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ABSTRACT

Approximately 1% of the world population suffers from epilepsy. Qs
long-term electroencephalographic (EEG) monitoring is the dgalidard for
recording epileptic seizures and assisting in the diagnosis aatment of
patients with epilepsy. However, this process still requires sbaures are
visually  detected and marked by  experienced and trained
electroencephalographers. The motivation for the development of amatat
seizure detection algorithm in this research was to assisigdmns in such a
laborious, time consuming and expensive task. Seizures in the EEGnvary
duration (seconds to minutes), morphology and severity (clinical to sidat]i
occurrence rate) within the same patient and across patientsaskhef seizure
detection is also made difficult due to the presence of movearahtother
recording artifacts. An early approach towards the developmentitomated
seizure detection algorithms utilizing both EEG changes and allinic
manifestations resulted to a sensitivity of 70-80% and 1 falsetwt per hour.
Approaches based on artificial neural networks have improved thetidetec
performance at the cost of algorithm’s training. Measures ofmeanl dynamics,
such as Lyapunov exponents, have been applied successfully to seizure
prediction. Within the framework of this MS research, a seizutectien
algorithm based on measures of linear and nonlinear dynamics, i.adapgve
short-term maximum Lyapunov exponent (ASL) and the adaptive Teager
energy (ATE) was developed and tested. The algorithm was testedgsterm



(0.5-11.7 days) continuous EEG recordings from five patients (3 wrtrcranial

and 2 with scalp EEG) and a total of 56 seizures, producing a reesiti\sty of

93% and mean specificity of 0.048 false positives per hour. The developed seizure
detection algorithm is data-adaptive, training-free and patielependent. It is
expected that this algorithm will assist physicians in reduthe time spent on
detecting seizures, lead to faster and more accurate diggmetses evaluation of
treatment, and possibly to better treatments if it is incorpbrateline and real-

time with advanced neuromodulation therapies for epilepsy.
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Chapter 1

INTRODUCTION
1.10verview
The word ‘Epilepsy’ is derived from the ancient Greek word ‘Eysia’. The
condition was first registered in the East in a Babyloniaatize that was
discovered in southern Turkey. In ancient times, epilepsy was coewitie be
sacred as people believed that it was a form of attack bgrieand curse by the
gods. This misconception resulted in the discrimination of epileptiens
forcing them to stay in darkness. Hippocrates once remarkethéhday epilepsy
is understood, it would cease to be considered divine. Today, with the discove
of EEG (Electroencephalography — recording of bioelectrici@lity in the brain)
and advancements in neuroscience, epilepsy is better understood asaymalirol
disorder characterized by epileptic seizures that result &bnormal neuronal
activity in the brain.

Epilepsy is one of the most common neurological disorders that affe
significant percentage of the world’s population. Approximatelyiorevery 100
persons experiences an epilepsy-related event (epileptic 3eazige@me time in
their life. Epileptic seizures are often violent disturbanceshefnormal brain
functionality. These seizures are due to the sudden development of highly
synchronous abnormal paroxysmal cerebral electrical activitye brain and can
be fairly recurrent in chronic epilepsy. The clinical mandgehs of an epileptic
seizure include behavioral changes, involuntary motor functions likendlext
arms and legs, eyes rolling towards the back of the head, teetthiclg, facial
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twitches or shaking of one or both sides of the body. Theseatlisyenptoms,
along with EEG recordings, are used by physicians to detect aidate
epileptic seizures.

Epilepsy can occur at any age, equally in both sexes, but is most
frequently encountered in the very young and the elderly population. Chse
epilepsy include genetic abnormalities, developmental anomalidsjlefe
convulsions, central nervous system infections, hypoxia, ischemiauamatst
Although patients with epilepsy can lead a normal life, they anallysadvised
not to participate in any activity that an occurring seiztae put their life in
danger (e.g. driving a car). A comprehensive study on the impapilepsgy and
its treatment on patients with epilepsy were carried out usimicai and
demographic information and self- completed questionnaires. Dag¢zteallfrom
over 5000 patients showed over a third of total patients have frequemtese
with a fifth reporting that their seizures were not well cotetbby antiepileptic
medication (Baker, Jacoby, Buck, Stalgis, & Monnet, 1997).

Epilepsy can be usually controlled (but not necessarily cured) using
available anti-epileptic drugs (AEDs). Epilepsy can lead evedetih of the
patient due to lack of effective treatment and medication. An a&dn30% of
epileptic patients develop medically intractable epilepsy wherseizare control
can be achieved with any of the available AED medications. dmated 42,000
epileptic patients die from Status Epilepticus every year inlhged States
alone, a condition where seizures occur continuously and the patieypuzaily
recover only with extreme external intervention.
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1.2 Electroencephalography

The electroencephalogram (EEG) signal contains information dtewectrical

activity of the brain and is recorded either from the surfdcthe head (scalp
EEG) or directly from the brain (intracranial EEG). EEGasdate universally
accepted as the most reliable clinical tool for understandingpspi Billions of

neurons are electrically charged pump ions across their mempeantesreate a
potential difference that EEG measures over time. EEG meathass voltage
fluctuations as differences in voltage between any two recosilieg in the brain.
It is important for an electroencephalographer to understandhin&BG signal
from neuronal population in the brain is greatly modified by thne tit reaches a
recording electrode. Every electrode will record an averagseafrical activity

around it along with voltage fluctuations from distant parts of the brain.

Scalp EEG, being a non-invasive recording technique, is plagued by
recording and movement artifacts. These artifacts are thatddegenerated by
sources other than the brain. Physiological artifacts drsa body activities
which include head movement, eye blinking, tongue movement, while
environmental artifacts originate from power line interferencelgctrode
movement etc. Because of such noise, and the fact that deeperabtizity
cannot be recorded accurately by scalp EEG, an invasive techniques sidgveals
are recorded directly from the human cortex using subdural grideciraeles
placed directly on the surface of the cortex is preferred. Taeording
arrangement is known as Electrocorticography (ECoG). Otheifispareas in
the brain can be effectively targeted (Intracranial EEG @EBoy using this
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approach, thereby improving the information content of the signal. Iti@udas
these recording electrodes are placed inside the brain, Wwieeeeis little or no
interference from outside sources, the occurrence of artifacts ts/geshuced.

The discovery of EEG by Richard Caton contributed to a better
understanding of the electrical activity of the brain. ThisHests Berger to first
record human EEG (Brazier, 1961). Using a string galvanometer Ise wa
successful in recording alpha rhythms (EEG activity in thguency range of 8
to 12 Hz). By the year 1960, the usage of clinical and experimeB&@l lkad
started to become an important tool in medical institutions and tegmitals to
explore mental and psychological processes in the brain. The adwarcem
computers soon made people believe that EEG interpretation could pktaiyn
automated in near future.

Continuous EEG recording has been a boon for all those working in the
area of epilepsy research. The main aim of long-term EEG onmtis to record
typical seizures as it helps physicians better diagnose andgéatents and also
localize the epileptogenic focus (the region of the brain wharei® originates
from). Nowadays, clinical EEG is combined with video monitotm@lso record
behavioral activities of epileptic patients and produces huge amotirata.
Epileptic activity in the brain corresponds to abnormalities inBB& recording
that allow clinicians and researchers to detect seizures. dtneation behind our
research has been the development of an automated seizure detgotidmato

assist physicians in such a laborious, time consuming and ex@dask. This



task is costly as a large amount of time is spent on visudimgaof epileptic
seizures.

To effectively address the seizure detection problem it is itapbto
understand and study normal EEG recordings. An EEG recording, devoid of
abnormal patterns associated with a neurological diseasenisdi@ormal EEG.

A wide variety of normal EEG patterns can be seen in diffarehviduals in
different age groups. Therefore, an electroencephalographer showabdlebéo
distinguish and take into consideration all these features of noria@l &
different ages. The most commonly used EEG features are morphology,
frequency, amplitude and phase of the EEG signal. It should alsotéd that
EEG from an epileptic patient should be considered abnormal evtecoifitains
normal EEG components. Normal EEG activity is described in tefnsythmic
activity in specific frequency bands. The classification of Eft§hal based on
activity in specific frequency bands is listed below:

e Delta rhythm

EEG rhythmic activity below 4 Hz is categorized as deltghmn. It is most
prominent frontally in adults and posteriorly in children. It consistshigh
amplitude waves found during sleep and while performing tasks requiring
continuous attention.

e Theta rhythm

EEG activity in the frequency range 4-8 Hz is categorizthata rhythm found

in young children during sleep. This frequency range of EEGigchas been

associated with reports of relaxed, meditative, and creative states.
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e Alpha rhythm

EEG activity in the frequency range 8-13 Hz is categorizedlpha rhythm. It
consists of regular waveforms with sharp peaks which are promimeosterior
regions of the head while resting. This was the first recoetisirical activity of

the brain (recorded by Hans Berger); hence named as ‘alpha rhythm’.

e Beta rhythm

EEG activity in the frequency range 13-30 Hz is categorizeteda rhythm. It

has symmetrical distribution on both sides of brain and is most evident
frontally. Low amplitude beta with multiple and varying frequeacis often
associated with active, busy or anxious thinking and active concentration.

The EEG signal is considered to be abnormal if it contains any
epileptiform activity, slow waves and abnormalities of amplitudecertain
patterns resembling that of normal activity but deviating fromvith respect to
certain features like frequency (Fisch, 2003). In a broad clestsiin, epochs of
EEG with seizure activity are called ictal EEG, while thet of EEG is called

inter-ictal EEG.

1.3 Classification of Epileptic Seizures

An epileptic seizure, as defined by the International Leaggainst Epilepsy
(ILAE) is “a transient occurrence of signs and/or symptoms duabhormal
excessive or synchronous neuronal activity in the brain” (Fishar,&2005). The
main features used for classification of epileptic seizures their clinical

manifestations and changes in EEG recordings. The most widelptad
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classification of epileptic seizures is defined by the Cassion on Classification

and Terminology of ILAE. Video and EEG recordings are togethed ue

classify seizures. Based on video monitoring for clinical maaifiess, the

epileptic seizures can be classified into two main categories:

Clinical seizures

These are epileptic seizures which show clinical manifesimths reported by
the patient or an observer. These are behavioral events chaeattby
involuntary movements like flexing of arms and legs, eyes rotivgards
back of the head, teeth clenching, facial twitches or shaking.

Sub-clinical seizures

These are seizures with no clinical manifestations, but wittorded
abnormalities in the EEG. These electrographic events ardyustighorter
duration and remain more localized in the brain when compared toatlini

seizures.

A second type of classification of seizures, based on the exttdm bfain that is

affected by a seizure is more general and exhibit 2 major categories

Generalized seizures
These seizures typically affect both hemispheres of the feaije areas of
the cortex or subcortical structures). Such seizures do not hagcegnizable

focus at onset and usually cause loss of consciousness.



Partial seizures

This is the most common type of seizures in children and tl&radeaphic
changes are limited to one hemisphere of brain. They are fultdssified as
Simple Partial Seizures there is no impairment in the consciousness of the
patient and if they are electrographically limited to a $megion of one
hemisphere or, a&Somplex Partial Seizurathe patients lose consciousness.
In Fig. 1.1 and Fig. 1.2 we show two typical examples of a compleialpart
clinical seizure and a simple partial sub-clinical seizuspeetively. The

subclinical seizure is comparatively of lesser duration and spatial extent
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Figure 1.1: 90sec of intracranial EEG with a secondarily generalizedptam

partial seizure clinical seizure. Seizure onset is the right hippocampus.
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1.4Brain Dynamics

It is important to understand the complexity of the human brain inetels of
causes for epilepsy. Human brain can be seen as a highly complexgaonl
system with changes in its dynamics that can be usedtiogiiish an epileptic

from a normal brain. Comprehensive studies in EEG-Brain dyndmans been

carried out in the past (Bar, 1980). Complex nonlinear systems can be studied

either through mathematical modeling or time series aisalyGme series
analysis has advantages over mathematical models as it isultliffif not
impossible, in the case of the human brain to find analytical sokito nonlinear
equations in closed form.

The early belief that epileptic seizures could not be anticipaésddue to
the assumption that seizures were abrupt transitions that occancminly. The
ability to predict epileptic seizures well in advance ofrtleeicurrence may lead
to better treatments of epilepsy. For example, this can be adhigvasing the
EEG signals to monitor the dynamical changes of the brain ower &nd
intervene therapeutically at the right time. Seizures can beideved as

manifestations of dynamical changes of a chaotic nonlinear sykgtntan be

captured by measures of chaos, such as the Lyapunov exponents riBenetti

Galgani, Giorgilli, & Strelcyn, 1980; Shimada & Nagashima, 1979). The
hypothesis that the brain progresses into and out of different sfatbaos was
formulated in the past (lasemidis et al., 2003). A group led by ldsem
Sackellares and Williams, was the first to report applicationnohlinear
dynamics to clinical epilepsy (L. lasemidis, Zaveri, Sackeda Williams, &
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Hood, 1988). It was also the first time NIH (National Institute Hgalth)
supported a clinical investigation into the application of nonlinear rdigsa
theory on epileptic seizures. This hypothesis changed some long-hedts beli
about predictability of epileptic seizures. The transition from mbrstates to
epileptic seizures was explained as a deterministic pro¢esb.(lasemidis,
Olson, Savit, & Sackellares, 1994; Olson, lasemidis, & Sackelldr@39).
Nonlinear dynamical analysis of EEG recorded with subduratreldes showed
the existence of long-term preictal periods (order of minwded)increased the
prospects of seizure prediction algorithms by monitoring the evolutichat-
term Lyapunov exponents (S (L. D. lasemidis, Chris Sackellares, Zaveri, &
Williams, 1990; L. D. lasemidis & Sackellares, 1991; L. lasemedisl., 1997;
Sackellares, lasemidis, Shiau, Gilmore, & Roper, 2000). The estifogapdnov
exponents in the above approaches are used to measure the infornoation fl
(bits/sec) along local eigenvectors as the brain movesnwithi state space.
Application of the same technique to epileptogenic focus localizatem also

reported (M. C. Casdagli et al., 1997; M. Casdagli et al., 1996).

1.5Research Objectives

The main aim of this research is to provide an efficaciousaliee to the visual
detection of seizures from long-term (days to weeks) continuousreéaedings
by developing an automated, training-free, patient-independentadapdive
robust algorithm using measures from linear and nonlinear dynaiwes new
measures, Adaptive Teager Energy (ATE) and Adaptive Short-Tearimmmam
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Lyapunov exponent (ASThay are introduced in this thesis to capture changes in
the energy and nonlinear dynamics of the EEG signal respectively. Eqpfacted
activity (seizure) typically possess higher energy when cordp@areepochs of
inter-ictal (non-seizure) events. This difference in energyb@agaptured using
ATE, but is not specific only seizures. However, dynamics correspgridiictal
epochs may be different from those of non-ictal epochs and thisediffeican be
captured using the maximum Lyapunov exponent. The innovation is esthmate
Short-term Lyapunov exponent as data-adaptive by selecting the gbaramh
time lagt in the reconstruction of the state space of the brain over time. The
sample autocorrelation function was used to estimate the tqrferl@very 30sec
EEG segment. The data-adaptive Teager energy was alsotedtinsng the

same time lag.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 outlines a Hbastription of
dynamical systems and chaos theory, Lyapunov exponents, Teager andrgy
autocorrelation function. Application of all these measures to EHSesented.
The estimation procedure of our proposed measures, A% abd ATE, in the
seizure detection algorithm is explained in this chapter. Ch8ptlascribes the
steps involved in the automatic selection of the optimal electtodas followed
over time. An example of application of the algorithm to a singletmde EEG

recording with one seizure is presented. Results of the perfoemah the
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algorithm in all patients analyzed, including possible variationsare presented

in chapter 4. The overall result of this research is summarized in chapter 5.
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Chapter 2

METHODS AND TOOLS
2.1Dynamical Systems and Chaos
Dynamics is the study of changes of the states of amsyaseit evolves in time.
Chaos theory studies the behavior of nonlinear dynamical sysikent)é brain,
that are highly sensitive to initial conditions. Any perturbattonthe initial
conditions of such systems yields widely diverging dynamicss Behavior is
known as deterministic chaos. Convincing evidence for existenceesfrdeistic
chaos has been provided from a variety of research experiments GRowyi, &
Swinney, 1983; Swinney, 1983). Differential equations have been used to model
physical systems to determine how they behave temporally underedif
experimental conditions and so try to predict their future statexlelhg a
physical system using differential equations is essentialjossible when the
order and degree of the modeled systems are very high. Nonlirst@amsywith
closed form analytical solutions typically settle in a stestdye or in a periodic
motion. In 1975, a new kind of motion was observed which was erratictyplas
of motion was termed chaos, and the theory developed to explain stemsyas
chaos theory.

Many natural systems showing chaotic behavior have been
comprehensively studied (Hastings & Powell, 1991; Schaffer, 1985)mutst
famous one being the weather. The initial study on chaos theoryurssed by
a meteorologist, Edward Lorenz, while working on weather prediction saddel
was running his experiments on a computer with a set of differeqgtimations to

14



model the weather. When he started the same experiment witregewlifset of
initial conditions, he found that rounding-off errors in initial conditidvasl a
large influence on the subsequent dynamics of the model equations.

A system is said to be in an unstable steady state iff gdlrbations
make the system evolve away from the steady state. Formpéxantone resting
on its apex can be balanced at just one particular point. Biteifcbne is
perturbed it falls to the ground which is its stable state. Aesyshay experience
more complicated steady states, in the sense that thersaaseregions in the
state space the system may eventually rest to or s&abiliZven though nearby
points in the state space of a chaotic system move away &dmogher, a steady
chaotic state can dynamically be defined as stable isyseem always moves
(according to a deterministic probability distribution) withirand never escapes
from it under a small bounded perturbation (chaotic attractor).

A detailed description of such systems was first described matloally
by Lorenz in his seminal paper in 1963. He presented a systencadfided
differential equations which behave chaotically. This led him $onbiw famous
speculation that a butterfly flapping wings in Brazil (which isnaall change in
the initial conditions in the atmosphere) might cause a tornadoxasTé&his
dependence of the evolution of a system on its initial conditions nudlesgic
motion a complex phenomenon. In this sense, it is intuitive to expédystams
in nature are complex, and the larger the number of systeatés\striables, the

more complex the system is.
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It is important to understand the properties of chaotic systems, gbme

which are:

211

Determinism:Even though chaotic systems exhibit random behavior, they
are classified as deterministic systems. This is becduseei initial
conditions are known precisely, future behavior of the system can be
predicted. However, initial conditions are never known for a real system.
Nonlinearity: Nonlinearity is a necessary condition for a system to exhibit
chaos. A perfectly linear system can never exhibit chaos.

Sensitivity to initial conditionsThis is the most important characteristic of
chaotic systems. Chaotic systems for any two differenalinibnditions
(however close) always diverge exponentially as they evolvems. ti
Hence, a small change in the initial conditions takes the mystea
completely different trajectory.

Boundednessif the divergent orbits go to infinity, the system is
considered not to be chaotic as the system is unbounded and cannot

produce steady states.

Lorenz Attractor

The Lorenz attractor is the steady state of a nonlinearichaattem of

three coupled nonlinear ordinary differential equations (Tucker, 1999). These

equations were derived by Lorenz in 1963 and represent a simplified wfodel

thermal convection in the lower atmosphere. Lorenz showed thatetats/ely

simple-looking set of equations (shown in Eq. 2.1) could have highly erratic
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dynamics for a range of defined parameters, under which the dmare

chaotic. These unique equations are:

X =o(y —x) (2.1)

y=rX—y — XZ

Z=xy— bz
where X, y, z are the state variables andr and b>0 are dimensionless
parameters. A sample trajectory in the 2 and 3 dimensionalsgiate generated
from these set of equations is shown in figure 2.1.

Upon close inspection of the plots shown in Fig. 2.1, the trajectories
depicted therein never intersect each another. For any smallbagion of initial
conditions, the state-space trajectory will never follow the esapath.
Furthermore, if one were to plot the trajectories of the solutierohe set of
initial conditions and then for another set of initial conditions (itdgimally
close to the first), the two trajectories would diverge from @am®ther
exponentially. This means that not only does a small perturbatianitial

condition result in a trajectory that will never intersect vitht of the original

system but it results in a completely different trajectory.
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Figure 2.1: Lorenz system: Trajectories in the state space with irdtadbitions

x(0)=1, y(0)=2 and z(0)=3 and parametersl 0, »=8/3,r=28 and N=20400.

2.2 State Space Representation and State Space Reconstruction
For a discrete dynamical system the state space (or ppase) is a vector space
in which all possible states of a system are representechwitiique vector (set
of points). The rank of this space gives the necessary number of slexjree
freedom or variables the system may have.

For a mathematically modeled system, its system equatiorisecased to
create the state space. However, for real-world chaotic dgaksystems, the

system equations are unknown and hence we have to employ methtdsctdra
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reconstruction to obtain the state space. We will follow the apprdaceloped
by Takens (Takens, 1981), which is based on the method of the deldinates
for reconstruction of the state space (embedding) of an unknown syBhem
embedding method has been proven useful, particularly for time senesatgel
from low-dimensional, deterministic dynamical systems. This approd state
space reconstruction has found its applications in several fiedahgineering and
has been a favorite approach in the analysis of epileptic $tfi@ls for seizure
prediction (L. D. lasemidis et al., 2003) and epileptogenic focus |atialme (L.
D. lasemidis et al., 1990; Sabesan et al., 2009).

Takens’ delay embedding theorem states the conditions under which a
chaotic dynamical system can be reconstructed from its obe&ivadnd is
explained as follows:

For a given measured time serigét), the time-delay vectors (embedding
vectors)X;(n) are given by

X,(n) ={xn),x;n+1),...x;(n+ (m—1)7)} (2.2)
where ‘m’ is the embedding dimension which should be sufficientyeldor a
perfect state space reconstruction ant the time-delay (or embedding lag).
These parameters have to be carefully selected in orderilitafaa good state
space reconstruction. An embedding dimension of m=7 for epileptiaresihas
been reported by lasemidis et al (Olson, lasemidis, & Saok&llA989) and is
used in our research too. According to Takens, in order to properly embed a signal
in the state space, the embedding dimension should at least be egDal tb,

where D is called as the Box Counting Dimension or Minkowski-Bouligand
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dimension (Dubuc, Quiniou, Roques-Carmes, Tricot, & Zucker, 1989¢,Pasi
2003). One of the measures used to estinfats the state space correlation
dimension (Liebovitch & Toth, 1989). The brain, being a nonstationary system, i
not expected to be in a steady state in the strict dyahisense at any location.
The activity at brain sites is constantly moving through stesates, which are
functions of certain parameter values at a given time. Accoudirtgfurcation
theory, when these parameters change slowly over time (egn, thb system is
close to a bifurcation point), dynamics slow down and conditions of stationa
are better satisfied. In the ictal state (Haken, 1996), tempooatlered and
spatially synchronized oscillations in the EEG usually pefsisa relatively long
period of time (in the range of minutes).

Dividing the ictal EEG into short segments ranging from 10.24 &0t
sec in duration and estimatingfrom ictal EEG has produced values between 2
and 3 (L. lasemidis, Principe, & Sackellares, 2000), implying thetenge of a
low-dimensional manifold in the ictal state. Therefore, an embeddmgrdion
m of at least 7 can be used to properly reconstruct the attictioe ictal state.
The embedding dimension for inter-ictal (between seizures) pisriexpected to
be higher than that of the ictal state, but a constant embeddiegsion ofm=7
will be used in this thesis to reconstruct all relevant spees from both ictal
and inter-ictal period, so that comparison of measures from thpeads makes
physical sense. The advantage of this approach is that aleyant information
in dimensions higher than 7 would not affect our results. The disadvastigd

relevant information in higher dimensions thar7 is missed.
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The time-delayt can be estimated from the decay time of the
autocorrelation function. The purpose of time dalag to make the components
of the vectors in the embedding sufficiently independent. A low valtigeadelay
time results to adjacent components be correlated and henceahegt be
considered as independent variables. On the other hand, a high value of delay may
make the adjacent components uncorrelated (almost independent) andb&annot
considered as part of one system that supposedly generated themdsvieskd
to estimate an optimum time delay are the first minimumthef mutual
information, the 1/e of autocorrelation and the first zero of thecautelation

(Abarbanel, 1996).

2.3Lyapunov Exponents

A positive Lyapunov exponent is a signature of chaos. A chaotiemsyisas at

least a positive Lyapunov exponent. This is because of the exponegt@iih

over time of distances of initially nearby states. The Lyapunpoermant measures

the rate of a trajectory’s divergence (or convergence) oveg. tdn positive
Lyapunov exponent indicates orbital divergence and hence chaos intdéra.sis
negative Lyapunov exponent indicates orbital convergence and hence a
dissipative system. Wolf et al. described the first practalglorithm for
estimating the largest Lyapunov exponent from real data by foipwhe
divergence/convergence rate of nearby trajectories (Wolf, S@finney, &

Vastano, 1985).
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The Lyapunov exponents measure the information flow in bits/sec along
local eigenvectors in the state space as the system moves teumhghttractors.
An improved method for calculating this dynamical measure ®gperimental
EEG data has been published by lasemidis & Sackellares (ImithsgPrincipe,
& Sackellares, 2000). This method to estimates an approximatibgQffrom
nonstationary data, called STL (Short-term Lyapunov), developed via a
modification of the Wolf's algorithm used to estiméatg,, from stationary data.

The procedure is depicted in Fig. 2.2 and is given by the formula

1 Xt +At) —X(t; +At
STLman - 10g2 | ( ik ) (]k )l
At X (ti) — X (tin)|

(2.3)

The estimation of the largest Lyapunov expondh.{) in a chaotic
system has been shown to be more reliable and reproducible thestithation
of the remaining exponents, especially when the correlation diomens
unknown and changes over time, as is in the case of high-dimensiodal

nonstationary data (e.g., interictal EEG).
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Figure 2.2: State space reconstruction of E data by the method of delz

2.4Teager Energy (TE)

Teager energy operatc(Kaiser, 1993)are defined in both the continuc
and discrete domains and are very useful tooldetectingsingle compones of
signals from an energy point of view. This energgdtion is a local property «
the signal depending on the sic amplitudeand its first two derivative. It is a
popular algorithmhavingc wide applications in the field @ignal processing due
its amplicity in implementationin continuous time domain, TE @efinedby the

formula,

where is the first derivative ox, and is the second derivativexof

In discrete timalomain, TE is defined by the formt
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We know that ictal EEG is characterized by high frequenay laigh
amplitude oscillations and hence possesses higher signal energyavhpared
to inter-ictal EEG with low frequency and low amplitude ostdlas. Thus, TE
can in principle differentiate between ictal and inter-ictal EEG segments

While the performance of TE was found to be good for high SNRovor
SNR its performance is markedly reduced. An improvement of tt#iorzal TE
is called multi-resolution TE and was proposed for detection ajrapitentials,
and outperformed the traditional TE (Choi & Kim, 2002). The new measase w
called k-TEO and is given by

Pr(x[n]) = X7 — Xp_rXnsk (2.6)

The parametek is optimized to give the best performance. In a real case

scenario, this optimal value fdr varies over time, and hence having a single

value fork reduces the algorithm’s performance, which is a major drawback.

2.5Autocorrelation Function

Autocorrelation is a statistical measure used to describe arelation
between observations (how closely the observations are reldtadjaiaset for
different time lagsr. It can be seen as a measure to detect the presence of any

related periodic patterns in a dataset. In statistics, is given by thal&r

E[(Xe — ) KXpsr — )]

o2

R(7) = (2.7)

whereyu is the mean of all observations with a variance?f
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The autocorrelation function is estimated by the Sample Autdatiore
It is a widely used measure to find the embeddingrlémy nonlinear time series

analysis. For a process, Xhe sample autocorrelation is given by the formula,

g:l(xn - 32)(xn+1 - f)

ﬁ:l(xn - f)z

p(0) = (2.8)

— 1 . .
wherex = ;Zlivﬂxi , Is the sample mean aNds the number of observations.

2.6Ictal vs Inter-ictal EEG

To design an algorithm for seizure detection, it is important to retade the
difference between ictal and inter-ictal EEG. Two datasetswatieictal EEG
segments and another with inter-ictal EEG segments fromathe patient, were
first analyzed from a single electrode resulting in &li&EG segments and 117
inter-ictal EEG segments (duration of 30sec with 20sec overldg).frequency
band 0-15 Hz of EEG from these two datasets was divided into sub-sinds
band-pass filters with bandwidth of 1Hz. Average power spectral genas
estimated for each of these bands using Welch periodogram. The lag inde
corresponding to the point where the value of the autocorrelation fulcctispes
a lower confidence bound was used as an estimate for delayr tusmg the
formula

Lag Index

te Embedding dimension — 1 28)
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STLmnax vValues for these segments where then estimated using thpéctiee

delay timer. The results of this analysis are given in Tables 2.1 and 2.2.

Table 2.1: Analysis of Ictal vs Inter-ictal EEG (30sec with sub-band frequepcie

Ictal EEG Analysis Inter-ictal EEG Analysis

Frequency | Average Tau STLmax | Average Tau STL max
Band PSD (mean) | (mean) PSD (mean) | (mean)
(H2) (UW/HZ) (bits/sec) | (UW/HZ) (bits/sec)
0-1 0.0304 12.8 2.3384 | 0.0569 | 13.5726| 2.0952
1-2 0.1293 5.2 4.0093 | 0.0442 | 6.1795| 3.5536
2-3 0.2198 3.6 4.2445 0.0159 4 3.8563
3-4 0.2248 3 3.7923 | 0.0098 3 3.7989
4-5 0.2195 2 3.9673 | 0.0054 2 4.4882
5-6 0.2187 2 3.4582 0.0037 2 3.5942
6-7 0.1046 2 2.7230 0.0030 2 2.9241
7-8 0.0695 1 4.8693 0.0020 1 5.4545
8-9 0.0636 1 5.0614 0.0013 1 4.7323
9-10 0.0558 1 3.6738 0.0009 1 3.9764
10-11 0.0536 1 3.0993 0.0008 1 3.5396
11-12 0.0437 1 3.3560 0.0007 1 3.5040
12-13 0.0450 1 3.0684 0.0006 1 3.1765
13-14 0.0304 1 3.2492 0.0005 1 2.9894
14-15 0.0250 1 2.3577 0.0004 1 2.9181

Table 2.2: Analysis of ictal and inter-ictal EEG (with all frequencies)

Tau STL max

(mean) (mean)

Ictal 2.6 5.9360
Inter-Ictal 8.3162 2.0978

From Table 2.1, we see that the frequency band between 3-5Hhehas
highest average power spectral density for epochs of ictal EB@ T

corresponding time lags are between 2 and 3. On the other hand, for inter-ictal
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epochs of EEG, the highest average PSD is in the frequency bandd Wit
time lags between 6 and 13. Additionally, the corresponding,&Walues for
these bands indicate that the inter-ictally more dominant slawitgq1-2Hz) is
more ordered (SThax =2-3) than the dominant activity (3-5Hz) in the ictal state
(STLmax=3-4).

Estimation of SThax and time lag for the same ictal and inter-ictal
segments of EEG without sub-band filtering are shown in Table 2.2inbdag
selected for both the interictal and ictal segments correspontse time lag
obtained from the filtered data at the frequency bands with theestigaverage
PSD. In this sense the use of a data-adaptive lag in the &stinod STLyax
effectively acts as a filtering process that automaticediptures the dominant
frequency in the signal. This is especially useful in the chseizure detection,
since there is no uniqueness in the ictal frequency activity isharesent in
different types of seizures, or even in different seizures from the sdnjeets

Using these initial observations, we designed an algorithm asiagtive
estimation of the involved parameters from the data. In the nekbisewe

present the two measures used in our proposed seizure detection algorithm.

2.7 Adaptive Lyapunov exponents (ASZ)

In traditional STlyx estimation, the time lagis fixed for EEG analysis
optimized for reconstruction of the state space from the icteddel'he idea here
was to capture ictal features of the system (brain) @®ves from a normal state

(inter-ictal) towards an abnormal state (ictal), and thuditktel the prediction of
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such events. Here, our aim is to detect rather than predicregi We have seen
from the previous section that there is a clear distinction leetuetal and inter-
ictal EEG if we use different time delays in the statecgpaconstruction. Hence
a constant value of time delay is not advisable for use in arsedetection
algorithm.

Fig. 2.3 shows that ASTl.x values are different for ictal EEG when
compared with pre-ictal and post-ictal EEG. Activities in loagfrency (0-2 Hz)
during pre-ictal and post-ictal periods correspond to lower compl@aityvalues
of ASTLmay. On the other hand, activities in the high frequency (3-5 Hz)
correspond to higher complexity (higher ASEW. This difference in the values
of the ASTLnax In conjunction with the one in Teager energies (see next section)

is used to detect a seizure by our algorithm.

2.8 Adaptive Teager Energy (ATE)

In accordance to the estimation of AL we propose an adaptive time lag
derived from sample autocorrelation function, as the lag indéxr TE. The
rationale for the use of an adaptive TE is the same as in &Kon, 2002), i.e.,
to utilize its sensitivity to the frequency content of the sigHahce, ATE can be

defined by the following equation

\Pk(x[n]) = xrzl - Xn—1¥n4+t (2.9)
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Figure 2.3: Teager Energy for 10minutes of EEG from electrode RD4 in
Patient-3 that includes a seizure: (a) Sample EEG with zurseiat
300sec (blue). (b) ASThaxVvalues (black) estimated every 10 sec(c) ATE

values (green) estimated every 10 sec.
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Chapter 3

SEIZURE DETECTION
3.1Background
The task of detecting epochs of EEG having seizure-like actsvitgn-trivial due
to several factors, including the differences in seizure morphslogitin and
across patients, and the presence of movement and other re@stdaxgs. This
has motivated researchers to work towards the development of robuse se
detection algorithms. An initial automated seizure detectionridigo was
designed by Gotman (Gotman, 1982), using recorded events like seizure
anticipation/experience by the patient or an observer, and spilegeateby an
automatic spike recognition program. This experimental setup facilitegestudy
of correlation between electrographic seizures (epileptiwigctiecorded in the
EEG) and their clinical manifestations. In a similar studyyvas estimated that
nearly 30% of electrographic seizures are not accompanied Ioycatli
manifestations (lves & Woods, 1980). These studies showed that weseiz
detection algorithm based on electrographic recordings alwaysriouips the
push-button approach which uses perception of a seizure by the pati@mt or
observer. The earlier approach by Gotman depended heavily on amplitude
changes in the EEG recording and was found that even with tls¢aassi of an
artifact removal system to cancel false positives the ithgoreached at most a
sensitivity of 70-80%. The algorithm was later updated with moatibns and
after extensive evaluation it is now integrated into seveyaineercial medical
devices for clinical use (Gotman, 1990). Despite the modificatiand
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improvements the algorithm still suffers performance-wiseh wilie major
drawback being the large number of false positives (1-3 per hour).
Automated seizure detection based on artificial neural networkdves a
training procedure that improves the algorithm’s performance. ffdéiaing
involves samples of seizure and non-seizure segments, therebwpgntalk
algorithm learn to discriminate between these segments uref(testing) EEG
data. The detection performance of these algorithms relies onettards
extracted from EEG during the training phase. Webber et alblfé/e Lesser,
Richardson, & Wilson, 1996) have reported on the use of amplitude, slope,
curvature, rhythmicity, and frequency components of EEG in 2sethepbat
improves the specificity to 1 false positive/hr. Gabor et @abpr, Leach, &
Dowla, 1996) used an unsupervised training approach in conjunction with a
matched filter constructed by wavelet transform using 8-chasutedets of 18
channel scalp EEG recordings. Their algorithm achieved 90%tisgpsvith a
considerable reduction in false positives rate to less than 1 perA@aizure
detection algorithm primarily aimed at intracranial EEG depetl by Osorio et
al. (Osorio, Frei, & Wilkinson, 1998) claimed an ideal sensitivitt@0% with
no false detections utilizing advanced digital signal procedsictiniques like in
time-frequency localization, image processing and identidicaof time-varying
stochastic systems. It should be noted though, that their algorithmnetas
evaluated on continuous EEG. A wavelet-based approach for seizurgodeitec
intracranial EEG was presented by Khan et al. (Khan & Gotman, 20418)ing
a reduction in false detections to 0.3 per hour. Usually, the lehgthining data
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is more than the length of testing data, which in itself shouldobsidered as a
disadvantage for the development of a seizure detection algorittiditiochally,

the huge variability of seizures across patients makes it herdeave a trained
network on a set of one patient’s EEG recordings and test it on another patient.

Single electrode time-frequency analysis using matching puatgmirithm
was applied qualitatively for detection of seizures originafiogn the mesial
temporal lobe (Franaszczuk, Bergey, Durka, & Eisenberg, 1998). Sighifiaen
of the ictal period like initiation, rhythmic bursting activitysganized rhythmic
bursting activity and intermittent bursting activity were ideatifin this study.
Recently, attempts have been made towards applications of nonéobarques
for seizure detection. The findings in (Paivinen et al., 2005) sudjgaistoest
results could be achieved by using a combination of linear and nonlinear measures
as features for seizure detection. A novel wavelet-chaos neuvarkemethod
for EEG segment classification into healthy, ictal, and irde&-iEEGS using
correlation dimension and largest Lyapunov exponent was introduced byefdeli
al. (Adeli, Ghosh-Dastidar, & Dadmehr, 2007). It was shown in thdydhat the
largest Lyapunov exponent can be effectively used to classifyaiathinter-ictal
EEG.

Approaches based on artificial neural networks have improved the eseizur
detection performance at the cost of algorithm’s training. dtempts made
towards development of algorithms for classification of segn&nEEG can be
used to assist in the development of algorithms for online setetection.
Algorithms based on user-defined thresholds prevent the use of suchhatgorit
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across patients without any intervention of a trained person. Weefbaus
research towards development of a seizure detection algoelihmnating the
need for algorithm’s training or user-defined thresholds. We intetalddvelop
an algorithm which is patient-independent and data-adaptive elimirtagngeed
for any changes in the algorithm when applying it across patigtthough our
final aim is to develop a real-time seizure-onset detecticoriligh, we worked
towards development of an online seizure detection algorithm duriagtS

research.

3.2 Seizure Detection Algorithm

Our automated seizure detection algorithm with data-adaptive thdesimd

capability of selecting the “optimum electrode” over tiroe $eizure detection is

presented below.

e Preprocessing of EEG
The sampling frequency of the multichannel analog EEG acrossijgaives
typically 200 Hz or down-sampled to 200 Hz. The digital EEG recgrdias
filtered to remove noise and artifacts in frequency bands outsidg00Hz.
This digitally filtered EEG signal was then segmented intolappmg 30sec

epochs (20sec overlap per consecutive epochs).
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Embedding dimension m for reconstruction of the state space peepach
and electrode site
We selectedm = 7 for reconstruction of state space as per the findings

reported by lasemidis et al (L. lasemidis, Principe, & Sackellares,.2000)

Time lagt for reconstruction of the state space per EEG epoch and electrode
site
For every 30sec EEG segment the time kgat which the sample

autocorrelation of this segment first reduces to zero is estimated.

Adaptive Estimation of the Maximum Lyapunov exponent

The Adaptive Short-Term maximum Lyapunov exponent (AgJdLis then
estimated from the state space reconstructed as above foEE&ckepoch
according to lasemidis et. al algorithm (L. lasemidis, Prin&p8ackellares,

2000).

Adaptive Teager Energy (ATE)
The data Adaptive Teager Energy is calculated using the previestsiyated

time lagt for each EEG epoch.

Seizure detection algorithm
The ASTLna and ATE measures are used in cascade for seizure detection.

The following steps are employed towards this goal:
34



360 values of ASThaxand ATE per electrode (corresponding to 1 hour of
EEG) are fed into the electrode selector routine. The parai®@bewas
selected so that we have enough data for a statistically sowaticelof

an electrode in step (ii) and detection of outliers in step (iii) below.

The electrode selector selects one “optimum electrode” per &#Gh
based on the range of the ASEkVvalues. The electrode that exhibits the
maximum range in ASThax values is selected for further analysis.

From the ASTkax values of the electrode selected in (ii) above, a

statistical threshold is calculated as:

Thy = mean(ASTLqy) + 5 * standard deviation(AST Ly,q) (3.3)

which implies statistical significance @£0.00001.
ASTLmax Values aboverh; (outliers) are then identified and stored as
possible segment§ that contain seizures. The EEG data of the identified
segmentsS are subsequently given as input to the next step (iv) for the
algorithm to further refine the detection of possible seizures using ATE.
The ATE values for the 1 hour EEG segment under consideration, and
only for the electrode selected in step (iii) above, are @yeplto define a
second thresholtih, for outliers such that

Th, = mean(ATE) + 3 * standard deviation(ATE) (3.4)
with statistical significance af=0.001.
We should note that the condition of having at least 2 ATE valudayo s

above the threshol@ih, to generate a seizure warning corresponds to a
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statistical significance equal 66=0.001*0.001=0.00001, the same used in
step (ii).

Then for every candidate EEG segm&rthat was identified in step (ii)
21 consecutive TE values that span about 2minutes, that is, its inenedia
previous ten 10sec segments, the segment itself and its immezhate
subsequent segments are considered. Seizure detecgos oheclared if

at least 2 out of the 21 ATE values are found to be abbydn this case,
we conclude that a seizure is included in that 30sec EEG se§né&he
values 21 and 2 we assigned to the relevant parameters of théhaigar
this step were selected so that

a) Seizures of 2 minutes maximum duration (typical for focalpteal
lobe clinical seizures we analyzed) are captured.

b) Seizures of duration as short as 40sec (typical for subclggtalres in

patients we analyzed) are captured.
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3.3Example of Application of our Seizure Detection Algorithm

The workings of our seizure detection algorithm with a steptéyy-ow analysis
will be explained in this section. Our algorithm can be perceived 2slock
procedure, with one block detecting all possible segments that inshimgres
(sensitivity) and the second block verifying them (specificity).

An EEG segment of duration 1 hour containing a seizure wasestleoin
Patient-3. The algorithm’s steps for this segment are showngin3r2(a)-(d).
Initially the ASTLax Values for all electrodes are given to the electrode select
routine. For clarity of presentation, ASfix values from only four electrodes are
shown in Fig. 3.2(a). The selector routine picks electrode Ele@radethe
optimum electrode for seizure detection. Fig 3.2(b) shows AsNalues of
Electrode2 along with the threshdlt. It was verified from visual inspection of
the EEG that only the segment corresponding to the first peakddim green as
true detection) contained seizure activity whereas the othepéaiks (marked in
red as false detections) did not. The corresponding ATE values fardele2 are
shown in Fig 3.2(c), where we can see that the two false dgtedtom AST Lyax
were cancelled since the respective ATE values fall b&lpw

It should also be noted that ATE in block-2 produced 1 false detection
(marked as false detection in red in Fig 3.2(d)). But this had Botef AST kax
values in block-1 did not generate any warning. The above exampleavedslly
selected to show the working of both measures, Asdéand ATE in tandem. A
more detailed analysis that shows that this setup is opBmpaésented in chapter
4,
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Chapter 4

APPLICATION TO SCALP AND INTRACRANIAL EEG
4.1 EEG Data Acquisition
For our study, data from intracranial EEG (3 patients) and s¢&p B patients)
recordings were collected. IntracraniBEG recordings were obtained from
epileptic patients with bilaterally, surgically implanted romlectrodes in the
hippocampus, temporal and frontal lobe cortexes. The EEG signaseverded
using amplifiers with an input range of +0.6 mV, a frequency ran@e5e70 Hz
and a sampling frequency of 200Hz using an analog-to-digital convatte10-
bit quantization. The EEG signal was filtered using an analogplssg filter at
70Hz, digital band-pass filter between 0.1-30Hz and notch filter ldiz.6The
multichannel EEG signals (28-32) were obtained from long-term continuous
recordings in three patients (6-11.7 days). Fig. 4.1(a) shows |dotroee
placement for the intracranial recordings.

Scalp EEG recordings with 21 recording electrodes (accordiggrieral
technical standards) were obtained from 2 epileptic patients. rébarding
electrodes were placed according to the international 10-20 sgsteshown in
Fig. 4.1(b). Additional electrodes were placed between the sthetitrodes as
proposed by the American Clinical Neurophysiology Society. Thapkag
frequency was typically chosen to also be 200Hz. An analog lowfftassvith
70Hz cutoff with digital band-pass filter between 0.1-30Hz and nath ft
60Hz were used. The obtained recording was around 12hrs in duratieacto
patient. The long-term EEG recordings from five epilepticguasi were obtained
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to evaluate the performance of our proposed seizlgtection algorithim
Information on Patient ID, recording duration, tygferecordin¢and total numbe

of seizures is given in Table 4.1

(@) (b)

it
i

/13 (e3 e s (1T

(kD] [T |

Figure 4.1: Electrode montage for intracranial and scalp EE®&cording
(a) Placement of depthand subdural electros. Electrodestrips placed over th
left orbitofrontal (LOF), right orbitofrontal (ROF left subtemporal (LST) an
right subtemporal cortex (RST). Depth electrc are placed in the left tempoi
depth (LTD) and right temporal depth (RTD) record hippocampal EE
activity. (b) Arrangement of electrodes foecording scalf=EG according ti

international 120 system
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Table 4.1 Patient Data

Patient ID | Recording duration (hrs) Type of recording No. of Seures
1 281.34 Intracranial 7
2 217.94 Intracranial 24
3 145.75 Intracranial 20
4 13.73 Scalp 2
5 12 Scalp 3

4.2 Evaluation Procedure of Seizure Detection Algorithm

The performance of a seizure detection algorithm is measureasibg the

following criteria:

e True positives
The number of marked seizures declared as seizure warnings bgizhee
detection algorithm.

e False positives
The number of seizure warnings generated by the seizure detafgorithm
which were not seizures (when there was no marked seizure evehe by
physician).

e False negatives
The number of missed seizures for which no seizure warning wesaged

by the seizure detection algorithm.
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e Sensitivity
This is a statistical measure to quantify the ability of ¢b&zure detection
algorithm to effectively identify true seizure events. It is given QyZLl as

S True positives
Sensitivity = — - * 100% (4.1)
True positives + False negatives

e False positive rate per hour (Specificity)
It is the ratio of the number of false positives generated by the algodttima t
total recording duration (in hours).
An “ideal” seizure detection algorithm would have a sensitivity of 100%
with O false positives per hour, which would mean that all markexlirsei
events were correctly identified by the algorithm without gatireg any false

positives.

4.3 Case Analysis: Patient-3

We choose an intracranial long-term EEG recording from a patient witlcatlg
intractable epilepsy, admitted to the hospital for detection oé@pijenic focus

and possible resective surgery, to present a full-scale analyssr seizure
detection algorithm. The electrode placement was similar to4Fi¢n). 25 out of

the 28 recording electrodes were used in our analysis, as 3oe&xthad
recording problems and were excluded. For a recording duration of 145.75 hours,
a total of 20 epileptic seizures were documented in the patientt,reptr 9

subclinical seizures and 11 typical complex partial seizures.
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Our seizure detection algorithm detected 19 out of the 20 seizures
(sensitivity 95%) with 0.0207 false detections per hour. The perfarenaf the
algorithm was evaluated using the sensitivity and the numbeisef datections
per hour for different combinations of threshold valu€hk; (and Thy) and is
shown in Fig. 4.2. The combination of thresholds giving the best performance i
terms of both sensitivity and false detections per hour (markedeenygmwas
found to be foiThy = 5 andTh, = 3.5. For the threshold chosen in our algorithm,
(Thy = 5 and Th = 3), sensitivity was found to be the same as the optimal at 95%
with a small increase in the number of false positives per loor 0.0069 to
0.0207 (marked in black). The missed seizure was found to be of durhtaty
around 10sec as shown in Fig. 4.3, that is, of duration close tosihletien of
our algorithm in its current form, which is not typical for sees and should be
considered as a difficult seizure to be captured by the seizia&tida algorithm.

The difference in the performance of the used threshold values Veesogtimal

ones is small and can thus be claimed that the proposed algorithm is pretty robust.
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Detection performance for patient-3
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Figure 4.2: Performance (ROC) of seizure detection algorithm for different
combination of threshold¥h, and Th, (in blue). The green dot marks the best
performance. The black dot marks the performance for the thresteldesl in

our algorithm. The magenta and red dots correspond to cases of worst
performance, producing respectively 5% sensitivity and 0 falsavassjter hour

and 95% sensitivity with 1 false positive every 2 hours.
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Figure 4.3: 60sec of EEG with a subclinical seizure missed by our detection

algorithm (Patient-3).

4.4 Results
The corresponding results from running our seizure detection &lgooh the
EEG from all five epileptic patients are given in Table 4.2. 3éwesitivity ranged
from 85.71% to 100%, while the false positive rate per hour rangedQrtorl
every 6.5 hours. The average sensitivity for seizure detectiossaall 5 patients
was 93.64% with an average specificity of 0.0484 false positives per hour.
Interestingly, the best results sensitivity-wise wereiabthfrom the scalp
recordings (100% in both scalp-EEG patients), but for one of thatiefit 5) we
had the worst specificity of 0.154, almost 3 times larger than thetvior
intracranial recordings. This is indicative of the quality cdlp EEG recordings
and their susceptibility to recording artifacts. Lastly, we sthawlte here that the
majority of missed seizures in the intracranial recording® wé small duration.

The seizure missed in Patient-1 and Patient-3 were subclveats having EEG
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duration of less than 10sec. The 3 seizures missed in Patiené2oealized to a

specific region of brain having EEG duration of less than 10sec.

Table 4.2: Performance of Seizure Detection Algorithm

Patient ID True False Sensitivity False
positives positives (%) positives / hr
1 6 12 85.71 0.04
2 21 6 87.5 0.027
3 19 3 95 0.021
4 2 2 100 0.154
5 3 0 100 0
TOTAL/ 51 23 93.64 0.0484
AVERAGE

4.5 Full Comparison

The seizure detection algorithm uses two measures, with twoediffénresholds
(e.g. Tlh=5 andTh,=3). In this cascade arrangement, the order of the use of the
measures could affect the performance of the algorithm. To ewabhat
performance of the algorithm with a different order, the secpief the steps
where each measure is evaluated was interchanged. We &sbaesadditional
frequency-based measure, earlier used for seizure detectionkdTeNadeu,
Marnane, Boylan, & Lightbody, 2011). An additional motivation for this thas
dependence our measures have (by construction) to the frequencyt obriten
EEG. We wanted to test if this dependency is a primary faotoodr seizure

detection algorithm’s performance. The “purely” frequency measarased was
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the maximum energy in 8 sub-band frequencies (2-3Hz, 3-4Hz, ...., 9-A0dz)
we denote it by Fax.

Results from the exhaustive comparison of performance of therseiz
detection algorithm for different combinations of these 3 fea(@€knax TE and
Fmay are given in Table 4.3. The seizure detection algorithm was evedido
have 2 outlier detection blocks as before, with block-1 identifying dmelidate
EEG segment§ for having seizure-like activity and block-2 checking whether
these candidate segmeigpass the condition of the second block and be finally
asserted as a seizure. The thresholdsSland Th=3 for block-1 and block-2
respectively were retained for all combinations of selected features.

Our detailed analysis on 5 epileptic patients using mean setysaivil
mean specificity in terms of false positives/hr shows thatcttrabination of
ASTLmaxand ATE in block-1 and block-2 respectively performed the beshgivi
a mean sensitivity of 93.64% with a mean specificity of 0.049 fadséives/hr.
Other combinations provided better specificity, but at the expensensttivity
(e.g. ASTLnax In block-1 and a combination of ATEwEin block-2; specificity
0.0208, sensitivity 67.88%). No other combination had better sensitivity than the
original order of blocks depicted in Fig. 3.2. It is also very eg&#ng that use of
ASTLmax alone in block-1 and omitting block-2 provides the same sensitiuity,
with a huge reduction in specificity (almost 20 times worsédctthat validates
both the usefulness of the second block, and the complementary natuzevob t

measures for a good seizure detection performance.
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Table 4.3: Performance of seizure detection algorithm for different combination
of features for Patient-3 (Intracranial EEG recording) with meampeance
across patients.

Patient - 3 Across 5 Patients
Features Sensitivity False Mean Mean false
(%) positives/hr | Sensitivity (%) positives/hr
T--L&F* 85 0.014 49.2619 0.0839
T--L|F 95 0.103 65.7857 0.4510
F--L&T 80 0.021 46.4762 0.0412
F--L|T 85 0.186 59.9762 0.3662
L--T&F 90 0 67.8809 0.0208
L--T|F 95 0.028 93.6429 0.0655
L--T 95 0.021 93.6429 0.0490
L--F 90 0.007 67.8809 0.0372
T--F 95 0.103 62.9286 0.4406
F--T 85 0.172 59.9762 0.3295
T--L 90 0.014 53.1190 0.1199
F--L 80 0.041 46.4762 0.0868
T 95 0.2396 76.1429 0.9060
85 0.1982 66.6429 0.6170
L 95 0.5945 93.6429 0.7210

*where T -- L&F denotes that the feature used in the block-1AVds followed
by a logical ‘AND’ condition between features ASTk and Fax in block-2,
while T — L | F denotes a logical ‘OR’ condition in block-2. Simyldor the rest
of the entries in the first column.
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Chapter 5

CONCLUSION

The motivation for the development of an automated seizure detedgiomnthm

in this MS research was to assist physicians in the labotious consuming and
expensive task of seizure detection from long-term EEG reca.dvghin this
framework, we developed and tested a new seizure detectiorttalydrased on
measures from linear and nonlinear dynamics, i.e., the adaptivé-testmor
maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy
(ATE). The algorithm was tested on long-term (0.5-11.7 days) continbB®s
recordings from five patients (3 with intracranial and 2 witHps&EG) and a
total of 56 seizures, producing a mean sensitivity of 93% acrbssialires and
mean specificity of 0.048 false positives per hour. The developed eseizur
detection algorithm is data-adaptive, training-free and pateependent. It is
expected that this algorithm lead to faster and more accdiag@osis, better
evaluation of treatment, and possibly to better treatmentssifincorporated on-

line and real-time with advanced neuromodulation therapies for epilepsy.
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