45 research outputs found

    Artifact Traceability in DevOps:An Industrial Experience Report

    Get PDF
    In DevOps, the traceability of software artifacts is critical to the successful development and operation of project delivery to stakeholders. Before the introduction of end-to-end traceability in DevOps at a Data Analytics team at bp (BP plc), an international integrated energy company, the tracing of artifacts throughout a project life cycle was manual and time-consuming. This changed when traceability become more automated with end-to-end traceability capability as an offering on the platform. This paper reports on the ways of working and the experience of developers implementing DevOps for developing and putting in production a Javascript React web application, with a focus on traceability management of artifacts produced throughout the life cycle. This report highlights key opportunities and challenges in traceability management from the development stage to production.</p

    MLOps: A Review

    Full text link
    Recently, Machine Learning (ML) has become a widely accepted method for significant progress that is rapidly evolving. Since it employs computational methods to teach machines and produce acceptable answers. The significance of the Machine Learning Operations (MLOps) methods, which can provide acceptable answers for such problems, is examined in this study. To assist in the creation of software that is simple to use, the authors research MLOps methods. To choose the best tool structure for certain projects, the authors also assess the features and operability of various MLOps methods. A total of 22 papers were assessed that attempted to apply the MLOps idea. Finally, the authors admit the scarcity of fully effective MLOps methods based on which advancements can self-regulate by limiting human engagement

    Investigating Software Engineering Artifacts in DevOps Through the Lens of Boundary Objects

    Get PDF
    Software engineering artifacts are central to DevOps, enabling the collaboration of teams involved with integrating the development and operations domains. However, collaboration around DevOps artifacts has yet to receive detailed research attention. We apply the sociological concept of Boundary Objects to describe and evaluate the specific software engineering artifacts that enable a cross-disciplinary understanding. Using this focus, we investigate how different DevOps stakeholders can collaborate efficiently using common artifacts. We performed a multiple case study and conducted twelve semi-structured interviews with DevOps practitioners in nine companies. We elicited participants\u27 collaboration practices, focusing on the coordination of stakeholders and the use of engineering artifacts as a means of translation. This paper presents a consolidated overview of four categories of DevOps Boundary Objects and eleven stakeholder groups relevant to DevOps. To help practitioners assess cross-disciplinary knowledge management strategies, we detail how DevOps Boundary Objects contribute to four areas of DevOps knowledge and propose derived dimensions to evaluate their use

    What have we learnt from the challenges of (semi-) automated requirements traceability? A discussion on blockchain applicability.

    Get PDF
    Over the last 3 decades, researchers have attempted to shed light into the requirements traceability problem by introducing tracing tools, techniques, and methods with the vision of achieving ubiquitous traceability. Despite the technological advances, requirements traceability remains problematic for researchers and practitioners. This study aims to identify and investigate the main challenges in implementing (semi-)automated requirements traceability, as reported in the recent literature. A systematic literature review was carried out based on the guidelines for systematic literature reviews in software engineering, proposed by Kitchenham. We retrieved 4530 studies by searching five major bibliographic databases and selected 70 primary studies. These studies were analysed and classified according to the challenges they present and/or address. Twenty-one challenges were identified and were classified into five categories. Findings reveal that the most frequent challenges are technological challenges, in particular, low accuracy of traceability recovery methods. Findings also suggest that future research efforts should be devoted to the human facet of tracing, to explore traceability practices in organisational settings, and to develop traceability approaches that support agile and DevOps practices. Finally, it is recommended that researchers leverage blockchain technology as a suitable technical solution to ensure the trustworthiness of traceability information in interorganisational software projects.publishedVersio

    A maturity model for DevOps

    Get PDF
    Nowadays, businesses aim to respond to customer needs at unprecedented speed. Thus, many companies are rushing to the DevOps movement. DevOps is the combination of Development and Operations and a new way of thinking in the software engineering domain. However, no common understanding of what it means has yet been achieved. Also, no adoption models or fine-grained maturity models to assist DevOps maturation and implementation were identified. Therefore, this research attempt to fill these gaps. A systematic literature review is performed to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves. Then, two sets of interviews with DevOps experts were performed and their experience used to build the DevOps Maturity Model. The DevOps maturity model was then developed grounded on scientific and professional viewpoints. Once developed the Maturity Model was demonstrated in a real organisation.info:eu-repo/semantics/acceptedVersio

    Maturity model for DevOps

    Get PDF
    Businesses today need to respond to customer needs at unprecedented speed. Driven by this need for speed, many companies are rushing to the DevOps movement. DevOps, the combination of Development and Operations, is a new way of thinking in the software engineering domain that recently received much attention. Since DevOps has recently been introduced as a new term and novel concept, no common understanding of what it means has yet been achieved. Therefore, the definitions of DevOps often are only a part relevant to the concept. When further observing DevOps, it could be seen as a movement, but is still young and not yet formally defined. Also, no adoption models or fine-grained maturity models showing what to consider to adopt DevOps and how to mature it were identified. As a consequence, this research attempted to fill these gaps and consequently brought forward a Systematic Literature Review to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves. This resulted in a list of practices per area and capability that was used in the interviews with DevOps practitioners that, with their experience, contributed to define the maturity of those DevOps practices. This combination of factors was used to construct a DevOps maturity model showing the areas and capabilities to be taken into account in the adoption and maturation of DevOps.Hoje em dia, as empresas precisam de responder às necessidades dos clientes a uma velocidade sem precedentes. Impulsionadas por esta necessidade de velocidade, muitas empresas apressam-se para o movimento DevOps. O DevOps, a combinação de Desenvolvimento e Operações, é uma nova maneira de pensar no domínio da engenharia de software que recentemente recebeu muita atenção. Desde que o DevOps foi introduzido como um novo termo e um novo conceito, ainda não foi alcançado um entendimento comum do que significa. Portanto, as definições do DevOps geralmente são apenas uma parte relevante para o conceito. Ao observar o DevOps, o fenómeno aborda questões culturais e técnicas para obter uma produção mais rápida de software, tem um âmbito amplo e pode ser visto como um movimento, mas ainda é jovem e ainda não está formalmente definido. Além disso, não foram identificados modelos de adoção ou modelos de maturidade refinados que mostrem o que considerar para adotar o DevOps e como fazê-lo crescer. Como consequência, esta pesquisa tentou preencher essas lacunas e, consequentemente, apresentou uma Revisão sistemática da literatura para identificar os fatores determinantes que contribuem para a implementação de DevOps, incluindo os principais recursos e áreas com os quais ele evolui. Isto resultou numa lista de práticas por área e por capacidade, que foi utilizado como base nas entrevistas realizadas com peritos em DevOps que, com a sua experiência, ajudaram a atribuir níveis de maturidade a cada prática. Esta combinação de fatores foi usada para construir um modelo de maturidade de DevOps mostrando as áreas e as capacidades a serem levados em consideração na sua adoção e maturação

    A systematic literature review on DevOps capabilities and areas

    Get PDF
    Businesses today need to respond to customer needs at an unprecedented speed. Driven by this need for speed, many companies are rushing to the DevOps movement. DevOps, the combination of Development and Operations, is a new way of thinking in the software engineering domain that recently received much attention. Since DevOps has recently been introduced as a new term and novel concept, no common understanding of what it means has yet been achieved. Therefore, the definitions of DevOps often are only partly relevant to the concept. This research presents a systematic literature review to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves.info:eu-repo/semantics/acceptedVersio

    An agile information flow consolidator for delivery of quality software projects: technological perspective from a South African start-up

    Get PDF
    In today’s knowledge-based economy, modern organisations understand the importance of technology in their quest to be considered global leaders. South African markets like others worldwide are regularly flooded with the latest technology trends which can complicate the acquisition, use, management and maintenance of software. To achieve a competitive edge, companies tend to leverage agile methods with the best possible combination of innovative supporting tools as a key differentiator. Software technology firms are in this light faced with determining how to leverage technology and efficient development processes for them to consistently deliver quality software projects and solutions to their customer base. Previous studies have discussed the importance of software development processes from a project management perspective. African academia has immensely contributed in terms of software development and project management research which has focused on modern frameworks, methodologies as well as project management techniques. While the current research continues with this tradition by presenting the pertinence of modern agile methodologies, it additionally further describes modern agile development processes tailored in a sub-Saharan context. The study also aims novelty by showing how innovative sometimes disruptive technology tools can contribute to producing African software solutions to African problems. To this end, the thesis contains an experimental case study where a web portal is prototyped to assist firms with the management of agile project management and engineering related activities. Literature review, semi-structure interviews as well as direct observations from the industry use case are used as data sources. Underpinned by an Activity Theory analytical framework, the qualitative data is analysed by leveraging content and thematic oriented techniques. This study aims to contribute to software engineering as well as the information systems body of knowledge in general. The research hence ambitions to propose a practical framework to promote the delivery of quality software projects and products. For this thesis, such a framework was designed around an information system which helps organizations better manage agile project management and engineering related activities.Information SciencePh. D. (Information Systems
    corecore