828 research outputs found

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's Disease Diagnosis Using Resting State EEG Signals

    Full text link
    Parkinson's disease (PD), a severe and progressive neurological illness, affects millions of individuals worldwide. For effective treatment and management of PD, an accurate and early diagnosis is crucial. This study presents a deep learning-based model for the diagnosis of PD using resting state electroencephalogram (EEG) signal. The objective of the study is to develop an automated model that can extract complex hidden nonlinear features from EEG and demonstrate its generalizability on unseen data. The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU), and attention mechanism. The proposed method is evaluated on three public datasets (Uc San Diego Dataset, PRED-CT, and University of Iowa (UI) dataset), with one dataset used for training and the other two for evaluation. The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets. The model also performs well even when some part of the input information is missing. The results of this work have significant implications for patient treatment and for ongoing investigations into the early detection of Parkinson's disease. The suggested model holds promise as a non-invasive and reliable technique for PD early detection utilizing resting state EEG

    Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations

    Get PDF
    Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes

    Entropy-based machine learning model for diagnosis and monitoring of Parkinson's Disease in smart IoT environment

    Full text link
    The study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) in an Internet of Things (IoT) environment using rest-state EEG signals (rs-EEG). We computed different types of entropy from EEG signals and found that Fuzzy Entropy performed the best in diagnosing and monitoring PD using rs-EEG. We also investigated different combinations of signal frequency ranges and EEG channels to accurately diagnose PD. Finally, with a fewer number of features (11 features), we achieved a maximum classification accuracy (ARKF) of ~99.9%. The most prominent frequency range of EEG signals has been identified, and we have found that high classification accuracy depends on low-frequency signal components (0-4 Hz). Moreover, the most informative signals were mainly received from the right hemisphere of the head (F8, P8, T8, FC6). Furthermore, we assessed the accuracy of the diagnosis of PD using three different lengths of EEG data (150-1000 samples). Because the computational complexity is reduced by reducing the input data. As a result, we have achieved a maximum mean accuracy of 99.9% for a sample length (LEEG) of 1000 (~7.8 seconds), 98.2% with a LEEG of 800 (~6.2 seconds), and 79.3% for LEEG = 150 (~1.2 seconds). By reducing the number of features and segment lengths, the computational cost of classification can be reduced. Lower-performance smart ML sensors can be used in IoT environments for enhances human resilience to PD.Comment: 19 pages, 10 figures, 2 table

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    Automatic Diagnosis of Parkinson's Disease Based on Deep Learning Models and Multimodal Data

    Get PDF
    Parkinson's disease (PD) is a common age-related neurodegenerative disorder in the aging society. Early diagnosis of PD is particularly important for efficient intervention. Currently, the diagnosis of PD is mainly made by neurologists who assess the abnormalities of the patient's motor system and evaluate the severity according to established criteria, which is highly dependent on the neurologists' expertise and often unsatisfactory. Artificial intelligence provides new potential for automatic and reliable diagnosis of PD based on multimodal data analysis. Some deep learning models have been developed for automatic detection of PD based on diverse biomarkers such as brain imaging images, electroencephalograms, walking postures, speech, handwriting, etc., with promising accuracy. This chapter summarizes the state-of-the-art, technical advancements, unmet research gaps, and future directions of deep learning models for PD detection. It provides a reference for biomedical engineers, data scientists, and health professionals

    Ensemble of classifiers based data fusion of EEG and MRI for diagnosis of neurodegenerative disorders

    Get PDF
    The prevalence of Alzheimer\u27s disease (AD), Parkinson\u27s disease (PD), and mild cognitive impairment (MCI) are rising at an alarming rate as the average age of the population increases, especially in developing nations. The efficacy of the new medical treatments critically depends on the ability to diagnose these diseases at the earliest stages. To facilitate the availability of early diagnosis in community hospitals, an accurate, inexpensive, and noninvasive diagnostic tool must be made available. As biomarkers, the event related potentials (ERP) of the electroencephalogram (EEG) - which has previously shown promise in automated diagnosis - in addition to volumetric magnetic resonance imaging (MRI), are relatively low cost and readily available tools that can be used as an automated diagnosis tool. 16-electrode EEG data were collected from 175 subjects afflicted with Alzheimer\u27s disease, Parkinson\u27s disease, mild cognitive impairment, as well as non-disease (normal control) subjects. T2 weighted MRI volumetric data were also collected from 161 of these subjects. Feature extraction methods were used to separate diagnostic information from the raw data. The EEG signals were decomposed using the discrete wavelet transform in order to isolate informative frequency bands. The MR images were processed through segmentation software to provide volumetric data of various brain regions in order to quantize potential brain tissue atrophy. Both of these data sources were utilized in a pattern recognition based classification algorithm to serve as a diagnostic tool for Alzheimer\u27s and Parkinson\u27s disease. Support vector machine and multilayer perceptron classifiers were used to create a classification algorithm trained with the EEG and MRI data. Extracted features were used to train individual classifiers, each learning a particular subset of the training data, whose decisions were combined using decision level fusion. Additionally, a severity analysis was performed to diagnose between various stages of AD as well as a cognitively normal state. The study found that EEG and MRI data hold complimentary information for the diagnosis of AD as well as PD. The use of both data types with a decision level fusion improves diagnostic accuracy over the diagnostic accuracy of each individual data source. In the case of AD only diagnosis, ERP data only provided a 78% diagnostic performance, MRI alone was 89% and ERP and MRI combined was 94%. For PD only diagnosis, ERP only performance was 67%, MRI only was 70%, and combined performance was 78%. MCI only diagnosis exhibited a similar effect with a 71% ERP performance, 82% MRI performance, and 85% combined performance. Diagnosis among three subject groups showed the same trend. For PD, AD, and normal diagnosis ERP only performance was 43%, MRI only was 66%, and combined performance was 71%. The severity analysis for mild AD, severe AD, and normal subjects showed the same combined effect

    Identification of diseases based on the use of inertial sensors: a systematic review

    Get PDF
    Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer for the automatic recognition of different diseases, and it may powerful the different treatments with the use of less invasive and painful techniques for patients. This paper is focused in the systematic review of the studies available in the literature for the automatic recognition of different diseases with accelerometer sensors. The disease that is the most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implements for the recognition of Parkinson’s disease reported an accuracy of 94%. Other diseases are recognized in less number that will be subject of further analysis in the future.info:eu-repo/semantics/publishedVersio
    corecore