a model

for the eye fundus image quality assessment and enhancement tasks. Despite deep learning

models require massive data amounts to obtain outstanding performances, the developed

models tackle the lack of large datasets and involve the expert’s knowledge to adjust the

better quality and enhancement criteria of eye fundus images.

Making an objective image quality estimation based on subjective criteria is a considerably

complex task. However, it was found that it is possible to assess the eye fundus image qual-

ity. Comparable state-of-the-art results were obtained using a significantly more lightweight

model than the latest generation ones. This allows the possibility of its implementation

in portable devices such as smartphones. In addition, this lightweight model performs the

quality assessment task in execution times of the order of seconds.

A diverse set of annotations was crucial for the appropriate research development. Besides,

existing annotations present a bias according to the specialist criteria who carried them out

which affects the data quality and therefore the obtained results. With this in mind, it was

decided to carry out a new annotation exercise with the help of one of the specialists from

the Fundación Oftalmológica Nacional.

Eye fundus image quality enhancement represents another big challenge. The lack of paired

(good-bad) quality datasets highly difficult this task. A reverse strategy of synthetic quality

degradation (based on the quality criteria of the Fundación Oftalmológica Nacional special-

ist) was developed on the images marked as good quality. Considering a stricter quality

criterion, it was found that, the characteristics referring to good image quality are enriched.

This stricter criterion helps the image enhancement method to apply the enriched extracted

features to better correct and enhance the deficient quality of the fundus images. This proved

to be beneficial as assured both better datasets quality and better model performance. How-

ever, although the models are admirably adaptable to the different factors involved in these

tasks, their individual use is not enough and requires a mixed strategy to achieve a broader

problem generalization.

The obtained results were validated with the support from the Fundación Oftalmológica

Nacional specialists. These results are evidence that the research goals which focus on eye
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fundus image quality assessment and enhancement have been successfully achieved, as well

as the addressed research questions were answered. In addition, the public available eye

fundus image annotations were released to help future research about these issues.

Finally, this work is the first stage of a telemedicine project which is in the clinical validation

process. For future works, exploration with larger or different dataset modalities is suggested

for both models. Another possible line of work is to integrate this work in a clinical workflow

with health brigades (screening sessions, among others) and to incorporate it with other

clinical diagnostic models of eye diseases for diagnosis support.
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Fast and robust image registration with local motion estimation for image enhance-

ment and activity detection in retinal imaging. In 2014 International Workshop on

Computational Intelligence for Multimedia Understanding (IWCIM), pages 1–5. IEEE,

2014.

[132] Thani Jintasuttisak and Sathit Intajag. Color retinal image enhancement by rayleigh

contrast-limited adaptive histogram equalization. In 2014 14th International Confer-

ence on Control, Automation and Systems (ICCAS 2014), pages 692–697. IEEE, 2014.

[133] CG Ravichandran and J Benadict Raja. A fast enhancement/thresholding based blood

vessel segmentation for retinal image using contrast limited adaptive histogram equal-

ization. Journal of Medical Imaging and Health Informatics, 4(4):567–575, 2014.

[134] Niladri Sekhar Datta, P Saha, Himadri Sekhar Dutta, Debasree Sarkar, Sushanta

Biswas, and P Sarkar. A new contrast enhancement method of retinal images in

diabetic screening system. In 2015 IEEE 2nd International Conference on Recent

Trends in Information Systems (ReTIS), pages 255–260. IEEE, 2015.
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