7 research outputs found

    Automated Detection and Differential Diagnosis of Non-small Cell Lung Carcinoma Cell Types Using Label-free Molecular Vibrational Imaging

    Get PDF
    Lung carcinoma is the most prevalent type of cancer in the world, considered to be a relentlessly progressive disease, with dismal mortality rates to patients. Recent advances in targeted therapy hold the premise for the delivery of better, more effective treatments to lung cancer patients, that could significantly enhance their survival rates. Optimizing care delivery through targeted therapies requires the ability to effectively identify and diagnose lung cancer along with identifying the lung cancer cell type specific to each patient, small cell carcinoma\textit{small cell carcinoma}, adenocarcinoma\textit{adenocarcinoma}, or squamous cell carcinoma\textit{squamous cell carcinoma}. Label free optical imaging techniques such as the Coherent anti-stokes Raman Scattering microscopy\textit{Coherent anti-stokes Raman Scattering microscopy} have the potential to provide physicians with minimally invasive access to lung tumor sites, and thus allow for better cancer diagnosis and sub-typing. To maximize the benefits of such novel imaging techniques in enhancing cancer treatment, the development of new data analysis methods that can rapidly and accurately analyze the new types of data provided through them is essential. Recent studies have gone a long way to achieving those goals but still face some significant bottlenecks hindering the ability to fully exploit the diagnostic potential of CARS images, namely, the streamlining of the diagnosis process was hindered by the lack of ability to automatically detect cancer cells, and the inability to reliably classify them into their respective cell types. More specifically, data analysis methods have thus far been incapable of correctly identifying and differentiating the different non-small cel lung carcinoma cell types, a stringent requirement for optimal therapy delivery. In this study we have addressed the two bottlenecks named above, through designing an image processing framework that is capable of, automatically and accuratly, detecting cancer cells in two and three dimensional CARS images. Moreover, we built upon this capability with a new approach at analyzing the segmented data, that provided significant information about the cancerous tissue and ultimately allowed for the automatic differential classification of non-small cell lung carcinoma cell types, with superb accuracies

    Beyond imaging with coherent anti-Stokes Raman scattering microscopy

    Get PDF
    La microscopie optique permet de visualiser des échantillons biologiques avec une bonne sensibilité et une résolution spatiale élevée tout en interférant peu avec les échantillons. La microscopie par diffusion Raman cohérente (CARS) est une technique de microscopie non linéaire basée sur l’effet Raman qui a comme avantage de fournir un mécanisme de contraste endogène sensible aux vibrations moléculaires. La microscopie CARS est maintenant une modalité d’imagerie reconnue, en particulier pour les expériences in vivo, car elle élimine la nécessité d’utiliser des agents de contraste exogènes, et donc les problèmes liés à leur distribution, spécificité et caractère invasif. Cependant, il existe encore plusieurs obstacles à l’adoption à grande échelle de la microscopie CARS en biologie et en médecine : le coût et la complexité des systèmes actuels, les difficultés d’utilisation et d’entretient, la rigidité du mécanisme de contraste, la vitesse de syntonisation limitée et le faible nombre de méthodes d’analyse d’image adaptées. Cette thèse de doctorat vise à aller au-delà de certaines des limites actuelles de l’imagerie CARS dans l’espoir que cela encourage son adoption par un public plus large. Tout d’abord, nous avons introduit un nouveau système d’imagerie spectrale CARS ayant une vitesse de syntonisation de longueur d’onde beaucoup plus rapide que les autres techniques similaires. Ce système est basé sur un laser à fibre picoseconde synchronisé qui est à la fois robuste et portable. Il peut accéder à des lignes de vibration Raman sur une plage importante (2700–2950 cm-1) à des taux allant jusqu’à 10 000 points spectrales par seconde. Il est parfaitement adapté pour l’acquisition d’images spectrales dans les tissus épais. En second lieu, nous avons proposé une nouvelle méthode d’analyse d’images pour l’évaluation de la structure de la myéline dans des images de sections longitudinales de moelle épinière. Nous avons introduit un indicateur quantitatif sensible à l’organisation de la myéline et démontré comment il pourrait être utilisé pour étudier certaines pathologies. Enfin, nous avons développé une méthode automatisé pour la segmentation d’axones myélinisés dans des images CARS de coupes transversales de tissu nerveux. Cette méthode a été utilisée pour extraire des informations morphologique des fibres nerveuses dans des images CARS de grande échelle.Optical-based microscopy techniques can sample biological specimens using many contrast mechanisms providing good sensitivity and high spatial resolution while minimally interfering with the samples. Coherent anti-Stokes Raman scattering (CARS) microscopy is a nonlinear microscopy technique based on the Raman effect. It shares common characteristics of other optical microscopy modalities with the added benefit of providing an endogenous contrast mechanism sensitive to molecular vibrations. CARS is now recognized as a great imaging modality, especially for in vivo experiments since it eliminates the need for exogenous contrast agents, and hence problems related to the delivery, specificity, and invasiveness of those markers. However, there are still several obstacles preventing the wide-scale adoption of CARS in biology and medicine: cost and complexity of current systems as well as difficulty to operate and maintain them, lack of flexibility of the contrast mechanism, low tuning speed and finally, poor accessibility to adapted image analysis methods. This doctoral thesis strives to move beyond some of the current limitations of CARS imaging in the hope that it might encourage a wider adoption of CARS as a microscopy technique. First, we introduced a new CARS spectral imaging system with vibrational tuning speed many orders of magnitude faster than other narrowband techniques. The system presented in this original contribution is based on a synchronized picosecond fibre laser that is both robust and portable. It can access Raman lines over a significant portion of the highwavenumber region (2700–2950 cm-1) at rates of up to 10,000 spectral points per second and is perfectly suitable for the acquisition of CARS spectral images in thick tissue. Secondly, we proposed a new image analysis method for the assessment of myelin health in images of longitudinal sections of spinal cord. We introduced a metric sensitive to the organization/disorganization of the myelin structure and showed how it could be used to study pathologies such as multiple sclerosis. Finally, we have developped a fully automated segmentation method specifically designed for CARS images of transverse cross sections of nerve tissue.We used our method to extract nerve fibre morphology information from large scale CARS images

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Libro de actas. XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica

    Get PDF
    596 p.CASEIB2017 vuelve a ser el foro de referencia a nivel nacional para el intercambio científico de conocimiento, experiencias y promoción de la I D i en Ingeniería Biomédica. Un punto de encuentro de científicos, profesionales de la industria, ingenieros biomédicos y profesionales clínicos interesados en las últimas novedades en investigación, educación y aplicación industrial y clínica de la ingeniería biomédica. En la presente edición, más de 160 trabajos de alto nivel científico serán presentados en áreas relevantes de la ingeniería biomédica, tales como: procesado de señal e imagen, instrumentación biomédica, telemedicina, modelado de sistemas biomédicos, sistemas inteligentes y sensores, robótica, planificación y simulación quirúrgica, biofotónica y biomateriales. Cabe destacar las sesiones dedicadas a la competición por el Premio José María Ferrero Corral, y la sesión de competición de alumnos de Grado en Ingeniería biomédica, que persiguen fomentar la participación de jóvenes estudiantes e investigadores
    corecore