
REVIEW
published: 30 August 2021

doi: 10.3389/fmed.2021.710329

Frontiers in Medicine | www.frontiersin.org 1 August 2021 | Volume 8 | Article 710329

Edited by:

Haotian Lin,

Sun Yat-sen University, China

Reviewed by:

Yih Chung Tham,

Singapore Eye Research Institute

(SERI), Singapore

Gilbert Lim,

Singapore Eye Research Institute

(SERI), Singapore

*Correspondence:

Raffaele Nuzzi

prof.nuzzi_raffaele@hotmail.it

Specialty section:

This article was submitted to

Ophthalmology,

a section of the journal

Frontiers in Medicine

Received: 15 May 2021

Accepted: 23 July 2021

Published: 30 August 2021

Citation:

Nuzzi R, Boscia G, Marolo P and

Ricardi F (2021) The Impact of Artificial

Intelligence and Deep Learning in Eye

Diseases: A Review.

Front. Med. 8:710329.

doi: 10.3389/fmed.2021.710329

The Impact of Artificial Intelligence
and Deep Learning in Eye Diseases:
A Review
Raffaele Nuzzi*, Giacomo Boscia, Paola Marolo and Federico Ricardi

Ophthalmology Unit, A.O.U. City of Health and Science of Turin, Department of Surgical Sciences, University of Turin, Turin,

Italy

Artificial intelligence (AI) is a subset of computer science dealing with the development

and training of algorithms that try to replicate human intelligence. We report a clinical

overview of the basic principles of AI that are fundamental to appreciating its application

to ophthalmology practice. Here, we review the most common eye diseases, focusing

on some of the potential challenges and limitations emerging with the development and

application of this new technology into ophthalmology.
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INTRODUCTION

In the near future, the number of patients suffering from eye diseases is expected to increase
dramatically due to aging of the population. In such a scenario, early recognition and correct
management of eye diseases are the main objectives to preserve vision and enhance quality of life.
Deep integration of artificial intelligence (AI) in ophthalmology may be helpful at this aim, having
the potential to speed up the diagnostic process and to reduce the human resources required. AI
is a subset of computer science that deals with using computers to develop algorithms that try to
simulate human intelligence.

The concept of AI was first introduced in 1956 (1). Since then, the field has made remarkable
progress to the point that it has been defined as “the fourth industrial revolution in mankind’s
history” (2).

The terms artificial intelligence, machine learning, and deep learning (DL) have been used at
times as synonyms; however, it is important to distinguish the three (Figure 1).

Artificial intelligence is the most general term, referring to the “development of computer
systems able to perform tasks by mimicking human intelligence, such as visual perception, decision
making, and voice recognition” (3). Machine learning, which occurred in the 1980s, refers to a
subfield of AI that allows computers to improve at performing tasks with experience or to “learn
on their own without being explicitly programmed” (4).

Finally, deep learning refers to a “subfield of machine learning composed of algorithms that
use a cascade of multilayered artificial neural networks for feature extraction and transformation”
(5, 6). The term “deep” refers to the many deep hidden layers in its neural network: the benefit of
having more layers of analysis is the ability to analyze more complicated inputs, including entire
images. In other words, DL uses representation learningmethods withmultiple levels of abstraction
to elaborate and process input data and generate outputs without the need for manual feature
engineering, automatically recognizing the intricate structures embedded in high-dimensional data
(7) (Figure 2).
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FIGURE 1 | Comprehensive overview of artificial intelligence (AI) and its

subfields (from https://datacatchup.com/artificial-intelligence-machine-

learning-and-deep-learning/).

FIGURE 2 | Basic design of a neural network. Adapted from “Network.svg” by

Victor C. Zhou (https://victorzhou.com/series/neural-networks-from-scratch/).

The entire field of healthcare has been revolutionized by the
application of AI to the current clinical workflow, including
in the analysis of breast histopathology specimens (8), skin
cancer classification (9), cardiovascular risk prediction (10), and
lung cancer detection (11). This expanding research inspired
numerous studies of AI application also to ophthalmology,
leading to the development of advanced AI algorithms together
with multiple accessible datasets such as EyePACS (12), Messidor
(12), and Kaggle’s dataset (13).

Deep learning has been largely reported to be capable of
achieving automated screening and diagnosis of common
vision-threatening diseases, such as diabetic retinopathy (DR),
glaucoma, age-related macular degeneration (AMD), and
retinopathy of prematurity (ROP).

Further integration of DL into ophthalmology clinical practice
is expected to innovate and improve the current disease
and management process, including an earlier detection and
hopefully better disease outcomes.

MATERIALS AND METHODS

The outcome of this review was to provide a descriptive analysis
of the current and most clinically relevant applications of AI
in the various fields of ophthalmology. A literature search was
conducted by two independent investigators (FR and GB),
from the earliest available year of indexing until February 28,
2021. Two databases were used during the literature search:
MEDLINE and Scopus. The following terms were connected
using the Boolean operators “and,” “or,” “and/or”: “Artificial
Intelligence,” “Ophthalmology,” “Diabetic Retinopathy,” “Age
Related Macular Degeneration,” “Retinal Detachment,” “Retinal
Vein Occlusion,” “Cataract,” “Keratoconus,” “Glaucoma,”
“Pediatric Ophthalmology,” “Retinopathy of Prematurity,”
“Teleophthalmology,” “Eyelid Tumors,” “Exophthalmos,” and
“Strabismus.” The terms were searched as “Mesh terms” and as
“All fields” terms. No limitations were placed on the keyword
searches. Full articles or abstracts that were written in English
were included. Only articles published in peer-reviewed journals
were selected in this review. The investigators screened the search
results and selected the most recent and noteworthy publications
with such an impact on clinical practice. In particular, the
inclusion criteria were: a clear methodology of algorithm
development and training, high number of images and/or data
used for training the DL algorithm, and high rates of disease
prediction/detection in terms of sensibility, specificity, and area
under the receiver operating characteristic curve (AUC).

Data extracted from each selected paper included: the first
author of the study, year, time frame, study design, location,
follow-up time, number of eyes enrolled, demographic features
(mean age, gender, and ethnicity), ophthalmological pathology
under investigation (DR, AMD, retinal detachment, retinal
vein occlusion, cataract, keratoconus, glaucoma, ROP, pediatric
cataract, strabismus, myopia, and teleophthalmology), and AI
characteristics (imaging type, disease definition, sensitivity,
specificity, and accuracy).

RESULTS

Study Selection
The review included a total of 69 studies, of which one study was
about exophthalmos (13), three about strabismus (14–16), two
studies about eyelid tumors (17, 18), three about keratoconus
(19–21), seven about cataracts (22–28), three about pediatric
cataracts (29–31), one about myopia (32), nine about glaucoma
(33–41), nine studies were about DR (11, 34, 39, 42–47), nine
about AMD (34, 48–55), two about retinal detachment (56, 57),
one about retinal vein occlusion (58), 12 about ROP (59–70), and
seven were about teleophthalmology (71–77).

Exophthalmos
One of the most common causes of exophthalmos is the thyroid-
associated ophthalmopathy (TAO). Salvi et al. (14) developed
a model to evaluate the disease classification and prediction of
progression. They considered a group of 246 patients with absent,
minimal, or inactive TAO and 152 patients with progressive
and/or active TAO. The research collected variations of 13 clinical
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eye signs. The neural network they used obtained a concordance
with clinical assessment of 67%.

Strabismus
Lu et al. (15) used a convolutional neural network (CNN)
together with facial photos to detect abnormal position of the eye.
This could be beneficial in telemedical evaluation and screening.
On the contrary, for in-office evaluation, the CNN could be
applied to eye-tracking data (16) or to retinal birefringence
scanning (17).

Eyelid Tumors
Wang et al. (18), using a DL (VGG16) that contained the
parameters learnt from ImageNet2014, developed a protocol
to classify eyelid tumors by distinguishing digital pathological
slides that have either malignant melanoma or non-malignant
melanoma at the small patch level. They used 79 formalin-fixed
paraffin-embedded pathological slides from 73 patients, divided
into 55 non-malignant melanoma slides from 55 patients and 24
malignant slides from 18 patients cut into patches. The validation
consisted of 142,104 patches from 79 slides, with 61,031 non-
malignant patches from 55 slides and 81,073 malignant patches
from 24 slides. The AUC for the algorithm was 0.989.

Tan et al. (19) developed a model to predict the complexity
of reconstructive surgery after periocular basal cell carcinoma
excision. The three predictive variables were preoperative
assessment of complexity, surgical delays, and tumor size. They
obtained an AUC of 0.853.

Keratoconus
The most important diagnostic imaging techniques for
keratoconus include corneal topography with a Placido disc-
based imaging system (Orbscan, Bausch & Lomb, Bridgewater,
NJ, USA), anterior segment optical coherence tomography
(AS-OCT), and three-dimensional (3D) tomographic imaging,
such as Scheimpflug (Pentacam, Oculus, Lynnwood, WA, USA).
On this basis, Yousefi et al. developed an unsupervised machine
learning algorithm for the grading of keratoconus using 3,156
AS-OCT images of keratoconus from grade 0 to grade 4. It
showed a sensibility of 97.7% and a specificity of 94.1% (20).
In 2019, Kamiya et al. reported higher sensibility (99.1%) and
specificity (98.4%) for keratoconus grading with a CNN that
used 304 AS-OCT images of keratoconus from grade 0 to grade 4
(21). Finally, Lavric and Valentin developed a CNN trained using
1,350 healthy eye and 1,350 keratoconus eye topographies, with a
validation set of 150 eyes, that showed an accuracy of 99.3% (78).

Cataract
The AI technology has been applied to various aspects of cataract,
both on clinical and surgical management, from diagnosing
cataracts to optimizing the biometry for intraocular lens (IOL)
power calculation.

The clinical classification of cataracts includes nuclear
sclerotic, cortical, and posterior subcapsular. These are usually
diagnosed by slit lampmicroscopy and/or photography. Cataract
is graded on clinical scales such as the Lens Opacities
Classification System III (22). One of the first AI systems for

evaluating nuclear cataracts was described by Li et al. in 2009.
Their system had a success rate of 95% (23). Xu et al., in 2013,
evaluated an automatic grading method of nuclear cataracts from
slit lamp lens images using group sparsity regression, obtaining a
mean absolute error of 0.336 (24). In 2015, Gao et al. (25) used
5,378 slit lamp photographs to develop an algorithm to grade
nuclear cataracts, obtaining an accuracy of 70.7%. In a recent
large-scale study, Wu et al. (26), in China, used DL via residual
neural network (ResNet) to establish a three-step sequential AI
algorithm for the diagnosis of cataracts. This algorithm was
trained with 37,638 slit lamp photographs in order to differentiate
cataract and IOL from normal lens (AUC > 0.99) and to detect
referable cataracts (AUC > 0.91).

With the increasing use of retinal imaging, other researchers
have also explored the use of color fundus photographs for
the development of an automated cataract evaluation system,
potentially leveraging on retinal imaging as an opportunistic
screening tool for cataracts as well. Dong et al. (27) developed
an AI algorithm with a combination of machine learning and
DL using 5,495 fundus images. The goal was to describe a
classification of the “visibility” of fundus images to report four
classes of cataract severity (normal, mild, moderate, and severe).
The accuracy was 94.07%. Zhang et al., in 2017, proposed a
system to classify cataracts, obtaining an accuracy of 93.52%
(28). Li et al., in 2018, published an article reporting accuracies
of 97.2 and 87.7%, respectively, for detecting and grading tasks
(29). Ran et al. (30) proposed a six-level cataract grading
based on the feature datasets generated by a deep convolutional
neural network (DCNN). Xu et al. (31) have developed CNN-
based algorithms, AlexNet and VisualDN, with the purpose of
diagnosing and grading cataracts, gaining an accuracy of 86.2%
using 8,030 fundus images. Pratap and Kokil, in 2019, trained a
CNN for automatic cataract classification, obtaining an accuracy
of 92.91% (79). Zhang et al. (32) showed a higher accuracy
of 93% in the detection and grading of cataracts using 1,352
fundus images.

Currently, the choice of an IOL power calculation formula
remains unstandardized and at the discretion of the surgeon.
Ocular parameters such as axial length and keratometry are
important factors when determining the applicability of each
formula. In 2015, with the introduction of a concept of an
IOL, “Ladas super formula” (80), the method of IOL calculation
changed radically. Previous generations of IOL formulas were
developed as 2D algorithms. This new methodology was
derived by extracting features from respective “ideal parts” of
old formulas (Hoffer Q, Holladay-1, Holladay-1 with Koch
adjustment, Haigis, and SRK/T, with the exclusion of the Barrett
Universal II and Barrett Toric formulas) and plotting into a 3D
surface. The super formula may serve as a solution to calculating
eyes with typical and atypical parameters such as axial length,
corneal power, and anterior chamber depth. The concept of
three-dimensionality is to develop a way to compare one or
more formulas, allowing for the evaluation of areas of clinical
agreements and disagreements between multiple formulas (81).
Recently, Kane et al. have demonstrated a Hill-RBF (radial basis
function) method using a large dataset with an adaptive learning
to calculate the refractive output. For a given eye, it relies on
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adequate numbers of eyes of similar dimensions to provide an
accurate prediction (82).

Pediatric Cataract
Pediatric cataract is a more variable disease than are cataracts
developing in adults. Moreover, slit lamp examination and
cataract visualization could be challenging because these are
based on child compliance. CC-Cruiser (33–35) is a cloud-
based system that can automatically identify cataracts from
slit lamp images, grade them, and suggest treatment. Although
this approach could lead to a higher patient satisfaction due
to its rapid evaluation, it is characterized by a significantly
lower performance in diagnosing cataracts and in recommending
treatment than by experts (34).

High Myopia
Children at risk of highmyopia could benefit from assuming low-
dose atropine to stop or slow down myopic progression (36);
however, determining for which children this therapy should be
prescribed can be challenging (37). For this reason, Lin et al. (37)
tried to predict high-grade myopia progression in children using
a clinical measure, showing good predictive performance for up
to 8 years in the future. This approach could represent a better
guide to prophylactic treatment.

Glaucoma
Themain difficulty in detecting and treating glaucoma consists in
its being asymptomatic at the early stages (38). In this scenario,
AI can be helpful in detecting the glaucomatous disc, interpreting
the visual field tests, and forecasting clinical outcomes (39).

Given the dissimilarity in optic disc anatomy, identifying the
glaucomatous optic nerve head (ONH) can be difficult at the
early stages of the disease. Moreover, it was shown that, even
among experts, agreement on the detection of ONH damage
is modest (83). The difference in identifying the glaucomatous
disc on fundus photographs is magnified by variations in the
image capturing device, mydriasis state, focus, and exposure.
Given that, AI can implement different sources of data and
help in defining ONH damage. Some investigators have trained
DL algorithms to detect a cup/disc ratio (CDR) at or above
a certain threshold (either a CDR of 0.7 or 0.8) with AUC
≥ 0.942 (40). Ting et al., in 2017, developed an algorithm
through a dataset of retinal images for the detection of DR,
glaucoma, and AMD on a multiethnic population. In particular,
for glaucoma detection, their algorithm presented an AUC of
0.942, sensibility of 96.4%, and specificity of 87.2% (41). Using a
different approach, the investigators defined the glaucoma status
by linking other data with the optic disc photograph, obtaining
remarkably good results (AUC ≥ 0.872) (42, 84–86). Moreover,
Asaoka et al. appliedDL toOCT images, obtaining an even higher
AUC (0.937) than did other machine learning methods (43).
Finally, Medeiros et al. used an innovative approach, training a
DL algorithm from OCT scans to predict retinal nerve fiber layer
(RNFL) thickness on fundus photos, with a high correlation of
prediction of 0.83 and an AUC of 0.944 (85) (Table 1).

Visual fields, unlike fundus photographs and OCT scans,
represent the functional assay of the visual pathway. Despite

being a fundamental exam in clinical evaluation, current
algorithms applied to visual fields do not differentiate subtle
loss in a regional manner and glaucomatous from the non-
glaucomatous defects and artifacts (39). Moreover, the current
computerized packages do not decompose visual field data
into patterns of loss. Visual field loss patterns are due to the
compromised RNFs projecting to specific areas of the optic
disc. Recently, Elze et al. (44) have developed an unsupervised
algorithm “employing a corner learning strategy called archetypal
analysis to quantitatively classify the regional patterns of loss
without the potential bias of clinical experience”.

Archetypal analysis provides a regional stratification of the
visual fields together with the coefficients weighting each pattern
loss. Furthermore, implementation of AI algorithms to visual
field testing could also assist clinicians in tracking the visual field
progression with more accuracy (45). Finally, in more recent
years, AI has been used to forecast glaucoma progression using
Kalman filtering. This technique could lead to the generation of
a personalized disease prediction based on different sources of
data, which can help clinicians in the decision-making process
(46, 47).

Diabetic Retinopathy
Several studies have implemented DL algorithms for the
diagnosis of microaneurysms, hemorrhages, hard exudates, and
cotton wool spots among patients with DR. DL algorithms for
the detection of DR have recently been reported to have a higher
sensitivity than does manual detection by ophthalmologists (48).
However, more studies are needed to confirm this thesis (12).

The accuracy of AI depends on access to good training
datasets. Gulshan et al. (12) evaluated the accuracy of a two-
dataset system in the detection of DR from fundus photographs:
the EyePACS-1 dataset, composed of 9,963 images from 4,997
patients, and the MESSIDOR-2 dataset, consisting of 1,748
images from 874 people. One of the earliest studies on the
automated detection of DR from color fundus photographs
was by Abramoff et al. in 2008 (49). It was a retrospective
analysis done with non-mydriatic images that was able to
detect referable DR with 84% sensitivity and 64% specificity.
In 2013 (50), in a research showing the results of the Iowa
Detection Program, a higher sensitivity of 96.8% and a lower
specificity of 59.4% were found. Another study published in
2015, using EyeArt AI software trained with the MESSIDOR-
2 dataset, demonstrated a sensitivity of 93.3% and a specificity
of 72.2% in diagnosing DR (51). Later, in 2016, Gulshan et al.
developed an algorithm trained with 128,175 macula-centered
retinal images obtained from EyePACS and MESSIDOR-2 and
reported sensitivity values of 97.5 and 96.1% and specificities of
93.4 and 93.3%, respectively (12).

Gargeya and Leng (52) focused on the identification of mild
non-proliferative DR. They showed a sensitivity of 94% and a
specificity of 98% for referable DR with EyePACS.

As reported above, Ting et al. developed an algorithm through
a dataset of retinal images for the detection of DR, glaucoma,
and AMDon amultiethnic population. This DL system evaluated
76,370 retinal images with a sensitivity of 90.5% and a specificity
of 91.6% for DR (41). Ardiyanto et al. (53) developed an
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TABLE 1 | Summary of studies on AI and glaucoma.

Reference Imaging No. of images Disease definition Sensitivity Specificity AUC

Ting et al. (41) Fundus images 125,189 CDR, 0.8+ 0.964 0.872 0.942

Li et al. (40) Fundus images 48,116 CDR, 0.7+ 0.956 0.920 0.986

Shibata et al. (84) Fundus images 3,620 Glaucoma ns ns 0.965

Masumoto et al. (86) Fundus images 1,399 Glaucoma 0.813 0.802 0.872

Medeiros et al. (85) Fundus images

and OCT scans

32,820 Glaucomatous visual field loss ns ns 0.944

Thompson et al. (42) Fundus images

and OCT scans

9,282 Glaucomatous visual field loss ns ns 0.933

Asaoka et al. (43) OCT 2,132 Early glaucoma 0.825 0.939 0.937

AI, artificial intelligence; OCT, optical coherence tomography; CDR, cup/disc ratio; AUC, area under the receiver operating characteristic curve; ns, not specified.

algorithm for DR grading trained with 315 fundus images, with
an accuracy of 95.71%, a sensitivity of 76.92%, and a specificity of
100%. Takahashi et al. (54) proposed a novel AI disease staging
system with the ability to grade DR involving retinal areas not
typically visualized on fundoscopy. They obtained an algorithm
able to grade DR with 9,939 fundus images with an accuracy of
64–82%. Finally, Rajalakshimi et al. (55) showed the possibility
of a smartphone-based fundus image diagnosis of DR with a
sensitivity of 95.8% and a specificity of 66.8% (Table 2).

Age-Related Macular Degeneration
Several studies have used fundus photographs in the
diagnosis of AMD. Burlina et al. (56) focused on the
automated grading of AMD. From color fundus images,
they evaluated the classification between absence/early AMD
and intermediate/advanced AMD, with an accuracy of 0.94–
0.96. Treder et al. (57) focused on a DL-based detection and
classification of geographic atrophy using a DCNN classifier
through autofluorescence fundus photos. They obtained an
accuracy of 91–96%. Another study (58) used a deep, unspecified
CNN to classify between normal and wet AMD images, with
a sensitivity of 100%, a specificity of 97.31%, and an accuracy
of 99.76%. Two hundred fifty-three fundus photos for training
and 111 for validation were used. Keel et al. (59) developed a
DL algorithm for the detection of neovascular AMD using color
fundus photographs, with a sensitivity of 96.7%, a specificity
of 96.4%, and an accuracy of 99.5%. Ting et al. (41) showed
an AUC for their algorithm of 0.931, a sensitivity of 93.2%,
and a specificity of 88.4% when compared to manual efforts
by ophthalmologists.

Concerning OCT, Bogunovic et al. developed a data-driven
model to predict the progression risk in intermediate AMD (60).
Another research in 2017 developed an algorithm to predict
anti-vascular endothelial growth factor (VEGF) treatment
requirements in neovascular AMD. They used quantitative OCT
scan features to classify the need for injections over 20 months
into high (more than 15), medium (between 6 and 15), and low
(<6) groups and used the OCT images of 317 patients as a dataset
for training and validation (61). An accuracy of 70%−80% was
achieved for treatment requirement evaluation. Treder et al., in
2017, established a model able to detect automatically exudative

AMD from spectral domain OCT (SD-OCT) (57). Prahs et al.
(62) developed an OCT-based DL algorithm for the evaluation
of treatment indication with anti-VEGF. This research included
a deep, unsupervised CNN to compare the system prediction
injection requirement to actual injection administration within
21 days. This kind of AI used more than 150,000 OCT line scans
for training and 5,358 for validation, with an AUC of 96.8%, a
sensitivity of 90.1%, and a specificity of 96.2%. Sengupta et al. (63)
used OCT images with the aim of differentiating between AMD
and diabetic macular edema, obtaining a sensitivity of 97.8% and
a specificity of 97.4% (Table 3).

Retinal Detachment
Ohsugi et al. (64) used fundus ophthalmoscopy to detect retinal
detachment, with 329 fundus photos for training and 82 for
validation, obtaining a sensitivity of 97.6.7%, a specificity of
96.5%, and an accuracy of 99.6%. Li et al. (65) developed a deep,
unsupervised CNN to detect retinal detachment and macula-
on status through 7,323 fundus photos for training and 1,556
for validation. The sensitivity values were 96.1 and 93.8%, the
specificities were 99.6% and 90.9%, and the AUCs were 0.989 and
0.975, respectively.

Retinal Vein Occlusion
One of the most important researches on retina vein occlusion
was that by Zhao et al. (66), who used a CNN together with patch-
based and image-based vote methods to identify the fundus
image of branch retinal vein occlusion automatically. They
achieved an accuracy of 97%.

Retinopathy of Prematurity
The most significant progresses in the pediatric application of AI
deal with ROP. Automation derived from AI application could
not only improve screening and objective assessment but also
cause less stress and pain for infants undergoing examination
compared with indirect ophthalmoscopy (67). Different studies
have focused on the determination of the vessel tortuosity
and width via fundus images, creating tools like Vessel Finder
(68), Vessel Map (69), ROP tool (70), Retinal Image Multiscale
Analysis (RISA) (71, 87), and Computer-Aided Image Analysis
of the Retina (CAIAR) (72, 73). Vessel measurements were used
as a feature for various predictive models of diseases. Finally,
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TABLE 2 | Summary of studies about AI and diabetic retinopathy.

Reference Imaging No. of images Disease definition Sensitivity Specificity AUC Accuracy

Abramoff et al. (50) Fundus photos 1,748 Detection of DR 0.968 0.594 0.937 ns

Solanki et al. (51) Fundus photos 755 Detection of DR 0.933 0.722 0.965 ns

Gulshan et al. (12) Fundus photos 136,886 Evaluation of DR EYEPACS-1:

0.975

Messidor-2:

0.961

EYEPACS-

1: 0.934

Messidor-2:

0.939

0.991 ns

Gargeya et al. (52) Fundus photos 76,885 Evaluation of DR 0.94 0.98 0.94–0.97 ns

Rajalakshimi et al. (55) Smartphone-

based fundus

images

2,048 Detection of DR 0.958 0.668 ns ns

Ardiyanto et al. (53) Fundus photos 315 Grade of DR 0.7692 1.0 ns 95.71%

Takahashi et al. (54) Fundus photos 9,936 Grade of DR ns ns ns 64%−82%

Ting et al. (41) Fundus photos 76,370 Detection of DR 0.905 0.916 0.936 ns

AI, artificial intelligence; AUC, area under the receiver operating characteristic curve; DR, diabetic retinopathy; ns, not specified.

TABLE 3 | Summary of studies about AI and age-related macular degeneration.

Reference Imaging No. of images Disease definition Sensitivity Specificity AUC Accuracy

Burlina et al. (56) Color fundus

photos

>130,000 Grading AMD 0.884 0.941 0.94–0.96 ns

Treder et al. (57) Autofluorescence

fundus photos

600 Classification of geographic

atrophy

1 0.92 ns 91%−96%

Matsuba et al. (58) Fundus photos 253 AMD normal vs. wet 1 0.9731 0.9976 ns

Keel et al. (59) Fundus photos 27,397 Neovascular AMD 0.967 0.964 0.995 ns

Bogunovic et al. (60) OCT images 317 Treatment with anti-VEGF ns ns 0.70–0.80 ns

Prahs et al. (62) OCT images 153,912 Treatment with anti-VEGF 0.901 0.962 0.968 ns

Ting et al. (41) Fundus photos 35,948 Detection AMD 0.932 0.884 0.931 ns

Sengupta et al. (63) OCT images Normal: 51,140

Drusen: 8,617

CNV: 37,206

DME: 11,349

Differentiate AMD and DME 0.978 0.974 ns ns

AI, artificial intelligence; OCT, optical coherence tomography; CNV, choroidal neovascularization; DME, diabetic macular edema; AMD, age-related macular degeneration; VEGF, vascular

endothelial growth factor; ns, not specified.

recent approaches to ROP are mostly based on CNNs, which take
fundus images as inputs and do not require manual intervention.
Systems like that of Worral and Wilson (74), the i-ROP-DL
(75, 76), and DeepROP (77) have demonstrated agreement with
expert opinions and better disease detection than that by some
experts (76, 77).

Teleophthalmology and Screening
Telemedicine is defined as “the use of medical information
exchanged from one site to another via electronic
communications to improve a patient’s health status” (88).
Telemedicine can facilitate a larger distribution of healthcare to
distant areas where there is a lack of health workers, can reduce
the waiting times, and improve acute management of patients,
even in remote regions. A possible example of the application
of telemedicine to glaucoma management is represented by
the “hub and spoke pre-hospital model of glaucoma: the hubs
correspond to optometrists, pharmacists, pediatricians, general
medical practitioners (GMPs), the local ophthalmologist, health
workers, screening facilities, and hospitals, while the spoke is

represented by the national and international glaucoma centers
and the Eye University Clinics” (89) (Figure 3). This model of
healthcare improves and expands clinical services to remote
regions (the so-called spoke) with consultations between patients
and specialists based in referral centers (the so-called hub) (90).

However, given the global burden of eye diseases and
the progressive shortage of healthcare workers, telemedicine
solutions that decentralize consultations could not be sufficient.

In such a scenario, the AI technology should be combined
with telemedicine, enabling clinicians to receive automatically
acquired and screened health parameters from the patients
and to visit them remotely. Especially during the coronavirus
disease 2019 (COVID-19) pandemic era, the implementation
of teleophthalmology could reduce the infection risk in the
healthcare setting, enabling remote triaging before arriving to the
hospital in order to avoid unnecessary visits and exposure risks,
as already done by multiple centers across the world (91–94).

Furthermore, the DL algorithm applied to retinal fundus
images could be useful as a broad-based visual impairment
screening tool, as reported by Tham et al. (95). This approach

Frontiers in Medicine | www.frontiersin.org 6 August 2021 | Volume 8 | Article 710329

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Nuzzi et al. Artificial Intelligence in Eye Diseases

FIGURE 3 | The hub and spoke model of glaucoma (89).

could lead to a more rapid referral of patients with visual
impairments to tertiary eye centers.

Another step forward in improving traditional clinic
visits might be further accelerated by the application of AI
to home devices used for monitoring parameters such as
visual acuity, visual fields, and intraocular pressure (96–99).
Although further studies need to be conducted before the
mass adoption of these devices, they provide assurance of
the possibility to utilize teleophthalmology from home in
the future.

DISCUSSION

In this review, we described the main applications of AI to
ophthalmology, underlining many aspects of evolution and
future improvements related to this technology.

Several other reviews on AI in ophthalmology have been
published (100); however, they are more focused on specific
diseases such as DR or AMD (101–103). Although these articles
are exhaustive and are in-depth reviews, the aim of our work
was to create a more comprehensive clinical overview of the
current applications of AI in ophthalmology, giving the clinicians
a practical summary of current evidence for AI.

DL algorithms reached high thresholds of accuracy,
sensitivity, and specificity for some of the most common
vision-threatening diseases, with the highest level of evidence
regarding DR, AMD, and glaucoma. Furthermore, some studies
on AI have focused on pediatric ophthalmology, with the aim of
helping clinicians in overcoming common practical limitations
due to pediatric patients’ compliance.

However, in such a scenario of optimistic acceptance of this
new technology, it should be highlighted that DL has also given
rise to challenges and some controversy.

Firstly, DL algorithms are poorly explainable in
ophthalmology terms. This is the so-called black box
phenomenon and could eventually lead to a reduced acceptance
of this technology by clinicians (104, 105). A black box suggests
lack of understanding of the decision-making process of the
algorithm that gives a certain output. Several techniques are
used to bound this phenomenon, such as the “occlusion test,
in which a blank area is systemically moved across the entire
image and the largest drop in predictive probability represents
the specific area of highest importance for the algorithm” (106),
or “saliency maps (heat maps) generation techniques such as
activation mapping, which, again, highlights areas of importance
for classification decisions within an image” (107). Despite the
progress made, in some cases (108), the visualization method
highlighted non-traditional areas of diagnostic interest, and it
is uncertain how to consider the features identified by saliency
analysis of those regions (109).

External validation of algorithms represents the second
challenge. Although many DL algorithms have been developed
based on publicly available datasets, there are some concerns
about how well these will perform in a “real-world” clinical
practice setting (109, 110). When adopted in clinical practice,
these algorithms may have a diminished performance due to
variabilities in several aspects, such as in the imaging quality,
lighting conditions, and the different dilation protocols.

Another area of controversy is the presence of bias in the
datasets for training algorithms. Biases in the training data
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used for developing AI algorithms not only may weaken the
external applicability but may also amplify preexisting biases
(109). Some solutions to recognize potential biases and limit
unwanted outcomes could be to rebalance the training dataset
if a certain subgroup is underrepresented or to select a training
dataset with diverse patient populations. An example of an
adequate training dataset on different populations is that used by
Ting et al. (41), in which their algorithm for detecting diabetic
retinopathy was validated on different ethnic groups.

Lastly, it is relevant noticing the legal implications of using
DL algorithms in clinical practice. In fact, if a machine thinks
similarly to a human ophthalmologist who canmake errors, “who
is responsible to bear the legal consequences of an undesirable
outcome due to an erroneous prediction made by an artificial
intelligence algorithm? These are such complex medical legal
issues that have yet to be settled” (109, 111).

CONCLUSIONS

In conclusion, we discussed the main fields for the application
of AI into ophthalmology practice. The use of AI algorithms
should be seen as a tool to assist clinicians, not to replace them.

AI could speed up some processes, reduce the workload for
clinicians, and minimize diagnostic errors due to inappropriate
data integration. AI is able to extract features from complex
and different imaging modalities, enabling the discovery of new
biomarkers to expand our current knowledge of diseases. This
could lead to introducing into clinical practice new automatically
detected diagnostic parameters or to developing new treatments
for eye diseases. Challenges related to the implementation
of these technologies remain, including algorithm validation,
patient acceptance, and the education and training of health
providers. However, physicians should continue to adapt to
the fast-changing models of care delivery, collaborating more
with teams of engineers, data scientists, and technology experts
in order to achieve high-quality standards for research and
interdisciplinary clinical practice.
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