
 

 

 University of Groningen

Artifact Traceability in DevOps
Pauzi, Zaki; Thind, Rajvir; Capiluppi, Andrea

Published in:
Proceedings of EASE 2023 - Evaluation and Assessment in Software Engineering

DOI:
10.1145/3593434.3593451

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Pauzi, Z., Thind, R., & Capiluppi, A. (2023). Artifact Traceability in DevOps: An Industrial Experience
Report. In Proceedings of EASE 2023 - Evaluation and Assessment in Software Engineering (pp. 180-183).
(ACM International Conference Proceeding Series). Association for Computing Machinery.
https://doi.org/10.1145/3593434.3593451

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-09-2023

https://doi.org/10.1145/3593434.3593451
https://research.rug.nl/en/publications/ec846c79-7de2-4bc8-9778-3f213011855d
https://doi.org/10.1145/3593434.3593451


Artifact Traceability in DevOps: An Industrial Experience Report
Zaki Pauzi∗

BP plc
London, United Kingdom

zaki.pauzi@bp.com

Rajvir Thind
BP plc

London, United Kingdom
rajvir.thind@bp.com

Andrea Capiluppi
University of Groningen

Groningen, The Netherlands
a.capiluppi@rug.nl

ABSTRACT
In DevOps, the traceability of software artifacts is critical to the suc-
cessful development and operation of project delivery to stakehold-
ers. Before the introduction of end-to-end traceability in DevOps at
a Data Analytics team at bp (BP plc), an international integrated en-
ergy company, the tracing of artifacts throughout a project life cycle
was manual and time-consuming. This changed when traceability
become more automated with end-to-end traceability capability
as an offering on the platform. This paper reports on the ways of
working and the experience of developers implementing DevOps
for developing and putting in production a Javascript React web
application, with a focus on traceability management of artifacts
produced throughout the life cycle. This report highlights key op-
portunities and challenges in traceability management from the
development stage to production.

CCS CONCEPTS
• Software and its engineering→Agile software development;
Programming teams; • Computer systems organization→ Cloud
computing.

KEYWORDS
Industry, Software traceability, DevOps, Web application, Agile

ACM Reference Format:
Zaki Pauzi, Rajvir Thind, and Andrea Capiluppi. 2023. Artifact Traceability
in DevOps: An Industrial Experience Report. In Proceedings of the Inter-
national Conference on Evaluation and Assessment in Software Engineering
(EASE ’23), June 14–16, 2023, Oulu, Finland. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3593434.3593451

1 INTRODUCTION
In software engineering, the traceability of artifacts across the soft-
ware life cycle is an established key continuous task that ensures the
connections between artifacts are maintained appropriately [5, 15].
Traceability management is critical for a variety of reasons, such as
for modelling dependencies between different components [8, 11],
change impact analysis [1, 2], and compliance assessments by reg-
ulatory and certifying bodies [4, 6, 12]. Despite having established

∗Also affiliated with University of Groningen, email: a.z.bin.mohamad.pauzi@rug.nl

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593451

the need for traceability for decades, this continues to be a crucial
component in practice today, particularly in DevOps [9].

This paper reports on the experience of two developers using
a DevOps platform to develop and deploy a web app using React
– a Javascript library – focusing on the traceability of the arti-
facts throughout the life cycle. The web app is an internal product
of a Data Analytics team at bp that serves to visualise interac-
tive graphs on team product offerings for clients, typically in use
cases where Data Analytics and Science is used. The web app uses
the open-sourced D3.js 1 with React 2 libraries. The developers’
team provides Data Analytics as a service to clients, empowering
decision-making and developing products within the Digital Tech-
nology space. Users of the web app are able to navigate and interact
with custom diagrams to understand product offerings and engage
with the developers’ team on current and potential use cases in
Data Analytics.

2 BACKGROUND
The evolution of agile software engineering continues in syner-
gies explored with well-established concepts, such as usability and
requirements engineering. In the mid-2010s, agile software engi-
neering ventured beyond development, acknowledging operations
alongside development, through DevOps [7]. The following agile
principles resonate closely with the importance of traceability in
DevOps:

• Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competi-
tive advantage.

• Business people and developers must work together daily
throughout the project.

In the continuous pursuit of managing change and advocating
effective collaboration between stakeholders and developers, ar-
tifacts traceability in DevOps becomes critical to the success of
product delivery. Artifacts traceability in DevOps has been gar-
nering considerable interest recently with tools support (e.g., SAT-
Analyzer [10, 13, 14]). For some current software-as-a-service (SaaS)
solutions, end-to-end traceability is already a core feature imple-
mented for users.

2.1 Before vs. Now
Before the current solution to collaborative software development
in DevOps, traceability of artifacts in the developers’ team used to
be very manual and arduous. Manual labour effort was needed to
trace requirements to code and other artifacts. Management of tasks
was more time-consuming and without an automated traceability
capability in place, collaboration in coding and testing was more

1https://d3js.org
2https://reactjs.org

180

https://doi.org/10.1145/3593434.3593451
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593451
https://d3js.org
https://reactjs.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593451&domain=pdf&date_stamp=2023-06-14


EASE ’23, June 14–16, 2023, Oulu, Finland Z. Pauzi, R. Thind, and A. Capiluppi

challenging. Different parts of DevOps were split: for example, the
code repository was disconnected from the Scrum/Kanban board
and the responsibility of tagging requirements to code commits
was solely on the developers’ responsibility to do so, manually. Test
cases had to be manually linked to the requirements and managers
had less understanding of progress because requirements traceabil-
ity was not well established and efforts in tagging for tracing were
sporadic. Tracing these manually was seen as a chore: developers
had little incentive to pick up on this, given the amount of time
and effort that were deemed to be better prioritised for coding and
testing.

A DevOps platform was recently introduced with end-to-end
automated traceability capabilities in software development, which
became an integral part of the DevOps process improvement of-
fered by the platform vendors. This paper publishes our experience
in using this DevOps platform to trace artifacts from business re-
quirements (i.e., user stories) to code implementation (commits
etc.) and test cases. The name of this DevOps platform cannot be
revealed for anonymity, but the concepts and takeaways from the
experience can be generalised to any DevOps platform with end-to-
end traceability capabilities. Based on our experience, we highlight
three key opportunities from established traceability in DevOps,
along with two ongoing challenges, summarised in Section 4.

3 LEVERAGING TRACEABILITY USING
DEVOPS PLATFORM

The DevOps platform is segmented into three main parts for the de-
veloper’s role: i) Scrum board, ii) Code repository, and iii) Pipelines.
Figure 1 shows a high-level overview of artifacts traced to one
another from each of these. In this figure, the connectors are bi-
directional; tracing can be done in both directions. The colours of
these connectors are segregated according to the different streams
of artifact traceability taking place, also denoted by the Trace num-
ber where each tracing is further detailed in the next sections.

3.1 Scrum board for Work Item management
Our team adopts the ‘Scrum’ approach [3] in DevOps. We run
through iterations of Sprints led by a Scrum Master, made of plan-
nings (prior to the next Sprint), stand-ups, reviews, and retrospec-
tives (at the end of every Sprint). For this particular project, The
Product Owner (key stakeholder) will join in some of the Scrum
Events, especially on planning.

On the Scrum board, we havemultiple buckets (columns) contain-
ing Product Backlog Items for every User Story (requirement):
Backlog, In progress, Validate, and Done. The ScrumMaster ensures
the hygiene of the board and addresses blockers during stand-ups.
All of these activities related to managing these Work Items can
only be effective when traceability between artifacts is managed.
On the Scrum board, the Work Items are the artifacts (i.e., cards
on the board). These Work Items may be a User Story, Product
Backlog Item, Test Case, Bug, or others.

There are three direct activity flows that involve tracing the arti-
facts (to and fro) within the Scrum board: (i) between requirements
and code implementation, (ii) between requirements and testing,
and (iii) between product backlog items and bugs. Requirements
(both functional and non-functional) are mainly gathered in the

initial stages of development, forming User Stories into Product
Backlog Items, typically done during backlog refinement meet-
ings.

3.2 User Story example: “User is able to export
spreadsheets from graph visual diagram."

To further illustrate how traceability of artifacts is established in a
requirement (User Story), we will be using the example of a user
being able to export a graph into a spreadsheet for download, which
is a functional requirement. This User Storywill produce Product
Backlog Items to achieve this requirement. The Product Backlog
Items are “Button UI for export", and “Export function". These are
also included with story points (useful for effort estimation) and
priority number (ranking of priority to be given). These are impor-
tant metrics in Sprint planning as the developers’ capacity needs to
be put into consideration against the estimated effort required for
each Product Backlog Item; this is to avoid developers over- or
under-commit in a Sprint. Tasks are then created for each of these
Product Backlog Items, which serve the purpose of highlighting
detailed tasks to complete.

3.2.1 Trace 1 (Green): Product Backlog Item ↔ Branch ↔ Pull Re-
quest. From these Product Backlog Items, we create branches for
each. This ensures that the trace link between the Product Backlog
Item and the Branch (in Code repository) is explicitly connected.
Work is done on the Branch and Commits are made. Once complete,
a Pull Request is raised and a code review is done between devel-
opers. The tracing of Product Backlog Item, Branch, and Pull
Request, can be clearly seen on the DevOps platform. Branches
are created by feature in our project. As such, we create an ‘export-
function’ branch, which is done directly from the Product Backlog
Items, and this can be traced both ways, including the Pull Request
that is raised when the work is done. During our Sprint review, the
User Story for this requirement is reviewed for progress.

3.2.2 Trace 2 (Red): Product Backlog Item ↔ Test Case. As the
Product Backlog Item is created, a Test Case is also generated.
This Test Case will need to be passed before the Pull Request
can be approved. This transitive trace link between Test case,
Product Backlog Item, and Pull Request ensures that code is
tested prior to any approved Pull Requests. In this example, Test
Cases of the “Export function" include automated unit testing to
verify the specific components within the code.

3.2.3 Trace 3 (Blue): Product Backlog Item ↔ Bug. Bugs are re-
ported through various means, for instance during user testing.
These areWork Items generated and linked to new Product Backlog
Items to address these Bugs. Tracing between those two artifacts
is essential to keep track of bugs and planning the work in Sprint
plannings to solve bugs on the go. By transitive links, the Branch,
Commits, and Pull Requests generated due to the Bug are all
visibly linked.

3.2.4 Transparency in linked artifacts. Effective traceability of re-
quirements provides insights into key indicators such as readiness-
to-ship requirements. Figure 2 is an example of the requirement
traceability report that is monitored by the Project Manager and the

181



Artifact Traceability in DevOps: An Industrial Experience Report EASE ’23, June 14–16, 2023, Oulu, Finland

Figure 1: Overview of trace links between artifacts in Scrum board, Code repository, and Pipelines

Team Leader to track the progress of requirements. A key opportu-
nity here is Transparency. Established visible traces of these Work
Items can be seen by project stakeholders without having the need
to raise a request and wait for the turnaround response from the
Scrum Master. As such, that was the previous arrangement in place
prior to using the end-to-end traceability the DevOps platform
offers. On the flip side, the Product Owner for this project is now
able to see and monitor the real-time progress of the Work Items
through a dashboard because of the transparency of the linked
Work Items.

Figure 2: Requirements traceability report example

3.3 Code repository for version control and
collaboration

Having the code repository fully integrated with the DevOps plat-
form enabled seamless tracing of artifacts, allowing effective col-
laboration, tracking and reverting changes, if required. Tracing of
artifacts within the repository, for example in branching, enabled
us to handle conflicts easier during branch merges as code changes
and modifications to files are clearly traced. A key opportunity here
is Effective code reviews, where the developers can easily analyse
and assess each others’ code Commits and approve Pull Requests
with a clear indication of what Tasks have been completed to com-
plete a Product Backlog Item. Previously, this would have been
done by manually checking which requirement each Pull Request
is tagged to by adding notes in Commit descriptions. Code reviews
were more complex because manual tracing needed to be done to
identify the authors of the code and conflict resolutions would have
need to be resolved manually.

3.4 CI/CD pipeline for build and release
An automated trigger is in place when Pull Requests are com-
pleted; the master branch is listened for any commits done shown
by Trace 4 (black connector) at Figure 1. The Build Pipeline runs
and builds the software code to generate a zipped folder of Drop
Artifacts: this refers to the built version (binary files) of source
code ready for deployment. Once the Drop Artifacts are gener-
ated, this triggers a Release Pipeline and the code is deployed
to the cloud in separate environments: Dev, Test, Staging, and Prod,
shown by Trace 5 (purple connector) at Figure 1.

The Release Pipeline deploys the code artifacts to a cloud
platform app service through its default domain. The app can then
be accessed by users through its registered URL. Traceability of
these artifacts is end-to-end, although, within the cloud platform
app service, none of the artifacts from the DevOps platform can be
traced; it is one-way.

3.5 DevOps REST API
With established traceability in place, data about the management
of artifacts is useful due to the links across the Scrum board, Code
repository and Pipelines. A key opportunity here is Analytics ca-
pability, as data is consumed using a REST API endpoint. Examples
of relevant data points would be the metadata of the Work Items,
historical Sprints, and remaining requirements to be fulfilled. The
API is used to provide the data for a monitoring dashboard to track
the progress and state of the project throughout its life cycle. This
was not possible previously, as the data on tracing theseWork Items
would not have been complete end-to-end, resulting in less accurate
representations of the project state and progress. Manual tracking
and tracing needed to be done to provide visibility on requirements
completion, which is now, for the most part, automated.

4 KEY OPPORTUNITIES AND CHALLENGES
Based on our experience, we have identified three main opportu-
nities in which artifact traceability in DevOps plays a key role,
summarised in the following:

(1) Transparency: As per the agile manifesto on business people
and developers working together daily, transparency of how
requirements are traced to implementation and testing is
critical for trust and assurance. With explicit traceability in

182



EASE ’23, June 14–16, 2023, Oulu, Finland Z. Pauzi, R. Thind, and A. Capiluppi

place, meetings about project progress are quick and effec-
tive, as stakeholders themselves already have visibility of
Work Items traced to other artifacts.

(2) Effective code reviews: Developers on the team have visibility
of Pull Requests and the code Commits done. Reviewing
each others’ codes is an essential component of quality con-
trol and best practices. The result of reviewing code in the
team is to identify imminent bugs, increase code quality, and
help other developers learn the source code. With traceabil-
ity already in place, we did not have to do a tracing exercise
like previously, for example, reading comments in the source
code to analyse which requirement a function or a class is
referring to.

(3) Analytics capability:Managers of teams and projects are able
to derive insights when Work Items are effectively linked
and traced. For example, measuring Sprint velocity, code
coverage, and requirements traceability matrix. Customised
dashboards with visuals of these have helped the managers
to make informed decisions and address any impediments
swiftly, where necessary. Analytics of past projects also helps
to estimate future resourcing needs for upcoming projects,
which is crucial to budgeting.

4.1 Ongoing challenges
Within opportunities, there are ongoing challenges that arise with
end-to-end traceability in the use of DevOps within the team,
namely in extra efforts of developers maintaining Hygiene and
dissemination of Knowledge.

(1) Hygiene: Traceability can only be effective when everyone
plays a role in maintaining the cleanliness and adhering to
the ways of working. For example, a not-so-helpful Commit
description leads to a vague Pull Request and time wasted
on meetings to clarify work done. To address this, consistent
quality checks were done by the Scrum Master to ensure
that everything is in place and rules and procedures were
followed. In situations where this was not the case, issues
were raised during Sprint retrospectives, which serve as a
checkpoint of lessons learned throughout the developers’
experiences throughout the Sprint. During the retrospective,
improvement in the ways of working is discussed.

(2) Knowledge: Every project stakeholder may not necessarily
be on the same level of understanding regarding the ways of
working, like formatting of Work Items on the Scrum board.
To address this, a working document serving as a Wiki was
put in place as a reference point for any new members, and
even existing ones. This Wiki covers important aspects of
using DevOps effectively for various roles. For the develop-
ers like ourselves, we use it to document how code reviews
are done, formatting of Code repository artifacts, running
tests etc. The Wiki also contains guidelines for the Scrum
Master to conduct the Scrum Events throughout Sprints and
caters for the stakeholders from the business (such as product
sponsors). This Wiki frequently gets reviewed and updated,
where necessary. Lessons learned during Sprint retrospec-
tives are used to review ways of working and eventually, the
Wiki gets updated after agreement.

5 CONCLUSION
This paper reports on our experience working on aweb app develop-
ment using a DevOps platform, with a focus on artifact traceability
from requirements gathering to deployment. Throughout this, we
have highlighted key opportunities in established artifact traceabil-
ity capabilities in DevOps: Transparency, Effective code reviews,
and Analytics capability. Beyond the opportunities highlighted, key
metrics to report for future work are quantitative measurements (or
estimates) of end-to-end traceability effects (e.g., time saved). We
have also identified ongoing challenges that need to be addressed,
namely on maintaining Hygiene and dissemination of Knowledge.
This industrial experience report serves as a guide for others to
leverage and harness the key opportunities that DevOps has to
offer in artifact traceability.

REFERENCES
[1] Robert S Arnold. 1996. Software change impact analysis. IEEE Computer Society

Press.
[2] Thazin Win Win Aung, Huan Huo, and Yulei Sui. 2020. A Literature Review of

Automatic Traceability Links Recovery for Software Change Impact Analysis. In
Proceedings of the 28th International Conference on Program Comprehension (Seoul,
Republic of Korea) (ICPC ’20). Association for Computing Machinery, New York,
NY, USA, 14–24. https://doi.org/10.1145/3387904.3389251

[3] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.
1999. SCRUM: An extension pattern language for hyperproductive software
development. Pattern languages of program design 4, 1 (1999), 637–651.

[4] Fergal Mc Caffery, Valentine Casey, M. S. Sivakumar, Gerry Coleman, Peter
Donnelly, and John Burton. 2012. Medical Device Software Traceability. Springer
London, London, 321–339. https://doi.org/10.1007/978-1-4471-2239-5_15

[5] Orlena Gotel, Jane Cleland-Huang, J Huffman Hayes, Andrea Zisman, Alexander
Egyed, Paul Grünbacher, and Giuliano Antoniol. 2012. The quest for ubiquity:
A roadmap for software and systems traceability research. In 2012 20th IEEE
international requirements engineering conference (RE). IEEE, 71–80.

[6] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically enhanced
software traceability using deep learning techniques. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 3–14.

[7] RashinaHoda, Norsaremah Salleh, and JohnGrundy. 2018. The Rise and Evolution
of Agile Software Development. IEEE Software 35, 5 (2018), 58–63. https:
//doi.org/10.1109/MS.2018.290111318

[8] Hongyu Kuang, Jia Nie, Hao Hu, Patrick Rempel, Jian Lü, Alexander Egyed, and
Patrick Mäder. 2017. Analyzing closeness of code dependencies for improving
IR-based Traceability Recovery. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 68–78. https://doi.org/
10.1109/SANER.2017.7884610

[9] Dulani Meedeniya, Iresha Rubasinghe, and Indika Perera. 2020. Artefact consis-
tency management in DevOps practice: A survey. In Tools and Techniques for
Software Development in Large Organizations: Emerging Research and Opportuni-
ties. IGI Global, 98–129.

[10] S. Palihawadana, C. H. Wijeweera, M. G. T. N. Sanjitha, V. K. Liyanage, I. Perera,
and D. A. Meedeniya. 2017. Tool support for traceability management of soft-
ware artefacts with DevOps practices. In 2017 Moratuwa Engineering Research
Conference (MERCon). 129–134. https://doi.org/10.1109/MERCon.2017.7980469

[11] Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. 2014. Achieve-
ments and challenges in state-of-the-art software traceability between test and
code artifacts. IEEE Transactions on Reliability 63, 4 (2014), 913–926.

[12] Gilbert Regan, Fergal Mc Caffery, Kevin Mc Daid, and Derek Flood. 2013. Medical
device standards’ requirements for traceability during the software development
lifecycle and implementation of a traceability assessment model. Computer
Standards & Interfaces 36, 1 (2013), 3–9. https://doi.org/10.1016/j.csi.2013.07.012

[13] Iresha Rubasinghe, Dulani Meedeniya, and Indika Perera. 2018. Automated Inter-
artefact Traceability Establishment for DevOps Practice. In 2018 IEEE/ACIS 17th
International Conference on Computer and Information Science (ICIS). 211–216.
https://doi.org/10.1109/ICIS.2018.8466414

[14] Iresha Rubasinghe, Dulani Meedeniya, and Indika Perera. 2021. SAT-analyser
traceability management tool support for DevOps. Journal of Information Pro-
cessing Systems 17, 5 (2021), 972–988.

[15] George Spanoudakis and Andrea Zisman. 2005. Software traceability: a roadmap.
In Handbook of software engineering and knowledge engineering: vol 3: recent
advances. World Scientific, 395–428.

183

https://doi.org/10.1145/3387904.3389251
https://doi.org/10.1007/978-1-4471-2239-5_15
https://doi.org/10.1109/MS.2018.290111318
https://doi.org/10.1109/MS.2018.290111318
https://doi.org/10.1109/SANER.2017.7884610
https://doi.org/10.1109/SANER.2017.7884610
https://doi.org/10.1109/MERCon.2017.7980469
https://doi.org/10.1016/j.csi.2013.07.012
https://doi.org/10.1109/ICIS.2018.8466414

	Abstract
	1 Introduction
	2 Background
	2.1 Before vs. Now

	3 Leveraging Traceability Using DevOps Platform
	3.1 Scrum board for Work Item management
	3.2 User Story example: ``User is able to export spreadsheets from graph visual diagram."
	3.3 Code repository for version control and collaboration
	3.4 CI/CD pipeline for build and release
	3.5 DevOps REST API

	4 Key Opportunities and Challenges
	4.1 Ongoing challenges

	5 Conclusion
	References

