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ABSTRACT

Automated Detection and Differential Diagnosis of Non Small Cell Lung Carcinoma

Cell Types Using Label-Free Molecular Vibrational Imaging

by

Ahmad A. Hammoudi

Advances in targeted therapy hold the premise for the delivery of more effective

treatments to lung cancer patients, given the ability to diagnose and identify patient

specific cell types, small cell carcinoma, adenocarcinoma, or squamous cell carcinoma.

Label free optical imaging techniques like the Coherent Anti-Stokes Raman Scattering

microscopy (CARS) can provide physicians with minimally invasive access to tumors

and allow diagnosis and sub-typing. Exploiting CARS requires developing data anal-

ysis methods that can rapidly and accurately analyze the new types of data they

provide. In this study we designed an image processing framework that automati-

cally and accurately, detects cancer cells in two and three dimensional CARS images.

Moreover, we built upon this capability with new approaches to analyzing the seg-

mented data, that provided significant information about the cancerous tissue that

allowed for the automatic differential classification of non-small cell lung carcinoma

cell types, overcoming the shortcomings of previous such approaches.
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Chapter 1

Introduction

1.1 Lung Cancer Diagnosis and Treatment: The Big Picture

Lung carcinoma is the most prevalent type of cancer in the world responsible for more

deaths than any other type of cancer [1]. It has been, for over 50 years, perceived as a

relentlessly progressive, fatal disease. It is the primary cause of cancer deaths in the

United States with 222,500 new cases of lung cancer and 157,300 lung cancer deaths

reported in 2010 [2], with five-year survival rates less than 18% [1,3]. Globally, these

rates drop to 6-14% for men and 7-18% for women [1,3]. These dismal mortality rates

are caused first, by the lack of non-invasive or minimally invasive methods of early

detection and diagnosis. And second, by the inability to develop effective targeted

therapy, caused mainly by the inability to accurately determine which lung carcinoma

cell types are present in diagnosed patients.

While early detection has attracted major research effort [4, 5], less than 1% of

patients can be diagnosed at an early stage [6]. Tissue biopsy, a highly invasive

method, is frequently needed as a follow-up test for definitive diagnosis, following

pulmonary examination using computed tomography (CT) or magnetic resonance

imaging (MRI). Nonetheless, it remains difficult to precisely locate the the site of small
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lesions for obtaining the required samples [6]. Some patients will need to undergo re-

biopsy, resulting in increased risks to patients, higher testing and treatment costs,

and delays in diagnosis and treatment. So given the risks and cost of lung biopsy, it

would be beneficial to develop an imaging strategy that can provide real time images

and an accompanying computational diagnostic analysis platform of the biopsied site,

relieving the requirements of accurately locating small lesions, limiting damage to lung

tissue, diagnosing lung cancer in vivo, and providing diagnostic yield comparable to

existing biopsy methods.

Moreover, pathologists have only achieved minor successes in differentiating the

various cell types of lung carcinoma, namely adenocarcinoma, squamous cell carci-

noma, and small cell carcinoma. In addition differentiating small cell from non-small

cell carcinoma is a bigger challenge to pathologists and one that is crucial to devel-

oping targeted therapies [7]. This has led to categorizing the first two cell types with

the term non-small cell lung carcinoma (NSCLC), to reflect this difficulty [7].

As such our work is framed by, and builds upon two broad ideas.

• Developing a minimally invasive automated diagnostic platform, that can rapidly

and efficiently collect, process and analyze data from lung tissue, to locate and

diagnose cancer cells.

• Developing an effective differential diagnosis strategy that can automatically

provide information on the specific carcinoma cell types present in a tumor, to

aid in designing and delivering optimized targeted therapy to patients.
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1.2 Previous work

In subsection1.2.1 we provide a brief overview of an imaging technique that holds

great potential for use in diagnosis of lung carcinoma, followed by an overview of the

most recent achievements in its application to lung cancer diagnosis in subsection

1.2.2. In subsection 1.2.3 we describe the shortcomings of the current state of the

art in achieving the full potential of utilizing CARS in enhancing lung carcinoma

diagnosis and differential classification.

1.2.1 Label Free Microscopy with Coherent Anti Stokes Raman Scatter-

ing

The coherent anti-Stokes Raman scattering (CARS), an optical imaging technique

[8], holds great promise for diagnostic applications. It captures intrinsic molecular

vibrations to create optical contrast with sub-micron level spatial resolution, as well

as video-speed imaging rate [9]. In the CARS process three laser beams, a pump beam

ωp, a Stokes beam ωs and a probe beam ω′
p
interact with tissue samples through a four-

wave mixing process [10]. When the frequency difference, ωp − ωs (beat frequency),

is in resonance with a molecular eigenvibration of CH chemical bonds in the tissue, an

enhanced signal at the anti-Stokes frequency, ωas = ωp − ωs + ω′
p
, is generated [11],

this signal is captured by a microscope to generate a CARS image.

A major advantage of CARS is that the signal yield is much higher, typically

several orders of magnitude, than the signal yield obtained through the conventional
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spontaneous Raman scattering process [12]. As a result, this imaging technique has

been used to visualize different tissue structures, e.g. skin [12], lungs, kidney , and

prostate [9]. In addition, major advantages of CARS include that it is a label-free,

since it images intrinsic molecular vibrations, and it allows for 3D tissue sectioning

[13, 14]. As such significant applications of CARS microscopy imaging in differential

diagnosis of breast cancer and lung cancer have been reported [13, 14].

1.2.2 CARS imaging for Differential Diagnosis of Lung Carcinoma Cell

Types

There have been some recent breakthroughs in the treatment of lung cancer, mainly

through the use of targeted therapies, that promise to radically enhance survival rates

of lung cancer patients [7]. However, the advent of molecularly targeted therapies

makes identification of the various histologic cell types and subtypes of lung can-

cer a critical requirement. For example, adenocarcinoma patients should be tested

for epidermal growth factor receptor (EGFR) mutations as an indication of respon-

siveness to EGFR tyrosine kinase inhibitor [15–17]. In addition, an exclusion of a

squamous cell carcinoma diagnosis is required for NSCLC patients prior to treatment

with bevacizumab because of potential life-threatening hemorrhage [18, 19]. As a

result, additional molecular tests are frequently necessary for reaching a definitive

diagnosis for targeted therapies [20, 21].

However, most lung carcinomas are not resected and are diagnosed and classified
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using small biopsies or cytology specimens [22, 23]. Hematoxylin and eosin (H&E)

staining of tissue sections, which is currently the gold standard for histologic diagnosis,

requires hours to days for tissue transfer, processing, sectioning, and staining, and

is still often incapable of differentiating NSCLC cell types. Cytology results are

typically faster, but the tissue material is even more limited in volume, and reliably

separating adenocarcinoma from squamous cell carcinoma is sometimes impossible.

Finally, immunochemistry may be useful in helping to make this distinction, but this

method adds more time to the diagnostic process and consumes tumor cells.

Therefore, the ability to rapidly recognize different cell types and subtypes of

lung cancer with minimal tissue consumption, will not only facilitate the diagnos-

tic process, but also enable maximum preservation of tissue samples for subsequent

molecular testing for targeted therapy [21]. Given the risks and cost of lung biopsy,

it would therefore be beneficial to develop techniques that enable fast examination of

excised biopsy samples as a preliminary test for separating general cell types of lung

cancer before a follow-up molecular analysis, with the aim of reducing the number of

required biopsies and providing equal or greater accuracy relative to existing testing

methods.

As a label-free imaging technique, CARS microscopy [8, 24] holds great potential

for this type of diagnostic application by significantly minimizing sampling error and

realizing maximum preservation of specimens for follow-up molecular tests. Never-

theless, to realize the diagnostic value of CARS, quantitative information must be
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extracted and analyzed from the digital CARS images in order to meet the rigorous

evaluation criteria required for objective diagnosis.

Accordingly, a pattern recognition and classification strategy that integrates CARS

imaging with quantitative image computing techniques for cancer diagnosis has been

reported [13,14,25–27]. This strategy was based on training classifiers with a series of

pathologically-related morphological features, thus providing meaningful diagnostic

information with reproducible results. The developed platform has been tested using

a number of disease models, including lung, breast and prostate cancers [13,14,25–27].

Specifically to the case of lung carcinoma, previously developed CARS image anal-

ysis techniques have been able to computationally differentiate healthy from tumor

tissue, benign from malignant tumors, and even small cell from non small cell lung

carcinomas [13].

1.2.3 Limitations

In spite of this progress, two factors still hinder the full exploitation of the ben-

efits offered by CARS microscopy to the advancement of diagnosis and treatment

approaches.

First, image analysis methods that have been previously utilized in detecting

cancer cells in CARS images are still far from being fully automatic [13, 28]. They

require an expert biologist to select each cell in a large data set of tissue images in

order to utilize in the developed data analysis strategies that perform diagnosis.



7

Second, previous work has thus far shown limited accuracy - around 70 to 75%

[25] - for separation of adenocarcinoma from squamous cell carcinoma, two major

cell types of NSCLC. This difficulty is not surprising, and it corresponds with the

clinical difficulty in differentiating these two cell types using morphology alone [29].

However, as discussed above, definitive diagnosis of these cell types is crucial to to

the advancement of targeted therapies [30].

1.3 Goals and a Forward for the Thesis

Building upon the previous work, with the goals stated in section 1.1 in mind, we

aim to tackle the shortcomings still hindering the use of CARS to develop a mini-

mally invasive strategy for detection and differential diagnosis of lung carcinoma. As

described above, what is lacking to complete such a strategy is the ability to: And

the ability to

(a) Automatically analyze CARS images for cell segmentation, and information ex-

traction.

(b) Automatically differentiate the different NSCLC cell types, adenocarcinoma and

squamous cell carcinoma, figure 1.1.
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Figure 1.1 : CARS images and corresponding H & E images, of healthy tissue (A,
B), adenocarcinoma(C,D), and squamous cell carcinoma (E,F)
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In Chapters 2 and 3, we develop the image segmentation strategy into a fully

automated cell nuclei segmentation framework from CARS images, and for three cell

types of cancer: adenocarcinoma, squamous cell carcinoma and small cell carcinoma.

Specifically we say cell nuclei segmentation and not cell segmentation, because the

features needed to perform differential diagnosis reside with cell nuclei, and not the

whole cell. This allows for the automatic and rapid information extraction from

CARS images, making possible the development of an automatic diagnostic platform

from such information.

In chapter 4, we propose a new method to extract and examine information from

segmented CARS data to overcome the inability of previous data analysis methods in

automatically differentiating NSCLC cell types. Figure 1.2 shows a general conceptual

overview of a complete CARS based lung carcinoma diagnostic platform, the first part

of which deals with the imaging physics, optics, and image acquisition, extensively

developed in previous studies. Specifically, Our work is centered with the “Diagnosis”

panel of the figure, where we aim to perform automatic segmentation of cell nuclei,

and use the segmented information to perform separation of NSCLC cell types
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Figure 1.2 : Overview of a complete CARS based automatic lung carcinoma
diagnostic platform
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Chapter 2

Two Dimensional Automatic Segmentation of Cell

nuclei

Previous studies attempting to perform automatic differential diagnosis of lung car-

cinoma relied heavily on segmentation processes that can be described as semi-

automatic at best, requiring a human expert to select each cell nucleus to be stud-

ied [13, 28]. Such approaches are far from optimal, and constitute a bottle neck to

full automation. Automation is desirable from the standpoint that automatic loca-

tion and delineation of cell boundaries can significantly save physicians and patients

valuable time, while also reducing the cost of treatment and diagnosis. In addition,

full realization of an on-the-spot endoscopic diagnostic system for lung cancer cannot

be achieved without the ability to rapidly and automatically segment cell nuclei to

prior to diagnosis.

This chapter is adapted from the publication:
Hammoudi, A. and Li, F. and Gao, L. and Wang, Z. and Thrall, M. and Massoud, Y. and Wong, S.
T. “Automated nuclear segmentation of coherent anti-Stokes Raman scattering microscopy images
by coupling superpixel context information with artificial neural networks”. 2011;317–325, Machine
Learning in Medical Imaging [31].
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2.1 The CARS Image Segmentation Problem

2.1.1 CARS Images and Standard Segmentation Approaches

CARS images are characterized by low signal-to-noise ratio (SNR), and uneven back-

ground which render most common and well performing segmentation approaches,

that have been previously used to segment cellular nuclei, ineffective. For example.

intensity thresholding, or adaptive thresholding, based on Otsu’s method [32–34],

are unable to separate those cells which are in contact, due to the low contrast in

CARS images. Segmentation using marker controlled watersheds [5, 35, 36], graph

cuts [6,37,38], or active contours [8,39–41] all require initial seed points [5,6,8,35–41]

representing the centers of cells or nuclei. Such marker data is not readily available

for CARS images and is usually determined either by a human expert, which violates

the principal requirement of having a fully automated segmentation method. Another

approach is to employ a tiered segmentation process that can detect the nuclei cen-

ters before performing delineation. Cell detection is yet another problem that we are

trying to tackle as part of automating the segmentation process. Moreover, even with

the availability of a solution to the cell detection problem the aforementioned edge

delineation methods would still suffer shortcomings. Marker controlled watershed is

susceptible to intensity variations, the low contrast and the uneven background possi-

bly resulting in significant under-segmentation. The same problems are encountered

by active contours and graph cuts, as CARS images quality will result in edge leaking

and under-segmentation or early edge stop and under-segmentation.
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2.1.2 Hierarchical Segmentation

It was demonstrated in [42], [43], and [44] that utilizing a tiered segmentation ap-

proach that starts with edge delineation rather then cell detection can significantly

increase the overall cell segmentation accuracy in microscopic images. This is mainly

merited to the ability to neglect the cell detection as a first step. Which in turn allows

using data clustering algorithms such as k-means [45, 46], or expectation maximiza-

tion [47], to exploit image features at the level of small neighborhoods, and create

small image patches that over-segment the entire image while adhering to natural

image boundaries, in the case of CARS images these include the boundaries of cell

nuclei.

Following the creation of said image patches, the segmentation problem becomes

a data classification problem requiring the ability to discriminate those patches that

belong to objects of interest, in this case cell nuclei, from patches that correspond

to the background or other objects, in the case of CARS images, these are the lipid

tissue and reflective water molecules.

2.1.3 Context Based Hierarchical Segmentation

As such, we designed a hierarchical segmentation and detection approach that em-

ployes simple linear iterative clustering (SLIC) to partition CARS images into patches

corresponding either to cell nuclei or background. Next, we designed a set of features

to describe physical characteristics of the generated patches, and capture the image
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context in which they exist. The idea of defining question behind the design of each

of the descriptors, was “how would a person looking at the partitioned image tell

which patches are nuclei and which are not?” And the answer is the context in which

they reside. Those descriptors were used in training a classifier that can determine

which patches belong to cell nuclei and which do not. The segmentation and detection

framework is illustrated in figure 2.1.

Figure 2.1 : The hierarchical approach used for segmentation and detection of
cellular nuclei in CARS images

For the remainder of this chapter we present the details of the designed segmen-

tation approach, local clustering is explained in section 2.2 and context based nuclei

detection in section 2.3. A discussion of the results is provided in section 2.4.
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2.2 Local Clustering in CARS Images

The use of image patches created using both local intensity and location information

has been demonstrated to enhance the segmentation of color images, especially those

with small closely positioned cells, low SNR, and uneven background [42–44,48]. Su-

perpixels, which are small image patches constituted of irregularly shaped connected

groups of pixels, and generated by applying a clustering algorithm to localized regions

of an image have been demonstrated to have superior performance in segmentation

tasks to that of using rectangular image patches [43, 44, 48]. The advantage in using

superpixels over rectangular patches is the ability to control the rigidness in their

shape, and balance the dependence on position information to that of intensity infor-

mation, this allows the superpixels to adhere well to the natural boundaries in images

and capture their fine variations. The boundary of a superpixel containing a cell

nucleus, for example, adheres very well to the boundary of that nucleus, figure 2.2.

Moreover, the computational load of analysis tasks farther down the data analysis

pipeline is reduced by the reduction in the number of data points, as any further

analyses will be performed on clusters of pixels, treated as a single data point, rather

than individual pixels. For the remainder of this discussion the terms superpixel and

cluster convey the same meaning and will be used interchangeably.
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Figure 2.2 : Superpixels generated in a CARS image of an Adenocarcinoma
sample. Red markers represent the boundaries of superpixels. It is notable how well

the superpixels adhere to image objects, namely nuclei

2.2.1 A Primer to Simple Linear Iterative Clustering Based Superpixels

Multiple algorithms for creating superpixels exist, such as [44,48,49], but the simple

linear iterative clustering (SLIC) based algorithm has shown superior performance

in terms of little under-segmentation and over-segmentation errors, image boundary

detection, and computational complexity [48]. Specifically, it features superior bound-

ary detection capability, along with a low computational resource requirements, both

of which fit well for CARS image segmentation, where accurate nuclear edge detection

and use of a resource-friendly algorithm for rapid processing of large data sets are

equally desirable.

SLIC operates as a modified k-means algorithm that performs clustering on a

subset of data points confined to small regions of interest in a data set, rather than
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partitioning data sets into k clusters to which any data point can belong, like k-means

does. Thus, a pixel, which is represented by a feature vector whose components are

the coordinates and color information of that pixel, does not potentially belong to

any of the k clusters, but instead to a small subset of clusters in the neighborhood of

that data point. Using this strategy, pixels having similar characteristics are grouped

together, but the limited search area ensures that pixels that are far apart, such as

very similar pixels belonging to two different nuclei, are never in the same cluster.

This reduces the possibility of multiple nuclei belonging to the same cluster and, at

the same time, supports for the assumption that later processing steps can treat a

cluster as a single nucleus.

To perform SLIC clustering and generate superpixels, every pixel p in a volume

is represented by a vector of features fp = [Lp, Ap, Bp, xp, yp]
T where Lp, Ap, and Bp

represent CIELAB color space values at p. xp, and yp, represent the coordinates of

p in a CARS image. We present a summary the SLIC superpixel clustering that we

performed in Algorithm 1 adapted from [48]. In Chapter 3 we show our extension of

SLIC to perform clustering in higher dimensional data sets.
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Algorithm 1 SLIC Superpixel creation

Set initial k cluster centers by sampling the image with a uniformly spaced grid:
Ck = [Lk, Ak, Bk, xk, yk]

T , with grid separation S
repeat

for each pixel p do

Compute distances to each neighboring cluster center Cn, n ∈ [1, 2, ..., 8]
end for

Assign each pixel to the cluster with whose center is the nearest.
Compute new cluster center positions
Compute E

until x < threshold

Where the algorithm parameters are defined as follows:

• k is the number of clusters, or superpixels, to be generated, it was determined

empirically, to be 400 for a 512×512 CARS image. This was determined through

an exploration of the parameter design space, detailed in subsection 2.2.2.

• The separation S between two grid points, determined both by the size of the

image, and the number of super pixels and defined as: w/
√
k, where w is the

width of the CARS image.

• E is the residual error after every iteration computed as:

E =
k
∑

j=1

‖Cj1 −Cj0‖ℓ1 (2.1)

Where Ci1 is the vector representing the new cluster center computed at the

end of the current iteration, Ci0 is the same cluster center from the previous

iteration, ℓ1 is the L1 vector norm, and k is as defined above. The threshold
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was Set to 0.5, details of determining the threshold are presented in subsection

2.2.2.

• Distance between 2 pixels in the 5D feature space used for segmentation is

computed as follows:

d =

√

(Lp1 − Lp2)2 + (Ap1 − Ap2)2 + (Bp1 −Bp2)2

m
+ (xp1 − xp2)2 + (yp1 − yp2)2

(2.2)

p1 and p2 represent 2 pixels, and m is a parameter that controls the rigidness of

the superpixel boundaries, large values for m produce superpixels that are more

dependent on location and more square in shape, while smaller values, result

in superpixels with more fluid boundaries. For 2D segmentation the value of m

was set at 10, a value used in the literature. In chapter 3, we demonstrate how

the value was determined for 3D segmentation.

• Finally, it is worth noting that the distance is computed from each data point

to only cluster centers as part of the localized clustering approach, it is assumed

that a pixel cannot belong to a cluster whose center is at a distance greater than

S to that pixel. Hence, the only eligible cluster for a pixel to belong to are at

most those having the 8 immediate neighboring cluster centers. This is illus-

trated in figure 2.3. The red circles represent pixels of interest, the red squares

represent the boundaries of the search area defined by S, and the blue crosses

represent the cluster centers within the search area. (A) point is positioned at
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a distance S from edge of search region, 8 clusters are eligible. in (B) the same

point undergoing only a horizontal, or vertical translation, potentially belonging

to 6 clusters, and undergoing both a horizontal and vertical translation in (C)

the point potentially belongs to 4 clusters.

A B

C

Figure 2.3 : Illustration of potential data point-to-cluster assignment.

2.2.2 Experimental Considerations of Superpixel Segmentation in CARS

images of Various Lung Carcinoma Subtypes

As described, the SLIC algorithm requires two user inputs, namely the number of

superpixels or clusters k, and the fluidness parameter m. Because there is no formal
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method to determine those parameters, we ran a rough exploration of the parameter

space, performing the clustering process on a test CARS image for multiple values of

k and m, as show in figure 2.4. We observed the following:

• We observed that a large numbers of clusters, with a small value of m result

in the best clustering results in terms of nucleus boundary detection. However

generating a large number of clusters is resource intensive, and results in the

unfavorable over-segmentation of nuclei. The latter effect would add the tedious

requirement of detecting small clusters as parts of nuclei and merging those

clusters together in the subsequent detection stage.

• A small k, and a large m will result respectively in under-segmentation where

clusters will include including more than one nucleus or nuclei and background.

and rigid cluster boundaries, that are more dependent on the spatial components

of the feature vectors, and subsequently rectangular in shape, with little or no

representation of the actual image edges.

• Very small values ofm will result in extremely fluid boundaries that are sensitive

to small intensity variations caused by noise in the images, and considerably

diverge from natural image boundaries.

Subsequently, we opted for a value of k that would produce just enough clusters

such that a cluster is large enough to contain a complete nucleus and nothing else.

i.e. every nucleus is contained in a single cluster, and the cluster itself is confined to
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that nucleus. that value of k was 300 clusters. The same study was performed for

3D CARS images, chapter 3, 2000 clusters were used for those data sets. In a similar

manner, the value of m was set at 10.

k

m
Figure 2.4 : Design space exploration: effect of varying m and k on the generated

superpixels
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Examining the change in the residual error over every iteration, it was noted first,

that the residual undergoes exponential decay decreasing significantly in the first 5 to

10 iterations, then decreasing rather slowly after that, with little significant decrease

beyond the value of 0.5, figure 2.5. Henceforth the threshold for E beyond which the

algorithm terminates, was set at 0.5.

Iteration

E

Figure 2.5 : Convergence of SLIC clustering in a CARS image

Figures 2.2, 2.6, and 2.7 show CARS images of the 3 carcinoma cell types of inter-

est, adenocarcinoma, small cell carcinoma, and squamous cell carcinoma, respectively.

The left panels represent the original images, and the right panels, show the images

with the cluster boundaries marked in red after generating superpixels.
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In all three cell types it is notable that superpixels clustering delineates nuclear

boundaries, and generates clusters that contain only either cell nuclei or background,

effectively solving the edge delineation problem and reducing the CARS image seg-

mentation problem into one of determining which clusters correspond to cell nuclei,

and which correspond to image background or other structures.

Figure 2.6 : Superpixels generated in a CARS image of a Small cell carcinoma
sample. Red markers represent the boundaries of superpixels.
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Figure 2.7 : Superpixels generated in a CARS image of an Squamous cell
carcinoma sample. Red markers represent the boundaries of superpixels

Before concluding the discussion on clustering, it is worth noting that all images

were intensity adjusted using adaptive histogram equalization [50,51] de-noised using

a 7× 7 Gaussian smoothing kernel [52, 53] of the form

Gσ(x, y) =
1

2πσ
exp

{−(x2 + y2)

2σ2

}

(2.3)

and illustrated in figure 2.8

A final note is that all the CARS images used for 2D segmentation are 512× 512

images. In addition, for this, and all subsequent CARS image related computations,

in 2D or 3D, we use the physical dimensions of the pixels to compute coordinates.



26

Figure 2.8 : Gaussian filter used to de-noise CARS images

The physical dimensions are simply determined by the instrumentation setup, they

are square pixels with sides of length 0.306904 µm, and the transformations are as

follows:

Pixel indices to physical location transformations.

xphys = 0.306904xpi (2.4a)

yphys = 0.306904ypi (2.4b)
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In section 2.3 we describe the features we designed to measure the contextual

information of the superpixels, and used to train a classifier to determine which

clusters are cell nuclei and which are not.

2.3 Using Superpixel Context Information to Detect Nuclei

in CARS Images

The second and final step to solving the nuclear detection and segmentation problem,

is building a classifier capable of discriminating those superpixels that contain nuclei

from those that contain other image objects. We proceed to this step under the

assumption that the clustering algorithm performs well in generating superpixels that

adhere well to natural image boundaries, figures, 2.2, 2.6, and 2.7. As described in

subsection 2.1.3, we aim to design features that reflect the human perception process

of the nuclei in the images, and thus depend on the context in which the cells are

perceived through, and the uniformity in the shape of superpixels corresponding to

cells as opposed to the irregular shape of those belonging to the background. Those

features were used to train an artificial neural network (ANN) classifier that could

detect nuclei with great accuracy, the details of the features and the classification

process are below.
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2.3.1 Defining Context Descriptors

It is difficult to discriminate nuclei from background only using the intensity informa-

tion of individual superpixels. Since the nuclear superpixels have, in general, regular

shapes, and low and uniform intensity distribution compared to the background su-

perpixels, the nuclei within a small neighborhood are distinguishable mainly through

two major factors: The intensity variation of a superpixel with respect to its neigh-

bors, and the shape uniformity. Thus we define the superpixel context index for

distinguishing the nuclei from background.

We computed two superpixel context indices as follows. For each superpixel,

locate all of its immediate neighbor superpixels, and then calculate the ratios of the

average and median intensity of the superpixel to the average and median intensities

of its neighboring superpixels respectively. We set the superpixel context indices as

the minimum ratio values (mean and median) based on the fact that at least one

immediate neighbor is a background superpixel. A summary is given in algorithm 2

below

Algorithm 2 Computing superpixel context indices

for each superpixel P do

Locate all neighbor superpixels Pnj

compute: min
{

µIP

µIPnj

}

∀j

compute: median
{

µIP

µIPnj

}

∀j

end for

To measure the shape uniformity, we designed a descriptor based on ray bursts [54],
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as follows: locate the centroid of a given superpixel, shed rays to the boundary points

uniformly (each at a 10o arc),and use the standard deviation of lengths of the 36 ray

lines as the uniformity value.

In addition, we added two other relevant descriptors that can demonstrate shape

uniformity. The first one is the goodness of fit between the superpixel and the best

fitting ellipse. We fit each superpixel with an ellipse, and then calculate the relative

regions outside the ellipse and missing regions inside the ellipse compared to the

ellipse size. The second is the ratio of superpixel area to the area of its convex hull,

equation 2.5. Figure 2.9 illustrates ray descriptors and the goodness of fit descriptor.

AreaP
AreaConvexHullP

(2.5)

A B
Figure 2.9 : Illustration of ray descriptors (A) and Ellipsoidal goodness of fit(B)
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2.3.2 Nuclear Superpixel Identification with an ANN

The selected features are used to create a feature space to be used in classification,

it can be described by the vector [f1, f2, . . . , f5]
T whose components are the the mor-

phological features detailed above. We use a feed-froward back propagation neural

network [52, 55], which could learn the optimal feature combinations for the nuclear

superpixel identification. Artificial neural networks are an extensively researched

topic of which we provide a summary of the basic operating principals herein, and

provide specific details necessary for the replication of this work.

A neural network is a function fitting or pattern recognition paradigm loosely

inspired by the human learning process, it can learn to produce the correct outputs

for a given set of inputs or stimuli, by adjusting the weights of the connections between

its building blocks or neurons [52, 55]. As the naming suggests, a neural network is

an interconnected set of neurons, a neuron is depicted in figure 2.10 below.

The neuron depicted in figure 2.10 receives a vector input of real numbers [i1 . . . i5]
t.

Note that a neuron can have less than or much more than 5 inputs, we use 5 here for

illustrative purposes because it is the size of our superpixel feature vectors. Each in-

put is weighted with another real number, weights here are represented by the vector

[w1 . . . w5]
t. the output n of the summing block, a linear combination of the inputs

plus the bias b, is processed by the output transfer function f to produce the final

output o. f serves the purpose of changing the output from an arbitrary real number

to one of 2 possible output classes, such as 0 or 1. The operation of a neuron can
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Figure 2.10 : Schematic representation of a neuron

be described by 2.6. The neuron is taught, or trained to predict the correct output

to given inputs using a set of pre-collected and labeled data, which is comprised of

a set of input vectors and their known outputs. For example, in the case of nuclear

superpixel identification, training is done using a set of feature vectors of superpixels,

and their corresponding labels, done manually, as background or nuclei.

o = f(wi+ b) (2.6)

During training, the neuron is fed with the training inputs, and the output is

compared to the correct expected target - training - output, following which, the

weights and the bias are adjusted to minimize a measure of error between the actual
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and desired outputs bringing the two as close as possible. this is repeated for all

training inputs. When the neuron is presented with an a new unknown input, not

belonging to the training set, it’s output is expect to be a correct classification. This

learning process can be made more powerful, and the accuracy in classification can

be arbitrarily increased through cascading and layering neurons [55,56]. A schematic

depiction of a multilayer neural network is depicted in figure 2.11, in which one layer

comprised of multiple neurons feeds outputs from those neurons to the next layer in

the network.

Figure 2.11 : Schematic representation of interconnected neurons in a multilayer
neural network

Training a multilayered network is done in the same fashion as a single layer

network, in which inputs are fed to the first layer and the output of the last layer

is compared to desired target outputs, followed by adjusting the neuron weights and
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biases to achieve minimal error between actual and desired outputs.

In this study, a neural network with 100 neurons and one hidden layer is trained for

each of the lung cancer subtypes. An output layer is added to convert the outputs from

all the neurons in the hidden layer into a single output, in this case the classification

result, a 1 or a 0. Training was done with the back propagation algorithm that

minimizes squared error between network outputs and target outputs. [55, 56]. The

output function of the neurons was the sgimoid function [56] of the form 2.7 which

insures the output has a value between 0 and 1.

o = logsig(n) =
1

1 + e−n
(2.7)

The neural network was built using the Mathworks’ MATALB R© neural network

toolbox. The feature vectors were computed for ever superpixel in a CARS image,

and combined as shown in the lower panel of figure 2.1, the classifier uses the features

to classify superpixels as nuclei or non -nuclei superpixels. To train the classifier, we

manually labeled the superpixels (as nucleus or background) in three images for each

subtype of lung cancer to train the three ANN classifiers respectively.

Figures 2.12, 2.13, and 2.14, show segmentation and detection examples in im-

ages of each of the three lung carcinoma cell types. Each of the figures shows the

original images and superpixels in the upper panels, and the lower panels depict the

superpixels that were classified as nuclei, and shows their boundaries. It is notable

how well the approach detects and delineates the nuclei. We tested the approach on
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a random set of previously labeled CARS images, and computed validation scores,

precision, recall, and f-score, which are presented in table 2.1.

2.3.3 Results

Figure 2.12 : Segmentation and detection example: adenocarcinoma sample
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Figure 2.13 : Segmentation and detection example: small cell carcinoma sample



36

Figure 2.14 : Segmentation and detection example: squamous carcinoma sample
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Table 2.1 : Validation scores for the segmentation and detection framework in all
lung carcinoma subtypes

Cell Type Precision Recall f-Score
Adenocarcinoma 94.8% 93% 93.8%
Small cell carcinoma 92.1% 92% 92%
Squamous cell carcinoma 93% 95.6% 94.8%

2.4 Discussion

Thus far, we proposed a fully automated 2D segmentation method for cellular nuclei in

CARS lung carcinoma images, coupling superpixels (local clustering) and ANNs.Thus,

we provided a solution to a critical step for differential analysis using cell morphology

with accuracy that is > 90%. The experimental results demonstrated that the pro-

posed automated method possesses excellent capability for nuclear segmentation on

CARS images. To get to the full potential of using CARS images for differential anal-

ysis of lung carcinoma cell types, the local clustering and classification technique was

extended to 3D CARS images, where biologically significant features can be measured

with more fidelity than 2D images to classify segmented cells into their respective lung

carcinoma cell types. This is detailed in chapter 3.
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Chapter 3

Three Dimensional Automatic Segmentation of

Cell nuclei

3.1 3D Segmentation: Why? And How?

3.1.1 introduction

Thus far, we have a established a solution that addresses the first issue raised in

the introduction, namely that previous work has relied heavily on human interven-

tion in order to segment 2D CARS images for use in differential analysis. However,

the end goal of our study is not the segmentation itself, rather, it is the use of seg-

mented images in order to extract pathologically relevant features that would solve

the differential diagnosis problem of non small cell lung carcinoma cell types.

Moreover, although previous studies did not in fact develop a fully automated

method, they did have access to a set of manually segmented CARS images large

enough to be used in tackling the diagnosis problem [13,28]. Nonetheless, diagnosing

NSCLC using data extracted from 2D images proved to be too difficult, because 2D

This chapter is adapted from the technical report:
Ahmad Hammoudi, Yanqiao Zhu, Fuhai Li, Liang Gao, Michael J. Thrall, Jinwen Ma, Yehia Mas-
soud, Ming Zhan, Zhiyong Wang, Stephen T.C. Wong, “Automated 3D Segmentation of Cell Nuclei
in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Images to Enable Label Free Cancer
Subtyping”. Technical Report, The Methodist Hospital Research Institute, Department of Systems
Medicine and Bioengineering.
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slices of images of adenocarcinoma and squamous cell carcinoma look very similar,

and the features used for diagnosis, are measured in a setting that is a distorted

representation of the environment in which cells reside in inside a tissue. For example,

measuring the size of a nucleus in a 2D image is done through measuring its area,

however, a nucleus is a three dimensional object whose size is represented by volume.

Hence measuring size in a 2D image reduces to measuring the area a nucleus occupies

in a given slice of the image stack, which can vary from a single point, to the entire

circumference of that nucleus depending on where the slice was taken. Another

major distortion that is introduced from 2D based measurements, takes place when

measuring distances between nuclei. In the 3D setting distance between 2 nuclei is

assumed to be the distance separating their centers, in a 2D measurement however,

every slice on a nucleus is treated as a separate nucleus, and the distances measured in

image slices, can possibly carry no representation of the actual distances in the tissue.

In addition, when computing features in a large set of 2D images, the measurement

will include a lot of redundancies, as each nucleus traverses multiple slices and will

hence be included several times, very few of which carry significance to the real

physical setting of the tissue, for the two reasons stated above. These distortions

render NSCLC classification from 2D data a cumbersome problem to solve.

With this in mind, our solution proposes computing the nuclei’s pathologically

relevant morphological features in the cells’ natural environment, i.e. in 3D images of

the entire tissue, as opposed to studying individual slices. Such a measurement takes
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full advantage of the ability of the CARS microscope to perform tissue sectioning.

Through stacking all the individual slices from a CARS experiment and interpolating

in between consecutive slices we can build a 3D image of the cells and the cancerous

tissue, we call this a “volume”, in which we can perform real, undistorted measure-

ments of the morphological features of interest. Figures 3.1, 3.2, and 3.3, respectively

show a maximum intensity projection rendering of a CARS volume, a cross sectional

image from all 3 directions of the same volume, and a close up to the volume in which

the nuclei are visible in cross sections across all dimensions.

Figure 3.1 : A 3D CARS image stack of a lung tissue containing adenocarcinoma
cells in its raw form

To extract pathologically relevant features from the nuclei, we needed segmented
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Figure 3.2 : A 3D cross sectional representation of a CARS volume

3D CARS, thus in this chapter we explain the details of extending the hierarchical

automated nuclei segmentation and detection system, detailed in chapter 2 to oper-

ate on 3D CARS volumes similar to those shown in figures 3.1, 3.2, and 3.3. The

end results of this are 3D volumes containing information about the exact shapes

and locations of the cellular nuclei in the studied tissue, as measured by the CARS

microscope. This chapter is organized as follows, the rest of this section discusses

the 3D segmentation problem in general and describes our solution. In section 3.2

we show how the superpixel clustering process can be extended to any dimension,

and we demonstrate it’s use for segmenting 3D CARS volumes. Section 3.3 presents

the extension of the features used in identifying nuclei to three dimensions, and de-

tails the classifier used to perform nuclear detection. The chapter concludes with a
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Figure 3.3 : A close up of a 3D cross sectional representation of a CARS volume,
with nuclei visible in all 3 dimensions

presentation of the segmentation results and a brief discussion in section 3.4

3.1.2 The 3D CARS Image Segmentation Problem

The automated 3D detection and segmentation of cellular nuclei in CARS images

remains an open problem suffering from the same impediments as those in 2D image

segmentation such as low SNR, and noisy and uneven background. In spite of the

fact that an array of segmentation approaches is available, none of those can effec-
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tively perform segmentation of nuclei in CARS volumes without heavy modification

or significant human intervention. We go again over some examples, thresholding

based methods [32, 57] are not suitable due to the noisy and uneven background.

Simple watersheds [58] will cause many false positives in nuclei detection. Adaptive

Voronoi and seeded water-sheds could reduce the false positives by adding seed mark-

ers [59, 60], but no marker information is readily available in CARS images. Active

contours, level sets, and graph cut methods [37, 39–41, 61, 62] could determine accu-

rate object boundaries, but they require initial boundaries or seed markers, both of

which are challenging information to acquire, that we address in the detection part

of our hierarchical system .

In this study, we propose the first method of fully automated 3D cell nuclei segmen-

tation of CARS images for enabling the subsequent differential diagnosis of NSCLC

cell types. Extrapolating from the 2D segmentation scenario, first, we applied local

clustering to partition 3D volumes into blocks that contain either nuclear regions or

background in order to overcome the low SNR and uneven background. Second, we

employed semi-supervised machine learning [63] to identify those blocks corresponding

to cell nuclei based on a set of specifically designed morphological features. A frame-

work resembling the 2D case framework shown in figure 2.1. In addition, because the

end results of 3D segmentation are critical to the final differential diagnosis end goal,

we demonstrate the effectiveness of our 3D segmentation approach by benchmarking

its results against other well established segmentation and detection methods.
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3.2 2D to 3D: Superpixels to Supervoxels

It was demonstrated in [64] and [65] that superpixels can be generated in any dimen-

sions, by a simple extrapolation of the clustering algorithm used to generate them

in two dimensions, to accommodate the additional spatial features of feature vectors

in higher dimensions. in the case of 3D data sets, the clustering algorithm needs to

accommodate an additional component, representing the 3rd spatial dimension, in

the feature vector. In addition, when searching for candidate clusters to assign data

points, or voxels to, the number of neighbors increases from 8 in the 2D case, to 26 in

the 3D case. In 3D images, the generated clusters are dubbed supervoxels, as opposed

to superpixels in 2D.

Figures 3.1, 3.2, and 3.3 above show that the images of interest are noisy and

characterized by low contrast around the edges of the nuclei, the nuclei are even

somewhat indistinguishable to the human eye. To circumvent these problems we

used local clustering, i.e., supervoxel analysis, which performs clustering locally using

both intensity similarity and location constraints, limiting the search area to a small

region of interest around every cluster center, thus reducing the possibility of grouping

together similar data points that belong to 2 different classes, such as the case when

2 nuclei are located close together. The general framework for segmentation and

detection starts as it does in the 2D case with Gaussian de-noising and adaptive

histogram equalization that enhances contrast in the volumes.

To perform supervoxel clustering, each voxel v in a volume is represented by a
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vector of features fv = [Lv, Av, Bv, xv, yv, zv, Hv]
T where Lv, Av, and Bv represent

CIELAB colorspace values at v. xv, yv, and zv, represent the coordinates of v within

a volume.

The last component of the feature vector, Hv represents the entropy of information

value at v. The entropy of a voxel is computed by calculating the entropy of the data

set represented by voxel v and all its immediate neighbors using 8-connectivity and

computed by the equation,

H(v) =
∑

∀n

p(in)log(p(in)) (3.1)

where n are all the 8-connected neighbors [52, 53] of v, in is the gray scale value of a

neighbor, and p(in) is the probability of that value in the neighborhood. Entropy was

added to the feature vector representing a voxel for the added reliability it provides

for distinguishing edges during clustering. Entropy can represent variability in infor-

mation [66], and, as such, it has high energy in image regions near natural edges. It

thus adds more similarity to data points coming from the same sources, background

or cell nuclei, and by extension more reliability in that the clusters or supervoxels

produced, will perform well in separating image objects.

Like in the 2D case, clustering was initialized by distributing cluster centers at

uniform spatial intervals in the volume; the values of the feature vectors fv at each

cluster center served as the initial centers of those supervoxels. The algorithm searches

for potential data points to associate with each cluster center based on the distance
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between the data point and the cluster center. Distance was measured using equations

3.2 and 3.3, where m is defined exactly as it was defined in the 2D case, subsection

2.2.1.

dlab =

√

(Lv1 − Lv2)2 + (Av1 − Av2)2 + (Bv1 −Bp2)2

m
(3.2a)

dxyz =
√

(xv1 − xv2)2 + (yv1 − yv2)2 + (zv1 − zv2)2 (3.2b)

dH = Hv1 −Hv2 (3.2c)

d = dlab + dxyz + dh (3.3)

The search region of interest is limited to the cube whose vertices are the imme-

diate neighboring cluster centers and the cluster center of interest at its center. For

each iteration, the algorithm computes distances from one data point to all potential

neighboring cluster centers, e.g., 26 potential clusters in the case of a 3D volume,

and assigns it to the closest cluster. At the end of an iteration, a new cluster center

for each supervoxel is computed as the mean of all voxels assigned to it. Clustering

terminates when the residual error computed as the sum of all L1 distances between

new cluster centers and old cluster centers is below a preset threshold, details of the

algorithm were already described in subsection 2.2.1.
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Figure 3.4 shows the clustering result, with one particular nucleus in focus, where

we aim to demonstrate the ability of the clustering algorithm to produce clusters

(supervoxels), that enclose nuclei, both capturing the shape in individual slices, and

enclosing objects that traverse multiple slices. In the first slice the nucleus in question

is not visible and as we move through the volume, we first slice through the upper

boundary of the supervoxel enclosing the nucleus, represented by the big red blob

in slice 3. After which, as the slices move into the nucleus, we noticed the shape of

the supervoxel boundary adhere to the nucleus boundaries, it starts shrinking again

as the slices start exiting the nucleus. Finally, both the nucleus and the supervoxel

enclosing it disappear after slice 16.

11 2 3 4 5 6

7 8 9 10 11 12

181716151413

Figure 3.4 : Consecutive slices through a CARS volume showing a single nucleus
being enclosed in a single supervoxel across all slices

Following this process, we move to solving the second part of the problem, com-

puting features that can describe the physical characteristics of the supervoxels, in
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order to determine those of them that enclose nuclei, as opposed to those enclosing

background. This is the subject of section 3.3.

3.3 Nuclei Detection From Supervoxels

Following the generation of supervoxels, the segmentation can be completed by de-

termining which supervoxels correspond to cells as opposed to background, thus once

again the problem becomes a pattern recognition problem. We aim to design features

that can provide a physical description of the clusters, in addition to representing the

context which the cells are perceived through. The features were computed and used

to train a semi-supervised learning machine, that classified clusters as nuclei or non

nuclei.

3.3.1 Cluster Describing Features

To characterize the morphological features of supervoxels, a set of 11 features was de-

signed for individual supervoxels aiming to represent their intensity and shape infor-

mation. Specifically, and for the intensity, the mean, median, minimum, maximum,

and standard deviation in each supervoxel was computed. To describe the clusters

in context, we compared each supervoxels’ intensity median and mean to those of its

immediate neighboring supervoxels. Then an additional 4 features were extracted as

minimums and means of the above comparisons as described by algorithm 3. Compar-

ing features captures the subtle intensity variations between nuclei and neighboring
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background supervoxels.

Algorithm 3 Computing supervoxel context indices

for each supervoxel V do

Locate all neighbor supervoxels Vnj

compute: µ
{

µIV

µIV nj

}

∀j

compute: min
{

µIV

µIV nj

}

∀j

compute: µ
{

medianIV

µIV nj

}

∀j

compute: min
{

medianIV

µIV nj

}

∀j

end for

Another set of features was designed to represent supervoxels shape consistency.

It was observed that the shape of background supervoxels tends to be have many

irregularities, mainly caused by energy from noise disrupting the clustering process,

whereas cell nuclei supervoxels are roughly characterized by ellipsoidal shapes. To

quantify this difference, the distribution of the lengths of radii emitted from the

center of a supervoxel to the point where they intersect its surface (boundaries of the

supervoxel) [54] was computed, and shape uniformity was described as the standard

deviation of these lengths. We present further details of this descriptor herein.

In their most general form, rays are just straight lines at the origin in a 3D space.

For our desired use, it is required that we have multiple rays starting at the center

of a supervoxel, and separated by intervals, that are user controlled. It is easiest

to achieve that end if the rays are represented using spherical coordinates, with the

parametric equations of the form 3.4.
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X = R. cos θ. sinφ (3.4a)

Y = R. sin θ. sinφ (3.4b)

Z = R. cosφ (3.4c)

Where R, θ, and φ, are the radial distance, the inclination angle, and the azimuth

angle of a spherical coordinate system respectively. The desired ray burst effect can

be produced by generating such lines at the desired separation through varying θ and

φ. We generated the rays with a step size of π/4 for each of θ and φ. Figure 3.5

depicts an example of rays generated in a 3D space, note that the separation used

in generating this demonstrative figure was smaller than the π/4 value used for the

actual feature computation.
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Figure 3.5 : A depiction of a general burst of rays in 3D space

The next part of computing the feature of interest is using the rays to obtain a

representation of the the boundary of a supervoxel. To achieve that, first the coordi-

nates for rays starting at the origin are computed in a general 3D space. Then, the

rays are translated by the coordinates of the centroid of a supervoxel - this operation

is performed for every supervoxel separately, figure 3.6-(A) depicts a rendering of a

single supervoxel from a CARS volume with rays placed inside it.

What remains is finding the points of intersection between the rays and the bound-

ary of the cluster, this is trivial once the rays are superimposed on the volume as

depicted in figure 3.6-(A). Simply multiplying the 2 data sets, will reveal the intersec-

tion points depicted in figure 3.6-(B). With this information the Euclidean distance



52

from the cluster’s centroid is computed to every point, and the feature representing

the shape of the cluster is computed as the standard deviation of all these distances.

A B
Figure 3.6 : Ray bursts inside a supervoxel (A). Intersection of rays with the

supervoxel boundaries (B)

A final shape descriptor is computed as the surface area, to volume ratio of a

supervoxel, it was computed for a supervoxel V using 3.5, where N is the number

of voxels. The feature vector describing a voxel is of the from 3.6, Where iV is the

intensity in a supervoxel - or cluster - and the rest of the terms are as defined above.

NboundaryV

NV
(3.5)



53

















































































µiV

medianiV
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σiV

µ
{

µIV

µIV nj

}

∀j

min
{

µIV

µIV nj

}

∀j

µ
{

medianIV

µIV nj

}

∀j

min
{

medianIV

µIV nj

}

∀j
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(3.6)

3.3.2 Nuclei Detection with Semi-Supervised Learning Machines

Following computing the quantitative features, we employ graph transduction, a semi-

supervised learning approach, as the classifier to determine which supervoxels corre-

spond to cell nuclei. Semi supervised learning is advantageous in solving problems

that involve the classification of large data sets, where large amounts of labeled train-

ing data are not available, such as out CARS images. It utilizes both a small number

of labeled training data points and the underlying data structure of the unlabeled

data [63, 67] and is thus superior to other classifiers when the training data is lim-

ited [63,67]. In brief, the idea of graph transduction is to discover the intrinsic man-
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ifold structure underlying the data set in question by propagating on a constructed

weighted graph and then to make predictions for unlabeled data. This method pur-

sues a balance between accuracy and smoothness, that is, the classifier should make

correct decisions on the previously labeled data while assigning the same labels to

data points that neighbor them on the graph [67].

Mathematically graph transduction is formulated as an optimization problem.

Given a data set X = {x1, x2, . . . , xk, xk+1, . . . , xm} each point of which belongs to

one of the classes C = {1, 2, . . . , c}, in this case supervoxels that either belong to nuclei

or to background . Few training data points are labeled, say the first k data points,

x1, x2, . . . , xk with labels yi ∈ C and the rest unlabeled. The graph transduction

method predicts the labels of the unknown data points by searching for a non-negative

m × c matrix F that is used to find labels for the unlabeled data points, new labels

are defined as yi = argmaxj≤c {Fij}. The matrix F is computed by optimizing the

objective function 3.7 [63, 67].

Φ(F ) =
1

2

(

m
∑

i,j=1

Wij

∥

∥

∥

∥

Fi/
√

Dii − Fj/
√

Djj

∥

∥

∥

∥

2

+ µ
m
∑

i=1

∥

∥

∥

∥

Fi − Yi

∥

∥

∥

∥

2
)

(3.7)

Where,

Wij =



















exp
(

−
∥

∥xi − xj

∥

∥

2
/2σ2

)

i 6= j

0 i = j

(3.8)

is an m×m affinity matrix for the the data points in question, and
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Dii =
m
∑

j=1

Wij (3.9)

is an m×m Diagonal matrix. The remaining term of the objective function in 3.10 is

an m× c matrix that contains the labels yi encoded into it’s rows. For example, the

first row represents the label y1 for the first data point x1, if x1 ∈ class 1, the first

row Y1 of Y will be [1 0], if x1 ∈ class 2, Y1 = [0 1], and so on. Rows corresponding

to unlabeled data points are all zero.

Yij =



















1 yi = j

0 yi 6= j

(3.10)

Fi and Fj are the i-th and j-th rows of F , respectively, Yi is the i-th row of Y ,

and for the unlabeled data points. The optimized non-negative matrix is then used

to generate the unknown labels through the rule in equation 3.11

yi = argmax
j≤c

{Fij} (3.11)

In equation 3.7, the first term is a smoothness function that forces neighboring

data points to belong to the same class. The second term is a fitting function which

limits the labeled data points to conform to their original labels. The optimal F ∗

satisfies F ∗ = argmaxF {Φ(F )}. To solve for F ∗, we differentiate 3.7 with respect to

F , and solve for F in ∂Φ
∂F

= 0
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∂Φ

∂F

∣

∣

∣

∣

F=F ∗

= F ∗ − SF ∗ + µ(F ∗ − Y ) (3.12)

then,

F ∗ − 1

1 + µ
SF ∗ − µ

1 + µ
Y = 0 (3.13)

and,

F ∗ = β(1− αS)−1Y (3.14)

where,

S = D1/2WD−1/2 (3.15)

and,

α =
1

1 + µ
(3.16a)

β =
µ

1 + µ
(3.16b)

This concludes our presentation of the segmentation and detection system for 3D

CARS volumes. We present and discuss experimental testing results in what follows.
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3.4 Results and Discussion

3.4.1 3D Segmentation and Detection Results

We randomly selected ten image stacks from adenocarcinoma and squamous cell car-

cinoma, respectively, to evaluate the proposed method. It is worth noting here that

automated 3D segmentation was not tested with small cell carcinoma images. As de-

scribed in the introduction to this report small cell carcinoma is easily distinguishable

from NSCLC using 2D data, so the need does not arise to put small cell carcinoma

data through a lengthier and more resource intensive 3D segmentation and data anal-

ysis pipeline.

The average precision and recall of the proposed method compared to manual

analysis were 97.8% and 92%, which indicate the robustness of the proposed method.

Figure 3.7 (A-C) shows a cross section of sample CARS volume through all stages of

the segmentation and detection process, A shows the original volume, the clustering

result and supervoxel boundaries are presented in B, and C shows the detection

result with only the boundaries of the detected supervoxels remaining. In addition,

a rendering of the segmented cell nuclei is in panel D of the same figure.

Figure 3.8 shows the same nucleus we showed back in figure 3.4 after classifica-

tion of supervoxels into nuclei or background. The figure shows that classification

eliminates irrelevant supervoxels, and preserves those that enclose nuclei, noting that

in some slices of figure 3.8 an additional nucleus is visible, causing the boundary of

another supervoxel, to be visible next to the supervoxel of interest.
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A

C

B

D

Figure 3.7 : A segmentation and detection demonstration in s 3D CARS volume,
with a rendering of the segmented and detected cell nuclei

Figure 3.8 : Consecutive slices through a CARS volume - after classification -
showing a nucleus being enclosed in a single supervoxel across all slices
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We benchmarked our method against a set of popular cell nuclei detection and

segmentation methods, performing a qualitative comparison with the iterative ra-

dial voting (IRV) for nuclei detection [68], local binary fitting (LBF) level set nuclei

segmentation method designed for uneven background conditions [69], and Otsu’s

thresholding method, tests clearly showed the superior nuclei detection capability of

our method. in addition we performed a quantitative comparison in detection results

between the graph transduction method we used for detecting nuclei and support

vector machine (SVM) classification [70].

Briefly, IRV was designed to deal with noisy data and scale variation [68]. The

LBF method is a region-based active contour method which aims at overcoming the

intensity variations and uneven background by utilizing a local binary energy fitting

function [69]. SVM is one of the most popular supervised learning methods, it searches

for a hyper-plane that bests separates training data through maximizing a separation

margin [70].

Comparison results are provided in Figure 3.9. The IRV method detected many

false positive and negative cell nuclei centers, represented by the red crosses in panel

A. The LBF method incorrectly classified background regions into cell nuclei due

to the low intensity and noisy signal of background regions (B). The performance

of Otsu’s thresholding method (C) was worse compared against the performance of

LBF. Due to the limited training data, SVM (D) mislabeled many cell nuclei and

background regions, whereas our proposed method appeared to be superior to the
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above mentioned methods (E). From this qualitative comparison and comparing the

validation scores of graph transduction to those of SVM when classifying supervoxels

to nuclei or background in table 3.1, we conclude that the proposed method, which

integrates local clustering and semi-supervised learning machines, handles 3D CARS

image segmentation well.

A B

C D

E

Figure 3.9 : Comparing supervoxel nuclei detection results from our method to
other nuclei detection methodologies
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Table 3.1 : A quantitative comparison between graph transduction and SVM
quality of supervoxel nuclei detection

Method Precision Recall f-Score
Proposed 98.8% 92% 94.3%
SVM 96% 79.8% 86.2%

3.4.2 Discussion

In this Chapter, we proposed a new framework to solve the 3D cellular nuclei seg-

mentation problem in CARS image stacks, or volumes. In order to overcome the

low signal-to-noise ratio and uneven background challenges in CARS images, we ex-

tended the local clustering algorithm to operate on 3D data sets. The local clustering

method provides continuous partitioning regions, or supervoxels, of individual nuclei

across all dimensions in a CARS volume. These regions were again are quantified and

classified with graph transduction, a semi-supervised learning method. Graph trans-

duction significantly reduces the obstacles facing a good classification, these obstacles

are mainly caused by limited training data and significant intraclass variations in the

training data.

Experimental results have shown that the proposed framework performed well in

segmenting and detecting cellular nuclei in 3D CARS image stacks. Furthermore, the

method was demonstrated to be superior to other widely used nuclei detection and

segmentation approaches. It is the first automated 3D nuclei segmentation approach

in CARS microscopy images, to the best of our knowledge. The developed approach

enables the automatic segmentation of cell nuclei and thus paves the way for the
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ultimate goal we wish attain in this study, automatic differential diagnosis of NSCLC.

In the following chapter we build on the current results, by extracting pathologically

relevant morphological features from the segmented nuclei and exploring how these

features can be utilized in a fully automated differential diagnosis of NSCLC cell

types.
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Chapter 4

Automatic Differential Diagnosis of NSCLC Cell

Types

4.1 introduction

Thus far, our focus has been on sifting through a very large data set of three-

dimensional images to find a small subset of data that contains information relevant

to diagnosis, namely those voxels corresponding to cell nuclei. The end goal however

remains as from the beginning, the development of a system for automatic differen-

tial diagnosis of non-small cell lung carcinoma cell types. As stated in chapter 1,

the motivation behind developing a fully automated differential diagnosis platform

for NSCLC is acquiring the ability to rapidly recognize different cancer cell types,

with minimal tissue consumption, which in turn would accelerate cancer diagnosis,

This chapter is adapted from the following publications:

1. Liang Gao, Ahmad Hammoudi, Fuhai Li, Michael J. Thrall, Philip Cagle, Yuanxin Chen,
Jian Yang, XiaofenXia, Yubo Fan, Yehia Massoud, Zhiyong Wang, Stephen T.C. Wong,
“Differential Diagnosis of Lung Carcinoma with Three-dimensional Quantitative Molecular
Vibrational Imaging”. Currently in submission to the International Society for Optics and
Photonics Journal of Biomedical Optics.

2. Liang Gao, Ahmad Hammoudi, Fuhai Li, Michael J. Thrall, Philip Cagle, Yuanxin Chen, Jian
Yang, XiaofenXia, Yubo Fan, Yehia Massoud, ZhiyongWang, Stephen T.C. Wong, “Label-free
Diagnosis of Lung Cancer Subtypes with Three-dimensional Molecular Vibrational Imaging”.
Abstract 7890, the American Association for Cancer Research Annual Meeting, March 31 -
April 4, 2012. Chicago, Il.
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preserve tissue samples for subsequent molecular testing, and aid in delivering better

targeted therapy.

What we have developed and detailed in the previous chapters, is a fully auto-

mated system capable of detecting, segmenting, and computing all relevant physical

information about the geometry and spatial distribution of cellular nuclei in label-

free CARS images. In this chapter, we explain how the information extracted by the

detection and segmentation system, in other words the subset of relevant information

within the large CARS data set, we explain how it was utilized to compute physical

features of the nuclei, and the tissue as a whole, and how these information were in

turn used to perform automatic differential diagnosis.

The features we aim to design and compute in this chapter are different from all

the features that were discussed in the chapters 2, and 3 in both the characteristics

we try to capture with them, and their purpose, it is worth noting the differences

to avoid any confusion. Specifically, in the earlier chapters, the features represented

superpixels or supervoxels, which were just clusters of data points in space. In this

chapter however, the features were used to represent cellular nuclei. Second, the

information underlying the features and their utilization are also different in this

chapter. In the previous case, our purpose was to determine whether the clusters

represented by the features were nuclei, or not. Now, only nuclei are studied, and

the features we to compute are used to determine what type of NSCLC nuclei are

they, adenocarcinoma, or squamous cell carcinoma, thus a different set of features is
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required.

So, to achieve the end goal of automatic differential diagnosis of NSCLC cell types,

we designed a new set of features that we believe capture morphological characteris-

tics of the nuclei, and spatial characteristics of the cancerous tissue as a whole that

carry pathologically relevant information. Information that would allow us to build

a classification system that delivers differential diagnostic accuracy of NSCLC cell

unattainable with current state of the art automatic diagnosis methods, and thus

could enhance the quality of diagnosis and targeted therapy delivery to lung carci-

noma patients . First, in section 4.2 we try to unify the physical description of the

nuclei by fitting 3D ellipsoids to the points in space representing each nucleus. Then,

we build set of feature describing those ellipsoids, and also the spatial patterns they

create in the imaged tissue, this is the subject of section 4.3. Finally, and in section

4.4 we use these features to build a classifier that can determine to what cell type

do the cells in a tissue of interest belong to. We conclude the chapter with a brief

discussion in section 4.5.

4.2 Ellipsoid Fitting

To ensure consistency in extracted features across different volumes, and because

different tissue samples were imaged at different times and having different freshness,

we assumed a cell nucleus to be roughly ellipsoidal in shape, and, as such, an ellipsoid

was fitted to each contiguous set of 3D points representing a nucleus. The features
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we designed for each nucleus later on were the physical features of the ellipsoid that

best fitted the convex hull of the points comprising that nucleus, in other words,

the ellipsoid that best fitted the smallest region in space that could enclose all the

points comprising a nucleus. This is called the minimum volume enclosing ellipsoid

or MVEE its full details were presented in [71, 72]. We describe it briefly in what

follows. Figure 4.1 shows a rendering of a segmented CARS volume, in which we use

the points from each rendered nucleus to fit an ellipsoid.

Figure 4.1 : A rendering of a full volume of segmented cell nuclei

To perform Ellipsoid fitting, we solve the optimization problem described in [72]

and represented in 4.1



67

minimize
A,c

log{det(A)}

subject to (Pi − c)T∗A∗(Pi − c) ≤ 1

(4.1)

Where A is a symmetric positive definite matrix that represents all the information

about an ellipsoid, c is a vector representing the coordinates of the center of the

ellipsoid, and Pi is a vector containing the ith column of the matrix P . Finally P

is a 3 × N matrix, having the coordinates of all the points being fit - in the case

the points in a nucleus - as columns, and N is the number of such points. Many

solvers are available for the minimization problem we used one based on the Kachiyan

algorithm [73] to determine A and c, from which all information about a given ellipsoid

can be computed as follows.

The Matrix A and center c, which are computed as the solution to the optimization

program in 4.1 are used to represent a 3D ellipsoid in centric form shown in 4.2.

ε = {x ∈ R
n
∣

∣(x− c)TA−1(x− c) = 1} (4.2)

This representation of an Ellipsoid can be used to render the Ellipsoid in space,

and compute it’s relevant parameters such as it’s volume, surface area, and lengths

of it’s equatorial radii, we will come to discuss those in section 4.3 as they will be

used to compute the pathologically relevant features. For now, we show how a CARS

volume looks after fitting ellipsoids to each of the segmented nuclei, a single nucleus

with the corresponding MVEE is presented in figure 4.2, the blue points represent the
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nucleus, and the mesh the MVEE. While a full volume with each nucleus fitted to its

MVEE is presented in figure 4.3, the color variation in that figure represents depth

within the tissue, with blue representing the highest part of the tissue, and red the

deepest, the mesh is representative of the real size and distribution of nuclei within

the imaged tissue.

Figure 4.2 : A single nucleus (Blue), and the corresponding MVEE (Mesh)

In what follows, we present how the MVEEs we fitted to out CARS volume were

used to extract pathologically relevant features that were used in building an auto-
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Figure 4.3 : MVEEs for all nuclei in a full CARS volume

mated differential classifier.

4.3 Designing Pathologically Relevant Features

A series of pathologically-related morphological features such as nuclear size, and cell-

to-cell distances have been previously used for disease identification,and providing

meaningful diagnostic information with reproducible results. These features have

been previously tested with various disease models such as lung, breast and prostate

cancers [13, 14, 25–27]. Herein, we compute a set of such morphological features

from 3D CARS volumes that we believe will provide meaningful information for the

differential diagnosis of NSCLC cell types.
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4.3.1 Single Nucleus Features

We compute two sets of features, one related directly to each nucleus on its own,

and another set of features that aims to describe the distribution of the nuclei in the

tissue, and their relation to one another. we begin with the cell related features.

As we mentioned in section 4.2, all the information about an ellipsoid can be

extracted from the matrix A and the center c of equation 4.1. The square roots of the

eigenvalues σA of A represent the lengths of the equatorial radii of the ellipsoid, or

its major axis, and its two minor axes. The eigenvectors of A represent the direction

vectors of the ellipsoid, those are shown in figure 4.4.

With this information, and alternate representation of an ellipsoid is available,

and has the form in 4.3

ε =

{

x2

a2
+

y2

b2
+

z2

c2
= 1

}

(4.3)

Where x, y, and z are the coordinates of the center of the Ellipsoid, and a, b,

and c are the lengths of the equatorial radii. We use this definition of an ellipsoid to

compute the following features for each nucleus.

• V olume of the Ellipsoid given by 4
3
πabc

• Length of the major axis, or first equatorial radius, given by a of equation 4.3

• Lengths of the second and third equatorial radii, or the two minor axes of the

ellipsoid, given by b and c of equation 4.3
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Figure 4.4 : An ellipsoid with its 3 direction vectors shown

4.3.2 Whole Tissue Features

Furthermore, to compute features related to a nucleus relative to its neighbors, we

constructed the Delaunay triangulation [74–76] to define the connectivity of nuclei in

the sample.

The Delaunay triangulation of a set of points is the division of the region of space

containing these points into simplexes or tetrahedra with the points of interest at

their vertices, this defines a graph as that presented in figure 4.5, the edges of the
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tetrahedra - which are also the edges of the graph - connect all the nuclei, in this

case the graph vertices. The neighbors of a nucleus of interest were assumed to be

those nuclei joined to it by an edge of the triangulation. Using the triangulation, four

features were computed for each nucleus to describe its spatial configuration with

respect to the rest of the nuclei and the tissue.

The features where distance to farthest neighbor, distance to nearest neighbor,

mean distance to neighbors, and orientation relative to nearest neighbor, the features

are listed in detail below.

Figure 4.5 : Delaunay triangulation of nuclei in a CARS image

• Distance to farthest neighbor is computed as the length of the longest edge

of the Delaunay triangulation triangulation graph attached to the nucleus of

interest, given by
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max
∀i

{‖i‖2} (4.4)

where i is a Delaunay edge connected to the nucleus.

• Distance to nearest neighbor: The length of the shortest Delaunay edge attached

to the nucleus, or

min
∀i

{‖i‖2} (4.5)

• Mean distance to neighbors, N is the number of neighbors, also given by the

number of Delaunay edges connected to a nucleus

∑

∀i {‖i‖2}
Ni

(4.6)

• Orientation relative to the nearest neighbor is assumed to be the angle between

the major axis of a cell and the major axis of its nearest neighbor, is computed

from the dot product between the direction vector along the major axis of the

cell and that of its nearest neighbor.

cos−1 〈av, avn〉 (4.7)

Where av is the direction vector along the major axis of the nucleus of interest,
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and avn is the direction vector along the the major axis of its nearest neighbor.

In summary, for each of our CARS volume, we computed features relating to the

size each nucleus, namely the volume, and length of its equatorial radii. In addition,

we computed features that present some information about how nuclei in a volume are

related, those were derived from a Delaunay triangulation of all nuclei in a volume,

and include cell-cell distance, and orientation of nuclei relative to one another.

In section 4.4 we take a closer look at the computed features and their statistics.

In addition, we design a method of using those statistics in determining whether

the cells comprising a tissue in a CARS volume belongs to the adenocarcinoma or

squamous cell carcinoma cell types .

4.4 Differential Classification

We performed segmentation, labeling, and feature extraction from 15 volumes corre-

sponding to adenocarcinoma and another 15 volumes from squamous cell carcinoma.

In addition, because a main goal of our work is demonstrating that analyzing CARS

data in a higher dimension than previously explored will solve the NSLC differential

diagnosis problem, we benchmarked against 2D based differential diagnosis. We ex-

tracted three slices from each of the 15 image stacks and computed the same nuclear

features from those as 2D images. It is worth noting that all features can be mapped

to any dimension, in which an ellipsoid mapped to two dimensions becomes an ellipse

or volume becomes area. The only major difference between 3D and 2D representa-
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tion of the features is that an ellipse has only two equatorial radii composed of one

major and one minor axis, as opposed to an ellipsoid which has three such radii. As

such, 3D measurements resulted in one more feature over 2D, as an additional minor

axis length since there are three axes in a 3D ellipsoid.

Since each volume contains hundreds of nuclei, and since diagnosis aims to classify

an entire tissue to a specific NSCLC cell type, as opposed to classifying individual

cells, we use the statistics of the computed features to perform the classification. In

other words, for each of the volumes, all the nuclei are segmented, and the features

described in section 4.3 are computed for each nucleus, then the probability distri-

bution functions (PDF) of each of the features across all nuclei in a image stack are

used to describe that image stack. So a volume is identified by the statistics of the

nuclear features rather than individual features of nuclei. Figures 4.6 and 4.7 show

the PDF’s of each of the features for our entire data set, in addition to a comparison

between 3D features, and 2D features.

We observed that 5 out of the 8 measured features showed significant separation

or difference between 2D and 3D measurements. They were mostly related to the size,

shape and orientation of nuclear structures, figure 4.6. We note here that features

related to nuclear size and shape failed to show a clear separation between the two

cancer subtypes in 2D measurements, figure 4.6 (A-C). In contrast, 3D measurements

effectively captured the difference between the two cell types by showing clearly sep-

arate peaks of the PDF curves, figure 4.6 (E-G). While nuclear orientation shows a
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Figure 4.6 : Statistics of single nucleus derived features - 2D vs. 3D

clear peak with 2D measurement, figure 4.6 (D), this peak turns into a more uniform

distribution across different angles in 3D, figure 4.6 (5). The presented PDF curves

were estimated from the measured data, i.e., they represent the histograms of the

features processed with a smoothing kernel causing the curves in some cases to have
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Figure 4.7 : Statistics of tissue derived features - 2D vs. 3D

tails in the negative side of the number line.

Moreover, and since a volume is identified by the statistics of its features we

describe those statistics by computing the mean, standard deviation, skewness, and

kurtosis of the distribution function for each feature. i.e. for the seven 2D features

and for the 8 3D features in a given volume.

These quantities constitute the 32 components of the feature space used to build

a classifier able to characterize a volume as either an adenocarcinoma or squamous

cell carcinoma cell types.
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We employed, the leave-one-out cross validation approach, also used for differential

diagnosis of lung carcinoma subtypes by [13], to demonstrate that the designated

statistical features could be used to perform automatic diagnosis. We use the same

classification method used in prior work [13] to validate our hypothesis that studying

features in 3D space, and that our set of features is in fact superior to prior methods

when used in diagnosis. Moreover we do this to demonstrate that the method of

examining features and the features themselves are the real bottleneck to achieving

high quality differential diagnosis, regardless of the classification method used.

The leave-one-out classification works as follow; over a sufficient number of itera-

tions, one sample of each adenocarcinoma and squamous cell carcinoma was excluded,

and the remaining 28 samples, 14 of each subtype, were used to train an artificial neu-

ral network. The two left out samples were then used to test the performance of the

neural network, with the same architecture described in section 2.3.2 of chapter 2 and

20 neurons in the hidden layer. This was repeated until each sample of each subtype

was left out and paired with all samples from the other subtype. For example, If

samples from each of the two cancer subtypes were labeled 1 through 15, A1 A15 for

adenocarcinoma samples and S1-S15 for squamous cell carcinoma samples, samples

A1 and S1 would be excluded on the first iteration. The remaining 28 samples would

be used to train a classifier, in this case a neural network. The 2 excluded samples

(A1 and S1) are used to validate that classifier through testing whether it can assign

them to their correct cell type. On the second iteration, sample A1 would be left out
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from adenocarcinoma with sample S2 instead of S1 from squamous cell carcinoma,

and the training/validation process is repeated. This process is repeated over enough

iterations to exhaust all possible parings of samples. As a benchmark in this study,

the process was performed both in 2D and in 3D data sets.

We present the differential diagnosis results in section 4.5

4.5 Results

Using the calculated features, a classifier was built, as described in section 4.4, clas-

sification was performed to separate cancer cell types. Figures 4.8 and 4.9 illustrate

the automatic classification results from 2D data and 3D data respectively. In Figure

4.8, results of classification using 2-D data are presented, where each point represents

one tissue sample - or volume - specifically the one that was left out during a par-

ticular iteration. The threshold for classification is the straight line y = 0.5. Points

with y ≥ 0.5 were classified as adenocarcinoma, while points with y < 0.5 were clas-

sified as squamous cell carcinoma. For better presentation, the graph is separated

into two separate subfigures, respectively representing adenocarcinoma samples and

squamous cell carcinoma samples. Classification from 2D data resulted in a true pos-

itive rate of 71.98% and 65.05% for adenocarcinoma and squamous cell carcinoma,

respectively. False positive rate, in the same order, was 28.02% and 34.95%, table 4.1.

Classification results from the 3D data analysis are plotted in figure 4.9, where clear

separation between subtypes allows for data visualization on the same graph. As de-
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tailed in table 4.2, quantified classification accuracies were a 99.56% and 97.78% true

positive rate for adenocarcinoma and squamous cell carcinoma, respectively. False

positive classification was 0.45% and 2.22% in the same order. The results showed

that features extracted from 3D data analysis provided information that significantly

enhanced the classification accuracy and thus demonstrated proof of concept that 3D

image analysis allows for the automatic diagnosis of lung cancer cell types, with a

quality far superior to differential diagnosis from 2D data.

We further discuss these results in section 4.6

Figure 4.8 : Differential diagnosis results from 2D data
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Figure 4.9 : Differential diagnosis results from 3D data

Table 4.1 : Differential diagnosis accuracies from 2D data

Truth\ Classification Adenocarcinoma Squamous cell carcinoma
Adenocarcinoma 71.98% 34.94%

Squamous cell carcinoma 28.02% 65.05%

Table 4.2 : Differential diagnosis accuracies from 3D data

Truth\ Classification Adenocarcinoma Squamous cell carcinoma
Adenocarcinoma 99.56% 0.45%

Squamous cell carcinoma 2.22% 97.78%
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4.6 Discussion

In this chapter we have proposed an effective strategy to increase the accuracy for

characterization of NSCLC cell types by quantifying pathological characteristics of

nuclei using 3D data analysis. By taking advantage of the optical sectioning capability

readily provided by CARS, a valuable advantage that is not available with H&E

staining and imaging technique, our strategy allows analysis of cellular features in

3D, a setting close to the microenvironment in which the cells reside. As illustrated

in Figure 4.6, measurements on 5 out of the 8 disease-related features showed clear

features separation in 3D measurements, as opposed compared to 2D controls.

First, the volumes of nuclei were measured in 3D to provide size information. This

effectively allowed for the suppression of the sampling error posed by measurements

from 2D slices. As a result, a clear separation of adenocarcinoma from squamous

cell carcinoma was observed, this was noticeable as two very separate peaks of the

PDF curves. In contrast, the 2D control showed much broader distributions for both

subtypes without clear separation of peak positions, this is potentially caused by

multiple measurements corresponding to a single nucleus across multiple slices, thus

hiding the subtle difference in peak positions.

Second, the sampling noise in 2D also obscured effective identification of the dif-

ference in nuclear size between examined cell types. It is worth mentioning that the

peaks of the major axis lengths of adenocarcinoma and squamous cell carcinoma were

about 6 µm and 5.5 µm, respectively. Although they were well separated in 3D mea-
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surements, 2D measurements of the same parameter did not show a clear difference.

More importantly, both cell types showed the peak value of major axis length to fall

between 4 and 5 µm, values that were substantially smaller than those measured in

3D.

These data indicates that measurements in 2D combined values associated with

both sampling error, from 3D to 3D, and real axis lengths. Specifically, if, in a given

plane, we assume that all cell nuclei have the same axis length, then the measured

axis length for a given nucleus can range from zero to its actual length, depending

on where a given slice passes through a nucleus of interest. This effect is true for

every cell nucleus in that plane, resulting in a distribution of the measured value

from zero to the actual length, especially when the spatial locations of individual

nuclei are unrelated. As such, a sampling error is created and could result in a more

uniform distribution curve that does not revel the real feature statistics. In contrast,

3-D measurement of the same parameter resulted in much narrower PDF curves with

clearly separate peaks. The same observation was supported by minor axis lengths,

as well.

Third, the relative orientation angle between neighbors showed a peak around 25

degrees in 2D. This peak was not present in the 3D measurements, where a more

uniform distribution was observed across the spectrum of all angles, indicating a

lack of dominant orientation of nuclei orientation in such tumors. This distribution

could be caused by the use of animal models, instead of human tumor samples,
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as it is well known that adenocarcinomas tend to form glandular structures, while

squamous cell carcinomas tend to form well-oriented cell sheets when they are well

differentiated (43, 44). Consequently, by showing more random cellular distribution

patterns, the mouse tumor model could be more poorly differentiated compared to

human tumors. Moreover, this difference also supports the utility of the 3D approach

since this method even worked well on mouse models, which are harder to separate.

However, the tremendous heterogeneity of human tumors, as compared with only

two cell lines in this study, may pose challenges for classification that are difficult

to capture in this model system. Finally, compared to the aforementioned features,

a clear distinction between 2D and 3D approaches could not be found relative to

measurements of distance-related features. This was expected because the sampling

noise error by 2D measurements will not affect the position of nuclei centers, which

are the major determinants of cell-cell distance.

Finally, we have demonstrated that properly selected image features, and through

measuring those features in an appropriate environment, namely a 3D setting that

most accurately mimics the real spatial configuration of cancerous tissue. It is possi-

ble to perform fully automatic differential diagnosis of NSCLC cell types. As opposed

to performing this process from 2D images that do not sample sufficient information

from the cancerous tissue to allow differential classification. Our work paves a way

towards a crucial advancement in lung cancer discovery and diagnosis that could

greatly enhance care delivery through more accurate targeted therapy, and thus en-
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hance patient survival rates.
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Chapter 5

Conclusions and Future Work

Recent advances in targeted therapy hold the promise for the delivery of better, more

effective treatments to lung cancer patients, that could significantly enhance their

survival rates. Optimizing care delivery through target therapies requires the ability

to effectively identify and diagnose lung cancer along with the specific cell type to

each patient.

Label free optical imaging techniques such as CARS have the potential to provide

physicians with minimally invasive access to lung tumor sites and thus allow for better

cancer diagnosis and sub-typing. To maximize the benefits of such imaging modalities

in enhancing cancer treatment, the development of new data analysis methods that

can rapidly and accurately analyze the new types of data provided through them is

essential. Recent studies have gone long ways to achieving those goals but faced some

significant bottlenecks hindering the ability to fully exploit the diagnostic potential

of CARS images, namely, the streamlining of the diagnosis process was hindered by

the lack of ability to automatically detect cancer cell, and the inability to completely

classify them into their respective cell types.

In this study we have addressed the two bottlenecks named above, through design-

ing an image processing framework that is capable of automatically and with great
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accuracy detecting cancer cells in two and three dimensional CARS images. More-

over, we built upon this capability with a new approach at analyzing the segmented

data, that provided significant information about the cancerous tissue and ultimately

allowed for the automatic differential classification of non-small cell lung carcinoma

cell types.

From this here on, what is required to deliver a better diagnostic platform is two

fold. First, and on the imaging side, transforming the CARS microscope from a table

top setup to a portable endoscope is essential for the ability to use it on a mass scale

with cancer patients. Second, and on the data analysis side, The image processing

and classification algorithms need to be trained with a lager number of human cancer

data to further assure of their dependability, they need to be optimized to be able

to handle real time data, and deliver on-the-spot diagnosis, and they need to be

transferred into portable hardware that can be used with CARS endoscopes.
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