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Résumé

La microscopie optique permet de visualiser des échantillons biologiques avec une bonne
sensibilité et une résolution spatiale élevée tout en interférant peu avec les échantillons. La
microscopie par diffusion Raman cohérente (CARS) est une technique de microscopie non
linéaire basée sur l’effet Raman qui a comme avantage de fournir un mécanisme de contraste
endogène sensible aux vibrations moléculaires. La microscopie CARS est maintenant une
modalité d’imagerie reconnue, en particulier pour les expériences in vivo, car elle élimine
la nécessité d’utiliser des agents de contraste exogènes, et donc les problèmes liés à leur
distribution, spécificité et caractère invasif. Cependant, il existe encore plusieurs obstacles à
l’adoption à grande échelle de la microscopie CARS en biologie et en médecine : le coût et
la complexité des systèmes actuels, les difficultés d’utilisation et d’entretient, la rigidité du
mécanisme de contraste, la vitesse de syntonisation limitée et le faible nombre de méthodes
d’analyse d’image adaptées.

Cette thèse de doctorat vise à aller au-delà de certaines des limites actuelles de l’imagerie
CARS dans l’espoir que cela encourage son adoption par un public plus large. Tout d’abord,
nous avons introduit un nouveau système d’imagerie spectrale CARS ayant une vitesse de
syntonisation de longueur d’onde beaucoup plus rapide que les autres techniques similaires.
Ce système est basé sur un laser à fibre picoseconde synchronisé qui est à la fois robuste et
portable. Il peut accéder à des lignes de vibration Raman sur une plage importante (2700–
2950 cm−1) à des taux allant jusqu’à 10 000 points spectrales par seconde. Il est parfaitement
adapté pour l’acquisition d’images spectrales dans les tissus épais. En second lieu, nous
avons proposé une nouvelle méthode d’analyse d’images pour l’évaluation de la structure
de la myéline dans des images de sections longitudinales de moelle épinière. Nous avons
introduit un indicateur quantitatif sensible à l’organisation de la myéline et démontré com-
ment il pourrait être utilisé pour étudier certaines pathologies. Enfin, nous avons développé
une méthode automatisé pour la segmentation d’axones myélinisés dans des images CARS
de coupes transversales de tissu nerveux. Cette méthode a été utilisée pour extraire des in-
formations morphologique des fibres nerveuses dans des images CARS de grande échelle.
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Abstract

Optical-based microscopy techniques can sample biological specimens using many contrast
mechanisms providing good sensitivity and high spatial resolution while minimally interfer-
ing with the samples. Coherent anti-Stokes Raman scattering (CARS) microscopy is a non-
linear microscopy technique based on the Raman effect. It shares common characteristics
of other optical microscopy modalities with the added benefit of providing an endogenous
contrast mechanism sensitive to molecular vibrations. CARS is now recognized as a great
imaging modality, especially for in vivo experiments since it eliminates the need for exoge-
nous contrast agents, and hence problems related to the delivery, specificity, and invasive-
ness of those markers. However, there are still several obstacles preventing the wide-scale
adoption of CARS in biology and medicine: cost and complexity of current systems as well
as difficulty to operate and maintain them, lack of flexibility of the contrast mechanism, low
tuning speed and finally, poor accessibility to adapted image analysis methods.

This doctoral thesis strives to move beyond some of the current limitations of CARS imag-
ing in the hope that it might encourage a wider adoption of CARS as a microscopy tech-
nique. First, we introduced a new CARS spectral imaging system with vibrational tuning
speed many orders of magnitude faster than other narrowband techniques. The system pre-
sented in this original contribution is based on a synchronized picosecond fibre laser that is
both robust and portable. It can access Raman lines over a significant portion of the high-
wavenumber region (2700–2950 cm−1) at rates of up to 10,000 spectral points per second
and is perfectly suitable for the acquisition of CARS spectral images in thick tissue. Sec-
ondly, we proposed a new image analysis method for the assessment of myelin health in
images of longitudinal sections of spinal cord. We introduced a metric sensitive to the or-
ganization/disorganization of the myelin structure and showed how it could be used to
study pathologies such as multiple sclerosis. Finally, we have developped a fully automated
segmentation method specifically designed for CARS images of transverse cross sections of
nerve tissue. We used our method to extract nerve fibre morphology information from large
scale CARS images.
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A mon amour!
A mes deux amours!
A mes trois amours!

...
(Ca fait trop longtemps que je suis aux études)
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It ends tonight.

— Neo
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Chapter 1

Introduction

1.1 Principles and applications of coherent anti-Stokes Raman
scattering

Ask the right questions, and nature will open the doors
to her secrets.

— Sir Chandrasekhara Venkata Raman

In a digital image, contrast generally refers to the difference in grey level that makes the rep-
resentation of an object distinguishable. In microscopy, contrast also refers to a mechanism
by which an image is created and an object of interest (molecule, cell, etc.) distinguished
from others. Optical microscopy relies on a large variety of contrast mechanisms such as
reflectance, fluorescence, and vibrational contrast in order to see different things. Vibra-
tional contrast offers intrinsic chemical selectivity based on the vibrational frequencies of the
molecules already present in the samples under study. This can be achieved through infrared
spectroscopy (absorption), Raman spectroscopy (inelastic scattering) or several derived tech-
niques. While all these techniques have their merits (and limitations), this section will focus
on a technique derived from spontaneous Raman scattering: coherent anti-Stokes Raman
scattering (CARS). It will outline the basic concepts of CARS imaging and spectroscopy nec-
essary to understand the four chapters that make use of CARS microscopy.

1.1.1 Spontaneous Raman scattering

The Raman effect is a form of scattering where a photon interacts with a molecule by exciting
it from some initial energy state to a virtual state. The molecule relaxes back from the virtual
state to a different rotational or vibrational state and emits a photon whose wavelength is
shifted compared to the initial photon. A Stokes shift occurs when the photon leaves some
energy behind and an anti-Stokes shift when the emitted photon takes some energy from the
molecule. The processes are illustrated in Fig. 1.1 a). The Raman shift (Ω), usually reported
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in wavenumber (cm−1), is related to the initial (λ0) and final (λ1) photon wavelength by the
following relationship:

Ω = (
1

λ0
− 1

λ1
) (1.1)

Used as a probe, the Raman effect is useful since it provides information specific to the vi-
brations of the molecular bonds under study. Careful examination of a Raman spectra can
lead to the identification of species present in a sampled volume. It is this amazing ability for
intrinsic chemical specificity that made Raman spectroscopy such a widely used technique.
For instance, Fig. 1.1 b) shows a collection of Raman spectra from a live cell acquired with a
confocal microscope [Puppels et al., 1990].

virtual state

a) b)

Figure 1.1 – a) Spontaneous Raman energy diagram. The inelastic scattering of incident ra-
diation (ωs) results in either (left) red-shifted emission (ωs) or (right) blue-shifted emission
(ωas). b) Example of Raman spectra from a live cell showing the wealth of molecular infor-
mation in the vibrational spectrum [Puppels et al., 1990].

Yet, despite its unique capabilities, spontaneous Raman is also fundamentally limited. The
Raman effect as an optical effect is extremely weak, with photon conversion efficiencies typi-
cally ranging from 10−7 to 10−15 in tissue [Tuchin, 2007]. Moreover, it is often plagued by the
overwhelming fluorescence background from the samples. Therefore, it necessitates high
laser power (typically > 100 mW), long integration times of 100 ms to 1 s per pixel, and a
significant amount of post-processing [van Manen et al., 2005].

1.1.2 CARS microscopy

Coherent anti-Stokes Raman scattering can be used to obtain much stronger signals while
retaining the same chemical selectivity. First reported in 1965 [Maker and Terhune, 1965],
CARS was later introduced as a contrast mechanism for microscopy [Duncan et al., 1982]
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and is now recognized as a great imaging modality, especially for in vivo experiments. Here
is a quick summary of its many advantages:

1. There is no need for exogenous contrast agent since the signal comes from the molecu-
lar vibrations of the sample.

2. CARS is more sensitive than spontaneous Raman scattering by orders of magnitude,
enough to permit video-rate imaging [Evans et al., 2005].

3. Intrinsic three-dimensional capability from the nonlinear nature of the process [Zum-
busch et al., 1999a].

4. The anti-Stokes signal is blue-shifted with respect to the excitation lasers, away from
the presence of one-photon autofluorescence.

5. Penetration depth of up to ∼ 400 µm with the use of near-infrared excitation wave-
lengths

Signal generation

The CARS signal is generated by the nonlinear interaction of two or three laser beams with
a sample via a four-wave-mixing process (Fig. 1.2 a)). It involves three incident laser pulses
at the pump (ωp), Stokes (ωs), and probe (ωp′) frequencies, interacting simultaneously with
the sample. We note that in practice, the pump and probe beams are usually supplied by
the same laser beam and will be referred to as the pump beam for simplicity. When the
difference between the frequency of the pump beam (ωp) and the Stokes beam (ωs) matches
the frequency of a Raman active molecular line, a strong anti-Stokes signal is generated at
ωas = 2ωp −ωs in a direction determined by the phase-matching conditions (Fig. 1.2 b)). As
well, the oscillators are coherently driven by the excitation fields, providing a signal that can
be orders of magnitude stronger (∼ 105) than signals from spontaneous Raman scattering
[Tolles et al., 1977a].

The anti-Stokes field, comes from the coherent superposition of the microscopic dipoles
driven by the pump (Ep) and Stokes (Es) fields, generating the macroscopic third-order po-
larisation (P(3)(ωas) ∝ χ(3)E2

pEs) at the anti-Stokes frequency. The proportionality constant
χ(3) is the complex nonlinear optical susceptibility of the material. From this equation, the
anti-Stokes signal intensity can be derived [Tolles et al., 1977a],

Ias =

(
4π2ωas

nasc2

)
|3χ(3)|2 I2

p Isz2
(

sin(∆k z/2)
(∆k z/2)

)2

(1.2)

where I are the laser intensities, ∆k = | ~kas − (2~kp − ~ks)| is the wavevector mismatch and z is
the length over which the beams are mixed through the sample. ki = 2π/λi is known as the
wavevector.
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Close examination of equation 1.2 reveals some key characteristics of the CARS signal. First,
the nonlinear intensity dependence grants the CARS signal intrinsic three-dimensional sec-
tioning. The anti-Stokes signal is proportional to the square of the number of vibrational
oscillators since it depends on |χ(3)|2. The phase matching condition is realised when ∆k is
close to zero which maximizes conversion efficiency (the sinc function) for a length of path
z. For low-pressure medium (gases), this is readily achieved over moderate path length, but
in condensed media (e.g. biological sample), the phase matching is achieved if the beams (~kp

and ~ks) are crossed at the phase matching angle θ (Fig. 1.2 b)). Then, the anti-Stokes signal is
generated in the forward or backward (epi) directions. The first demonstration of CARS as a
contrast mechanism for microscopy used a configuration where the laser beams were non-
collinear [Duncan et al., 1982]. This microscope, however, was extremely difficult to align,
had a poor spatial resolution and a low sensibility. Many years later, Zumbusch et al. [1999a]
realised that by utilising a high numerical aperture microscope objective (NA > 0.6), the
phase matching condition was relaxed, enabling the use of a regular scanning microscope
configuration with collinear beams.

virtual state

a) b) c)

Figure 1.2 – a) CARS energy diagram. The anti-Stokes signal (ωas) is generated by the non-
linear interaction of a pump (ωp) and a Stokes (ωs) field with a Raman active molecular vi-
bration (Ω). Phase matching condition for b) forward-generated and c) backward-generated
CARS is achieved if the beams (~kp and ~ks) are crossed at the phase matching angle θ.

Nonlinear optical susceptibility

The complex nonlinear optical susceptibility has two terms, a non-resonant (χ(3)
NR) and a res-

onant (χ(3)
R ) component:

χ(3) = χ
(3)
NR +

χ
(3)
R

∆− iΓ
(1.3)

where the detuning parameter (∆ = ωp − ωs −Ω) depends on the centre frequency (Ω) of

4



a Raman line with bandwidth Γ. equation 1.3 implies that when the frequency difference
between the pump and the Stokes fields coincides with the frequency of a molecular vibra-
tion of the sample (∆ = 0), the CARS signal is strongly enhanced. As the CARS intensity is
proportional to |χ(3)|2, the intensity of the anti-Stokes signal can be written as:

Ias(∆) ∝ |χ(3)
NR|

2 + |χ(3)
R (∆)|2 + 2χ

(3)
NR Re χ

(3)
R (∆) (1.4)

where where Re χ
(3)
R is the real part of resonant term of χ(3). The first term of equation 1.4

is independent of the Raman shift, which implies that multiple coherently additive contri-
butions to χ(3) can lead to the resonant contribution being masked by other non-resonant
contributions. As well, the nonresonant contribution introduces an offset that gives CARS
microscopy images a background. The second term contains only resonant information. The
third term represents a mixed contribution which leads to a spectral redshift of the maximum
CARS response and a negative dip at the blue end of the spectral line. All contributions are
plotted independently as a function of the detuning parameters in Fig. 1.3 a) and together in
Fig. 1.3 b).

a b

Figure 1.3 – a) Three contribution from the |χ(3)|2 to the CARS signal as a function of the
detuning parameter ∆. The purely resonant term (solid line), the nonresonant background
term (dotted line), and the mixing term (dashed line). b) The total CARS signal (solid line)
with nonresonant background contribution (dotted line). The region highlighted in c shows
the presence of a nonresonant signal off resonance. While the regions in d and e indicate the
redshift and blue dip respectively. Figure from [Evans and Xie, 2008].

Radiation pattern

The radiation pattern of the CARS signal comes from the coherent addition of the radiation
from an ensemble of coherently induced Hertzian dipoles. It depends mainly on four pa-
rameters: 1) the size and 2) shape of scatterers, 3) the local environment, and 4) the nature
of the oscillators (their nonlinear susceptibilities) [Cheng et al., 2002c]. A single oscillating
dipole generates signals equally in both the forward and epi-direction (Fig. 1.4 a)) and a
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plane of dipoles will generate a similar but more directional pattern from the coherent ad-
dition of the dipole intensities (Fig. 1.4 b)). As the sample thickens, constructive interference
happens in the forward direction and destructive interference happens in the backward di-
rection (Fig. 1.4 c)) until no epi-CARS signal is generated when many dipoles populate the
focal spot (Fig. 1.4 d)).

This would seem to be a major problem for microscopy experiments involving thick tissue
where the CARS signal would be generated in the forward direction only, away from detec-
tors. Fortunately, a useful epi-directed CARS signal has been reported [Cheng et al., 2001b]
and three mechanisms have been identified to explain its existence. With the first one, objects
smaller than λp/3 will generate an epi-CARS signal due to incomplete destructive interfer-
ence [Volkmer et al., 2001]. Secondly, sharp discontinuities in χ(3) will act as infinitely small
objects and generate a backward-propagating anti-Stokes signal [Cheng et al., 2002c]. Finally,
with the third and most useful (at least in thick tissue) mechanism, the photons that are ini-
tially forward-propagating are redirected in the backward direction by multiple scattering
events (Fig. 1.4 e)) [Evans et al., 2005]. Turbid samples containing many local changes in their
index of refraction (most biological tissues), make this process particularly efficient.

d e

c

b
a

Figure 1.4 – CARS radiation pattern as a function of scatterer size. a) A single oscillating
dipole generates equal signal in both forward and epi-direction. b) A single plane of dipoles
generates a similar but more directed pattern from the coherent addition of all dipole contri-
butions. c) Destructive interference weakens the epi-directed signal in thicker samples until
d) only a strong forward signal is generated. e) Turbid material will efficiently redirect the
forward-generated CARS signal back towards the objective. Figure adapted from [Evans and
Xie, 2008].

Light sources

The development of new laser light sources has greatly helped progress in CARS microscopy,
especially the introduction of picosecond tunable pulsed laser systems operating in the near
infrared (NIR).
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NIR sources have many advantages for CARS microscopy. First, they help minimize the
nonresonant contribution to the CARS signal, which happens when the pump wavelength
is near the peak of a two-photon resonance. By minimizing these two-photon interactions,
NIR sources help provide images with better signal-to-noise ratios. As well, the penetration
depth of CARS microscopy is generally limited by scattering which is very important in
biological tissue samples. Because the CARS signal has a nonlinear intensity dependence,
scattering in the sample leads to a loss of laser intensity as well as an increase in focal spot
size [Beaurepaire et al., 2001]. By minimizing scattering, NIR sources help alleviate this prob-
lem. Finally, NIR sources also minimize multiphoton absorption-induced photodamage, one
of the main source of sample damage [Fu et al., 2006]. However, NIR sources also have two
non-negligible drawbacks. The first is their lower spatial resolution, on the order of 350 nm.
Secondly, the anti-Stokes signal, generated at wavelengths higher than the excitation beams,
can be difficult to acquire with standard detectors.

Because of the nonlinear nature of the CARS process, pulsed laser system are an essential
part of the CARS arsenal. But what is the effect of pulse duration on the signal generation?
Since CARS is a nonlinear process, it would be tempting to think that shorter is better. As it
happens, the answer is slightly more complex. On one hand, the intensity of the anti-Stokes
signal depends on the term I2

p Is (equation 1.2) meaning that shorter pulses will generate a
stronger CARS signal. On the other hand, the resonant term of the nonlinear optical suscep-
tibility depends on the detuning parameter (∆) and the Raman linewidth (Γ) (equation 1.3).
Since lasers do not have infinitely thin linewidth, there is some amount of detuning even
for a perfect combination of excitation wavelength (in terms of wavelength difference). For
example, a transform-limited 100 fs pulse in the near-infrared has a spectral width of about
150 cm−1 while a 7 ps pulse of the same wavelength has a spectral width of about 2 cm−1.
As well, typical Raman linewidths are on the order of 10 to 20 cm−1 in the fingerprint region
(500–2000 cm−1) and several tens of cm−1 in the high-wavenumber region (2400–3800 cm−1).
Therefore, femtosecond (fs) pulses are generally ill suited for the excitation of narrow Raman
lines since only a fraction of their spectral components can be used for the resonant signal
generation, while all components are involved in the nonresonant signal generation. This can
lead to an overwhelming nonresonant background. In that sense, picosecond (ps) sources of-
fer more versatility since their linewidth is usually narrower than the Raman linewidth, even
in the fingerprint.

To this day, the most popular laser system for CARS microscopy consists of a broadly tun-
able picosecond OPO synchronously pumped by the second-harmonic (532 nm) output of a
mode-locked Nd:YVO4 laser. The wavelength of the OPO signal and idler are continuously
tunable, making it possible to cover the whole range of chemically important vibrational fre-
quency (200–3600 cm−1) when used in conjunction with the main 1064 nm output from the
Nd:YVO4 laser. Moreover, the pulse trains are intrinsically synchronized and need only to
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be overlapped in space and time. This reduces the complexity and enhances the robustness
of CARS microscopy systems.

For more details about CARS microscopy, a comprehensive literature review is presented in
chapter 2.

1.1.3 CARS spectral imaging

Spectral imaging stems from the combination of spectroscopy and imaging to attain both
spatial and spectral information from an object. A spectral image contains the complete or
partial spectrum of a sample at each point in the imaging plane. Spectral images are three-
dimensional data cubes constituted of a series of two-dimensional images (Ix,y) for each
value of (λ) (Fig. 1.5 a)). Unlike regular images where each pixel stores a grayscale or RGB
value, a spectral image is made of spectral pixels that contain the entire measured spectrum
at a spatial point. Inversely, for every fixed value of λ, there is a corresponding 2-D grayscale
image. As an example, a CARS spectral image of a skin sample incubated in DMSO is pre-
sented as a mosaic in Fig. 1.5 b).

a) b)

Figure 1.5 – a) Spectral images are made from a series of two-dimensional grayscale images
(Ix,y) for every spectral value (λ), i.e. every pixel contains a complete spectrum. b) Example
of a spectral image from the skin of a mouse ear incubated in DMSO. The CARS signal from
the lipid compartmentalized in the adipocytes shows up first around 2849 cm−1 (halfway in
the montage) and then the signal from the lipophobic DMSO around 2914 cm−1 (towards
the end of the montage).

Spectral imaging methods have long been used in such diverse fields as astronomy [Perley
et al., 1989], remote sensing [Goetz et al., 1985], archaeology [Liang, 2012], food quality con-
trol [Gowen et al., 2007] and medical imaging [Lu and Fei, 2014] to name only a few. In mi-
croscopy however, it is only recently that spectral imaging has started to make an appearance
in applications such as live cell visualization [Zimmermann et al., 2003] and cytomics [Ecker
et al., 2004], cancer research [Barber et al., 2003] and fluorescence microscopy [Haraguchi
et al., 2002].
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Its ability to identify the chemical composition of samples while retaining some context with
the spatial information has made spectral imaging one of the fastest-growing techniques in
biophotonics. In practice however, acquiring a complete spectrum or even only a few wave-
lengths for each point sample can be a difficult task depending on the microscopy technique.
In CARS microscopy, the strict requirements regarding the excitation and detection have lim-
ited the rate of progress. In this section, we will review the various schemes for CARS spec-
tral imaging and highlight their strengths and limitations. CARS spectral imaging methods
can be loosely grouped in two families: broadband and narrowband approaches.

Broadband CARS spectral imaging

Broadband CARS spectral imaging aims to excite several Raman lines simultaneously, usu-
ally with a narrowband laser coupled with a broadband source. The narrowband laser de-
termines the inherent spectral resolution of the measurement, and the broadband laser de-
termines the spectral width of the generated CARS spectrum. This is illustrated in Fig. 1.6
where the broadband Stokes beam (ωs) is coupled with the narrowband pump beam (ωp)
to allow the simultaneous excitation over a wide range of Raman shifts (Ω), generating a
wideband anti-Stokes signal (ωas).

Figure 1.6 – Broadband CARS spectral imaging methods allow the simultaneous excitation
of several Raman lines. In this example, the narrowband pump beam (ωp) is coupled with
broadband Stokes beam (ωs) to simultaneously excite the underlying Raman lines.

The earliest CARS spectral imaging efforts relied on the use of a narrowband picosecond
pump beam combined with a broadband femtosecond Stokes beam to acquire CARS spectra
in the high-wavenumber region [Cheng et al., 2002b] or across a 180 cm−1 wide window
tunable from 0–4000 cm−1 [Müller and Schins, 2002].

Another approach utilizes a single femtosecond laser as the light source for both the pump
and Stokes pulses. This method has the advantage of not requiring laser synchronization. To
do that, the bandwidth of one femtosecond beam must be reduced. This can be accomplished
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by introducing a filter in the beam to select a small part of the spectrum from one pulse,
effectively converting the femtosecond pulse into a picosecond pulse [Kee and Cicerone,
2004]. As well, the pulse can be dispersed by a pair of prisms or gratings and then a physical
slit inserted into the dispersed beam to remove a small portion of the spectral bandwidth
[Knutsen et al., 2004]. Finally, a third way to accomplish this is to introduce a linear chirp in
one of the pulse. The temporal overlap of normal fs pulses with much longer pulses (ps) will
act as a temporal gate to use only a fraction of the available bandwidth [Knutsen et al., 2006,
Onorato et al., 2007].

Because the pulse bandwidth from common femtosecond lasers is limited to about∼150 cm−1,
there are several approaches relying on the generation of supercontinuum to provide a wider
spectral coverage (>2500 cm−1). Supercontinuum can be generated by injecting ultrashort
pulses in a tapered nonlinear fibre [Kee and Cicerone, 2004], a photonic crystal fibre [Kano
and Hamaguchi, 2005a,b] or a ultra-high numerical aperture silica fibre with a nearly pure
GeO2 core [Petrov and Yakovlev, 2005]. The most important drawback of supercontinuum
based methods is that while they can cover a wide spectral range, they suffer from a lower
intensity per spectral unit which is reflected in longer acquisition times when compared to
methods using transform-limited fs pulses.

While broadband methods seem to have a major advantage in terms of efficiency, generat-
ing CARS spectra by exciting several Raman lines simultaneously actually comes at a price.
Current broadband methods typically utilize CCD based spectrometers which have long
readout times, limiting their acquisition speed. As well, spectrometers cannot efficiently col-
lect the backscattered light off thick samples because they require a slit to resolve the spectra.
In such a case, the problem becomes one of conservation of etendue resulting in very poor
collection efficiency in tissue where diffusion is important. These two factors currently limit
pixel dwell times to the 10 ms range [Parekh et al., 2010, Okuno et al., 2010].

Although broadband CARS spectral imaging is superior in its analytical capabilities and
information content compared to CARS imaging, the associated dwell times are presently
more than four orders of magnitude longer. As a result, the usefulness of broadband CARS
spectral imaging is fairly limited, especially when working with living specimen or thick
turbid samples.

Narrowband CARS spectral imaging

The general principle of narrowband CARS spectral imaging is to encode the frequency of
the probed Raman shift in time (Fig. 1.7). This has for direct consequence to remove the
need for a spectrometer to resolve the different wavelengths of the CARS spectra. Instead, it
becomes possible to use faster, more sensitive detectors such as PMTs, which are ubiquitous
in CARS imaging experiments. Moreover, because of their large etendue, such detectors are
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better suited for the detection of epi-directed signals from thick tissue samples. As such,
narrowband CARS spectral imaging methods might help bridge the gap between imaging
and spectral imaging, especially for experiments involving thick tissue or live animal, or
even clinical applications.

time

Figure 1.7 – Narrowband CARS spectral imaging methods probe Raman vibrations sequen-
tially over a range of Raman shifts. In this example, the wavelength of the narrowband
Stokes beam (ωs) changes with time to excite the underlying Raman lines.

Perhaps the easiest, or at least most obvious, method to accomplish this consists in us-
ing a tunable narrowband source for one of the beams. Using what is now known as the
workhorse of CARS microscopy, an optical parametric oscillator (OPO) pumped by the sec-
ond harmonic of a Nd:YVO4 picosecond laser, Lin et al. [2011] have acquired spectral images
by manually scanning the wavelength of the OPO. The limited spectral range of their experi-
ment,∼200 cm−1 in the CH stretching vibrational range (2790–3070 cm−1), proved sufficient
to observe compositional variations in the meibomian gland lipids of mice. Others demon-
strated similar systems with a marginal improvement in scanning speed but a significant
one in usability by automatically adjusting the wavelength of the OPO. In the first instance,
the temperature of the LBO crystal in the OPO was adjusted automatically (taking ∼10 s) to
acquire CARS spectral images over the range 900–3150 cm−1 [Brustlein et al., 2011]. In the
second instance, only the angle of the OPO intracavity Lyot filter was adjusted automatically,
thereby yielding further gain in speed and spectral resolution at the cost of scanning range.
Using this system, CARS spectral images were acquired over the range 2880–3020 cm−1 with
2 cm−1 intervals at a rate of∼4 s per frequency [Garbacik et al., 2012]. Since then, researchers
have found that the tuning speed could be greatly improved from several seconds per wave-
length to∼100 ms with the use of an electro-optical modulator in the OPO cavity [Kong et al.,
2013].

Spectral focusing was initially devised as a way to improve spectral resolution in CARS
microscopy experiments using broadband fs pulse [Hellerer et al., 2004, Rocha-Mendoza

11



et al., 2008]. By controlling the degree of chirp in the fs pulses, the effective Raman resolu-
tion is controlled and it was possible to achieve Raman spectral resolution quite comparable
(∼8 cm−1) to that achieved with transform-limited ps pulses. Moreover, this method sup-
ports rapid tuning of the Raman resonance by changing the time delay between chirped
pump and Stokes pulses [Onorato et al., 2007, Pegoraro et al., 2009] and has been used to
acquire CARS spectral images [Chen et al., 2011]. The method is illustrated by plotting the
instantaneous frequency of the pulses as a function of time (Fig. 1.8). In Fig. 1.8 a), the spectral
resolution (∆Ω) is poor since the pulses have unmatched chirp while in Fig. 1.8 b), matched
chirp pulses result in an improve spectral resolution. We can also see that spectral tuning is
achieve by changing the time delay between the pulses.

Figure 1.8 – CARS spectral imaging with spectral focusing. In this time-frequency plot, the
pump and Stokes pulses are shown as ellipses and the spectral resolution of the CARS pro-
cess ∆Ω is determined by the total height of the ellipse ωp − ωs. The spectral resolution is
poor when large bandwidth pulses have unmatched chirps (a) but much improved with
narrow instantaneous bandwidths pulses with matched chirp. Figure from [Pegoraro et al.,
2009].

The main advantages of spectral focusing methods lie in their use of readily available laser
sources whose beams can be easily modified to accommodate the experiment as well as in
the control over important parameters such as spectral resolution and bandwidth, and their
intrinsic compatibility with other nonlinear modalities (two-photons microscopy, second-
harmonic generation). However, since spectral tuning is achieved by changing the relative
time delay between the two pulse trains, the spectral tuning speed is limited by the require-
ment to mechanically move a mirror. Nonetheless, the utility of the method is proven by the
numerous reports that have been published in recent years.
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Another method uses a Stokes beam based on a mode-locked Ti:Sapphire laser with an
acousto-optic tunable filter (AOTF) in the cavity for high speed wavelength tuning (wave-
length switch within ∼0.1 ms). The AOTF is an electronically tunable optical bandpass filter
whose centre wavelength can be rapidly tuned over a large spectral region by changing
the frequency of the driving radio signal. Using this method, CARS spectral imaging was
demonstrated first over a limited range ((∼50 cm−1)) [Hashimoto et al., 2010], but then over
a much wider range (400–2150 cm−1 and 1600–3300 cm−1) [Hashimoto et al., 2012]. On top
of their fast scanning rate and wide tuning range, AOTF also have the significant capability
of operating in random access. This last feature can help shave significant time by acquir-
ing images only in spectral regions of interest as was demonstrated by rapidly switching
between 2100 cm−1 and 2850 cm−1, the Raman vibration of deuterated and nondeuterated
stearic acids respectively [Cahyadi et al., 2013].

More recently, a method based on two laser frequency combs demonstrated the capability to
measure complete spectra over a wide bandwidth and with high resolution on a single pho-
todetector [Ideguchi et al., 2013]. Using this novel method, the authors were able to record
CARS spectral images ranging from 200–1200 cm−1 with a spectral resolution of 4 cm−1 at a
rate of 12 µs/spectra. However, with their current system design, the total acquisition time
was limited by the waiting time between successive spectral acquisitions (∼20 ms). The au-
thors believe that further system development should help overcome this limitation.

1.2 Image analysis

If you torture the data long enough, nature will confess.

— Ronald Harry Coase

Image processing and analysis encompasses a wide variety of techniques. On one hand, im-
age processing tasks generally aim to enhance images by modifying digital images proper-
ties such as contrast, brightness, noise, and illumination. On the other hand, image analysis
techniques usually strive to extract information by identifying and measuring features and
structures revealed by the images. As the principal means of acquiring scientific data from
images, methods falling in the latter category often endeavour to reduce an image to some
measurable quantity that can then be used for description, comparison, or classification.

The aim of this section is to present a variety of image analysis techniques related to the
extraction of quantitative information from digital microscopy images. More specifically, I
will cover the basics of image segmentation, object measurements, and image processing in
the Fourier domain.

13



1.2.1 Segmentation

Image segmentation is one of the most important task in digital image analysis, but also one
of the most challenging. It is the process of partitioning an image into non-overlapping re-
gions (segments) corresponding to different objects. This transformation aims to simplify an
image by changing its representation to something more meaningful and easier to quantify.
Once the segments are isolated, the objects can be measured, classified, and analysed.

In human vision, image segmentation takes place effortlessly. It is such a trivial task that
most of us do not realise it is happening continuously in our life. Whether we are doing
complex tasks such as driving a car: avoiding obstacles, looking for pedestrian or signs or a
simple thing such as reaching for a glass of water. Processing digital images on a computer,
by comparison, is a laborious, almost impossible task. The images need to be separated in
regions representing the objects of interest by grouping pixels sharing some computed prop-
erties such as grey level or texture. This is even more difficult in biological images which are
often plagued with noise, have limited resolution, and where the objects have ambiguous
boundaries.

Because of the importance of segmentation in image analysis, a great variety of segmenta-
tion methods have been proposed covering a wide range of applications: machine vision
and robotics, objects detection, pattern recognition (faces, fingerprints), biomedical imaging,
and microscopy. Generally, the different approaches may not yield exactly the same results,
especially when the exact location of object boundaries is subject to interpretation. In such
cases, the result from different segmentation algorithms can be combined to produce an im-
proved segmentation. In this section, I will present an overview of the basic segmentation
methods as well as a few more specialized techniques. This is not a comprehensive survey of
all available methods, but rather an overview of the methods relevant to the work that has
been done in this thesis.

Region-based segmentation

Region-based methods attempt to partition an image by grouping pixels that are similar
with respect to certain properties such as intensity, texture, or colour. With a region-based
approach, each pixel in an image is assigned to a particular label and connected sets of pixels
with the same label will form the regions.

A region is a set of connected pixels that are adjacent or touching. This definition of a region
is related to an important concept: the connectivity of pixels in a digital image. In a two-
dimensional image, there are two rules of connectivity. When only laterally adjacent pixels
(up, down, right, left) are considered to be connected, we have “4-connectivity”. If diagonally
adjacent pixels are added, then we have “8-connectivity”.

Grey-level thresholding is the simplest way to accomplish the segmentation of an image.
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First, a range of intensities in the image (threshold) is defined, than the pixels within this
range are classified as the objects of interest (foreground) and the other pixels rejected to the
background. The resulting image is usually stored as a binary (or two-level) image and dis-
played using black and white to distinguish the regions. A grey-level thresholding operation
can be described as

BW(x, y) =

F, if I(x, y) ≥ T

B, if I(x, y) < T
(1.5)

where BW(x, y) is the segmented image resulting from applying the threshold T to the orig-
inal image I(x, y). F and B are the foreground and background labels respectively. For cases
where the objects of interest are defined by a low grey-level on a high grey-level background,
simply inverting the image would unable the use of this formulation for the segmentation.

Multiple ranges of grey-level can be defined in the image to generate a multi-level segmented
image. As well, if the objects are differentiated from the background by some other property
(texture, colour, etc...), a simple conversion of that property to grey-level would unable the
use of thresholding.

Grey-level thresholding is an essential region-based technique that is especially useful for
images containing solid, well defined objects on a contrasting background. It is simple to
compute and, provided the threshold is chosen correctly, always succeeds in defining ob-
jects with closed, connected edges separating regions of uniform, but different, grey lev-
els. The threshold level is usually chosen from the image intensity histogram. Because that
choice can have a direct impact on the segmented objects boundary positions and sizes, and
therefore affect the values of any subsequent object measurement, the threshold value must
be chosen carefully. The effect of varying the threshold value on the segmentation result is
demonstrated in Fig. 1.9.

One of the first limitation of grey-level thresholding becomes apparent when working on
images where the background grey level and the objects-background contrast vary within
the image. In such cases, holding the value of the threshold constant throughout the image
is unlikely to produce good results since a value that works well in an image area may not
be such a good choice in another area. Adaptive thresholding methods have been developed
to better handle such variations by using a threshold that slowly varies with the position in
the image. One way to achieve this consists in partitioning an image into non-overlapping
blocks whose histograms are then analysed to choose threshold values. Once this is done, a
thresholding surface is created by interpolating the threshold values over the entire image.

Exploring threshold values manually is most useful since it gives the user a sense of the spa-
tial distribution of the grey levels in the image. Manually choosing the threshold value (or
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Figure 1.9 – Application of different threshold level to a CARS microscopy image from a
transverse section of mouse spinal cord showing the myelin surrounding the axons. From
left to right, the original image and the segmented images thresholded at grey levels of 45,
65, 85 and 105 respectively. The bottom panel shows the histogram of the original image with
the threshold levels indicated in red.

values) for the final segmentation however, should be avoided for several reasons: it takes
time, it does not allow automatic processing and wrong threshold choices will lead to errors
in subsequent analysis. Nowadays, many algorithms have been developed for automati-
cally determining the threshold value. For instance, the simplest method locates the peaks
in the histogram and sets the threshold either midway, or at the minima between them. Each
method makes a different assumption about the image histogram and the best way to divide
it into parts. A good comprehensive survey of techniques is available in Sezgin and Sankur
[2004].

Ultimately, histogram-based region segmentation methods have a fundamental limitation
because histograms describe only the distribution of grey levels without any spatial con-
text. Region-growing and Split-and-merge methods tackle this limitation by harnessing the
spatial information contained in the image. Where region-growing aims to group adjacent
pixels or small regions together using homogeneity as the main criterion for merging, split-
and-merge uses similar homogeneity criteria but differs in the direction of their application
(top-down approach). Because they utilize several image parameters simultaneously to de-
termine the final objects shapes, these methods often produce good segmentation results at
the cost of being generally computationally more expensive than simpler methods.

Edge-based segmentation

Edge-based segmentation techniques aim to extract object boundaries directly from the im-
ages by: 1) locating the edge pixels in the image, and 2) linking adjacent edge pixels into a
boundary. Edges are associated with points in an image where the intensity values change
sharply, which usually occurs at the objects boundaries.
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Edge detection refers to the process of identifying and locating sharp discontinuities in an
image. It is often preceded by a pre-processing stage (smoothing, noise filtering). There are
several methods to detect edges in two-dimensional images and most of them can be cate-
gorized as gradient-based or Laplacian-based methods. While gradient-based methods look
for maxima in the first derivative of the image, Laplacian-based methods search for zero-
crossings in the second derivative of the image. The difference between most methods lies
in the type of pre-processing applied to the image as well as the in the computation of the
edge strength.

Edge detection operators are usually implemented as convolution templates. The convolu-
tion of a particular template with the image results in an image of the edge strength. For
instance, the horizontal and vertical templates for the famous Sobel edge-detection operator
are applied to the grey-scale image I(x, y)

Gx =

1 0 −1
1 0 −1
1 0 −1

 ∗ I(x, y), Gy =

 1 1 1
0 0 0
−1 −1 −1

 ∗ I(x, y) (1.6)

where the Gx and Gy are the results of the convolution to find the horizontal and vertical
edges. The edge strength is then given by the gradient magnitude

G =
√

G2
x + G2

y (1.7)

An example of the application of the Sobel operator to a CARS image of a transverse section
from the spinal cord of a mouse is shown in Fig. 1.10. On the left side, the figure shows the
original image where the contrast is given by the myelin lipid content and on the right side,
the gradient magnitude from the Sobel filter.

Figure 1.10 – Application of the Sobel edge operator to a CARS microscopy image from a
transverse section of mouse spinal cord showing the myelin surrounding the axons. The
original image is on the left and the gradient magnitude is on the right.
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Edge-based methods work well in images with good contrast between object and back-
ground. However, noisy images with smooth transitions and low contrast as is the case in
optical microscopy are challenging. Moreover, robust edge linking is often not a trivial task,
even when the edge detection step is successful, especially with complex images.

Watershed segmentation

Watershed image segmentation methods usually interpret grey-level images as a topographic
surface where high intensity denotes peaks, and low intensity denotes valleys. A region sur-
rounding a closed ridge line is considered as a partitioned region, and its properties are
related to the way the surface is derived from the input image.

To identify the ridge lines, the first step consists to fill the local minima with different labels
considered to behave like water. As the water level is raised, barriers are built to prevent
different labels from merging. The process is illustrated in Fig. 1.11. Once the surface is com-
pletely submerged, those barriers form the segmentation result [Beucher and Lantuejoul,
1979].

Figure 1.11 – One-dimensional illustration of the watershed segmentation process. The ini-
tial threshold level segmenting the image into the proper number of objects (two) is raised
gradually, allowing the boundaries to expend but not to merge.

Most watershed methods differ in the way the three-dimensional surface is interpreted from
an image. They seldom rely on the original grey level image, preferring instead to interpret
the image of the gradient magnitude as elevation information. However, because the gradi-
ent is very sensitive to noise and small fluctuations in grey level, using the gradient image
directly can lead to over-segmentation. The result is often greatly improved with the use of
smoothing filters on the gradient image or by using markers associated with the object or
with the background.

Finally, watershed is often used in conjunction with other segmentation methods to separate
touching objects in binary images. An example is shown in Fig. 1.12 where two touching
circles need to be separated. The surface is created from the distance transform of the binary
image and the watershed line separates the touching circles.
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a) b) c)

Figure 1.12 – Application of the watershed technique to separate touching objects. a) Binary
image of two touching circular features. b) The distance transform of the binary image is
computed and c) the watershed line separates the touching circles.

Active contour methods

Active contour is a framework aiming to find a closed contour for delineating a target object
[Kass et al., 1988]. The contour detection problem is formulated as an optimization method,
i.e., it tries to compute the best contours from several possible contours according to certain
criteria. Active contours methods are renowned for their reliability at providing reasonable
contours to features with ambiguous boundaries or even for noisy images.

The idea behind active contours (snakes) is to start with an initial guess which is then moved
by image forces towards the feature boundaries. They are usually expressed as an energy
minimization process where the target is a minimum of a properly formulated energy func-
tional. The energy functional includes image properties like edge magnitude as well as prop-
erties that control the way the curve bends and stretches. In this way, the solution represents
a compromise between the internal forces designed to keep the model smooth during the
deformation process, and the external forces defined to move the model towards an object
boundary or some other features within the image. Active contours are called snakes when
an explicit parametric representation of the curve is used (v(s) = ((x(s), (y(s)). The snake
energy functional is then

Esnake =
∫ 1

s=0
Eint(v(s)) + Eim(v(s)) + Econ(v(s))ds (1.8)

where Eint, Eim and Econ represent the contour internal energy, image energy, and constraint
energy. The constraint energy is there to allow higher level information to control the snake
evolution and is used only in advanced active contour methods. The process then aims to
find a set of point v(s) that minimizes eq. 1.8

dEsnake

dv(s)
= 0 (1.9)

Most active contour methods are distinguished in the way the various parameters control-
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ling the snake’s behaviour are defined. For example, the original formulation of the image
energy included contributions from lines, edges, and terminations

Eim = wlineEline + wedgeEedge + wtermEterm (1.10)

where Eline, Eedge, and Eterm denote their respective energy, and wline, wedge, and wterm the
related weighting coefficients. In this formulation, the line energy is usually set to the image
intensity while the edge energy comes from the application of an edge detection operator
and the rarely used terminaison energy is related to the curvature of level image contour. As
well, the snake’s internal energy is usually defined by the sum of the first- and second-order
derivatives around the contour

Eint = α(s)
∣∣∣∣dv(s)

ds

∣∣∣∣2 + β(s)
∣∣∣∣d2v(s)

ds

∣∣∣∣2 (1.11)

The first-order differential measures the elastic energy due to stretching and the second-
order differential the curvature energy resulting from bending. The values of the weighting
coefficients α and β are chosen to control the shape that the snake aims to attain.

Methods based on parametric active contours (snakes) have the advantages of being robust
to image noise as well as gaps in feature boundaries, but this framework also restricts the
adaptability of the boundaries to the point where splitting or merging of parts is not allowed.
To solve this problem, another form of active contours called level sets (or geometric active
contours) have been introduced to handle topological changes more naturally [Osher and
Sethian, 1988]. Level set methods aim to find the contour shape without parameterizing it.
In this framework, by finding the zero level set of a function, the curve description becomes
implicit [Sethian, 1999]. The zero level can be visualized as a slice in a three-dimensional
surface (Fig. 1.13). As the contour evolves, the surface is sliced at different level, allowing it
to split or merge.

As an extension of the active contour model, the level set framework can deal with multiple
contours but is generally less robust to boundary gaps, difficult to implement, and compu-
tationally inefficient [Suri et al., 2002]. Despite these shortcomings, level set methods have
gained a significant amount of traction and several implementations have been published.
One of the most popular level set technique called active contour without edges was intro-
duced by Chan and Vese [2001] based on the energy functional developed by Mumford and
Shah [1989]. Their model is different from others in that it avoids using gradient information,
favouring instead regional image statistics. Doing so helps avoid boundary leakage which
can cause it to collapse. Also, it tends to work well in images with features having weak
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Figure 1.13 – a) The contour evolution is handled by slicing a surface at different levels. This
enables the contour shape to split (b) or merge (c). Figure from Nixon and Aguado [2012].

or diffuse boundaries, it is more robust to noise and can address problems related to the
initialization. An example of the application of the Chan-Vese algorithm is given in Fig. 1.14.

Figure 1.14 – The level set method active contour without edges can detect multiple objects
from a noisy image. The evolution of the contour is ordered from left to right. Figure from
Chan and Vese [2001].

1.2.2 Objects measurements

In section 1.2.1, we discussed segmentation methods for extracting features from digital im-
ages. In this section, the discussion will focus on ways to obtain quantitative measurements
from the segmented objects. While the specific motivations for performing object measure-
ments are strongly related to the application, the basic objective remains to provide some
level of objectivity and quantification to the description of the various features that populate
an image.

Object measurement methods are used to compute properties such as area, perimeter, aver-
age grey level, and shape to describe object morphology. These measurements can then eas-
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ily be incorporated in statistical analysis or used to discriminate between objects or measure
their level of similarity. Objects measurements can be classified as geometric measurements
when the objects are treated as binary objects or intensity measurements when the pixels
grey levels are considered.

Geometric measurements

A binary object can be described in terms of its geometric properties. Some of the most com-
mon properties include size, shape, and position relative to a frame of reference.

Lets first consider the function I(x, y) describing an object on a M×N binary image resulting
from some previous segmentation

I(x, y) =

1, if (x, y) is part of the object

0, otherwise
(1.12)

where x and y are indices in the image coordinate space.

The size of an object is usually described in terms of its area and perimeter. For a binary
image, the area of an object is simply defined as the sum of all its “on” pixels

A = ∑
x

∑
y

I(x, y) (1.13)

Once the area of an object has been measured, it is frequently expressed in terms of its equiv-
alent circular diameter because it provides a convenient linear measure of the object size
irrespective of its shape

Deq =

√
4A
π

(1.14)

The perimeter of a feature is well defined in the continuous real space but that is not the case
in a digital image. Because of the discrete spatial arrangement of pixels, perimeter measure-
ment is normally biased and ultimately, the perimeter value depends on whether a pixel is
treated as a point or a little square [Hetzner, 2008]. For this reason, there are several methods
to measure the perimeter. The simplest way to estimate the perimeter of an object is to count
boundary pixels: i.e. pixels with a value of “1” that have at least one neighbouring pixel with
a value of “0”. By this definition, the determination of the boundary pixels depends on the
interpretation of connectivity which was introduced in section 1.2.1.

Another useful set of size properties comprises the area and perimeter of the convex hull
and of the minimum bounding box. Both properties are computed in the same way while
considering the convex hull of the object or its minimum bounding box instead of the object
itself. The convex hull of an object can be conceptualized as the shape formed by a rubber
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band stretched around it. The minimum bounding box is defined as the smallest box within
which the object can be contained.

The minimum and maximum Feret diameters (or calliper diameters) are also considered
useful size descriptors. The Feret diameter is the distance between two parallel lines tan-
gent on either side of the object. The minimum and maximum Feret diameters are found by
considering all possible angles.

An object can also be defined by its position and orientation relative to some frame of refer-
ence. The position is usually given by the object centroid (xc, yc) computed as

xc =
1
A ∑

x
∑
y

x I(x, y)

yc =
1
A ∑

x
∑
y

y I(x, y)
(1.15)

The orientation of the object can be measured by computing the axis of least inertia. This
axis is defined such that the sum of the squares of the distance of each pixel to the axis is
minimized. It can be calculated using

tan(2θ) =
2 ∑x ∑y x y I(x, y)

∑x ∑y x2 I(x, y)−∑x ∑y y2 I(x, y)
(1.16)

where θ gives the orientation of the axis of least inertia relative to the x-axis.

Shape features are another type of geometric measures frequently used to describe objects
and in tasks such as object recognition and object comparison. Some of the most popular
shape descriptor are dimensionless ratio invariant to translation, rotation, and scaling, that
are defined from some size parameters. Since there are hundreds of ways that these can be
combined, we will only consider some commonly used shape parameters.

The form factor, also called the circularity, is typically used to define the regularity of an
object and takes a maximum value of 1 for a circle. The reciprocal value of the form factor,
usually called the roundness is also sometimes used. The form factor is defined from the area
A and perimeter P as

Form factor =
4πA

P2 (1.17)

Another property used to characterize the regularity of an object is the compactness. It is
defined using the area A and the maximum Feret diameter Dmax as

Compactness =

√
4A/π

Dmax
(1.18)

The solidity and the convexity are two shape descriptor related to the object convex hull. The
solidity is given by the proportion of the pixels in the convex hull (Aconv) that are also in the
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object

Solidity =
A

Aconv
(1.19)

The solidity equals 1 for an object with a concave boundary and is smaller than 1 for an
object possessing a convex boundary. The convexity is similarly defined as

Convexity =
Pconv

P
(1.20)

The extent is given by the proportion of the pixels in the bounding box that are also part of
the object. It is computed as

Extent =
A

Aboundingbox
(1.21)

Another set of shape descriptors is derived from their moments [Hu, 1962]. Image moments
provide a global description of a shape by describing the arrangement of the pixels within
it. The moment of order (p + q) of a function I(x, y) describing a discrete image is defined as

mpq = ∑
x

∑
y

xpyq I(x, y)∆A (1.22)

where ∆A is the area of a pixel usually assumed to be 1. The only zero-order moment gives
the area of the object and is given by

m00 = ∑
x

∑
y

I(x, y) (1.23)

The two first-order moments, m01 and m10, are given by

m10 = ∑
x

∑
y

xI(x, y) , m01 = ∑
x

∑
y

yI(x, y) (1.24)

The object centre of mass (x̄, ȳ) can be computed from the ratio of the first-order to the zero-
order moments

x̄ =
m10

m00
, ȳ =

m01

m00
(1.25)

which is equivalent to equation 1.15 presented earlier.

Higher order moments (p + q > 1) are usually defined in terms of the object centre of mass.
These are called central moments since they are location invariant. They are defined as

µpq = ∑
x

∑
y
(x− x̄)p(y− ȳ)q I(x, y) (1.26)
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The three second-order central moments are useful properties providing a measure of the
dispersion of the pixels of an object with respect to its centroid. They are usually written in
term of the raw moments

µ20 = m20 − x̄ m10 , µ02 = m02 − ȳ m01 , µ11 = m11 −
m10m01

m00
(1.27)

Second-order moments are often used to derive three important shape descriptors: eccentric-
ity and major and minor axis lengths. These are usually computed from the ellipse that has
the same second-order moments as the object. The major and minor axis lengths are com-
puted directly and the eccentricity is given by the ratio of the distance between the foci of
the ellipse and its major axis length.

The number of moments continue to rise exponentially as their order increases.

grey-level measurements

Several object measurements can be derived from the intensity distribution of the pixels as-
sociated with the object. Most geometric measurements defined earlier for binary objects
can be adapted to produce grey-level measurements. The most common grey-level measure-
ments will be described in this section.

The simplest property to compute is probably the integrated grey level. It represents the
“mass” of the object and is given by the sum of the grey levels of all the pixels in the object.

Most of the other grey-level properties are computed from the object histogram. Usually, the
histogram is normalized by the size of the object to give the probability density function
(pdf) of the grey levels. Properties derived from the normalized histogram provide statis-
tical descriptors characterizing the grey-level distribution within the object. The grey-level
probability density function P(g) of an object is given by

P(g) =
h(g)

A
(1.28)

where h(g) is the number of pixels with grey level g and A the area of the object (total number
of pixels).

The most common first-order grey-level properties computed from the pdf include the mean,
standard deviation, mode, skew, energy and entropy.

The average intensity (mean grey level) of the object, is calculated by summing over all grey
levels g

ḡ = ∑
g

gP(g) (1.29)
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The standard deviation quantifies the spread of grey levels within the object. It is sometimes
interpreted as a measure of contrast. It is defined as

σg =
√

∑
g
(g− ḡ)2P(g) (1.30)

The skew is a measure of the asymmetry of the probability distribution of grey levels. It is
calculated by

κ =
1
σ3

g
∑
g
(g− ḡ)3P(g) (1.31)

The entropy is a measure of the grey level dynamic range. It is given by

Entropy = −∑
g

P(g) log2[P(g)] (1.32)

Finally, the energy is a measure of the image smoothness in terms of grey levels. It is given
by

Energy = ∑
g
[P(g)]2 (1.33)

Textures are another type of grey-level measurement that quantifies higher-order relation-
ships within their probability distribution. In the context of image analysis, a texture can
be defined as a property describing the spatial arrangement of the intensity of pixels in a
local region. They characterize patterns in the variation of grey levels that are too small to
be identified as separate objects. In that sense, textures, or at least their perception, are scale
dependant. They are, however, usually independent of the position, orientation, size, shape,
and average grey level of an object.

Although there are many texture measurements, the most popular properties were intro-
duced by Haralick et al. [1973]. The basis for Haralick’s texture features is the grey-level
co-occurrence matrix (GLCM), a two-dimensional histogram that measures the frequency
of a grey-level pair separated by a particular offset distance in a particular direction. The
GLCM is a square matrix of dimension L where L is the number of grey levels in an image.
For a given distance offset and direction, the elements P(i, j) of the GLCM are generated by
counting the number of times a pixel with value i is separated by the specified offset in the
specified direction from a pixel with value j. The matrix is then normalised to the total num-
ber of such comparisons made so that each entry can be considered to be a probability. The
scale dependence is reflected in the fact that selecting a different offset direction and distance
gives rise to a new GLCM. Once a GLCM has been computed, one can calculate the fourteen
statistics introduced by Haralick. Examples include entropy H, defined as

H = −∑
i,j

P(i, j) log(P(i, j)) (1.34)
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inertia I, given by

I = ∑
i,j
(i− j)2P(i, j) (1.35)

energy, which is

E = ∑
i,j
[P(i, j)]2 (1.36)

and maximum probability Pmax, given by

Pmax = maxi,jP(i, j) (1.37)

1.2.3 Image analysis in frequency space

Because of the way we perceive of the world around us, most people will perform their
image analysis tasks in the original spatial domain of the images. However, while an im-
age represented in frequency space may not be easily interpreted by a person, working in
frequency space to perform certain image processing tasks can be very useful. The Fourier
transform, which transforms an input image from the spatial domain to the frequency do-
main, is a very important image processing tool used in a wide range of applications, such
as image filtering, image reconstruction and image compression.

Because the mathematical background of the Fourier Transform is very well documented in
many textbook and we are only concerned with digital images, the discussion in this section
will be restricted to the discrete Fourier transform (DFT). Instead of working on a continuous
function, the DFT converts a sampled function from its original domain to the frequency
domain. In images, the number of frequencies corresponds to the number of pixels in the
spatial domain image so that the transformed image has the same size as the original.

For an image of size M × N represented by the function I(x, y) in the spatial domain, the
two-dimensional DFT is given by

F(u, v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

I(x, y) e−i2π(ux/M+vy/N) (1.38)

where u and v are spatial frequencies in the x and y directions. The exponential term is
the basis function for the correspondence to the Fourier space and it comprises sine and
cosine waves with increasing frequencies. The frequency resolution is related to the spatial
resolution (∆u = 1/∆x) and the maximum frequency is given by umax = M

2∆x . The DC-
component F(0, 0) represents the average grey level of the image and the component F(M−
1, N − 1) represents the highest frequency.
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The inverse Fourier transform, used to transform the image back to the spatial domain, is
given by

I(x, y) =
M−1

∑
u=0

N−1

∑
v=0

F(u, v) ei2π(ux/M+vy/N) (1.39)

The result of the Fourier transform consist of an image with complex numbers which is often
processed to produce two images representing the magnitude and the phase. The magnitude
(or spectrum) is given by

|F(u, v)| =
√
<[F(u, v)]2 +=[F(u, v)]2 (1.40)

where<[F(u, v)] and=[F(u, v)] are the real and imaginary part of F(u, v). The phase is given
by

φ(u, v) = tan−1
[
=[F(u, v)]
<[F(u, v)]

]
(1.41)

In image processing, it is customary to display only the magnitude since it contains most
of the geometric structure information from the spatial domain, but the phase is required to
re-transform the image back to the spatial domain.

An example of the application of the Fourier transform to a CARS image from a mouse spinal
cord is given in Fig. 1.15. The Fourier coefficients produced by eq. 1.38 are arranged such that
the DC-component is in the corners and the high frequencies in the centre (Fig. 1.15 b)). Be-
cause of the periodicity of the content, the layout of the frequency domain content is usually
changed by swapping the 1st and 3rd quadrants and the 2nd and 4th quadrants. This layout is
considered more intuitive since the usually stronger low frequencies are in the centre and the
high frequency content on the outside. Moreover, because of their large dynamic range, the
Fourier coefficients usually requires a logarithmic transformation to be displayed correctly
(Fig. 1.15 c)).

a) b) c)

Figure 1.15 – A 2D Fourier transform. a) CARS image from a longitudinal tissue section of
mouse spinal cord showing the myelin wrapped around the axons. b) The dynamic range of
the raw DFT output is too large for proper display and the DC component is in the upper left
corner (arrow). c) The modified DFT output after a logarithmic transformation and a shift in
the layout.
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The applications of the Fourier transform in image analysis tasks are too numerous to at-
tempt a comprehensive description. Focusing on its use in microscopy, one of the most obvi-
ous utilisation is frequency filtering. This can be done by using a mask to select (or eliminate)
certain frequencies prior to the image reconstruction. For example, to create a low-pass fil-
ter, one would simply need to set all frequencies above a certain value to zero. As well,
because it is very sensitive to the actual resolution of the image, the Fourier transform can
be used to measure the spatial resolution. Specifically, when a microscope image is over-
sampled, recorded with more pixels than the optical resolution, the magnitude of the image
in the frequency domain will display an abrupt drop in magnitude beyond a certain fre-
quency. This is because those higher frequencies contain no information but only random
pixel noise. Finally, the Fourier Transform can also be used to gain information about the
geometric structure of the spatial domain image. This can be useful to study images of tis-
sue displaying some type of macroscopic organization. For instance, the image presented in
Fig. 1.15 a) shows (a tiny section of) highly organized myelinated axons. Applying the trans-
formation to the image reveals the general orientation of the fibres as can be seen from the
diagonal structure in Fig. 1.15 c).

1.3 Main research goals and thesis plan

The compound microscope was invented sometimes in the 17th century. Comparatively, it
could be said that coherent anti-Stokes Raman scattering (CARS) microscopy, first demon-
strated in 1982 [Duncan et al., 1982], is a young and immature technique. Nonetheless, after
gaining the attention of many researchers, it has gathered a significant amount momentum
in the field of optical microscopy, especially in biophotonics. This is easily explained since
CARS microscopy satisfies three key requirements imposed on optical imaging techniques
for the visualization of living biological specimens: noninvasiveness, chemical selectivity,
and high sensitivity.

Despite the many advantages of CARS microscopy, there are still several obstacles that pre-
vent the wide-scale adoption of the technique in biology and medicine: it requires expensive
equipments, CARS microscopes are complex and difficult to operate, as a contrast mecha-
nism, it lacks versatility, and finally, common image analysis methods need to be adapted
and new ones added to the toolbox. For a young researcher, this is all extremely exciting
since it promises to provide many challenges with a fair share of risk and a chance to make a
difference. Therefore, this thesis is first and foremost about easing the adoption of CARS as
a microscopy technique by addressing first one of the technical limitations of current imple-
mentations (chapter 3) and then expending the toolbox of adapted image analysis methods
(chapters 4 and 5).

In chapter 2, we present a literature review of minimally invasive imaging methods relying
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on vibrational contrast. While the review focuses on the application of Raman-based tech-
niques for in vivo imaging, it also covers other imaging and spectroscopy applications in
biology and medicine.

In section 1.1.3, the case was made about the many benefits of CARS spectral imaging sys-
tems. Also, as indicated by the ever growing number of related publications, there is a pal-
pable interest in developing such systems. However, if the sheer diversity of the working
principles of current implementations is any indication, the perfect CARS spectral imaging
system has yet to be created. The first challenge that was addressed in this thesis concerns
some of the shortcomings of CARS as a tool for spectral imaging, especially for experiments
requiring that the signal is collected in the epi-direction (thick tissue and in vivo, clinical
applications). Broadband methods based on transform-limited ultrashort pulses or super-
continuum generation have been successful with optically thin samples and in greatly sim-
plifying the process of probing of multiple Raman lines. However, the requirement for a
spectrometer leads to poor efficiency for collecting diffuse backscattered signal from turbid
samples. Narrowband methods avoid collection efficiency problems since they generally rely
on large area detectors already used in imaging for the signal detection. Typical CARS imag-
ing system have access to a wide range of Raman lines, but their slow tunability imposes
strong limitation to their usability in spectral imaging. Other narrowband methods relying
on spectral focussing of broadband pulses or the use of an acousto-optic tunable filter are ei-
ther limited in their vibrational tuning range or speed. Consequently, in order to surpass the
capabilities of current CARS spectral imaging systems, it is likely that new laser sources will
be required. This was the basis for the paper presented in chapter 3 where we introduced
a novel CARS spectral imaging system. This original contribution addresses mainly the is-
sue of vibrational tuning speed with a system that is many orders of magnitude faster than
other narrowband techniques. Being based on a synchronised fibre laser, it also has other
important advantages such as robustness, ease of use, and portability.

For many years, a significant fraction of the work done in Dr. Côté’s lab was focussed on
the development of a video-rate CARS microscopy platform. Our CARS microscope was de-
signed specifically to satisfy the requirements of in vivo imaging experiments looking at the
spinal cord of mice as well as the acquisition of large-scale maps from nerve cross sections.
As a result, we have been conducting such experiments regularly for many years now as
part of our multiple sclerosis research program. Consequently, the amount of image data
started to accumulate at an alarming rate and we quickly realized that we had no way to
properly analyse it using commonly available tools. This was due as much to the specifics
of the biological questions that we were trying to answers as to the characteristics of CARS
microscopy images. With this in mind, I initiated two image analysis projects with the intent
of addressing some of those pressing needs.

Multiple sclerosis is a neurodegenerative disease that causes the degeneration of myelin
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wrapped around the axons. Little is known about the exact sequence of events leading to
lesion formation and the key players that are involved. Therefore, we set out to do is a se-
ries of experiments aimed at answering those questions. It turns out that CARS microscopy
is an ideal tool for that task since it can easily “see” the myelin and hence the lesions that
might appear when the disease strikes. What was needed, however, was a way to assess
quantitatively the severity of individual lesions by objectively evaluating the myelin mor-
phology. This was the main goal of the paper presented in chapter 4, where we introduced
an automated method to quantify the local organization of myelinated axons in the spinal
cord. Using a 2D-FFT, we can extract the average orientation and directional anisotropy of
the fibres within contiguous image domains in the CARS images from longitudinal tissue
sections. Those features were then used to calculate a new parameter, the CCP, representing
the correlation between orientations of adjacent domains. We then showed that the CCP was
a good proxy for the degree of organization/disorganization in the myelin structure.

The ability to assess the myelin health in longitudinal tissue sections is a very potent tool be-
cause it is compatible with in vivo experiments where the mechanisms leading to the degen-
eration can be studied. However, the limited penetration depth of CARS combined with the
longitudinal view of the spinal cord does not permit to evaluate deep nerve fibres. Further-
more, myelin morphology is usually measured from images of transverse tissue sections and
there is an extensive history of publications on the subject. This was the basis for the second
image analysis project which led to the paper presented in chapter 5. This paper introduces a
method for the automated segmentation of nerve fibres in CARS images of transverse tissue
sections. This tool should enable us to get a more comprehensive picture about the evolution
of the myelin health in the context of multiple sclerosis, but also of other pathologies.
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Chapter 2

In vivo optical monitoring of tissue
remodeling and diseases with
vibrational contrast

S. Bégin1,2, E. Bélanger1,2, S. Laffray1, R. Vallée1,2,3 and D. Côté1,2,3

1 Centre de Recherche Université Laval Robert-Giffard (CRULRG), Université Laval,
Québec, Qc, G1J 2G3, Canada

2 Centre d’Optique, Photonique et Laser (COPL), Université Laval,
Québec, Qc, G1V 0A6, Canada

3 Département de Physique, de Génie Physique et d’Optique, Université Laval,
Québec, Qc, G1V 0A6, Canada

2.1 Résumé

Les études de remodelage tissulaire requièrent des techniques d’imagerie in vivo qui sont
aussi peu envahissantes que possible pour éviter de perturber le micro-environnement à
l’étude. À cette fin, les techniques Raman spontanées ont été utilisées mais leur faibles sig-
naux ont, la plupart du temps, limité leur application à des mesures spectroscopiques dis-
crètes. De nouvelles techniques basées sur l’effet Raman telles que la diffusion Raman co-
hérente et la diffusion Raman stimulée peuvent surmonter cette limitation. Ce manuscrit
traite des applications en imagerie et en spectroscopie avec un contraste basé sur l’effet Ra-
man dans le but d’observer les tissus vivants et décrit comment ces applications peuvent être
combinées à des fins d’imagerie spectrale. En utilisant des techniques de micro-spectroscopie
Raman non linéaires, il est possible de réaliser de l’imagerie in vivo.
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2.2 Abstract

Studies of tissue remodeling require in vivo imaging techniques that are as minimally inva-
sive as possible to avoid microenvironment perturbations. To this end, spontaneous Raman
techniques have been used but low signals have limited their application mostly to point
spectroscopy measurements. Novel Raman-based techniques such as coherent and stimu-
lated Raman scattering can overcome this limitation. This manuscript discusses imaging and
spectroscopy applications with Raman-based contrast for in vivo tissue monitoring, and how
these can be combined into spectral imaging. Using nonlinear Raman microspectroscopy
techniques, in vivo imaging can be performed.

2.3 Introduction

Understanding tissue remodeling in early stages of a disease or an injury implies knowing
the nature of the tissue as well as the spatial organization of its constituents. In this regard,
technological developments are continuously improving our capabilities to improve both di-
agnosis and treatment. This is undoubtedly a difficult task: these early changes are often sub-
tle in nature and restricted to a small volume. In addition, the restructuring of tissue dictates
that observations should be performed in vivo to avoid leaving out important factors that
would be hard to control in vitro such as gradients of molecular factors or dynamic expres-
sion of cell receptors. Hence, imaging techniques must be highly specific and must have the
capability of rapidly sampling large tissue volumes in vivo with good spatial resolution while
minimally interfering with the processes going on in tissues. Optical-based techniques are
well-suited for this task because of their versatile contrast mechanisms, high spatial resolu-
tion and general compatibility with in vivo settings. Endogenous contrast mechanisms based
on multiphoton processes such as the Raman effect include a large variety of techniques sen-
sitive to molecular vibrations. The interest in Raman-based techniques stems from their sen-
sitivity to changes in the tissue biochemistry without the need for exogenous contrast agents,
eliminating problems related to the delivery, specificity and invasiveness of those markers.
These techniques share the common property that incident photons will produce new pho-
tons at a different wavelength with an energy shift directly related to the vibration. They
can be incorporated into two broad classes of modalities for characterizing tissues: imaging
and point-spectroscopy. In imaging, one or a few contrast mechanisms are combined to ob-
tain a limited amount of information with all the benefits of images (high sampling, high
spatial resolution, context, user feedback, etc.). On the other hand, spectroscopic techniques
provide very high information content with typically low spatial sampling (a few points).
Raman spectroscopy has a demonstrated diagnostic potential in oncology in vivo or ex vivo
for a number of organs such as the colon [Chowdary et al., 2007], oesophagus [Kendall et al.,
2003], stomach [Kumar et al., 2007], breast [Haka et al., 2005, Brozek-Pluska et al., 2008],
cervix [Robichaux-Viehoever et al., 2007, Lyng et al., 2007], skin [Nijssen et al., 2002], blad-
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der [Koljenovic et al., 2005a] and brain [Koljenovic et al., 2005b, Krafft et al., 2005] to name
only a few. The importance of such results are not only limited to the development of in
vivo tools, but may also prove useful to improve the diagnostic accuracy of current methods,
reduce inter-observer variability [Haggitt, 1994] and augment our understanding of carcino-
genesis processes. Unfortunately, the volume of tissue sampled by spectroscopic means is
usually small, as the time necessary to acquire good spectra is long. It is the combination of
both modalities into spectral imaging that has the most potential for tissue monitoring but
progresses are limited by technological hurdles that will be discussed.

The purpose of the present article is to discuss state-of-the-art minimally invasive optical
techniques based on endogenous contrast for monitoring tissue remodeling after injuries
or diseases. This will be illustrated by examples with Raman-based techniques. The next
section introduces recent advances in imaging based on vibrational contrast with coherent
anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) as they pertain
to imaging diseases and pathologies at high spatial resolution. This is followed by a dis-
cussion on recent advances combining both spectroscopy and imaging in spectral imaging
applications.

2.4 Imaging

2.4.1 Coherent anti-Stokes Raman scattering

In Raman-based techniques, the contrast is provided by the scattering of incident photons
into a range of photons that carry the signature of the different molecular vibrations in their
frequency shifts. It is the ability to probe and possibly identify common molecular bonds
found in lipids, proteins, nucleic acids and water that makes Raman-based spectroscopy an
appealing technique for tissue studies. There are two spectral regions of high information
content in tissue: the high wave number region (∼2400–3800 cm−1) and the fingerprint re-
gion (∼400–1800 cm−1), sensitive respectively to molecular bonds with (C–H, O–H, etc.) and
without (C–C, C=C, C–O, N–O, etc.) hydrogen. Typical Raman lines in the fingerprint region
are relatively narrow (10–20 cm−1) but about ten times broader in the high wave number re-
gion. For tissue spectroscopy, information in the fingerprint region is mostly extracted from
the position and height of the lines, whereas in the high wave number region information
comes from the lineshape of the vibrations, as was shown by Puppels’ group [Koljenovic
et al., 2005a]. For tissue diagnosis applications, the use of statistical methods for the classi-
fication of the spectral data is required, and sufficient, to extract the necessary information
(for a review, see [Krafft et al., 2009b]). The most important limitation of the spontaneous
Raman effect comes from the low scattering cross-sections, leading to photon conversion
efficiencies typically ranging from 10−7 to 10−15 in tissue [Tuchin, 2007]. This leads to ei-
ther low signals or long acquisition times. On the other hand, coherent anti-Stokes raman
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scattering (CARS) is a third-order nonlinear process that benefits from the same specificity
as spontaneous Raman but the coherent nature of the process makes the generated signal
intensity significantly higher (∼105) than what is obtained with spontaneous Raman scatter-
ing for large concentrations of oscillators [Tolles et al., 1977b]. It is capable of probing specific
molecules (i.e., single Raman line) in living cells with excellent sensitivity and a high time
resolution. Since its first demonstration [Duncan et al., 1982], CARS microscopy has been
used to visualize lipids (CH2 symmetric stretching vibration at 2845 cm−1) [Zumbusch et al.,
1999b] but also the DNA (phosphate stretch vibration) and proteins (amide I vibration) in
living cells [Cheng et al., 2002a]. The signal from lipids is so strong that it has allowed in
vivo tissue imaging at video-rate [Evans et al., 2005] as well as visualization of single phos-
pholipid bilayers [Potma and Xie, 2003]. In fact, most in vivo applications focus on lipid
imaging (CH) and water imaging (OH) since these components provide the largest signals
in tissue. Figure 2.1 illustrates common biological tissues that can be imaged with CARS
nowadays, based on the state-of-the-art technology (integrated pixel dwell time of a few mi-
croseconds [Veilleux et al., 2008]). Figure 2.1(a) shows adipocytes at approximately 80 µm
deep in freshly excised rat skin. The contrast is endogenous to the sample, arising from the
lipid-rich structures present in the skin. Figure 2.1(b) represents a multimodal image of rab-
bit aorta. All signals are endogenous to the sample. They come from the lipids (CARS - red),
collagen (second-harmonic - blue) and smooth muscle elastin (2-photon excitation fluores-
cence - green). Figure 2.1(c) depicts the parallel running profile of highly oriented myelin
sheaths of live white matter in rat spinal cord tissue. It is worth noting that the signal comes
only from the multilayered membrane of myelin, not from the axons. Finally, Fig. 2.1(d) dis-
plays a myelin image from a transverse section of fixed white matter rat spinal cord tissue.
The circular geometry of the closely wrapped leaflets of myelin around the axon is clearly
visible.

What is the origin of the CARS signal? It comes from the coherent superposition of the mi-
croscopic dipoles driven by the pump (Ep) and Stokes (ES) fields. The nonlinear interac-
tion of the two fields generates the macroscopic third-order polarisation (P(3)) at the anti-
Stokes frequency ωaS = 2ωp − ωS. The anti-Stokes signal intensity can be written as IaS ∝
|χ(3)|2 I2

p ISsinc2(∆kz/2) where χ(3) is the complex nonlinear optical susceptibility of the mate-

rial comprising non-resonant (χ(3)
NR) and resonant (χ(3)

R ) component, ∆k = |kaS − (2kp − kS)|
is the wavevector mismatch and z is the thickness of the object. This dependence has five
noticeable consequences: 1) the CARS signal benefits from optical sectioning due to the non-
linear intensity dependence, 2) the phase matching condition modulates the overall intensity,
3) the multiple coherently additive contributions to χ(3) can lead to the resonant contribu-
tion being masked by other non-resonant contributions, 4) the nonlinear mixing depends
on the tensor nature of the material and the polarization of the input beams, and finally, 5)
the intensity of the CARS signal is proportional to the square of the number of vibrational
oscillators as a direct consequence of the |χ(3)|2 term. Because of the extremely small inter-
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a)

c) d)

50 μm

b)

Figure 2.1 – (a) CARS image of adipocytes in freshly removed rat skin. (b) Multimodal image
of rabbit aorta. Courtesy of Dr. A. Stolow. (c) and (d) Images of white matter from rat: (c)
longitudinal optical section of highly oriented myelin sheaths from perfused but otherwise
untouched spinal cord and (d) mechanically cut transverse section of fixed spinal cord.
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action length and the large collection of wavevectors under high NA illumination (≥ 0.7),
the adverse effects of phase-matching are reduced [Cheng et al., 2002c] and the signal can be
emitted in the forward- and epi- directions. Large objects typically emit in the forward direc-
tion, while small objects emit equally in the forward and epi-direction [Cheng et al., 2002a,c].
In turbid samples such as tissues, the conditions are such that the signal is generated mostly
in the forward direction but a significant fraction of those photons (ranging from 15% to
35% depending on tissue type) is backscattered and can be collected by the microscope ob-
jective [Evans et al., 2005], permitting in vivo measurements. The non-resonant contribution
lacks chemical specificity and is present at all Raman shifts, reducing the sensitivity of CARS
microscopy. This problem has been recognized for some time and many methods have been
developed to reduce or suppress this contribution (epi-CARS for small structures [Volkmer
et al., 2001], interferometric-CARS [Evans et al., 2004], time-resolved CARS [Volkmer et al.,
2002], polarization sensitive detection [Cheng et al., 2001a], FM-CARS [Ganikhanov et al.,
2006b]). In situations where the non-resonant background is detrimental, FM-CARS is prob-
ably the most notable approach since it increases the sensitivity by 3 orders of magnitude
over conventional systems. It requires two pairs of pulses, each on- and off-resonance. Phase-
locked detection of the rapid modulation between on- and off-resonance removes the slowly
varying non-resonant contribution. However, the most important aspect of CARS imaging is
that the coherent signal depends on the square of the molecular density. This is both a bless-
ing and a curse: for large enough densities, the signals are nearly as high as fluorescence.
On the other hand, this coherent dipole emission with resonant and non-resonant contri-
butions results in the CARS spectra not matching the spontaneous Raman spectra, making
quantitative analysis more difficult than for other techniques (e.g., fluorescence, spontaneous
Raman) [Vartiainen et al., 2006]. Lipid membranes turn out to be easily imaged based on con-
trast from the CH2 stretch vibration. This has brought about many applications of CARS mi-
croscopy in neurosciences: myelin, the white matter of the nervous system, originates from
the wrapping of oligodendrocytes or Schwann cell membranes around axons. By tuning the
contrast to the CH2 stretch vibration at 2845 cm−1, it is possible to image myelin without
exogenous contrast agents. The first demonstration of myelin imaging with CARS was re-
ported by Wang et al. [Wang, 2005]. They showed CARS images of myelin in fresh spinal
cord tissue excised from a guinea pig. Since then, multiple studies have been undertaken in
live animals, by our group and others, to study demyelination pathologies. For example, we
have used in vivo CARS microscopy to observe multiple sclerosis-like lesions in an animal
model (experimental autoimmune encephalomyelitis (EAE)), as shown in Fig. 2.2. The figure
shows the tubular myelin in the dorsal root of the spinal cord (a) and in the dorsal column
(b) of an EAE animal. Lesions are clearly seen on the dorsal column (part of the central ner-
vous system), whereas the dorsal roots (part of the peripheral nervous system) are spared
as expected from the nature of the disease. In the dorsal root, the myelin sheaths are orga-
nized on a large scale and well aligned, and present morphological structures such as a node
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a) b)

Figure 2.2 – In vivo CARS microscopy images of myelin from the spinal cord of EAE mice
showing (a) intact myelin sheaths in the dorsal root (part of the peripheral nervous system),
and (b) demyelinated regions in the dorsal column (part of the central nervous system). The
differences are most apparent in the indicated areas.

of Ranvier. However, demyelinated regions, called plaques, and small lipid-filled spherical
structures are seen in the dorsal column. Preliminary results demonstrate that those struc-
tures are probably fragmented myelin sheaths undergoing phagocytosis by macrophages.

Fu et al. [Fu et al., 2007a] have observed lysophosphatidylcholine-induced myelin degrada-
tion in excised guinea pig spinal cord tissue. They attributed myelin swelling to membrane
vesiculation and splitting, confirmed by electron microscopy. In that work, they took advan-
tage of the polarization dependence of the CARS generation to assess, at a sub-resolution
level, the membrane disruption in the degradation process. More recently, Fu et al. [Fu et al.,
2008] reported an ex vivo map of an horizontal section of the whole mouse brain to illustrate
the myelinated fibers in different regions (Fig. 2.3).

The sciatic nerve is a perfect candidate for in vivo CARS imaging since the myelinated axons
in the PNS are to some extent isolated from the movement induced by breathing and heart-
beat. CARS imaging on healthy sciatic nerve tissue has been reported for the first time in 2007
by Huff et al. [Huff and Cheng, 2007]. In the work by Henry and co-workers, Wallerian de-
generation and remyelination can be observed over the course of weeks [Henry et al., 2009]
in an animal model of crush nerve injury on Sprague Dawley rat, as displayed on Fig. 2.4.
The structural organization of the myelin sheaths is partially lost above the crush site and
has disappeared completely below the injury. In vivo images of sciatic nerve were obtained
with image stabilization algorithms to correct for unavoidable animal movement, and 3D
reconstructions were obtained from the image stacks. It was shown that CARS microscopy
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contrast. Cerebellar white matter also produced a strong CARS signal forming a bright band 
in the whole brain image. It should be noted that, besides white matter, grey matter such as 
cortex and thalamic nuclei also produced a relatively strong CARS signal. In such areas, the 
CARS contrast could arise from CH2 groups in cellular membrane, intracellular lipid droplets 
[26], and mitochondria [7] in accumulated neurons, astrocytes, and other cells. Meanwhile, 
the myelin in grey matter as a multiple-layer membrane generates stronger CARS signal than 
other single-layer membrane structures. Therefore we observed single myelin fibers but no 
cell membrane in the grey matter.  
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Fig. 3. Mosaic CARS image of a horizontal mouse brain slice. The whole image contains about 
9579 partially overlapped images acquired with a 20X objective. The magnified images at the 
positions indicated by yellow and black letters are shown in Fig. 4 and Fig. 5. gcc: genu of 
corpus callosum; CPu: caudate putamen; ec: external capsule; dfi: dorsal fornix; fi: fimbria 
hippocampus; LV: lateral ventricle. 

 
3.3 Quantitation of fiber volume, density, and orientation   

To obtain quantitative information about the volume, density, and orientation of myelinated 
fibers in a specific brain location, serial CARS images with different depths were stacked 
together to form 3D reconstructed images. Figures 4(a) and 4(b) illustrate 3D fiber 
organization in the genu of corpus callosum (‘gcc’) and cortex near the external capsule 
marked in Fig. 3, respectively. Myelinated axons observed in single frames at selected depths 
were also shown. The CARS images at each depth were normalized with the non-resonant 
CARS image of coverglass acquired with the same imaging parameters and then subtracted 
with a background measured as the average CARS intensity from areas surrounding myelin 
fibers. The fiber area% and myelin intensity as a function of depth are shown in Fig. 4(c) and 
4(d), respectively. In Fig. 4(c) and 4(d), all curves went up first to reach a peak and then 
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Figure 2.3 – About 10 000 CARS images were partially overlapped to create this mosaic
of a horizontal slice through a mouse brain. (gcc: genu of corpus callosum, CPu: caudate
putamen, ec: external capsule, dfi: dorsal fornix, fi: fimbria hippocampus and LV: lateral
ventricle)
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a) b) c)

Figure 2.4 – In vivo CARS microscopy of a rat sciatic nerve in normal condition (a) and 2
weeks after crush injury above (b) and below (c) the crush site. The images show longi-
tudinal section (above), cross-sections (center) and histological preparation (below) for all
conditions.

could provide enough information to assess nerve health in situ as compared to histology.

More recently, we laid the foundation for CARS histomorphometry with a strategy that min-
imizes the intensity modulation of the images due to polarization. Although a solution has
been suggested in the past [Fu et al., 2008], a scheme using a single image with circularly
polarized excitation beams makes the image more homogenous and more readily used with
standard image analysis tools [Bélanger et al., 2009b]. In order to perform histomorphomet-
ric analysis on large areas, techniques are being developed to automate the measurements.

Based on reconstructed orthogonal 3D views perpendicular to the parallel running axons
(as illustrated in Fig. 2.5(a), also referred to contact-free CARS optical slice, an histomor-
phometric analysis has been conducted. Figure 2.5(b) relates the myelin area to the fiber
diameter and shows that the probed axons are in a non-pathological state since no splitting
or y-shaped distribution is observed. Finally, the scatter diagram of the g-ratio (ratio of inner
to outer diameter) versus the axon caliber (Fig. 2.5(c)) reveals variations in g-ratios between
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Figure 2.5 – (a) Contact-free CARS optical slice of live white matter from rat spinal cord
tissue. (b) Scatter diagram of myelin area to the fiber diameter. (c) Scatter diagram of the
g-ratio versus the axon caliber.

0.5 and 0.65 and a minor trend to increase with the axon caliber. This histomorphometry
technique is currently being used for quantifying the early stages of multiple sclerosis in our
group.

Apart from neuroscience applications, CARS microscopy has also been used to explore a
variety of cancers. In particular, CARS has revealed the gross anatomy of the brain based on
variations in the white matter content of healthy coronal sections of mice brain [Evans et al.,
2007]. In the same paper, CARS was used on a mouse model of brain tumor to highlight
the tumor margins with an accuracy comparable to the gold standard in histopathology
(Fig. 2.6). The tumor contrast is produced by the absence of normal white matter in the
tumor region as compared to the rest of the brain.

Obesity is known to be a risk factor for breast cancer incidence. The combination of SHG and
CARS microscopy, in an early-onset of diet-induced obesity breast cancer animal model, has
been used to assess the impact of obesity on the biochemical constitution of mammary glands
and tumor stroma [Le et al., 2007]. The authors have shown that the size of the adipocytes
in the mammary glands and the collagen content present in tumor stroma increase with the
progression of the disease indicating that obesity produces an environment that facilitates
the tumorgenesis. Also, a study on the impact of a high fat diet on cancer development has
revealed an early detection of circulating tumor cells in the blood stream by intravital flow
cytometry, increased lung metastasis and a polarized distribution of lipid droplets in the
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taken from the lipid-rich corpus callosum and high cell density hippocampal pyramidal layer 
of SCID mouse brain (Fig. 6) illustrate the differences in Raman band shape responsible for 
the positive neuronal cell body CARS signal in Fig. 5(b). The lower-energy lipid CH2 bonds 
in axonal bundles give rise to a negative CARS signal at 2955 cm-1, whereas the higher-
energy protein CH3 content in the cell bodies causes the CARS dip to occur at Raman shifts 
greater than 2955 cm-1. This shift yields the positive CARS contrast observed for cell bodies 
in the 2950 cm-1 region.  
 

 
Fig. 6. Raman spectra acquired from fresh coronal slices of SCID mouse brain tissue immersed 
in PBS solution.  The red line represents the Raman spectrum from the corpus collosum, while 
the blue line is the Raman spectrum from the nuclei-rich pyramidal layer of the hippocampus. 
Raman spectra were acquired in 100s and averaged twice. 

The ability of CARS to provide such chemical selectivity allows for the reliable 
differentiation of cell body and axonal signatures, illustrating the potential of CARS 
microscopy for in situ imaging of unfixed brain tissues.  
 

 
Fig. 7. CARS images of astrocytoma in a SCID mouse sacrificed 4 weeks after inoculation of 
tumor cells. The pump and Stokes wavelengths were 924.0 and 1254.2 nm, respectively. (a) A 
low resolution, large field of view mosaic CARS microscopy image provides chemically-
selective anatomical information. Part (b) illustrates the ability of CARS to produce higher 
resolution images, in this case corresponding to the area enclosed by the rectangle in (a). This 
80X, 175 x 175 m image demonstrates the microscopic infiltration at the boundary between 
the tumor and normal tissue with a precision comparable to the conventional fixed tissue H&E 
histology images in Fig. 8. 

 

3.3 Visualizing brain tumor margins 

The chemically-selective contrast of CARS microscopy can be used to distinguish between 
healthy and diseased brain tissue.  Figure 7(a) shows a full-brain mosaic of a SCID mouse 

#84379 - $15.00 USD Received 25 Jun 2007; revised 24 Aug 2007; accepted 31 Aug 2007; published 6 Sep 2007
(C) 2007 OSA 17 September 2007 / Vol. 15,  No. 19 / OPTICS EXPRESS  12084

Figure 2.6 – A low resolution mosaic CARS microscopy image of a SCID mouse brain. This
image demonstrates the ability of CARS to identify the boundary between healthy tissue
and the tumor (astrocytoma).

circulating tumor cells [Le et al., 2009].

In conclusion, CARS microscopy provides excellent contrast for lipid imaging with minimal
non-resonant background. This makes it an excellent modality for monitoring remodeling of
myelinated tissues in the nervous system. However, the non-resonant background and the
quadratic dependence on density become problematic for weaker lines of interest, such as
protein or phosphate bands. Stimulated Raman scattering may overcome these issues.

2.4.2 Stimulated Raman scattering

Stimulated Raman scattering (SRS) is another Raman-based multiphoton technique with vi-
brational specificity and a sensitivity comparable to CARS [Ozeki et al., 2009]. Briefly, SRS
requires the spatial and temporal superposition of two laser beams with a frequency differ-
ence matching that of a molecular vibration. When this condition is fulfilled, photons from
the pump beam are depleted (stimulated Raman loss, (SRL)) leading to an increase of the
number of photons in the Stokes beam (stimulated Raman gain). Detecting this modulation
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in either beams provides contrast based on the vibration. Recently demonstrated for biolog-
ical imaging by Freudiger et al. [Freudiger et al., 2008] and Nandakumar et al. [Nandakumar
et al., 2009], it alleviates some of the key difficulties associated with CARS microscopy and
spectroscopy. First, the signal intensity is linear with the intensity of both excitation lasers
and with the concentration of Raman active molecules within the focal volume allowing
simple quantitative analysis. Second, there is no non-resonant background and the signal
follows the Raman spectrum, increasing the image contrast and removing the distorted line
shape present in a CARS spectrum (see Fig. 2.7). Finally, the spatial resolution of SRS can be
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Figure 2.7 – Agreement of SRL spectrum (red circles) with the spontaneous Raman spectrum
(black line) of the Raman peak (1595 cm−1) of 10 mM retinol in ethanol. The distorted CARS
spectrum (blue squares) exhibits a typical peak shift, dispersive shape and non-resonant
background.

expressed in terms of the point spread function of the imaging system, allowing image de-
convolution similar to what is done in fluorescence microscopy [Potma et al., 2000], in stark
contrast with CARS microscopy [Hagmar et al., 2008].

Experimentally, contrary to CARS microscopy where sensitive photon counter detectors are
needed, SRS microscopy requires detectors with a high dynamic range to detect the small
intensity modulation at the wavelength of either excitation lasers. This can be achieved by
modulating one of the two excitation beams and detecting the gain (or loss) experienced by
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the other beam by way of a lock-in detection. The first report of SRS imaging used a low rep-
etition rate amplified femtosecond laser system with an array of photodiodes for multiplex
detection [Ploetz et al., 2007]. However, the long pixel dwell time and high peak power of
their system is limiting for bioimaging. More recently, the Xie group reported on a system
similar to that used for CARS microscopy based on an OPO synchronously pumped by a
picosecond infrared laser [Freudiger et al., 2008]. Fast modulation (1.7 MHz) of the Stokes
beam and phase sensitive detection with a high frequency lock-in amplifier enabled the ac-
quisition of the stimulated Raman loss signal from fresh mouse tissue with a pixel dwell time
of only 170 µs. Since then, other groups have followed suit with different laser sources [Ozeki
et al., 2009, Nandakumar et al., 2009]. However, the great potential of SRS for tissue imaging
has been described in the paper by Freudiger et al. [Freudiger et al., 2008] where the authors
showed the imaging capabilities of SRS on fresh mouse tissue with different Raman lines
(lipids, DMSO, retinoic acid). Of particular interest to neurosciences, images of neuron bun-
dles from thin and thick slices of mouse corpus callosum were acquired. The authors also
demonstrated the technique’s ability to observe the distribution of retinoic acid in tissue, a
drug used for treating skin disorders, in tissues. Finally, the potential of SRS for cancer iden-
tification or margin detection in the brain is demonstrated in Fig. 2.8. The large, irregularly

Figure 2.8 – The SRS image covering 200 × 200 µm provides lipid contrast based on the
molecular signature of CH2 groups, which allows the healthy tissue (bottom) to be distin-
guished from the lipid poor tumor (top). Courtesy of C. Freudiger, Dr. G. Young, Dr. S. Kesari
and Prof. X. S. Xie.

shaped nuclei of the cells visible in the tumor region, are an important diagnostic marker.
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2.4.3 Outlook on imaging

In general, the use of these rapid imaging techniques provides excellent context for mea-
surements of a single biochemical species in tissue, but the amount of spectroscopic infor-
mation is limited compared to spontaneous Raman spectroscopy. For instance, with sponta-
neous Raman spectroscopy it is possible to determine that the cholesterol content unexpect-
edly climbs as the tissues advances from healthy to malignant in both bladder and prostate
(Fig. 2.9) [Stone et al., 2007], or that there is an increase in the level of glycogen in squamous
area and an augmentation of DNA levels in abnormal regions of the esophagus [Shetty et al.,
2006]. Bringing the level of endogenous specificity from vibrational spectroscopy to rapid
high spatial resolution imaging in native tissue with the use of CARS or SRS spectroscopy
still represents the holy grail of endogenous tissue spectral imaging.

2.5 Towards in vivo spectral imaging

The first efforts towards in vivo spectral imaging have been reported by the Feld group on
human breast tissue [Shafer-Peltier et al., 2002]. Spontaneous Raman spectral images were
acquired at a rate of 1 frame per 3.5 hours or 20 seconds per pixel for a range of healthy
and diseased breast tissues, and relative concentrations of tissue constituents were extracted
from the spectra using a least-squares fitting algorithm on reference spectra. Although some
advances have since then made the acquisition times an order of magnitude faster [Hutch-
ings et al., 2009], it is still much slower than what CARS and SRS could potentially offer: as
was shown in the imaging section earlier, pixel dwell times as small as 100 ns are possible for
imaging a single Raman line, which could translate in millisecond acquisition times for full
spectra. The experimental realization of CARS spectral imaging can follow two strategies:
broadband (or multiplex) and narrowband. In the broadband scheme, a spectrally narrow
pump beam is combined with a broadband laser beam to simultaneously excite numerous
Raman lines, thereby giving rise to a range of anti-Stokes photons covering the various vi-
brations. The detection of the anti-Stokes light is carried out with a spectrometer, usually a
CCD-based imaging spectrometer for faster acquisition. In one of the first microspectroscopy
experiment, appropriate pump and Stokes beams were obtained by synchronizing a picosec-
ond laser with a broadband femtosecond laser (80 fs) giving simultaneous access to Raman
bandwidths over 400 cm−1 with pixel dwell times ranging from 50 ms to 200 ms [Cheng
et al., 2002b, Müller and Schins, 2002]. By monitoring the high wave number region between
2800 and 3100 cm−1, it was shown that the gel and crystalline states of lipid bilayers can be
differentiated. One can also make use of a single laser where the broadband Stokes beam is
generated via a number of nonlinear processes (mostly self-phase modulation) from ultra-
short pulses focused into specialised fibers. In the picosecond regime, a system using a home-
made 1064 nm laser source and an optical fiber with a high GeO2 content core (UHNA3) or
a photonic crystal fiber has been described by Petrov et al. [Petrov and Yakovlev, 2005]. In
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Figure 2.9 – Example of spectroscopic content obtained from Raman spectroscopy. Mean
spectra for each prostate pathology (a) and the relative concentration of each individual con-
stituent (b) for each pathology. (1 = benign prostate hyperplasia; 2 = prostate inflammation;
3–5 = low, moderate and high grades of prostate cancer) [Stone et al., 2007].
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the femtosecond regime, Kee et al. [Kee and Cicerone, 2004] produced a spectrally narrow
pump beam by filtering a femtosecond pulse and then launching the remaining power into
the core of a tapered nonlinear fiber to create a continuum. The system was used to acquire
broadband CARS spectra of benzonitrile with a 17 ms integration time leading to frame rates
on the order of a few minutes for images of 256 × 256 pixels, about 5 orders of magnitude
slower than state of the art, single-line narrowband CARS imaging system [Evans et al., 2005]
but much faster than typical spontaneous Raman spectroscopy. In another example, varia-
tions in the ordering of acyl-chains and the composition of lipid droplets in the skin have
been investigated using multiplex CARS spectral images [Rinia et al., 2008] (Fig. 2.10).

Figure 2.10 – Bright-field (a) and multiplex CARS spectral image (d) of an adipocyte. The
spectral image is reconstructed from multiplex CARS spectra ((c) and (d)) acquired in 20 ms
for every pixel. The images (e) and (f) represent the C=C concentration and the degrees of
acyl-chain order respectively [Rinia et al., 2008].

The major drawbacks of this broadband CARS approach are related to the quality of the
continuum (power levels, smoothness, stability, reproducibility, etc.), the presence of non-
resonant background that must be removed with post-analysis, the relatively high power
impinging on the sample because of the continuum that may cause nonlinear photodam-
age, and finally the necessity to use an imaging spectrometer that does not efficiently collect
light from diffuse sources. The second approach to CARS spectroscopy consists in excit-
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ing the Raman lines sequentially with narrowband excitation beams. This method has been
successfully implemented with synchronized picosecond Ti:Sapphire lasers [Wang, 2005] or
Nd:Vanadate laser pumping an OPO [Evans et al., 2005], but the long time associated with
the manual tuning of the Stokes beam is problematic for in vivo applications. However, such
a strategy does overcome key issues associated with the broadband strategy: much less non-
resonant background, lower average power on the sample and no need for spectrally resolv-
ing the emitted light. SRS spectroscopy can also be performed with a narrowband excitation
scheme, although it faces the same technological limitations as CARS: rapidly (kHz) tunable
narrowband picosecond sources are not available commercially. A clever hybrid approach
applicable to CARS spectroscopy was recently developed independently by two groups.
While using two broadband femtosecond pulses would normally prevent high spectral res-
olution, the use of two identically chirped femtosecond pulses recovers the spectral reso-
lution and permits tunability with the change of temporal delay between the pulses (see
Fig. 2.11) [Hellerer et al., 2004, Pegoraro et al., 2009]. This technique has the key advantage
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Figure 2.11 – (a) CARS image of a myelinated nerve fiber with an outline drawn around a
region of interest where the myelin density is high. (b) Myelin spectrum derived from the
average intensity within the region of interest. Courtesy of Dr. A. Stolow

of being compatible with standard multiphoton laser sources (Ti:Sapphire lasers) and per-
mits both imaging and spectroscopy with the same setup.

A comparison between spontaneous Raman and CARS spectral imaging of colon tissue
has been performed [Krafft et al., 2009a]. They demonstrated striking resemblance between
spontaneous Raman and CARS microscopy of colonic polyps. In addition, they observed
similarities between Raman and CARS spectra of colonic polyps colon tissue, suggesting
that the changes in the biochemistry of cancer tissues can be precisely unraveled with CARS.
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This implies that a direct correspondence with the extensive Raman literature is possible.

While coherent Raman spectroscopy techniques are not yet adequate for in vivo experiments,
spontaneous Raman spectroscopy can be used to complement CARS imaging with good
success. Recently, a system combining single-line CARS imaging for rapid tissue survey
with spontaneous Raman for subsequent spectral analysis at points of interest has been de-
scribed [Slipchenko et al., 2009], but is still limited by the long acquisition times of confocal
Raman.

In summary, broadband approaches have had some success in spectral imaging, but key lim-
itations persist: 1) the quality of the broadband light is still problematic, 2) the diffuse light
source in tissue is not efficiently collected by imaging spectrometers, 3) relatively high power
and long integration time may lead to nonlinear photodamage and 4) the presence of non-
resonant background. On the other hand, narrowband approaches avoid these problems, but
must presently rely on slow wavelength tuning because rapidly and broadly tunable, syn-
chronized picosecond light sources are not commercially available. This makes them poorly
optimized for in vivo spectral imaging.

2.6 Conclusion

This manuscript discussed the use of Raman-based techniques for imaging and character-
izing tissue during the course of diseases or injuries. Coherent Raman imaging was high-
lighted with many applications in neuroscience because of its excellent contrast for myelin
due to the importance of lipid content. Examples included in vivo monitoring of Wallerian
degeneration of the peripheral nerve and observation of demyelinating lesions due to multi-
ple sclerosis. In addition, stimulated Raman scattering was also discussed because it avoids
two common problems of CARS imaging, namely non-resonant background and quadratic
dependence on density, and may allow imaging of other Raman lines of interest in the fin-
gerprint region. The combination of these imaging techniques for complete vibrational spec-
troscopy (spectral imaging) was also discussed: spectral imaging with broadband CARS
spectroscopy is possible and examples in cell biology were highlighted but it suffers from
non-resonant background and non optimal light sources. Narrowband wavelength-swept
spectroscopy (both CARS and SRS) on the other hand is currently limited by the availabil-
ity of rapidly tunable light sources and hence have seen limited in vivo applications, but as
technology evolves, applications to in vivo spectral imaging will become more important.
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Chapter 3

Coherent anti-Stokes Raman scattering
hyperspectral tissue imaging with a
wavelength-swept system

S. Bégin,1,2 B. Burgoyne,3 V. Mercier,3 A. Villeneuve,3 R. Vallée2 and D. Côté1,2

1Centre de Recherche Université Laval Robert-Giffard (CRULRG), Université Laval,
Québec, QC, G1J 2G3, Canada

2Centre d’Optique, Photonique et Laser (COPL), Université Laval,
Québec, QC, G1V 0A6, Canada

3Genia Photonics Inc., 1111 Lapierre St.,
Lasalle, QC, H8N 2J4, Canada

3.1 Résumé

Nous présentons un système d’imagerie hyperspectral par diffusion Raman cohérente (CARS)
à longueur d’onde balayée (WS-CARS) pour utilisation dans les tissus épais. Nous avons
développé une stratégie où les lignes Raman sont excités de manière séquentielle ne nécessi-
tant pas de spectromètre. Ce système laser à fibre, constitué d’un laser de pompe synchronisé
avec un laser programmable rapidement accordable, peut accéder aux vibrations Raman sur
une plage importante de la région des hauts nombres d’ondes (2700-2950 cm−1) à une vitesse
maximale de 10,000 éléments spectral par seconde. Pour démontrer les capacités du système,
nous avons enregistré des spectres CARS de plusieurs échantillons ainsi que des images et
des images hyper-spectrales de tissu épais en détection vers l’avant et vers l’arrière. Cet in-
strument devrait être particulièrement utile en fournissant des informations biochimiques
locales avec le contexte environnant fournie par l’imagerie.
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3.2 abstract

We present a wavelength-swept coherent anti-Stokes Raman scattering (WS-CARS) spec-
troscopy system for hyperspectral imaging in thick tissue. We use a strategy where the
Raman lines are excited sequentially, circumventing the need for a spectrometer. This fibre
laser system, consisting of a pump laser synchronized with a rapidly tunable programmable
laser (PL), can access Raman lines over a significant fraction of the high-wavenumber region
(2700-2950 cm−1) at rates of up to 10,000 spectral points per second. To demonstrate its ca-
pabilities, we have acquired WS-CARS spectra of several samples as well as images and hy-
perspectral images (HSI) of thick tissue both in forward and epi-detection. This instrument
should be especially useful in providing local biochemical information with surrounding
context supplied by imaging.

3.3 Introduction

Raman based spectroscopy techniques are highly sensitive to the biochemical nature of ma-
terials and have the high spatial resolution associated with optical microscopy. Fast identi-
fication of biochemical components in turbid materials has generated strong interest in live
tissue spectroscopy since it makes disease diagnosis possibly achievable in situ. For example,
the diagnostic potential of Raman spectroscopy has generated a large amount of literature in
oncology alone [Kendall et al., 2009, Krafft et al., 2009c]. However, it has become clear that a
clinically useful technique should also provide context for diagnosis through imaging, some-
thing impossible with low sensitivity techniques such as spontaneous Raman spectroscopy.

Coherent anti-Stokes Raman scattering [Duncan et al., 1982, Zumbusch et al., 1999b] is a
nonlinear technique with the necessary sensitivity for fast chemically-specific imaging. It re-
quires two or more laser pulses of different wavelengths to coherently excite a Raman active
vibrational mode in a molecule. On the one hand, the nonlinear nature of the process de-
mands short pulses (ps or fs) with high peak power, and on the other hand a system with
good tunability or a large bandwidth is necessary for spectroscopic measurements. Typical
CARS systems based on optical parametric oscillators [Evans et al., 2005, Ganikhanov et al.,
2006a] or synchronized Ti:Sapphire lasers [Potma et al., 2002, Evans et al., 2004] have been
successful for imaging lipids, myelin and water [Zumbusch et al., 1999b, Bélanger et al.,
2009b] (for a review see [Evans and Xie, 2008]) but their relatively slow tunability has ham-
pered their use in spectroscopy. Broadband methods based on transform-limited ultrashort
pulses [Cheng et al., 2002b, Müller and Schins, 2002, Selm et al., 2010] or continuum gen-
eration [Kee and Cicerone, 2004] have been successful for spectral imaging of optically thin
systems. However, their need for a spectrometer to resolve the vibrational spectra results in
very poor collection efficiency in turbid materials such as tissue where diffusion is impor-
tant. Methods using spectral focussing of broadband excitation pulses avoid the need for a
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spectrometer but rely on a mechanical delay line for vibrational tuning [Pegoraro et al., 2009,
Langbein et al., 2009, Chen et al., 2010].

We propose a strategy where the Raman lines are excited sequentially at very high speed by
narrowband picosecond pulses. The wavelength-swept coherent anti-Stokes Raman scatter-
ing system presented here is based on a master oscillator power amplifier (MOPA) pump
laser synchronized with a rapidly tunable programmable laser (PL) as the Stokes beam. The
spectral bandwidth of this instrument covers most of the high wavenumber region (2700-
2950 cm−1). This strategy has many advantages compared to other existing methods. With
the spectroscopic information encoded in time (Fig. 3.1(a)), the detection can be done using
fast and sensitive photomultiplier tubes. This is especially important for CARS spectroscopy
in thick tissue where the large étendue of the scattered signal is not compatible with the small
entrance slit of spectrometers, resulting in poor collection efficiencies. Furthermore, this sys-
tem allows random access to any Raman line within its bandwidth. Since the acquisition
time scales linearly with the number of spectral points, this should prove to be an essential
feature for applications where speed is critical. Finally, the high flexibility of the wavelength
sweep rate can easily accommodate rapid single point spectroscopy or hyperspectral imag-
ing where a whole image is acquired for every Raman line (Fig. 3.1(b)). In this manuscript,
we use the system for WS-CARS spectroscopy as well as single-line and hyperspectral imag-
ing in thick tissue both in forward and epi-detection.

(b)

Wavenumber (cm-1)

0 2700 - 3000

time(a)

x
y

Figure 3.1 – (a) In wavelength-swept CARS spectroscopy, the Raman vibrations (Ω) are ex-
cited sequentially and the spectroscopic information is encoded in time. (b) Hyper spectral
images are constructed by raster scanning of the sample for every Raman line. Every pixel
contains a CARS spectrum.

3.4 Materials and methods

3.4.1 Synchronized fibre lasers system

The synchronized fibre lasers system presented here has characteristics tailored specifically
for CARS spectroscopy and hyperspectral imaging. The system is composed of a programmable
laser [Burgoyne and Villeneuve, 2010] and a MOPA driven by high-speed low-jitter electron-
ics (Fig. 3.2(a)). The key characteristic of this system is the ability of the PL to rapidly (up to
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10 kHz) and arbitrarily access any wavelength in its tuning range while maintaining syn-
chronization with the MOPA. The novel programmable laser is based on a dispersion-tuned,
actively mode-locked scheme [Li and Chan, 1998]. The dispersive elements are four chirped
fibre Bragg gratings (CFBG) that essentially establish different cavity lengths for each wave-
length. As a consequence, the laser operates at different repetition rates depending on the
wavelength. Tuning is achieved by changing the driving frequency of the electro-optic mod-
ulator (EOM) (Fig. 3.2(b)). The tuning range of the PL goes from 1524 nm (12.35 MHz) to
1608.6 nm (13.98 MHz) in steps of 0.1 nm that match the spectral line widths of the laser
pulses. The modulator is driven by a 25 picosecond pulse generator triggered by the func-
tion generation circuit. A wavelength division multiplexer (WDM) is used to combine the
980 nm pump and the signal into the erbium-doped fibre. The PL is amplified up to an aver-
age power of 35 mW using an erbium-doped amplifier. The MOPA is based on a 1080 nm CW
laser diode externally modulated through an EOM driven by a 25 ps pulse generator. The
optical signal is filtered and subjected to three stages of amplification resulting in nominally
100 mW of average power. We note that although every wavelength of the PL has a differ-
ent repetition rate it does not pose a synchronization problem since both the MOPA and the
PL are driven by the same function generation electronics including an arbitrary electronic
time delay. Since the delay between the pulse trains is controlled electronically, there is no
need for a mechanical delay line in the microscope optical path. Both lasers generate optical
pulse widths of less than 35 ps, corresponding to a CARS excitation line width of less than
0.5 cm−1. The long pulses (nominally 6 times longer than ideal picosecond CARS sources)
are more than compensated for by the lower repetition rate (nominally 8 times lower than
high repetition rate systems) yielding peak power (or pulse energy) on the order of 240 W
(8 nJ) and 85 W (3 nJ) for the MOPA and PL respectively.

3.4.2 Experimental setup description

A schematic diagram of the experimental layout is shown in Fig. 3.3. The pump and Stokes
beams from the synchronized lasers are collimated independently in order to prevent two-
beams nonlinear interactions [Balu et al., 2010], and recombined using a long-pass filter at
45◦ (Semrock, LP02-1319RS-25). The beams are sent to a homemade laser-scanning micro-
scope which collects non-descanned light in both forward- and epi-direction configurations.
A gold coated 52X/0.65NA reflecting objective optimized for IR light with cover slip cor-
rection (140 µm) is used for imaging (Edmund Optics, 25-0548-020). This objective does not
suffer from material absorption since gold has a very good reflectivity in the near IR (R
>98%) but is minimally affected by obscuration (16.7%) due to the Cassegrain design. Fur-
thermore, it is free from chromatic aberration. The optical power at the sample is 40 mW
and 15 mW for the pump and Stokes beams respectively (∼40% of the laser output power).
The forward generated CARS signal is collected by a 40X/0.8NA water immersion objective
(Olympus, LUMPlanFl/IR), while the epi-detected signals returns through the illumination
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Figure 3.2 – (a) Schematic of the synchronized lasers. The PL (blue) and the MOPA (red)
are driven by high-speed function generation electronics with adjustable delay (black). In
the PL, the wavelength is determined by the frequency generator through dispersion tuning
using four dispersive CFBGs and an EOM. The EOM is driven by a 25 picosecond pulse gen-
erator. A wavelength division multiplexer (WDM) is used to combine the 980 nm pump and
the signal into the erbium-doped fibre. The MOPA consists of a CW laser diode modulated
through an EOM by a 25 ps pulse generator with the same repetition rate as the PL. (b) The
CFBG forms different cavity lengths for each wavelength. Tuning is achieved by changing
the driving frequency of the EOM, and consequently the repetition rate of the laser.

objective. Both forward and epi CARS signals are extracted by long-pass filters used at 45◦

(Semrock, LP02980R-25) and filtered using combinations of two bandpass filters (Semrock,
FF01-832/37-25 and Chroma, ET801/90m) before being detected by photomultiplier tubes
(PMT) detectors (Hamamatsu, R3896). A homemade data acquisition system implemented
in Matlab is used for WS-CARS spectroscopy experiments. ScanImage [Pologruto et al., 2003]
is used for imaging and HSI experiments. For the system characterization experiments, a
broadband 50/50 beam splitter is inserted in the beam path to send part of the excitation
beams to a BBO crystal for sum frequency generation (SFG). The filtered (Semrock, FF01-
640/14-25) SFG signal is measured using a silicon photodiode (Thorlabs, PDA36A).

3.4.3 Synchronized lasers system optimization and characterization

For every wavelength of the PL, the dispersion resulting from the laser cavities and the ad-
ditional optics in the setup has to be electronically compensated to ensure temporal overlap
of the pulses from both lasers at the sample. The function generation electronics triggering
the lasers provide an adjustable time delay between both pulse trains. It can be tuned with
high resolution delay increments (16 bits) throughout the large dynamic range of one round
trip time. For example, the delay resolution at 12 MHz (83.3 ns of round trip time) is 1.27 ps.
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Figure 3.3 – WS-CARS microscopy setup. Pulses from the synchronized lasers are collimated
separately, combined with a long-pass filter (LP1) and then routed to a homemade laser scan-
ning microscope. The beams are focused on the sample using a 52X/0.65NA reflecting objec-
tive (RO). The CARS signal is extracted with long-pass filters (LP2), filtered using bandpass
filters (BP1, BP2) and detected with PMTs in the epi- and forward- directions. A beam splitter
(BS50/50) can be inserted in the path for characterization experiments. The SFG generated in
a BBO crystal is filtered (BP3) and detected using a photodiode (PD).

In order to optimize the temporal superposition of the pulse trains, SFG is performed in a
BBO crystal. The SFG signal is recorded while the time delay between the PL and the MOPA
is swept at high speed (Fig. 3.4(a)). The optimal time delays are compiled in a lookup table
that is used to automatically adjust the electronic delay when the PL wavelength is changed.
Since the delay is controlled electronically, this can be done very rapidly (∼10 ms/sweep)
and in an automated fashion. The SFG delay curves are the cross-correlation of the pulses
from both lasers [Potma et al., 2002]. For example, the 50 ps FWHM of the cross-correlation
in Fig. 3.4(a) corresponds to about 35 ps for both laser pulses. This result is confirmed by the
autocorrelation of the MOPA pulses (not shown). The pulse widths of the PL remain con-
stant across the whole tuning range except for a slight broadening caused by a lower gain at
the upper end of the range. The inset shows the SFG signal fluctuations at the half-maximum
time delay over the course of 60 seconds. Since these fluctuations are due to both the timing
jitter and power fluctuations in the MOPA and PL, we can set an upper limit of 2.4 ps on
the timing jitter from the measurement. The signal is measured through a 1.9 MHz low-pass
filter and sampled at 5 MHz to avoid aliasing problems and averaged over 1 ms.

The key feature of this system is its ability to rapidly and arbitrarily change the wavelength
difference between the two lasers while maintaining synchronization and temporal overlap
at the sample. This is demonstrated in Fig. 3.4(b) which shows wavelength sweeps for 3 dif-
ferent tuning rates (20 µs/step, 100 µs/step and 1 ms/step). The resulting SFG spectra cover
the whole 84 nm tuning range with a resolution of 1 nm. SFG is a better indicator of CARS
efficiency than average laser power since it depends directly on the nonlinear mixing of the
pulses as can be seen by comparing SFG (lines) and PL power spectra (black diamonds).
The SFG signal level is constant from 1525 nm to 1560 nm and then progressively drops
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due to the lower gain of the PL amplifier at higher wavelengths as well as inefficiencies of
the BBO crystal. This will translate into lower CARS efficiencies for spectroscopy at longer
wavelengths, as will be shown in Fig. 3.6 and 3.7. The sweep consistency is maintained as
the sweeping rate increases, showing only some slight variations at 100 µs/step and some
degradation at 20 µs/step. At rates of 1 ms/step and slower, the shapes of the spectra are
identical and highly repeatable. The ripples in the spectra are caused by the transfer function
of the PL optical components, especially the chirped fibre Bragg gratings.

Fig. 3.4(c) shows a typical SFG time series (blue) highlighting the PL cavity dynamics follow-
ing wavelength changes at 50 µs/step (black). The actively mode-locked operation is usually
established in 15 µs (red) but may require more time at longer wavelengths near the end of
the tuning range. For this reason, we operate the PL at tuning rates of 100 µs/step or slower,
discarding the first 15 µs of acquired data. This dead time is a result from the erbium-doped
fibre gain dynamics and could be overcome using other gain media such as semiconductor
optical amplifiers.

Fig. 3.4(d) shows an epi-CARS image of a thin-film interface of water (which does not con-
tain C-H bonds) and peanut oil acquired at 2850 cm−1 (PL tuned to 1560 nm). The 4% signal-
to-background ratio from the average line profile yields an upper limit to the nonresonant
background contribution. In fact, most of the background signal comes from the PMT dark
noise and a small leakage of the pump laser through the optical filters. This small nonres-
onant contribution is explained by the 35 ps pulse length [Cheng et al., 2001b], since the
non-resonant background decreases for increasing pulse widths.

3.5 Results and discussion

3.5.1 CARS imaging

The imaging capabilities of the WS-CARS microscope are demonstrated on a mouse ear. The
adipocytes are clearly visible in both the forward- (Fig. 3.5(a)) and epi-detected (Fig. 3.5(b))
images. This epi-detection capability is a direct consequence of the wavelength-swept strat-
egy that removes the necessity of using a spectrometer for collection and permits an efficient
collection of all the CARS photons with a large area PMT. The anti-Stokes signal in the im-
ages comes from the symmetric CH2 stretching mode of the lipids present in the structures
approximately 80 µm deep in the skin. The images are an average intensity projection of 10
frames acquired in a total of 7.5 seconds.

3.5.2 WS-CARS spectroscopy

The wavelength-sweep mode is used for single point spectroscopy by rapidly tuning the
PL and recording the anti-Stokes signal. The maximum spectral resolution of the system is
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Figure 3.4 – (a) Typical cross-correlation trace between the PL and the MOPA, used to cali-
brate the temporal overlap of the pulses at the target and to characterize their pulse widths.
The delay sweep acquired at a rate of 50 µs/step (λPL = 1560 nm, total time = 7.5 ms). Inset
shows the half maximum SFG signal recorded over 60 seconds. (b) SFG spectra acquired at
different sweep rates are highly repeatable. The diamond curve indicates the power spec-
trum of the PL. (c) SFG time series (blue) reveals the PL cavity dynamics following wave-
length changes (black). The stabilization period (red) typically lasts 15 µs. (d) CARS image
of the interface of a water-oil thin film indicates that the non-resonant background is at most
4%.

(a) (b)

Figure 3.5 – Ex vivo CARS images of adipocytes in a 1-mm-thick mouse ear acquired in the
forward- (a) and epi- (b) direction at 2849 cm−1. The signal in image (a) is approximately
6 times brighter than (b). The images are an average of 10 frames acquired in a total of
7.5 seconds. Scale bars are 20 µm.
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given by the CARS excitation line width of less than 0.5 cm−1 and the matching minimal
tuning step of 0.4 cm−1. Typical Raman line widths in the high-wavenumber region are on
the order of several tens of cm−1. Hence, the tuning step in the experiments can be adjusted
without any loss of information.

In Fig. 3.6(a), WS-CARS spectra of different chemical species (peanut oil, dimethyl sulfoxide
(DMSO), silicone and polystyrene) are presented. The spectral asymmetry in nonlinear ef-
ficiency from this laser system (see Fig. 3.4(b)) modulates the intensities of the Raman lines
but not their spectral positions. Peanut oil is composed mainly of unsaturated fatty acid
(56.6% oleic acid and 26.7% linoleic acid). Its Raman band, attributed to the symmetric CH2

stretching mode, shows a strong peak at 2849 cm−1. Pure DMSO has an intense Raman band
at 2914 cm−1 attributed to the symmetric CH3 stretching vibrations of its methyl groups.
Silicone and polystyrene have slightly more complex spectra which are also weaker. The liq-
uid samples are placed in a 140 µm deep chamber on a microscope slide and covered by
a cover slip. A mixture of 10 µm polystyrene beads (Polysciences) and water is used in a
similar manner. Proper alignment of the excitation beams on a polystyrene bead is done us-
ing a CARS image such as the one presented in Fig. 3.6(b). All the spectra are acquired in
622 ms at a rate of 2 ms/step. They cover the range from 2697.6 to 2954.1 cm−1 with an ac-
quisition resolution of 0.8 cm−1 (321 points). Fig. 3.6(b) shows two images of 10 µm diameter
polystyrene beads in peanut oil recorded at two different Raman lines. The image acquired
at 2849.0 cm−1 (top) emphasizes the contribution from the surrounding oil while the im-
age acquired at 2889.8 cm−1 (bottom) highlights the equal contributions of the polystyrene
and the oil at that wavenumber. The images are an average intensity projection of 10 frames
acquired in a total of 7.5 seconds.
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Figure 3.6 – (a) WS-CARS spectra of peanut oil (red), DMSO (blue), silicone (purple) and
polystyrene beads (green). Each spectrum ranges from 2697.6 to 2954.1 cm−1 with a resolu-
tion of 0.8 cm−1. The PL tuning rate is 2 ms/step and the total acquisition time is 622 ms per
spectrum. (b) CARS images of polystyrene beads in peanut oil recorded at 2849.0 cm−1 (top)
and 2889.8 cm−1 (bottom) in the forward direction. Scale bars are 10 µm.

Next, the sensitivity and speed of the single point spectroscopy mode is demonstrated.
Fig. 3.7 shows WS-CARS spectra of various fatty acids of different degrees of saturation.
Fatty acids are characterized by a carboxylic acid (R–COOH) attached to an aliphatic chain
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(...–CH2–CH2–CH2–...) which can be saturated or unsaturated to various degrees. The degree
of unsaturation can be determined based on their nonlinear Raman signature [Chowdary
et al., 2010]. As seen in Fig. 3.7 the number of double bonds in the chain alters the relative
shape of the spectra. The spectra are in good agreement with previously published sponta-
neous Raman spectra [Freudiger et al., 2008]. Olive oil, composed mostly of oleic acid and
palmitic acid, is 13% saturated, 73% monounsaturated and 11% polyunsaturated. The other
fatty acids are docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic
acid (AA) which have respectively six, five and four C=C bonds in their aliphatic chains.
The samples are placed in a 140 µm deep chamber on a microscope slide and protected by a
cover slip. Each spectrum ranging from 2697.6 to 2989.7 cm−1 with an acquisition resolution
of 0.4 cm−1 (711 points), is acquired in 71 ms at a rate of 100 µs/step. The data is filtered
using a running average algorithm with a window of 11 pixels for an effective resolution of
4 cm−1.
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Figure 3.7 – WS-CARS spectra of unsaturated fatty acids. Olive oil (OO) is 13% saturated
and 73% monounsaturated, arachidonic acid (AA) has 4 double bonds, eicosapentaenoic
acid (EPA) has 5 double bonds and docosahexaenoic acid (DHA) has 6 double bonds. Each
spectrum was acquired in 71 ms at a rate of 100 µs/step.

3.5.3 WS-CARS hyperspectral imaging

In this section, hyperspectral imaging of a skin sample incubated in DMSO (Fig. 3.8) is pre-
sented. DMSO is a lipophobic compound that easily penetrates the skin. For this experi-
ment, a complete mouse ear is kept in DMSO for 2 hours at room temperature and placed on
a microscope slide for imaging. The HSI is acquired using ScanImage externally triggered
by the synchronized lasers system during a wavelength sweep ranging from 2786.8 cm−1

to 2950.1 cm−1 with a resolution of 2 cm−1 at a rate of 1 Hz. The acquisition time for the
256x256x81 HSI is 81 seconds (1.2 ms per spectrum) with a corresponding true pixel dwell
time of 6.4 µs per wavelength. This pixel dwell time is comparable to what is achieved us-
ing commercial systems, and emphasizes that the system is almost as efficient as fluores-
cence microscopes while providing full spectral information. A closer look at the HSI shows
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that the fat is compartmentalized in the adipocytes (Fig. 3.8 left image, 2849 cm−1) while
the DMSO is constrained to the extracellular space (Fig. 3.8 right image, 2914 cm−1). The
lipophobic nature of DMSO is also evident in the spectral projection (Fig. 3.8 central panel)
where we can see that the two compounds are mutually exclusive.
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Figure 3.8 – Hyperspectral CARS images of mouse skin incubated in DMSO for 2 hours. The
left and right images correspond to the lipid (2849 cm−1) and DMSO (2914 cm−1) Raman
line. The central panel shows a spectral projection along the dotted lines. The adipocytes and
DMSO CARS spectra (4-pixel-wide red and blue boxes in central panel) are shown on top.
A total of 81 images were acquired at a rate of one frame per second. Every pixel in the HSI
is a spectrum ranging from 2786.8 cm−1 to 2950.1 cm−1. Acquisition time for the 256x256x81
HSI is 81 seconds (1.2 ms per spectrum). The images were acquired in the forward direction.
Scale bar is 10 µm.

Discrimination between chemical species can be done much more rapidly by imaging only
the relevant Raman bands since the integration time scales linearly with their numbers. For
example, a look at the spectra from Fig. 3.8 shows that DMSO has a vibrational resonance
(2914 cm−1) which is well separated from the lipid peak (2849 cm−1). Therefore, they can
be easily differentiated using random access multi line imaging resulting in much shorter
acquisition times. Furthermore, since this system can access any arbitrary sequence of Raman
lines in its tuning range, multi line imaging can easily be scaled to suit more demanding
experiments. This will be especially useful for applications such as in vivo tissue diagnosis
where many vibrational lines would be needed to identify complex tissue constituents with
great speed. In this example, after proper identification of the diagnostically relevant Raman
lines, imaging could be performed over a large area in a short time.
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3.6 Conclusion

We presented a wavelength-swept approach to CARS microscopy that is especially well
suited for experiments on thick tissue where scattering plays an important role. This sys-
tem does not require a spectrometer that would limit collection efficiency and prevent epi-
detection. The current system configuration is designed to access Raman lines within most
of the high-wavenumber region (2700-2950 cm−1). Tuning speeds of up to 100 µs per spec-
tral points are demonstrated with the acquisition of CARS spectra of various samples. As
well, CARS hyperspectral images containing tens of thousands of spectra are acquired in
just over a minute. Thanks to the 12 MHz repetition rate, efficient CARS generation is pos-
sible even with 35 ps pulses. Strategies to shorten the pulses, using for instance a shorter
pulse generator or a time-lens [Wang et al., 2010], are being explored. This flexible all-fibre
system could bridge an important gap between fundamental research microscopy tools and
clinically useful instruments by combining the context of imaging with the richness of spec-
troscopic information.
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Chapter 4

Local assessment of myelin health in a
multiple sclerosis mouse model using
a 2D Fourier transform approach
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Université Laval, Québec, Canada
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3 Centre d’optique, photonique et laser (COPL), Université Laval, Québec, Canada

4 Centre de recherche du CHU de Québec-CHUL, Université Laval, Québec, Canada
5 Département de médecine moléculaire, Université Laval, Québec, Canada
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4.1 Résumé

Nous présentons une approche automatisé basée sur la transformée de Fourier à deux di-
mensions (2D-FT) pour analyser localement l’organisation des axones myélinisés dans la
moelle épinière. La microscopie par diffusion Raman cohérente (CARS) a été utilisé pour
observer des lésions dans un modèle animal de la sclérose en plaques couramment utilisé:
l’encéphalomyélite allergique expérimentale (EAE). Les images sont fractionnées et une 2D-
FT permet de trouver l’orientation moyenne ainsi que l’anisotropie directionnelle des fibres
dans les sous-domaines contigus. Nous introduisons le paramètre de corrélation corrigée,
une mesure de la corrélation entre les orientations de domaines adjacents. Nous montrons
que dans le modèle animal EAE de sclérose en plaques, le PCC peut être utilisé pour quan-
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tifier le degré d’organisation/désorganisation de la structure de la myéline. Cette analyse a
été appliquée à un grand nombre d’images provenant d’animaux de différents scores clin-
iques. Nous démontrons que certains descripteurs de la fonction de densité de probabilité
du paramètre de corrélation corrigée sont fortement corrélés avec les scores cliniques des
animaux. Cette procédure, compatible avec l’imagerie d’animaux in vivo, a été développé
pour l’évaluation locale in situ des axones myélinisés affectés par l’EAE.

4.2 abstract

We present an automated two-dimensional Fourier transform (2D-FT) approach to analyze
the local organization of myelinated axons in the spinal cord. Coherent anti-Stokes Raman
scattering (CARS) microscopy was used to observe lesions in a commonly used animal
model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). A
2D-FT was applied on the CARS images to find the average orientation and directional
anisotropy of the fibers within contiguous image domains. We introduce the corrected cor-
relation parameter (CCP), a measure of the correlation between orientations of adjacent do-
mains. We show that in the EAE animal model of MS, the CCP can be used to quantify the
degree of organization/disorganization in the myelin structure. This analysis was applied
to a large image dataset from animals at different clinical scores and we show that some
descriptors of the CCP probability density function are strongly correlated with the clinical
scores. This procedure, compatible with live animal imaging, has been developed to perform
local in situ evaluation of myelinated axons afflicted by EAE.

4.3 Introduction

Proper function of the nervous system relies on fast electrical conduction between neurons,
sometimes over very long distances. For instance, muscle movements are triggered by ac-
tion potentials that propagate from cortical neurons to the spinal cord and finally to the
neuromuscular junction. The myelin sheath surrounding the axons in the white matter of
the central nervous system (CNS) is essential for efficient and fast transmission of electric
signals between the source and target cells. The degeneration of myelin along axons caused
by certain CNS pathologies such as multiple sclerosis (MS), leads to poor signal conduction.
Demyelination also causes axons to become vulnerable to irreversible damage caused by
immune cells, which often results in paralysis [Nave, 2010]. The driving mechanisms for the
loss of myelin are thought to be largely autoimmune in nature [King et al., 2009]. However,
much remains unanswered with respect to the exact sequence of events leading to lesion
formation in MS and the key players that are involved [van der Valk and Amor, 2009, Filippi
et al., 2012]. The experimental autoimmune encephalomyelitis (EAE) animal model is a good
surrogate for the human condition [Mix et al., 2010, ’t Hart et al., 2011]. The clinical progres-
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sion of the disease is assessed by evaluating the motor skills of the animal. The clinical score,
given on a scale of 0 to 5, represents a global average of all lesions across the brain and spinal
cord into a single number representing their final effects on motor skills, and as such, does
not provide information on the severity of individual lesions. This is in stark contrast with
the cellular view of EAE where one observes a very high amount of heterogeneity in spinal
cord lesions both throughout the cord and across different animals [Brown and Sawchenko,
2007]. With this in mind, there is a clear need for a local, objective, and fast assessment of
myelin morphology or architecture to identify and follow potential early lesions at the cel-
lular level.

Myelin was visualized with coherent anti-Stokes Raman scattering (CARS) microscopy, a
label-free technique that takes advantage of the endogenous contrast provided by the lipid
content of myelin [Evans and Xie, 2008, Bégin et al., 2009, Pezacki et al., 2011]. CARS imaging
of spinal tissue has been first reported in 2005 by Wang et al. [Wang et al., 2005]. Since then,
it has been used to visualize demyelination [Fu et al., 2007b, Imitola et al., 2011, Fu et al.,
2011, Shi et al., 2011, Freudiger et al., 2012], and we have proposed several techniques to
characterize myelin morphology in this context [Bélanger et al., 2009a, 2011]. We now extend
this work using CARS images of myelin acquired in mice affected with EAE to quantify the
local tissue architecture within an image, but not the structure of individual myelin sheaths.

Recently, researchers have characterized the local tissue architecture of collagen imaged with
second harmonic microscopy by using a two-dimensional Fourier transform (2D-FT) method
[Matteini et al., 2009, Rao et al., 2009, Cicchi et al., 2013]. More specifically, the average fiber
orientation as well as the directional anisotropy within the image were extracted from the
2D-FT and then used to calculate the correlation between the orientations of neighboring
domains [Ghazaryan et al., 2013]. The main goal of the present article is therefore to expand
this formalism and to introduce a metric adapted to myelin images obtained with CARS
microscopy. This metric becomes a local assessment of myelin health. First, we demonstrate
how the degree of directional anisotropy is incorporated as a modification to the correlation
parameter introduced previously. Then, we show how it is calculated on images of the spinal
cord taken from EAE mice at different clinical stages of the disease. Finally, we conclude by
discussing how this new metric is highly sensitive to regions where the myelin structure is
strongly disrupted and can be used to separate lesions from healthy tissue.

The MATLAB code implementing this analysis as well as the data will be made available on
the group web site at http://www.dcclab.ca.
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4.4 Materials and methods

4.4.1 EAE Induction

EAE was induced in eight 10 weeks old C57BL/6 female mice using the Hooke Laboratories
kit EK-0115. The kit is composed of an emulsion of complete Freund’s adjuvant (CFA) and
MOG35-55 (1 mg/mL), a myelin oligodendrocyte peptide. The CFA is composed of incom-
plete Freund’s adjuvant with killed mycobacterium tuberculosis H37Ra (2 mg/mL). On the
day of immunization, mice received 0.1 mL of the emulsion injected subcutaneously (s.c.) on
the upper back and 0.1 mL on the lower back. They were also administered 0.1 mL of per-
tussis toxin (PTX, 0.7-10 µg/mL of phosphate buffer solution (PBS)) intraperitoneally (i.p.)
and again 24 hours later. A total of four control animals were divided into two groups. First,
two CFA control mice received the same injections on day 0 and 1, but an antigen-free emul-
sion was used. The CFA control mice are used to assess the effects of both PTX and CFA on
myelin. Secondly, two saline control mice received saline only both s.c. and i.p. on day 0 and
1. Clinical signs were scored daily and graded from 0 to 5: 0 = no signs, 1 = limp tail, 2 = limp
tail and weakness in hind legs, 3 = limp tail and paralysis of hind legs, 4 = limp tail, paralysis
of hind legs and weakness of front legs, 5 = complete paralysis of both hind and front legs.
All procedures were approved by our local institutional animal care and use committee.

4.4.2 Tissue preparation

Mice were selected for tissue processing based on their clinical score to have tissue samples
from all of the early stages of the disease (0-3). Mice were intracardially perfused with 0.1 M
PBS followed by 4% paraformaldehyde (PFA). The whole spinal cord was dissected out from
each mouse and placed in 4% PFA overnight. Cervical, thoracic and lumbar spinal segments
corresponding respectively to the C3-5, T4-8 and L3-5 levels were isolated from the spinal
cord. Each spinal segment was mounted in a petri dish filled with agarose gel. A cavity
corresponding approximately to the size of each spinal segment was carved into the gel and
used to support the segment during imaging. The remaining space was filled with 0.1 M PBS
and a coverslip was mounted on top of the agarose chamber.

4.4.3 CARS microscopy

The laser sources and the custom-made video-rate laser scanning microscope have been de-
scribed previously [Veilleux et al., 2008]. In short, the laser system consists of an optical
parametric oscillator (OPO) (Levante Emerald OPO ps, APE-Berlin) pumped by a frequency-
doubled Nd:Vanadate mode-locked laser (picoTRAIN, High Q Laser). CARS is a nonlinear
process requiring two pulsed laser beams whose frequency difference matches a Raman ac-
tive vibration in the sample [Duncan et al., 1982, Zumbusch et al., 1999a]. To probe the CH2

symmetric stretch vibrations of lipids at 2845 cm−1, the 1064 nm laser was used as the Stokes
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beam with the signal from the OPO tuned to 816.8 nm as the pump beam. The excitation
beams were overlapped in space using a dichroic long-pass filter (LP02-1064RU-25, Sem-
rock) and in time using a delay line before being sent to the video-rate laser scanning mi-
croscope. The states of polarization of the excitation beams was carefully controlled to be
circular to avoid the polarization dependence of the CARS signal intensity [Bélanger et al.,
2009a]. To avoid photodamage of the spinal cord tissue, the average power of the pump and
Stokes beam at the sample was limited to a few tens of mW.

The microscope achieves an image acquisition rate of 15 frames per second by using a gold-
coated polygonal mirror for the fast axis (DT-36-290-025, Lincoln Laser) and a galvanometer
mirror for the slow axis (6240H, Cambridge Technology). The field of view (FOV) of the mi-
croscope is 112.5 µm by 112.5 µm with a 60× objective lens (UPLSAPO 1.2 NA w, Olympus)
and the images are 500×500 pixels in size (225 nm/pixel). The backscattered anti-Stokes sig-
nal at 662.8 nm was epi-detected using a dichroic long-pass filter (FF735-Di01- 25×36, Sem-
rock) for the signal extraction, the combination of two laser block filters (FF01-750/SP-25,
Semrock) and a band-pass filter (FF01-655/40-25, Semrock) to filter out unwanted residual
light and a red-sensitive photomultiplier tube (R3896, Hamamatsu) for the detection.

4.4.4 CARS map acquisitions of the spinal cord surface

All spinal segments (cervical, thoracic and lumbar) were imaged on the dorsal side. Addi-
tionally, for the lumbar segments, the lateral and ventral sides were imaged as well. To image
the complete surface of a segment, the sample was moved using a manipulator (MPC-200
with ROE-200, Sutter Instrument) across a volume corresponding to a thin rectangular slab
containing the surface planes of the spinal cord. This gave an x-y grid sequence of z-stacks
with an overlap of 20 % of the image FOV. Complete maps were typically acquired in 4 hours.

4.4.5 Post-acquisition image processing

Prior to the analysis, some image processing was required to generate 2D maps of the spinal
cord surface. First, all the raw images were flat-field corrected and then the z-stacks were as-
sembled together using Fiji [Preibisch et al., 2009] to form 3D maps. The last step consists in
reducing the volumes to 2D maps by choosing the surface plane of interest, to facilitate their
visual exploration, reduce the file sizes and decrease computation time for the analysis. The
challenge in this step lies in defining this plane of interest in terms of quantitative parame-
ters that can be automatically measured. For our particular case, we found that the average
intensity and the standard deviation of the pixel values in a 100×100 window surrounding
a pixel of interest in an image plane of a 3D map are good indicators to determine if that
particular pixel is located in the plane of interest. For every pixel in a given x-y plane, the av-
erage intensity and standard deviation values were compared with those calculated from the
pixels located in the same x-y position but at different z positions of the 3D maps. By maxi-
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mizing those values, one can determine which z pixel is best suited for the 2D reconstruction
of the spinal cord surface.

4.4.6 Analysis of fiber orientation

The general orientation of the fibers was obtained by finding the orientation of the Fourier
spectrum of the image. In the first step of the analysis, a CARS map of the surface of the
spinal cord segment was subdivided into square domains of equal sizes. The domains were
transformed using a 2D-FT. The resulting images were treated using a 2D adaptive Wiener
noise filtering method [Lim, 1990] and a 2D Savitzky-Golay smoothing filter [Savitzky and
Golay, 1964] before undergoing segmentation. Each image was then segmented using a
thresholding method described below and the resulting segmented object was transformed
into an ellipse that has the same second-order moments.

The average fiber orientation within the image domain can be inferred from the direction
of the minor axis of the ellipse. This orientation is expressed within the range ±90 ◦ with
respect to the image horizontal axis. In addition, the directional anisotropy within the image
domain is given by the aspect ratio (AR) between the minor and the major axes of the ellipse.
The AR is interpreted as the accuracy of the calculated average fiber orientation, with values
ranging from 0 (accurate) to 1 (inaccurate).

To determine the optimal domain size, we calculated the median AR from all the maps from
control animals (saline and CFA) for domains of different sizes (Fig. 4.1). The domain size
should be small enough to maximize spatial resolution but large enough to provide an accu-
rate orientation of the fibers. At very small domain sizes, the average AR always approaches
1 regardless of the actual image due to poor frequency sampling. On the other hand, do-
mains larger than typical lesion size sacrifice the spatial resolution with no benefit to the
accuracy of the orientation. This is a direct consequence of the overall parallel alignment of
the nerve fibers in the spinal cord and we thus choose to determine the optimal domain size
of 192 pixels as shown in Fig. 4.1. Note that this is different for collagen in biological tissue
in which there is no unique orientation over large areas [Ghazaryan et al., 2013].

To find the appropriate threshold level for the image segmentation, we assumed that: 1)
the shape of the segmented object has to be as close as possible to an ellipse, and 2) the
AR of the ellipse has to be as small as possible for an accurate estimation of the average fiber
orientation. Every 2D-FT image was therefore segmented at various levels across its intensity
range and for every threshold value, the ellipticity of the object and the AR of the equivalent
ellipse were computed. The ellipticity is defined as [Rosin, 2003]:

EI =

{
16π2 I1 i f I1 ≤ 1

16π2

1
16π2 I1

otherwise,
(4.1)
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Figure 4.1 – Median AR (with median absolute deviation) as a function of domain size. For
small domain sizes, poor orientation accuracy is due to lack of data on fiber morphology. At
large sizes, no additional accuracy is obtained on the orientation although spatial resolution
is decreased. The optimal size was thus choosen to be 192 pixels.

where I1 is the simplest affine moment invariant of the circle [Flusser and Suk, 1993] and can
be written as:

I1 =
µ20µ02 − µ2

11

µ4
00

. (4.2)

I1 is defined in terms of the central moments:

µpq = ∑
x,y
(x− x̄)p(y− ȳ)qI(x, y), (4.3)

where x̄ and ȳ are the components of the image centroid and I(x, y) is the pixel intensity.
Finally, the threshold value corresponding to the maximum ratio of the ellipticity and AR
was used for the segmentation.

To demonstrate this strategy, we applied the analysis on 192×192 pixels domains for three
different CARS images of mouse spinal cord surface (Fig. 4.2). From top to bottom in Fig. 4.2(a),
the tissue becomes progressively afflicted by EAE lesions and the tissue organization suffers
accordingly. Fig. 4.2(b) shows the noise filtered and smoothed 2D-FT of the domains. In
Fig. 4.2(c), superposed on the resulting segmented objects are the equivalent ellipses with
lines highlighting the orientation of the minor and major axes. Finally, in Fig. 4.2(d), the av-
erage tissue orientation is drawn over the images with the color of the line representing the
AR (see AR color code at the right of Fig. 4.2).

4.4.7 Correlation parameter

The correlation parameter (CP) is a quantitative parameter evaluating the collinearity be-
tween the orientations of neighboring domains [Ghazaryan et al., 2013]. For two adjacent
domains, the scalar product between the orientations of the (i, j) and (i + 1, j) domains can
be expressed as ~Si,j · ~Si+1,j. For domain angles θi,j and θi+1,j, this expression becomes:

~Si,j · ~Si+1,j = | ~Si,j || ~Si+1,j | cos(θi,j − θi+1,j) (4.4)
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AR = 0.19

AR = 0.58

AR = 0.92
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1

0

Figure 4.2 – (a) Three different CARS images of mouse spinal cord surface in the longitu-
dinal orientation. From top to bottom, the tissue becomes progressively afflicted by EAE
lesions. (b) Processed 2D-FT of the domains. (c) Segmented objects with superposed equiv-
alent ellipses and main axes. (d) Average fiber orientation overlaid on the images with AR
color-coded (AR color code shown right).

or, for unit vectors ~S:
~Si,j · ~Si+1,j = cos(θi,j − θi+1,j). (4.5)

For simplicity, this expression can be transformed so that it varies from -1 for orthogonal
domain orientations to +1 for perfectly parallel domain orientations of fibers for any two
angles in the range ±90◦. We call this value the collinearity between the domains i and i + 1:

Ci→i+1 = 2[cos2(θi,j − θi+1,j)− 0.5]. (4.6)

Finally, the CP representing the collinearity of domain (i, j) with all four neighboring do-
mains can be expressed as the average collinearity for all four neighbors:

CPi,j =
Ci→i−1 + Ci→i+1 + Cj→j−1 + Cj→j+1

4
, (4.7)

or, more generally as:

CPi,j =
1

Nnb
∑
Nnb

2
[
cos2(θi,j − θnb)− 0.5

]
, (4.8)

where nb represents the four possible neighbors and the number of neighbors (Nnb) is in-
troduced to ensure that CP stays in the range ±1. A CP value close to 0 implies a random
orientation of domains with no correlation.

Moreover, the uncertainty in the fiber orientation was taken into account with a correction
to the CP using the following expression:

CCP = CP[1−AR], (4.9)
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where CCP is the corrected correlation parameter. When the fiber orientation is certain (low
AR), this correction affects the CP only slightly. On the other hand, the usefulness of the
correction is made apparent when the fiber orientation is uncertain (high AR) but correlated
between neighbored domains (high CP). In this case, the CCP is lowered which gives a better
indication of a lesion.

An example is presented in Fig. 4.3 where the CP and CCP were calculated on the central
192×192 pixels domain for two CARS images of mouse spinal cord in the longitudinal orien-
tation. For all three panels, the top image shows healthy tissue and the bottom image shows
tissue where the myelin structure is lost due to an advanced stage of EAE. In Fig. 4.3(a), the
orientation and AR were calculated for the central domain as well as for its four neighboring
domains. In Fig. 4.3(b) and (c) the CP and the CCP have been calculated for both images. For
the image of healthy tissue (top example), the CCP is close to 1, implying good tissue organi-
zation. On the bottom image, the CCP is closer to 0 because the fiber orientation is uncertain
and more random between the domains, which is indicative of a loss of organization in the
tissue. The result is shown as a color overlay following the color code shown at the bottom
of Fig. 4.3.

CP = 0.99

CP = 0.43

CCP = 0.75

CCP = 0.10

(a) (b) (c)

10

Figure 4.3 – Two CARS images of healthy (top) and diseased (bottom) spinal cord. (a) The
orientation and AR were calculated for square domains of 192×192 pixels. In (b) and (c), the
calculated CP and CCP are shown on the bottom right corner as well as color-coded on the
images (CP and CCP color code shown at the bottom).

4.5 Results and discussion

To validate the ability of the corrected correlation parameter (CCP) in discriminating differ-
ent stages of myelin degeneration, images from four controls (i.e. injected with saline or CFA)
and eight immunized mice were chosen and compared together. Those twelve images were
representative of the various levels of surface tissue organization (healthy-appearing, mod-
erate and severe disorganization) encountered in control and EAE animals. The 216×216 µm
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images were subdivided in 25 domains of 192×192 pixels and then characterized by their
median CCP. Fig. 4.4 shows the images with a color-coded CCP on each tile in decreasing
order of their median CCP. In Fig. 4.4(a), all six images show healthy-appearing white matter
and their CCPs are accordingly high (CCP > 0.5). Fig. 4.4(b) shows three images typical of
moderately disorganized tissue and Fig. 4.4(c) is showing three images with a more severe
disorganization. As can be seen from panels b and c, the values of the median CCP confirm
the visual assessment of the level of degeneration and indicate that the CCP can discriminate
various lesion states as observed in the spinal cord of EAE animals. Thus, the CPP that we
established represents an objective, local measurement of myelin health and is indicative of
local disorganization and disruption.

(a) (b) (c)

0.17

0.17

0.04

0.48

0.43
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0.79 0.78

0.76
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EAEEAE EAE

EAE

EAE

EAE

EAE

EAEcontrol

control

Figure 4.4 – The CCP was calculated for twelve images, each divided into 25 domains. The
median CCP is shown. (a) Six images typical of healthy-appearing spinal cord tissue. (b)
Three images showing a moderate degree of disorganization. (c) Three images showing a
severe degree of disorganization.

Note that over large areas of the spinal cord, the heterogeneous nature of EAE becomes
apparent. For instance, in Fig. 4.5, a larger map of the spinal cord surface (600×600 µm) from
a score 1 mouse shows that lesions appear locally throughout the spinal cord and that the
level of tissue organization is highly heterogeneous. On the scale of this image, the median
CCP is not sufficient to describe the tissue: the median CCP is 0.57, with the upper left area
showing healthy-appearing white matter and a median CCP of 0.71, while the lower right
corner shows a lesion where the tissue is severely disorganized and the median CCP is only
0.10. Hence, the CCP is only meaningful in small regions of interest whose dimensions are
on the order of the expected lesion size. As we show in the next paragraph, the probability
density function (PDF) of the CCP is a good descriptor for larger areas.
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0.71

0.100.57

Figure 4.5 – In this large map of spinal cord surface (600×600 µm), we can see that the lesions
appear in patches. The difference between the median CCP of the whole image and that of
the two subsections highlights the fact that the level of tissue disorganization is heteroge-
neous throughout the spinal cord.

Whereas the EAE clinical score is a global functional measure of the motor skills of the ani-
mals, we have clearly demonstrated that the CCP is a local structural measure of the level of
tissue organization within a myelinated area. This complex and novel analysis was applied
to our complete image dataset covering about 30 mm2 of spinal cord surface from animals
at different clinical scores, for a total of 16,000 square domains. The results are presented as
the PDF of the CCP in Fig. 4.6. The two mice per condition are labeled M1 (blue line) and
M2 (orange line) and the number of domains per mouse is indicated (NDM1, NDM2). As ex-
pected, samples from mice displaying high EAE clinical scores have accumulated a greater
number of low CCP regions (lesions) and the severity of those lesions is higher (lower CCP
values).

Although a certain amount of variability is apparent between mice of the same score, there
is clearly a trend linking the shape of the PDF to the clinical scores. To substantiate this,
we have calculated the Spearman correlation coefficients (rs) of six different descriptors of
the PDF with the clinical scores. In Fig. 4.7, the descriptors are plotted against the different
conditions in order of decreasing correlation coefficient: mean CCP (rs = −0.9329), healthy
fraction (rs = −0.9188), median CCP (rs = −0.8622), middle 95% CCP range (rs = 0.8340)
and PDF kurtosis and skewness (rs = −0.3534 and rs = 0.0707 respectively). The mean CCP
and the healthy fraction show a strong correlation whereas the PDF kurtosis and skewness
are not correlated with the clinical score. The healthy fraction is the ratio of the number of
healthy domains to the total number of domains. Since 97% of the domains of the saline and
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Figure 4.6 – PDF of the CCP for all domains in maps for both control and EAE mice (two mice
per condition, blue and orange lines). The number of domains per mouse (NDM1, NDM2) is
indicated for all conditions.

CFA maps have a CCP value above 0.5, this was determined to be the threshold separating
the two categories, healthy-appearing and disorganized tissue. For each parameter, we used
the standard bootstrap method [Efron and Tibshirani, 1993] to make sure that the spinal cord
sampling was sufficient. The bootstrap percentile confidence interval at 95% was calculated
using 10,000 bootstrap replications of the PDFs. The best line from a robust linear regression
is also plotted to give a sense of the degree of correlation.

The myelin disruption, although related to nerve function, is not a direct measurement of
a nerve functional integrity. In fact, a more complete model relating myelin disruption to
loss of nerve function would clearly consider the number, size and most importantly local-
ization of the moderate to severe lesions throughout the entire spinal cord. The robust and
automated technique developed here is a first step in that direction. In addition, because the
CCP can be calculated in real time, this procedure is compatible with live animal imaging to
provide in situ information to complement the structural measurements of the local myelin
architecture. For example, it would be possible to screen large areas of the spinal cord, find
areas of interest indicative of possible early lesions, and measure a more extensive set of
functional parameters (blood-brain-barrier permeability, cellular recruitment, microglial ac-
tivity, etc...). When coupled with a minimally invasive microendoscopic approach [Bélanger
et al., 2012], it would be possible to follow the evolution of a given region of interest over
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Figure 4.7 – Different descriptors of the PDF are plotted against the clinical scores in order
of decreasing correlation coefficient (rs). The bootstrap percentile confidence interval at 95%
shows the sampling error. The line of best fit is plotted to emphasize the correlation.

time to understand the sequence of the interactions between all the key players.

4.6 Conclusion

In this article, we presented an approach to calculate the average orientation and the di-
rectional anisotropy within a myelin image domain. We also introduced a new quantitative
parameter, the corrected correlation parameter (CCP), used to assess myelin health locally on
images taken from the spinal cord of mice at different stages of a MS-like pathology. We have
shown that the CCP can be used to quantify the degree of organization/disorganization in
the myelin structure. We have also shown that in the EAE animal model of MS, the number
of sites with a lower CCP increases as the disease progresses. The CCP could therefore be
developed into a parameter for presymptomatic detection of myelin disruption. This met-
ric will be combined with other measurements such as blood-brain-barrier permeability and
cellular recruitment measurements to obtain a more complete picture of the disease at vari-
ous stages of its development.
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Chapter 5

Automated method for the
segmentation and morphometry of
nerve fibres in large scale CARS
images of spinal cord tissue

Steve Bégin1,2,3, Olivier Dupont-Therrien1,3, Erik Bélanger1,2,3, Amy Daradich1,2,3, Sophie
Laffray1,3, Yves De Koninck1,4 and Daniel Côté1,2,3,∗

1 Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ),
Université Laval, Québec, Canada

2 Département de physique, génie physique et optique, Université Laval, Québec, Canada
3 Centre d’optique, photonique et laser (COPL), Université Laval, Québec, Canada

4 Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada

5.1 Résumé

Nous présentons une méthode entièrement automatisé permettant la segmentation à grande
échelle de fibres nerveuses dans des images de microscopie par diffusion Raman cohérente
(CARS). La méthode a été spécifiquement conçu pour traité des images CARS de coupes
transversales de tissu nerveux, mais convient également aux images de microscopie optique
standard. Après une description détaillée de l’algorithme de segmentation, la précision de la
méthode est quantifiée en comparant les images binaires résultantes au résultat d’une seg-
mentation manuelle des images. Nous démontrons ensuite la capacité de notre méthode à
extraire des données morphologiques à partir d’images CARS de tissus nerveux. Finalement,
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nous présentons le résultat de la segmentation d’une grande mosaïque d’images CARS cou-
vrant plus de la moitié d’une coupe transverse de la moelle épinière d’une souris et montront
des preuves de groupes de neurones avec le G-ratios similaires dans la moelle épinière.

5.2 Abstract

A fully automated method for large-scale segmentation of nerve fibers from coherent anti-
Stokes Raman scattering (CARS) microscopy images is presented. The method is specifically
designed for CARS images of transverse cross sections of nervous tissue but is also suitable
for use with standard light microscopy images. After a detailed description of the two-part
segmentation algorithm, its accuracy is quantified by comparing the resulting binary images
to manually segmented images. We then demonstrate the ability of our method to retrieve
morphological data from CARS images of nerve tissue. Finally, we present the segmentation
of a large mosaic of CARS images covering more than half the area of a mouse spinal cord
cross section and show evidence of clusters of neurons with similar g-ratios throughout the
spinal cord.

5.3 Introduction

The nervous system is an immensely complex organ containing a staggering number of in-
terconnected neurons (up to 1011). To function properly, the nervous system requires fast
and efficient transmission of electrical signals between neurons. In vertebrates, this is aided
by the myelin sheath, a cellular membrane formed by specialized glial cells that is wrapped
around axons to increase the propagation speed of the action potentials along these axons
Rushton [1951]. There are a number of pathologies that affect myelin and lead to poor con-
duction as well as irreversible damage to axons Nave [2010], the most widespread being
multiple sclerosis where there can be thinning, blebbing or swelling of the myelin. Physical
disability results from the accumulation of several types of damage along a given neuro-
logical pathway, and consequently, disabilities are apparent only when the disease has pro-
gressed significantly. Since local myelin damage is the origin of this macroscopic damage,
the investigation of nerve morphology (e.g. axon diameter and area, myelin thickness) is
of particular interest, as it characterizes damage early on in the evolution of the pathology
Dunn et al. [1975].

Nerve fiber morphometry is typically found by imaging cross sections of nerve tissue with
a microscope and then identifying and measuring the structures of interest. Traditionally,
morphometry was measured manually by an expert using prints or a projection of the im-
ages along with a ruler Matthews [1968] or digitalizing tablet Ewart et al. [1989], Friede and
Beuche [1985]. Nowadays, the extraction of morphometric information from the myelinated
axons that populate an image can be partially or fully automated by transforming the images
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into something simpler and more meaningful. This is accomplished through the process of
image segmentation, i.e. the partitioning of an image into the components of interest. In the
case presented here, every pixel of the image must be classified either as axon, myelin, or
background.

The application of image segmentation techniques across all imaging modalities in biology
and medicine has become a very active field of research in recent years Meijering [2012],
Uchida [2013]. Over the last few decades, there have been numerous studies proposing
nerve fiber segmentation techniques for optical microscopy images. Semi-automated meth-
ods (where human intervention is required at some point throughout the process) are faster
than a human expert and have traditionally had the advantage of accuracy over fully-automated
methods Mezin et al. [1994], Hunter et al. [2007], More et al. [2011]. The latter are very attrac-
tive since they are usually faster than semi-automated methods and are not user-dependent.
While most of these methods are based on typical segmentation techniques such as template
matching Frykman et al. [1979], edge detection Ellis et al. [1980], Zimmerman et al. [1980],
Usson et al. [1991], zonal graph Romero et al. [2000], thresholding Weyn et al. [2005], Urso-
Baiarda and Grobbelaar [2006], neural networks Jurrus et al. [2010] and region growing Zhao
et al. [2010], Gierthmuehlen et al. [2013], other contributions rely on multiple stage methods
using a combination of techniques: elliptical Hough transform followed by an active contour
model Fok et al. [1996], multi-level gradient watershed and fuzzy systems Wang et al. [2012].
Li et al. Li et al. [2012] use a classification algorithm (spectral angle mapper) to segment nerve
fibers in hyperspectral images.

While the majority of these methods were developed for standard light microscopy images,
some were intended to work with transmission electron microscope images Jurrus et al.
[2010], Zhao et al. [2010] and scanning electron microscope images More et al. [2011]. To
the best of our knowledge, there are only a few studies whereby automated segmentation
was developed for nonlinear optical microscopy images to find cell nuclei Hammoudi et al.
[2011], Medyukhina et al. [2012, 2013] and none to extract nerve fiber morphology. More-
over, the issue that is central to segmentation of microscopy images is that optical modali-
ties, especially nonlinear techniques, are very sensitive to fine spatial and molecular details
in samples. This is a double-edged sword: it is the strength that justifies their development,
but it is also the Achilles heel of the resulting images: inhomogeneities in intensities on the
scale of microns are quite common, especially in vivo, and render many standard image seg-
mentation strategies used in surveillance, magnetic resonance imaging, positron emission
tomography, and other fields very difficult to apply.

Over the last decade, a microscopy technique particularly well suited to myelin imaging
has gained wide acceptance. Coherent anti-Stokes Raman scattering (CARS) microscopy is a
nonlinear optical technique Zumbusch et al. [1999a], Evans and Xie [2008], Bégin et al. [2009]
that uses the endogenous contrast provided by molecules already present in the sample of
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interest: i.e. the contrast can be tuned to the myelin lipid content Wang et al. [2005]. Since
then, it has been used to visualize demyelination Fu et al. [2007b], Imitola et al. [2011], Fu
et al. [2011], Shi et al. [2011], Freudiger et al. [2012], and we have proposed several techniques
to characterize myelin morphology Bélanger et al. [2009a, 2011], Bégin et al. [2013].

The present work sets out to develop strategies for segmentation of CARS microscopy im-
ages to be used for myelin characterization. Therefore, the primary objective of this article
is to present a fully automated nerve fiber segmentation methods designed specifically for
CARS microscopy images of transverse sections of nervous tissue. After a brief outline of
the imaging method, we present the details of the segmentation strategy. Then, the accuracy
of the proposed segmentation method is quantified. Finally, we conclude by presenting how
this method can be used to successfully extract nerve fiber morphology information from
large-scale CARS images.

The MATLAB code implementing this analysis in addition to all of the data used is made
available on the group web site at http://www.dcclab.ca.

5.4 Materials and methods

5.4.1 Tissue preparation

C57BL/6 adult mice, 25 to 30 g of body weight, were intracardially perfused with 0.1 M
phosphate buffer solution (PBS) followed by 4% paraformaldehyde (PFA). The whole spinal
cord was dissected from each mouse and fixed flat in 4% PFA overnight. The spinal segment
of interest was isolated from the spinal cord, embedded in low gelling temperature agarose,
and 350 µm thick transverse sections were made with a vibratome (Leica, VT 1000). Slices
were rinsed several times with 0.1 M PBS solution and then mounted inside a spacer on a
slide. The remaining space was filled with 0.1 M PBS and a coverslip was mounted on top of
the spacer. All experimental procedures have been performed in accordance with guidelines
from the Canadian Council on Animal Care.

5.4.2 CARS microscopy

Image acquisition is performed using a custom video-rate laser scanning microscope based
on a fast rotating polygonal mirror. Our microscope allows for a maximum image acquisition
rate of 30 frames per seconds at 500× 500 pixels or 752× 500 pixels. Coherent anti-Stokes
Raman scattering (CARS) is used to image the myelin sheaths surrounding the axons by
probing the CH2 symmetric stretch vibrations of lipids at 2845 cm−1. This is achieved using
a 1064 nm beam from a Nd:Vanadate mode-locked laser overlapped in space and time with
a second beam from an optical parametric oscillator tuned to 816.8 nm. In order to reduce
the acquisition noise, images are typically averaged over 15 to 30 individual frames. More
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details about the system can be found in a previous article by Veilleux et al. Veilleux et al.
[2008].

Large-scale mosaic acquisitions of spinal cord cross sections

Imaging an entire cross section from a mouse spinal cord, which typically spans a few mm in
diameter, can require as many as 800 images to cover the whole area. Our strategy involves
scanning the surface by moving the sample over an x-y grid sequence with an overlap of
20 % of the image field of view (FOV). For each position, the sample is imaged at various
depths to form z-stacks which are later stitched together Preibisch et al. [2009] to generate a
3D mosaic. Finally, the surface plane of interest is extracted from the 3D mosaic Bégin et al.
[2013] to form the 2D mosaic suitable for the segmentation analysis. A complete mosaic of
5000× 7000 pixels (typical) and 0.225 µm spatial resolution is typically acquired in 3.5 hours.

Image processing

The relatively wide FOV of the microscope brings undesired illumination variations across
the image. For this reason, the images are processed using contrast-limited adaptive his-
togram equalization Zuiderveld [1994] to minimize the effect of inhomogeneous illumina-
tion on the segmentation results. This method is used on small regions of the image to en-
hance the contrast such that the histogram of the region matches that of a specified distribu-
tion. We found that a uniform target distribution within 16× 16 pixel regions improves the
segmentation results significantly.

An example of a myelin CARS image of a transverse spinal cord section from a healthy
mouse is shown in Fig. 5.1. The image is split in two to show a section from the raw un-
processed image (Fig. 5.1(a)) and a section preprocessed with contrast-limited adaptive his-
togram equalization (Fig. 5.1(b)).

5.5 Segmentation strategy

Segmentation, i.e., the task of classifying each pixel and assigning it to a meaningful object,
may range from trivial to challenging. Pixel classification is highly dependent on how pix-
els of a different nature appear differently in an image (contrast). In addition, assignment
of the classified pixels to distinct objects depends on how well separated the objects are in
an image (i.e., if their pixels are touching or not). In the case where high-contrast objects
are isolated, segmentation is often trivial. In optical microscopy, however, images contain
many low-contrast objects that are touching. Information about the system under study (ex-
pected morphology, detection noise, spatial resolution, etc.) is therefore used to inform pixel
classification and assignment. In the case of CARS images of nerve fibers in transverse tis-
sue sections, we make use of the following information: 1) the signal is only produced by
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a) b)

20 μm

Figure 5.1 – Myelin CARS image of a transverse spinal cord section from a healthy mouse
split in two to show a raw unprocessed image section (a) and a section preprocessed with
contrast-limited adaptive histogram equalization (b). The image is 752× 500 pixels in size
and an average of 30 frames.

myelin, 2) a myelinated axon does not touch other axons since it is wrapped inside a myelin
sheath, 3) the shape of the exterior myelin boundary is similar to the axon boundary, and 4)
adjacent myelinated fibers are in contact but do not overlap. With those facts in mind, we de-
vised a two-part strategy whereby the axon candidates are first segmented and the collected
information is then used to determine the myelin outer boundary, which in turn serves to
unambiguously identify axons.

The challenge with axon segmentation lies in the fact that they are defined by an absence
of signal in the images. Therefore, finding dark regions will invariably lead to true axons as
well as inter-nerve-fiber background labeled as axon candidates. The axon segmentation is
divided into three steps: 1) groups of pixels corresponding to a local minimum of at least a
certain depth (extended-minima algorithm) are identified as axons candidates regardless of
their shape, 2) their shape is refined through an iterative deformation process (active contour
algorithm) 3) the axon candidates are subjected to a first validation test that aims to identify
and remove inter-nerve-fiber background based on morphological properties. The result is a
binary image of the remaining axon candidates and another image of the background.

The challenge with the myelin segmentation is to accurately identify the outer myelin bound-
ary in images where most myelinated axons are touching each other. To achieve this goal,

82



we probe the image around each axon candidate and use the information contained in the
binary images of the other axons as well as the background to limit the search space. The
myelin segmentation strategy comprises three steps: 1) the myelin outer boundary of axon
candidates is detected in the straightened subspace image when the intensity changes from
high to low, 2) the candidates are subjected to a second validation test based on the area over-
lap between neighboring nerve fibers, and 3) all unique pairs of touching segmented myelin
are pairwise separated using a watershed algorithm. After completing these steps, we have
a new binary image representing myelin sheaths around axon objects with no connectivity
between them, as well as updated binary images of the axons and the background from the
validation step.

A block diagram of the previously outlined method is shown in Fig. 5.2. Specific details
describing individual steps are in the sections to follow.

Detection 
(extended-minima)

Refinement 
(active contour)

Validation 
(shape)

Axon segmentation

Outer boundary detection
(straightened subspace) 

Validation
(area overlap)

Pairwise separation 
(watershed)

Myelin segmentation

Background Axon 
candidates

AcceptedRejected

Myelin binary 
image

Accepted

Figure 5.2 – Flow chart of the two-part algorithm. (Left) Axon segmentation: 1) detection of
axon candidates by extented-minima transform, 2) shape refinement with an active contour
method and 3) candidate validation based on their shape. This part produces two binary
images of the axon candidates and the background. (Right) Myelin segmentation: 1) seg-
mentation of the myelin outer boundary in the straightened subspace images of the axon
candidates, 2) candidate validation based on area overlap and 3) separation of touching
myelin pairs by watershed technique. The final output is a binary image representing the
myelin sheaths.
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5.5.1 Axon segmentation

Axon detection with extended-minima transform

Initial axon segmentation is obtained by looking for regional minima of at least a certain
depth (intensity) in the image. This is accomplished by computing the H-minima transform
of the contrast enhanced image and then finding the regional minima. The H-minima trans-
form removes all minima with a depth of less than a certain value (h). The value of h can be
set empirically by trial and error on a typical image portion and we found that a value of h on
the order of the image intensity standard deviation offers a good starting point. Following
the H-minima transform, all pixels with a uniform intensity that are surrounded by higher
intensity pixels are extracted as connected components to form the objects populating the
initial segmentation.

As shown in Fig. 5.3(a), the output of this step is a binary image containing seeds for all of
the axons as well as possible false positives. The objects in the binary image are called seeds
because they only approximate the shape of the underlying object.

Axon segmentation refinement with active contour method

In this step, the shapes of the seed objects resulting from the initial segmentation are refined
through a deformation process known as “active contour” Kass et al. [1988]. Active contour
methods are used to better separate the foreground from the background by allowing an
initial curve to deform iteratively so as to minimize a function defined in terms of the contour
internal and external energies. The external energy often comprises image forces such as the
intensity or gradient while the internal energy usually relates to curve elongation or bending.

Classically, energy functional defined based on the image gradient and curve evolution relies
on an edge detector to find the presence of the object boundary. In this work, we use an active
contour method whereby the energy describes the foreground and background in terms of
their mean intensity Chan and Vese [2001]. The so called Chan-Vese method is better suited
to detecting objects with smooth or discontinuous boundaries, with or without gradient.

Our segmentation algorithm was developed to analyze very large images containing many
thousands of objects. While computational speed is not the most crucial factor, computation
time has to be kept in check. This is especially true in this step where all the objects found
by the initial segmentation are refined individually. Furthermore, when using the typical
framework (level set Sethian [1999]), active contour methods are notoriously slow to com-
pute. Fortunately, a much more efficient framework called the sparse field method Whitaker
[1998] exists with drastically decreased computation time. The main drawback of this frame-
work is that it is not possible for new a curve to appear spontaneously. In our workflow
however, this is not a limitation since the goal of this step is to improve the shape of a previ-
ously found object.
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While there exist many implementations of the Chan-Vese active contour algorithm, we set-
tled on an implementation that also uses local image statistics to define the energy functional
Lankton and Tannenbaum [2008] which helps to segment objects that cannot easily be dis-
tinguished using global statistics. For every point along the curve, the foreground and back-
ground are described in terms of smaller local regions of radius r. A radius value of 10 pixels
was used throughout this work.

The number of iterations is set to 100 even if shape refinement usually converges to the
correct solution in fewer iterations. The regularization term controlling curve smoothness is
set to 0.1 (between 0 and 1, where 0 indicates no penalty for arc length of the curve).

All objects touching the image border or containing less than 10 pixels are removed be-
cause their morphological properties cannot be accurately measured. The lower size limit
was found with a simulation where the image of a circle of known radius was reduced in
size until the error on the measured radius became significant.

At the completion of this stage of the analysis, we now have a binary image containing axon
candidates whose shapes were refined to better represent the underlying image properties
(Fig. 5.3(b)). This image contains true axons as well as a large number of false positive in
areas between the myelinated axons.

Axon validation using morphological properties

The main objective of the axon validation stage is to eliminate false positives from the binary
image of axon candidates. The validation is based on morphological properties that were
chosen based on their ability to separate true axons from false positives.

To determine an optimal set of properties, we measured a total of ten morphological param-
eters for over 10,000 axons identified manually in eight CARS images. Next, we examined
all possible combinations of parameters taken one to ten at a time. The data was standard-
ized (zero mean and unit variance) to account for the difference in range of the parameters.
Using the squared Euclidean distance of an object to the origin of the parameter set space as
a common metric, the optimal set was chosen based on its ability to discern false positives
from true axons.

The optimal set is composed of four parameters: the circularity, the perimeter and area so-
lidity and the concave perimeter fraction. The circularity is defined as 4πA/P2 and its value
is always less than one except for the case of a perfect circle. The perimeter and area solidity
are defined in terms of the object’s convex hull (CH) as P/PCH and A/ACH, respectively.
Both values are less than one for a concave polygon. The concave perimeter fraction, defined
as the ratio of the length of the concave perimeter sections to the object perimeter Lconcave/P,
is greater than zero for a concave object.
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Unfortunately, we found that even the optimal choice of parameters showed an overlap in
their distributions for the true and false axons. For this reason, the cutoff (in terms of the
square Euclidean distance to the origin of the parameter set space) was chosen conserva-
tively so as to preserve most of the true axons, and a second validation test is introduced
later in the analysis. Any object rejected through the validation stage is added to the binary
image of the background that is used in the myelin segmentation step. Fig. 5.3(c), shows the
axons (green) as well as the background (red) superimposed on the original image.

(a) (b) (c)

Figure 5.3 – Axon segmentation in a transverse CARS image of mouse spinal cord. (a) Axon
detection with extended-minima transform. (b) Segmentation refinement using an active
contour method. (c) Object validation separates the axons (green) from the background (red).

5.5.2 Myelin segmentation

Myelin segmentation in the straightened subspace image

Myelin segmentation begins with the creation of a straightened subspace Chav et al. [2009]
image around every axon. Because the shape of the myelin outer boundary is in essence a
scaled version of the axon shape, this image transformation aims to simplify the segmenta-
tion by reshaping the myelin outer boundary in more or less a straight line.

It requires a prior shape which is given by the binary image of the axon. For a given axon,
starting from its contour, the image intensity is interpolated along 72 lines radiating outward
(∼ 5 ◦ step) and perpendicular to the axon boundary. Fig. 5.4(a) shows the probing lines
(black) around an axon (green) as well as the binary images of the other axons (blue) and the
background (red) overlaid on the processed CARS image. The radial probing is performed
on the processed CARS image as well as on the combined binary image of the axons and the
background to produce two straightened subspace images. The intensity image is used to
find the myelin boundary and the binary image (blue for axons and red for background) is
used to restrict its position.

The myelin boundary is expected to coincide with regions where the intensity changes from
high to low. Since the boundary is mostly oriented in the straightened subspace image, the
Sobel filter is used to produce a cost map that enhances the edges along the direction per-
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pendicular to the boundary. However, because the myelinated axons are so tightly packed,
clear edges are not always present along a line of sight linking two axons. For this reason, the
search space for the boundary is restricted using prior knowledge collected during the axon
segmentation. i.e., it is prohibited from going through pixels previously labeled as back-
ground or axons.

Once this is done, the boundary is found with a combination of three approaches. The first
uses a minimal-path algorithm Vincent [1998] to extract a low-cost path made continuous
by extrapolating over fragmented edge sections, and has only one parameter controlling the
linearity of the path. Although it usually extracts the expected solution, it favors low-cost
solutions without considering their distances from the axon surfaces. Because of the way
in which the straightened subspace images are created, higher cost solutions closer to the
axon surface will sometimes generate more accurate solutions. Thus, either we look for the
first minima along all the probed lines starting from the axon surface, or we look for the first
minima lower than a specified cost threshold. The best of these three solutions is found based
on their linearity by computing the standard deviation of the distances from the axons along
the paths and choosing the solution with the smallest variation. The minimal-path algorithm
is favored about 60% of the time. An example of the solution for the myelin outer boundary
is shown in Fig. 5.4(b) as an overlay (green line) on the Sobel-filtered intensity image of the
straightened subspace with the other axons and the background in blue and red.

Finally, once the myelin boundary is found, it is projected back to the original image space to
form a polygon centered on the axon. The polygon is then smoothed using a spline function
and is used to create a binary mask (Fig. 5.4(c)) that is stored in a list.

Myelin validation using area overlap

The guiding principle for this stage of the validation is that a properly segmented myelin
outer boundary should have little to no overlap with neighboring myelinated axons. There-
fore, the degree of overlap can be useful to reject false positives that could not be differ-
entiated from true axons based on their morphology during the axon validation stage. The
overlap fraction (Λ) is defined for a given candidate as the ratio of the overlapping myelin
area to the total myelin area.

The first step in the myelin validation procedure is to compute the overlap fraction for all
objects and place those with a value of Λ above a certain threshold in a candidate buffer.
Starting with the objects having the highest overlap fraction, we re-compute the value of
Λ to account for objects previously removed from the buffer and dismiss the object if Λ is
still above the threshold. The threshold value was determined empirically (ΛT = 40%) so
as to maximize the gain in precision while minimizing the loss of sensitivity. An example is
shown in Fig. 5.4(d) where the overlapping area is shown in yellow. In this case, the newly
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identified false candidate (red) has an overlap fraction well above the threshold and is easily
separated from the true candidates (green).

Separation of touching myelin pairs

Now that the myelin boundaries have been segmented and most of the non-axons removed,
we need to make sure that none of the objects are connected in the final binary image. Sep-
arating touching objects is generally regarded as a difficult task, but here the problem is
drastically simplified with the a priori knowledge of the number of true objects. The robust
separation of touching myelin is obtained by processing the objects one pair at a time using
a marker-controlled watershed segmentation algorithm.

The first step consists of finding all the pairs of connected myelin and to process them two
at a time (Fig. 5.4(e)). The convex hull of each object is computed to help prevent issues
associated with over-segmentation. The two convex hulls are combined to form a single
object and the Euclidean distance transform of the resulting binary image is computed. The
foreground is marked to zero using the binary images of the related axons and the watershed
function is invoked to separate the image into two domains (Fig. 5.4(f)). Finally, once this
procedure has been done for all connected pairs, the watershed lines are used to produce a
binary image where none of the segmented myelin is connected (Fig. 5.4(g)).

5.5.3 Segmentation accuracy

The accuracy of the proposed segmentation method is quantified by comparing the binary
images produced at different stages of the algorithm to a ground truth. The ground truth
was created manually for the position and shape of the axons. Through this process, the
true positives (TP) and false positives (FP) are identified and two important parameters can
be computed: the sensitivity and the precision of the segmentation. The sensitivity, or the true
positive rate (TPR), is given by the ratio of the number of true positives (TP) over the number
of objects in the ground truth. The precision, or positive predictive value (PPV), is given by
the ratio of the number of true positives over the number of true positives plus the number
of false positives (FP), i.e., the total number of segmented objects.

From a binary image resulting from the segmentation step under investigation, the axon can-
didates are extracted using feature-based boolean logic AND, i.e., objects in the segmentation
binary image overlapping objects in the ground truth are selected. Then, the true positives
are determined using two criteria based on similarity measures between the object pairs: the
modified Hausdorff distance (MHD) Dubuisson and Jain [1994] and the Dice coefficient, also
known as the the quotient of similarity (QS) Dice [1945].

The modified Hausdorff distance is a robust measure of similarity that works well for the
purpose of object matching. Given two binary objects A and B and their boundaries A′ =
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.4 – Myelin segmentation in a transverse CARS image of mouse spinal cord. (a) The
space around an axon (green) is probed along 72 radial lines to produce a straightened sub-
space image. (b) Sobel filter of the straightened subspace image with the myelin boundary
(green). In both (a) and (b), the other axons are shown in blue and the background in red.
(c) Segmented myelin. (d) The myelin validation stages uses the area overlap (yellow) as a
metric to separate false (red) from true (green) candidates. (e) Connected objects are sepa-
rated in pairs using a (f) marker-controlled watershed algorithm. (g) Final binary image with
separated nerve fibers.

{a1, ..., aNa} and B′ = {b1, ..., bNb}, the MHD is defined as:

MHD(A′,B′) = max(D(A′,B′), D(B′,A′)) (5.1)

D(A′,B′) =
1

Na
∑

a∈A′
d(a,B) (5.2)

where d(a,B) = minb∈B′ ‖ a− b ‖ is the distance between point a and the set of point B′,
and ‖ · ‖ indicates the Euclidean distance. D(A′,B′) represents the average distance from
A
′ to B′ and vice versa. When the objects A and B become more similar, the value of the

MHD becomes smaller.

The quotient of similarity is defined as:

QS(A,B) =
2N(A∩B)

N(A) + N(B)
(5.3)
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where ∩ is a pixel-based boolean AND and N(·) denotes the number of pixels in a set. The
QS value ranges from 0 to 1, where 1 denotes identical objects.

From the visual comparison of the results and the ground truth, it was decided that an object
with a MHD value lower than 3 or a QS higher than 0.85 was similar enough to the ground
truth to be considered a true positive. Any object not passing the similarity test is labeled as
a false positive.

Fig. 5.5 shows a CARS image section with an overlay of the segmentation result that is color-
coded to illustrate its comparison with the corresponding ground truth. The true positive
axons and the false positive objects are indicated in green and red, respectively. In addition,
the false negative axons, i.e., true axons that were rejected by one of the validation stages,
are indicated in magenta and axons that were missed entirely in blue. Finally, the segmented
myelin is shown in cyan. Any object smaller than 10 pixels was rejected prior to the first
validation stage.

Figure 5.5 – Section of a CARS image with overlay for the true positive axons (green), the
false positive objects (red), false negative axons (magenta), missed axons (blue) and seg-
mented myelin (cyan). Objects smaller than 10 pixels were discarded prior to the initial vali-
dation stage.

5.6 Results

5.6.1 Segmentation accuracy

The performance of our segmentation strategy was evaluated using a set of eight CARS im-
ages and two toluidine blue stained images of transverse spinal cord sections from healthy
mice. The accuracy of the proposed method is measured both at the end of the axon refine-
ment stage and after the two validation stages. This is summarized in Table 5.1.

Results shown in the “Refinement” columns in Table 5.1 indicate that the segmentation is
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extremely sensitive, missing only a few percent of the axons present in the ground truth. The
median similarity value for all true positive objects identified after the refinement stage is
0.85 for the QS and 0.50 for the MHD. This, in conjunction with the visual inspection of the
segmentation results, indicates a very good agreement between the axon shapes from the
automatic segmentation and the ground truth.

Next, the behavior of the two validation stages is quantified. The axon validation stage (axon
validation columns in Table 5.1) was designed to remove as many of the false positives as
possible without significantly altering the sensitivity. A normalized distance threshold of 15
leads to a gain of 20% to 30% in precision in exchange for a decrease of no more than 2% in
sensitivity. Finally, with the myelin validation stage (myelin validation columns in Table 5.1),
the segmentation precision is increased to about 95% while the final sensitivity is reduced
by ∼10%.

Refinement Axon Myelin
validation validation

Images Ground Detected TP TPR PPV TPR PPV TPR PPV
Truth Objects (%) (%) (%) (%) (%) (%)

CARS 1 1002 1644 982 98 60 94 80 84 94
CARS 2 1310 2055 1251 95 61 94 83 86 95
CARS 3 1256 2007 1236 98 62 98 84 88 94
CARS 4 1504 2231 1463 97 66 96 87 89 97
CARS 5 1487 2312 1476 99 64 98 83 88 95
CARS 6 559 937 543 97 58 95 88 90 96
CARS 7 976 1552 936 96 60 93 83 85 95
CARS 8 1437 2110 1360 95 64 94 87 87 97
TB 1 1178 1905 1170 99 61 93 80 89 94
TB 2 2023 2563 1913 95 75 91 87 80 96

Table 5.1 – The segmentation accuracy was evaluated using a set of eight CARS images and
two toluidine blue stained images of transverse spinal cord sections from healthy mice. True
positives (TP) and false positives (FP). The sensitivity, or the true positive rate (TPR), is given
by the ratio of the number of true positives (TP) over the number of objects in the ground
truth. The precision, or positive predictive value (PPV), is given by the ratio of the number
of true positives over the number of true positives plus the number of false positives (FP),
i.e., the total number of segmented objects.

5.6.2 Morphology

This section showcases the ability of our method to retrieve morphological data from large
mosaic images of nerve tissue. In particular, we used a cross section from the cervical re-
gion of the spinal cord from a healthy mouse. The cross section, approximately 1.7 mm in
diameter, required 324 images to cover approximately 60% of the surface. Our nerve fiber
segmentation algorithm revealed around 32,000 myelinated axons in the spinal cord white
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matter. For each nerve fiber, standard morphometric measurements are computed from the
segmentation results. From the two primitive parameters measured directly on the binary
image (axon and fiber area), three parameters can be derived (i.e. axon and fiber equivalent
diameter, and g-ratio). The equivalent diameter is defined as the diameter of a circle that
has the same area as the object. The g-ratio, defined as the ratio of the axon diameter to the
fiber diameter (i.e., axon plus myelin sheath), is computed from the equivalent diameters.
The result of our segmentation is presented in Fig. 5.6(a) where the 32,000 myelin sheaths
are shown as an overlay color coded for the g-ratio. Such an overview can be useful to see
large-scale organization such as the concentration of higher g-ratio fibers around the anterior
median fissure on the ventral side of the spinal cord (middle bottom) or the cluster of low
g-ratio fibers in the middle of the spinal cord on the dorsal side (middle top). A zoomed-in
view of a region of interest (blue rectangle) is presented in Fig. 5.6(b). The g-ratio follows a
normal distribution with an average of 0.5 and standard deviation of 0.1. In Fig. 5.6(c) and
(d), we present typical parameter couples as 2D histograms. A small sub-distribution is no-
ticeable in both histograms: it includes a very small fraction (< 1%) of fibers for which the
myelin outer diameter is underestimated (see arrows in Fig. 5.6(b)). This double ring struc-
ture could be the result of a preparation artifact, but it is also consistent with the appearance
of Schmidt-Lanterman incisures in transverse cuts Ross and Pawlina [2006]. The algorithm
makes no attempt at handling these rare cases differently.

5.7 Conclusion

We have shown in this manuscript how we can extract nerve fiber morphometric informa-
tion from CARS images of nervous tissue. Valuable information is readily obtained from
these images using an automatic segmentation algorithm developed specifically for the task
of classifying each pixel as myelin, axon, or background, as well as assigning it to a given
nerve fiber. The critical aspect for success was to recognize that pixel classification needs to
be informed by the geometry before being considered final, and that the geometry is highly
specific to the problem at hand. We have proceeded by first identifying axon candidates
which are then filtered based on shape parameters to remove obvious false positives. In
the second stage where myelin pixels are identified, if the resulting myelin conflicted with
the myelin from other axons, the myelin sheath with the most conflicts was assumed incor-
rect, while the others were confirmed as myelin. The algorithm was tested against manually
segmented images with great success. Finally, it was used for the robust segmentation of
large-scale CARS images where local clusters can be recognized. In future work, we plan to
use this method to both quickly and accurately measure small changes in myelination in the
earliest stages of demyelinating diseases such as multiple sclerosis, which will dramatically
improve our understanding of the initiation of such debilitating diseases.
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Figure 5.6 – Nerve fiber segmentation in a CARS mosaic from a transverse section of healthy
mouse spinal cord. (a) Myelin sheaths are shown as an overlay, color-coded to the value of
the g-ratio. (b) Zoomed-in view of the blue region of interest around the anterior median
fissure on the ventral side of the spinal cord. The white arrows show examples where the
myelin outer diameter is underestimated. Morphometric parameter 2D histograms of (c)
the g-ratio versus axon equivalent diameter and (d) axon equivalent diameter versus fiber
equivalent diameter.
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Conclusion

The main goal of this thesis was to overcome some of the obstacles hampering the wide-scale
adoption of CARS as a microscopy technique. The three innovative findings presented in this
thesis in the form of original publications provide a definitive proof that this objective has
been achieved successfully. This last chapter proposes to summarize briefly those findings,
expose their limitations, bring suggestions for their improvement, and finally suggest some
recommendations for future experiments.

In chapter 3, we presented a novel fiber laser system consisting of a pump laser synchro-
nized with a rapidly tunable programmable laser for the rapid acquisition of CARS spectral
images in thick tissue. This new system represented a major improvement over previous
attempt at CARS spectral imaging especially for experiments requiring that the signal is col-
lected in the epi-direction as is the case when looking at thick tissue sections. The quality
of our work as been noticed by the community as is reflected by the 34 citations over the
last three years. The most distinctive feature of this system is its ability to access Raman
lines over a significant fraction of the high-wavenumber region (2700-2950 cm−1) at rates
of up to 10,000 spectral points per second. While we successfully demonstrated the acquisi-
tion of CARS spectra, images and spectral images in thick tissue, the early prototype used
for those experiments had a few shortcomings. Its most important limitation comes from
the high level of laser noise which in turn limits the detection sensitivity. Because it comes
from many sources, reducing the noise level has been very challenging so far. Two important
factors were identified through our experiments: 1) the general reliance on high speed elec-
tronics, in particular the active mode locking scheme, is responsible for a significant fraction
of the laser noise, and 2) the erbium-doped fiber gain dynamics has an important role to play
in the matter. Possible solutions currently investigated by the team at Genia include refin-
ing the electronics as much as possible and changing the gain medium for semiconductor
optical amplifier which have better noise characteristics. As well, a collinear balanced detec-
tion detection scheme has been used successfully for noise suppression in fiber laser [Nose
et al., 2012] and could possibly be useful here. Other possible improvements include mov-
ing the current operating wavelengths of the laser towards the visible. This would benefit
the detection sensitivity as well as enable the use of more conventional optics (lens, filters,
microscope objectives) designed for standard optical microscopes operating in the visible.
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Shortening the pulse length (∼5–10 ps) would be favorable for the excitation efficiency and
strategies to shorten the pulses using a shorter pulse generator or a time-lens scheme are
being explored. With these improvements in place, we believe this system will be poised to
become a major player in the CARS microscopy field.

The initial motivation for the CARS spectral imaging project comes from the large amount
of literature related to the in situ diagnostic potential of Raman spectroscopy, especially in
oncology. However, for a Raman based technique to become clinically relevant, its sensitivity
would have to increase by many orders of magnitudes, which is exactly what was achieved
with our CARS spectral imaging system. The first experiment that we plan to conduct with
the next generation prototype is to explore the diagnostic potential of CARS spectral imaging
for brain cancer. In order to do this, we will use our system to acquire spectral images of
fixed slices of human brain tissue from biopsies previously graded by a trained pathologist.
A fraction of the data from the spectral images will be used in conjunction with the grades
to build a diagnostic model that will then be tested against the rest of the data to measure its
predictive power. Since the start of this project, a large fraction of the research in our group
became focused on the understanding of multiple sclerosis through the use of animal models
such as EAE and our video-rate microscopy platform. Little is known about the onset of this
disease, in part because we are still unsure what to look for and where, but also because by
the time a lesion becomes apparent on an image, most of the damage is already done and it is
too late to learn much. For this reason, we have worked on different strategies to increase our
detection sensitivity to changes in the myelin structure in early stages of the disease. So far,
most of our efforts relied on polarimetric CARS, but it is clear that CARS spectral imaging
may provide key informations for the identification of early lesions.

In chapter 4, we proposed a new method based on a two-dimensional Fourier transform to
quantify and measure the local organization of myelinated axons in the spinal cord. This
contribution was significant mainly because it represents the first attempt to characterize
quantitatively the tissue architecture of nerve fibers as well as one of the rare quantitative
image analysis techniques for CARS images. We have shown how this analysis can be useful
to study the organization/disorganization in the myelin structure from spinal cord of ani-
mals afflicted by EAE, a common animal model of multiple sclerosis. A current limitation of
the procedure is that its current implementation in Matlab cannot be used in real time but
only as a post-acquisition analysis. Conceptually however, this procedure is compatible with
live animal imaging and now that most of the development has been done, it only needs to
be ported to iPhoton, the home-made acquisition system used throughout the lab for in vivo
CARS experiments.

Once a real-time version of the software has been implemented, it could be used in conjunc-
tion with a minimally invasive microendoscopic approach [Bélanger et al., 2012] to follow
the evolution of a given region of interest over time. Such an experiment would also permit
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to measure a more extensive set of functional parameters (blood-brain-barrier permeability,
cellular recruitment, microglial activity, etc...) with the context provided by the localization
and degree of severity of the lesions. This would provide valuable informations that would
undoubtedly help understand the sequence of the interaction between all the key players in
EAE. Moreover, myelin disruption is clearly related to nerve function but it is not a direct
measurement of a nerve functional integrity. Hence, we propose another set of experiments
that could be used to build a more complete model relating myelin disruption to loss of
nerve function. Such a model would need to consider the number, size and most impor-
tantly localization of the moderate to severe lesions throughout the entire spinal cord. While
the acquisition of CARS microscopy maps of the complete surface of the spinal cord is cur-
rently out of reach with our microscopy platform, the necessary functionalities are being put
into place by other members of the lab. Some key elements that are being addressed include
acquisition and mapping speed, conservation of the spinal cord during the experiment, and
proper handling of the curvature of the surface during the acquisition since the spinal cord
is roughly cylindrical in shape. For the near future however, the surface of multiple spinal
cords could be undersampled at the microscope and analyzed using the automated tech-
nique presented in chapter 4 to build a draft of the model.

In chapter 5, we presented a fully-automated method for the segmentation of nerve fibers in
CARS images from transverse sections of nervous tissue. While methods for the character-
ization of myelin morphology have been around for a long time, this is the first technique
that was developed specifically for CARS microscopy and can consequently benefit from
the many advantages offered by CARS such as minimal preparation and good specificity to
myelin. Our algorithm can be used to quickly and accurately extract nerve fiber morphome-
tric information from large-scale mosaic images containing many thousands of myelinated
axons. Image segmentation is often regarded as one of the most challenging task in image
analysis and this particular project has certainly been true to that statement. As a conse-
quence, there are still many aspects of our procedure that require some work. For instance,
the analysis is fully automated but it initially requires tuning of eleven parameters that can
influence the result to various extents. Reducing the number of parameters would greatly
enhance the usability of the method. As well, because it is relatively difficult for a user to see
the effect of varying those parameters and therefore make an optimal choice, providing an
interface for the exploration of the parameter space would be a great addition. Another cur-
rent limitation concerns the first validation stage. As we have shown, the initial sensitivity
of the method is almost 100%, but its precision is much lower (∼60%). The aim of the valida-
tion stage is to recover as much of the precision as possible without reducing the sensitivity.
This has proved to be the most challenging task of this particular project for two reasons: 1)
the shape of the real axons is roughly circular but can vary significantly, 2) the shape of the
false positives is not constrained by particular biological structures and can take any shape,
even circular. As a consequence, every shape parameter that was tried showed an overlap in
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the distributions for the true and false axons and no parameter combination enables a clean
separation between the two groups with the current threshold method. One solution that
could possibly improve the validation stage involves the use of fuzzy logic to remove false
positive since it is particularly well suited to deal with the notion of partial truth. However,
the validation stage currently relies only on the shape of the axon candidates in the binary
image. Hence, it might be more advantageous to explore other metrics based on the bright-
ness values or textures of the pixels belonging to the axon candidates or even to the area
surrounding them.

Manual or even semi-automated segmentation of myelinated axons is such a labor-intensive
endeavor (many seconds per nerve fiber) that histomorphology studies relying on such
methods have to restrict significantly the number of segmented nerve fibers. Because our
method provides a way to automatically collect morphological data from images of nervous
tissue, it removes the necessity to make compromises on the number of segmented nerve
fibers. This opens the door to histomorphology analysis of large areas of nervous tissue
which should be useful for a wide range of applications including studies of nerve structure
and their response to injury or drugs. For instance, with the video-rate CARS microscope
available in our lab, it should be possible to quickly acquire mosaic of images covering the
complete surface of the spinal cord or nerves of humans or other large animals. Moreover,
comprehensive whole-nerve analysis should allow for an accurate description of the nerve
fiber population within the nerve, may permit the identification of subtle differences be-
tween specimens of different gender, or supply valuable informations in studies striving to
understand the early stages of demyelinating diseases such as MS.
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