980 research outputs found

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

    Get PDF
    Background: Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. Method: The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient’s embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Results: Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. Conclusion: The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient’s embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide

    Brain Dynamics Based Automated Epileptic Seizure Detection

    Get PDF
    abstract: Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The motivation for the development of an automated seizure detection algorithm in this research was to assist physicians in such a laborious, time consuming and expensive task. Seizures in the EEG vary in duration (seconds to minutes), morphology and severity (clinical to subclinical, occurrence rate) within the same patient and across patients. The task of seizure detection is also made difficult due to the presence of movement and other recording artifacts. An early approach towards the development of automated seizure detection algorithms utilizing both EEG changes and clinical manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. Approaches based on artificial neural networks have improved the detection performance at the cost of algorithm's training. Measures of nonlinear dynamics, such as Lyapunov exponents, have been applied successfully to seizure prediction. Within the framework of this MS research, a seizure detection algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE) was developed and tested. The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 93% and mean specificity of 0.048 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free and patient-independent. It is expected that this algorithm will assist physicians in reducing the time spent on detecting seizures, lead to faster and more accurate diagnosis, better evaluation of treatment, and possibly to better treatments if it is incorporated on-line and real-time with advanced neuromodulation therapies for epilepsy.Dissertation/ThesisM.S. Electrical Engineering 201

    Predicting Epileptic Seizures: A Comprehensive Study of ML and DL Algorithms

    Get PDF
    Epilepsy, a complex neurological disorder marked by recurrent seizures, presents a formidable diagnostic and therapeutic challenge in healthcare. Electroencephalogram (EEG) signals are indispensable tools for detecting epileptic activity within the brain. Leveraging recent advancements in machine learning (ML) and deep learning(DL), Data Analytics our study investigates the effectiveness of various ML and DL algorithms for epilepsy detection using processed EEG data. Through a comprehensive literature review, we selected prominent ML and DL techniques such as Support Vector Machines (SVMs), Random Forest (RF) classifiers, Gaussian NaĂŻve Bayes, CNNs, etc.  Our systematic experimentation and evaluation, conducted on a dataset sourced from the UCI Machine Learning Repository, demonstrates notable results achieved by the models exhibiting robust predictive capabilities. This research significantly contributes to advancing the field of epilepsy prediction, offering insights into the efficacy of diverse ML and DL models for seizure detection. The implications of these findings hold promise for refining epilepsy management strategies, ultimately enhancing patient care and quality of life. This underscores the imperative for interdisciplinary collaboration between neuroscience, AI, and healthcare to address the complex challenges posed by epilepsy.&nbsp
    • …
    corecore