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ABSTRACT  
   

 

Approximately 1% of the world population suffers from epilepsy. Continuous 

long-term electroencephalographic (EEG) monitoring is the gold-standard for 

recording epileptic seizures and assisting in the diagnosis and treatment of 

patients with epilepsy. However, this process still requires that seizures are 

visually detected and marked by experienced and trained 

electroencephalographers. The motivation for the development of an automated 

seizure detection algorithm in this research was to assist physicians in such a 

laborious, time consuming and expensive task. Seizures in the EEG vary in 

duration (seconds to minutes), morphology and severity (clinical to subclinical, 

occurrence rate) within the same patient and across patients. The task of seizure 

detection is also made difficult due to the presence of movement and other 

recording artifacts. An early approach towards the development of automated 

seizure detection algorithms utilizing both EEG changes and clinical 

manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. 

Approaches based on artificial neural networks have improved the detection 

performance at the cost of algorithm’s training. Measures of nonlinear dynamics, 

such as Lyapunov exponents, have been applied successfully to seizure 

prediction. Within the framework of this MS research, a seizure detection 

algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive 

short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager 

energy (ATE) was developed and tested. The algorithm was tested on long-term 
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(0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial 

and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 

93% and mean specificity of 0.048 false positives per hour. The developed seizure 

detection algorithm is data-adaptive, training-free and patient-independent. It is 

expected that this algorithm will assist physicians in reducing the time spent on 

detecting seizures, lead to faster and more accurate diagnosis, better evaluation of 

treatment, and possibly to better treatments if it is incorporated on-line and real-

time with advanced neuromodulation therapies for epilepsy.  
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Chapter 1 

INTRODUCTION 

1.1 Overview 

The word ‘Epilepsy’ is derived from the ancient Greek word ‘Epilepsia’. The 

condition was first registered in the East in a Babylonian treatise that was 

discovered in southern Turkey. In ancient times, epilepsy was considered to be 

sacred as people believed that it was a form of attack by demons and curse by the 

gods. This misconception resulted in the discrimination of epileptic patients 

forcing them to stay in darkness. Hippocrates once remarked that the day epilepsy 

is understood, it would cease to be considered divine. Today, with the discovery 

of EEG (Electroencephalography – recording of bioelectrical activity in the brain) 

and advancements in neuroscience, epilepsy is better understood as a neurological 

disorder characterized by epileptic seizures that result from abnormal neuronal 

activity in the brain.   

Epilepsy is one of the most common neurological disorders that affect a 

significant percentage of the world’s population. Approximately one in every 100 

persons experiences an epilepsy-related event (epileptic seizure) at some time in 

their life. Epileptic seizures are often violent disturbances of the normal brain 

functionality. These seizures are due to the sudden development of highly 

synchronous abnormal paroxysmal cerebral electrical activity in the brain and can 

be fairly recurrent in chronic epilepsy. The clinical manifestations of an epileptic 

seizure include behavioral changes, involuntary motor functions like flexing of 

arms and legs, eyes rolling towards the back of the head, teeth clenching, facial 
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twitches or shaking of one or both sides of the body. These clinical symptoms, 

along with EEG recordings, are used by physicians to detect and evaluate 

epileptic seizures. 

Epilepsy can occur at any age, equally in both sexes, but is most 

frequently encountered in the very young and the elderly population. Causes for 

epilepsy include genetic abnormalities, developmental anomalies, febrile 

convulsions, central nervous system infections, hypoxia, ischemia and tumors. 

Although patients with epilepsy can lead a normal life, they are usually advised 

not to participate in any activity that an occurring seizure can put their life in 

danger (e.g. driving a car). A comprehensive study on the impact of epilepsy and 

its treatment on patients with epilepsy were carried out using clinical and 

demographic information and self- completed questionnaires. Data collected from 

over 5000 patients showed over a third of total patients have frequent seizures 

with a fifth reporting that their seizures were not well controlled by antiepileptic 

medication (Baker, Jacoby, Buck, Stalgis, & Monnet, 1997).  

Epilepsy can be usually controlled (but not necessarily cured) using 

available anti-epileptic drugs (AEDs). Epilepsy can lead even to death of the 

patient due to lack of effective treatment and medication. An estimated 30% of 

epileptic patients develop medically intractable epilepsy where no seizure control 

can be achieved with any of the available AED medications. An estimated 42,000 

epileptic patients die from Status Epilepticus every year in the United States 

alone, a condition where seizures occur continuously and the patient can typically 

recover only with extreme external intervention.  
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1.2 Electroencephalography 

The electroencephalogram (EEG) signal contains information about the electrical 

activity of the brain and is recorded either from the surface of the head (scalp 

EEG) or directly from the brain (intracranial EEG). EEG is to date universally 

accepted as the most reliable clinical tool for understanding epilepsy. Billions of 

neurons are electrically charged pump ions across their membranes, and create a 

potential difference that EEG measures over time. EEG measures these voltage 

fluctuations as differences in voltage between any two recording sites in the brain. 

It is important for an electroencephalographer to understand that the EEG signal 

from neuronal population in the brain is greatly modified by the time it reaches a 

recording electrode. Every electrode will record an average of electrical activity 

around it along with voltage fluctuations from distant parts of the brain.  

Scalp EEG, being a non-invasive recording technique, is plagued by 

recording and movement artifacts. These artifacts are the potentials generated by 

sources other than the brain. Physiological artifacts arise from body activities 

which include head movement, eye blinking, tongue movement, while 

environmental artifacts originate from power line interferences, electrode 

movement etc. Because of such noise, and the fact that deeper brain activity 

cannot be recorded accurately by scalp EEG, an invasive technique where signals 

are recorded directly from the human cortex using subdural grids or electrodes 

placed directly on the surface of the cortex is preferred. This recording 

arrangement is known as Electrocorticography (ECoG). Other specific areas in 

the brain can be effectively targeted (Intracranial EEG (iEEG)) by using this 
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approach, thereby improving the information content of the signal. In addition, as 

these recording electrodes are placed inside the brain, where there is little or no 

interference from outside sources, the occurrence of artifacts is greatly reduced.  

The discovery of EEG by Richard Caton contributed to a better 

understanding of the electrical activity of the brain. This led Hans Berger to first 

record human EEG (Brazier, 1961). Using a string galvanometer he was 

successful in recording alpha rhythms (EEG activity in the frequency range of 8 

to 12 Hz). By the year 1960, the usage of clinical and experimental EEG had 

started to become an important tool in medical institutions and major hospitals to 

explore mental and psychological processes in the brain. The advancement of 

computers soon made people believe that EEG interpretation could be completely 

automated in near future.  

Continuous EEG recording has been a boon for all those working in the 

area of epilepsy research. The main aim of long-term EEG monitoring is to record 

typical seizures as it helps physicians better diagnose and treat patients and also 

localize the epileptogenic focus (the region of the brain where seizure originates 

from). Nowadays, clinical EEG is combined with video monitoring to also record 

behavioral activities of epileptic patients and produces huge amounts of data. 

Epileptic activity in the brain corresponds to abnormalities in the EEG recording 

that allow clinicians and researchers to detect seizures. The motivation behind our 

research has been the development of an automated seizure detection algorithm to 

assist physicians in such a laborious, time consuming and expensive task. This 
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task is costly as a large amount of time is spent on visual marking of epileptic 

seizures.  

To effectively address the seizure detection problem it is important to 

understand and study normal EEG recordings. An EEG recording, devoid of 

abnormal patterns associated with a neurological disease, is termed normal EEG. 

A wide variety of normal EEG patterns can be seen in different individuals in 

different age groups. Therefore, an electroencephalographer should be able to 

distinguish and take into consideration all these features of normal EEG at 

different ages. The most commonly used EEG features are morphology, 

frequency, amplitude and phase of the EEG signal. It should also be noted that 

EEG from an epileptic patient should be considered abnormal even if it contains 

normal EEG components. Normal EEG activity is described in terms of rhythmic 

activity in specific frequency bands. The classification of EEG signal based on 

activity in specific frequency bands is listed below: 

• Delta rhythm 

EEG rhythmic activity below 4 Hz is categorized as delta rhythm. It is most 

prominent frontally in adults and posteriorly in children. It consists of high 

amplitude waves found during sleep and while performing tasks requiring 

continuous attention.  

• Theta rhythm 

EEG activity in the frequency range 4-8 Hz is categorized as theta rhythm found 

in young children during sleep. This frequency range of EEG activity has been 

associated with reports of relaxed, meditative, and creative states. 
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• Alpha rhythm 

EEG activity in the frequency range 8-13 Hz is categorized as alpha rhythm. It 

consists of regular waveforms with sharp peaks which are prominent in posterior 

regions of the head while resting. This was the first recorded electrical activity of 

the brain (recorded by Hans Berger); hence named as ‘alpha rhythm’.  

• Beta rhythm 

EEG activity in the frequency range 13-30 Hz is categorized as beta rhythm. It 

has symmetrical distribution on both sides of brain and is most evident 

frontally. Low amplitude beta with multiple and varying frequencies is often 

associated with active, busy or anxious thinking and active concentration.  

The EEG signal is considered to be abnormal if it contains any 

epileptiform activity, slow waves and abnormalities of amplitude or certain 

patterns resembling that of normal activity but deviating from it with respect to 

certain features like frequency (Fisch, 2003). In a broad classification, epochs of 

EEG with seizure activity are called ictal EEG, while the rest of EEG is called 

inter-ictal EEG.  

 

1.3 Classification of Epileptic Seizures 

An epileptic seizure, as defined by the International League Against Epilepsy 

(ILAE) is “a transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005). The 

main features used for classification of epileptic seizures are their clinical 

manifestations and changes in EEG recordings. The most widely accepted 
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classification of epileptic seizures is defined by the Commission on Classification 

and Terminology of ILAE. Video and EEG recordings are together used to 

classify seizures. Based on video monitoring for clinical manifestations, the 

epileptic seizures can be classified into two main categories: 

• Clinical seizures 

These are epileptic seizures which show clinical manifestations as reported by 

the patient or an observer. These are behavioral events characterized by 

involuntary movements like flexing of arms and legs, eyes rolling towards 

back of the head, teeth clenching, facial twitches or shaking.  

• Sub-clinical seizures 

These are seizures with no clinical manifestations, but with recorded 

abnormalities in the EEG. These electrographic events are usually of shorter 

duration and remain more localized in the brain when compared to clinical 

seizures. 

 

A second type of classification of seizures, based on the extent of the brain that is 

affected by a seizure is more general and exhibit 2 major categories: 

• Generalized seizures 

These seizures typically affect both hemispheres of the brain (large areas of 

the cortex or subcortical structures). Such seizures do not have a recognizable 

focus at onset and usually cause loss of consciousness.   
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• Partial seizures 

This is the most common type of seizures in children and the electrographic 

changes are limited to one hemisphere of brain. They are further classified as 

Simple Partial Seizures if there is no impairment in the consciousness of the 

patient and if they are electrographically limited to a small region of one 

hemisphere or, as Complex Partial Seizures if the patients lose consciousness. 

In Fig. 1.1 and Fig. 1.2 we show two typical examples of a complex partial 

clinical seizure and a simple partial sub-clinical seizure respectively. The 

subclinical seizure is comparatively of lesser duration and spatial extent.  
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Figure 1.1: 90sec of intracranial EEG with a secondarily generalized complex 

partial seizure clinical seizure. Seizure onset is the right hippocampus.  

 

 

Figure 1.2: 90sec of EEG with a simple partial sub-clinical seizure. 
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1.4 Brain Dynamics 

It is important to understand the complexity of the human brain in the search of 

causes for epilepsy. Human brain can be seen as a highly complex, nonlinear 

system with changes in its dynamics that can be used to distinguish an epileptic 

from a normal brain. Comprehensive studies in EEG-Brain dynamics have been 

carried out in the past (Başar, 1980). Complex nonlinear systems can be studied 

either through mathematical modeling or time series analysis. Time series 

analysis has advantages over mathematical models as it is difficult, if not 

impossible, in the case of the human brain to find analytical solutions to nonlinear 

equations in closed form.  

The early belief that epileptic seizures could not be anticipated was due to 

the assumption that seizures were abrupt transitions that occurred randomly. The 

ability to predict epileptic seizures well in advance of their occurrence may lead 

to better treatments of epilepsy. For example, this can be achieved by using the 

EEG signals to monitor the dynamical changes of the brain over time and 

intervene therapeutically at the right time. Seizures can be considered as 

manifestations of dynamical changes of a chaotic nonlinear system that can be 

captured by measures of chaos, such as the Lyapunov exponents (Benettin, 

Galgani, Giorgilli, & Strelcyn, 1980; Shimada & Nagashima, 1979). The 

hypothesis that the brain progresses into and out of different states of chaos was 

formulated in the past (Iasemidis et al., 2003). A group led by Iasemidis, 

Sackellares and Williams, was the first to report application of nonlinear 

dynamics to clinical epilepsy (L. Iasemidis, Zaveri, Sackellares, Williams, & 
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Hood, 1988). It was also the first time NIH (National Institute of Health) 

supported a clinical investigation into the application of nonlinear dynamics 

theory on epileptic seizures. This hypothesis changed some long-held beliefs 

about predictability of epileptic seizures. The transition from normal states to 

epileptic seizures was explained as a deterministic process (L. D. Iasemidis, 

Olson, Savit, & Sackellares, 1994; Olson, Iasemidis, & Sackellares, 1989). 

Nonlinear dynamical analysis of EEG recorded with subdural electrodes showed 

the existence of long-term preictal periods (order of minutes) and increased the 

prospects of seizure prediction algorithms by monitoring the evolution of short-

term Lyapunov exponents (STLmax) (L. D. Iasemidis, Chris Sackellares, Zaveri, & 

Williams, 1990; L. D. Iasemidis & Sackellares, 1991; L. Iasemidis et al., 1997; 

Sackellares, Iasemidis, Shiau, Gilmore, & Roper, 2000). The estimated Lyapunov 

exponents in the above approaches are used to measure the information flow 

(bits/sec) along local eigenvectors as the brain moves within its state space. 

Application of the same technique to epileptogenic focus localization was also 

reported (M. C. Casdagli et al., 1997; M. Casdagli et al., 1996).  

 

1.5 Research Objectives 

The main aim of this research is to provide an efficacious alternative to the visual 

detection of seizures from long-term (days to weeks) continuous EEG recordings 

by developing an automated, training-free, patient-independent, data-adaptive 

robust algorithm using measures from linear and nonlinear dynamics. Two new 

measures, Adaptive Teager Energy (ATE) and Adaptive Short-Term maximum 
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Lyapunov exponent (ASTLmax) are introduced in this thesis to capture changes in 

the energy and nonlinear dynamics of the EEG signal respectively. Epochs of ictal 

activity (seizure) typically possess higher energy when compared to epochs of 

inter-ictal (non-seizure) events. This difference in energy can be captured using 

ATE, but is not specific only seizures. However, dynamics corresponding to ictal 

epochs may be different from those of non-ictal epochs and this difference can be 

captured using the maximum Lyapunov exponent. The innovation is estimate the 

Short-term Lyapunov exponent as data-adaptive by selecting the parameter of 

time lag � in the reconstruction of the state space of the brain over time. The 

sample autocorrelation function was used to estimate the time lag for every 30sec 

EEG segment. The data-adaptive Teager energy was also estimated using the 

same time lag. 

  

1.6 Thesis Organization 

This thesis is organized as follows. Chapter 2 outlines a brief description of 

dynamical systems and chaos theory, Lyapunov exponents, Teager energy and 

autocorrelation function. Application of all these measures to EEG is presented. 

The estimation procedure of our proposed measures, ASTLmax and ATE, in the 

seizure detection algorithm is explained in this chapter. Chapter 3 describes the 

steps involved in the automatic selection of the optimal electrodes to be followed 

over time. An example of application of the algorithm to a single electrode EEG 

recording with one seizure is presented. Results of the performance of the 
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algorithm in all patients analyzed, including possible variations of it are presented 

in chapter 4. The overall result of this research is summarized in chapter 5. 
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Chapter 2 

METHODS AND TOOLS 

2.1 Dynamical Systems and Chaos 

Dynamics is the study of changes of the states of a system as it evolves in time. 

Chaos theory studies the behavior of nonlinear dynamical systems, like the brain, 

that are highly sensitive to initial conditions. Any perturbation to the initial 

conditions of such systems yields widely diverging dynamics. This behavior is 

known as deterministic chaos. Convincing evidence for existence of deterministic 

chaos has been provided from a variety of research experiments (Roux, Simoyi, & 

Swinney, 1983; Swinney, 1983). Differential equations have been used to model 

physical systems to determine how they behave temporally under different 

experimental conditions and so try to predict their future states. Modeling a 

physical system using differential equations is essentially impossible when the 

order and degree of the modeled systems are very high. Nonlinear systems with 

closed form analytical solutions typically settle in a steady state or in a periodic 

motion. In 1975, a new kind of motion was observed which was erratic. This type 

of motion was termed chaos, and the theory developed to explain such systems as 

chaos theory.  

Many natural systems showing chaotic behavior have been 

comprehensively studied (Hastings & Powell, 1991; Schaffer, 1985), the most 

famous one being the weather.  The initial study on chaos theory was pursued by 

a meteorologist, Edward Lorenz, while working on weather prediction models. He 

was running his experiments on a computer with a set of differential equations to 
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model the weather. When he started the same experiment with a different set of 

initial conditions, he found that rounding-off errors in initial conditions had a 

large influence on the subsequent dynamics of the model equations.  

A system is said to be in an unstable steady state if small perturbations 

make the system evolve away from the steady state. For example a cone resting 

on its apex can be balanced at just one particular point. But if the cone is 

perturbed it falls to the ground which is its stable state. A system may experience 

more complicated steady states, in the sense that there are many regions in the 

state space the system may eventually rest to or stabilize in. Even though nearby 

points in the state space of a chaotic system move away from each other, a steady 

chaotic state can dynamically be defined as stable if the system always moves 

(according to a deterministic probability distribution) within it and never escapes 

from it under a small bounded perturbation (chaotic attractor).  

A detailed description of such systems was first described mathematically 

by Lorenz in his seminal paper in 1963. He presented a system of 3 coupled 

differential equations which behave chaotically. This led him to his now famous 

speculation that a butterfly flapping wings in Brazil (which is a small change in 

the initial conditions in the atmosphere) might cause a tornado in Texas. This 

dependence of the evolution of a system on its initial conditions makes chaotic 

motion a complex phenomenon. In this sense, it is intuitive to expect that systems 

in nature are complex, and the larger the number of system’s state variables, the 

more complex the system is.  
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It is important to understand the properties of chaotic systems, some of 

which are: 

i. Determinism: Even though chaotic systems exhibit random behavior, they 

are classified as deterministic systems. This is because if the initial 

conditions are known precisely, future behavior of the system can be 

predicted. However, initial conditions are never known for a real system. 

ii.  Nonlinearity: Nonlinearity is a necessary condition for a system to exhibit 

chaos. A perfectly linear system can never exhibit chaos.  

iii.  Sensitivity to initial conditions: This is the most important characteristic of 

chaotic systems. Chaotic systems for any two different initial conditions 

(however close) always diverge exponentially as they evolve in time. 

Hence, a small change in the initial conditions takes the system in a 

completely different trajectory.  

iv. Boundedness: If the divergent orbits go to infinity, the system is 

considered not to be chaotic as the system is unbounded and cannot 

produce steady states. 

 

2.1.1   Lorenz Attractor 

The Lorenz attractor is the steady state of a nonlinear chaotic system of 

three coupled nonlinear ordinary differential equations (Tucker, 1999). These 

equations were derived by Lorenz in 1963 and represent a simplified model of 

thermal convection in the lower atmosphere. Lorenz showed that this relatively 

simple-looking set of equations (shown in Eq. 2.1) could have highly erratic 
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dynamics for a range of defined parameters, under which the dynamics are 

chaotic. These unique equations are: 

x� � σ	y � x�                                                   	2.1� 

y� � rx � y � xz 

 z� � xy � bz        

where x, y, z are the state variables and σ, r and b>0 are dimensionless 

parameters. A sample trajectory in the 2 and 3 dimensional state space generated 

from these set of equations is shown in figure 2.1.    

Upon close inspection of the plots shown in Fig. 2.1, the trajectories 

depicted therein never intersect each another. For any small perturbation of initial 

conditions, the state-space trajectory will never follow the same path. 

Furthermore, if one were to plot the trajectories of the solution for one set of 

initial conditions and then for another set of initial conditions (infinitesimally 

close to the first), the two trajectories would diverge from one another 

exponentially. This means that not only does a small perturbation to initial 

condition result in a trajectory that will never intersect with that of the original 

system but it results in a completely different trajectory. 
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Figure 2.1: Lorenz system: Trajectories in the state space with initial conditions 

x(0)=1, y(0)=2 and z(0)=3 and parameters �=10, �=8/3, �=28 and N=20400. 

 

2.2 State Space Representation and State Space Reconstruction 

For a discrete dynamical system the state space (or phase space) is a vector space 

in which all possible states of a system are represented with a unique vector (set 

of points). The rank of this space gives the necessary number of degrees of 

freedom or variables the system may have.  

For a mathematically modeled system, its system equations can be used to 

create the state space. However, for real-world chaotic dynamical systems, the 

system equations are unknown and hence we have to employ methods of attractor 
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reconstruction to obtain the state space. We will follow the approach developed 

by Takens (Takens, 1981), which is based on the method of the delay coordinates 

for reconstruction of the state space (embedding) of an unknown system. The 

embedding method has been proven useful, particularly for time series generated 

from low-dimensional, deterministic dynamical systems. This approach of state 

space reconstruction has found its applications in several fields in engineering and 

has been a favorite approach in the analysis of epileptic EEG signals for seizure 

prediction (L. D. Iasemidis et al., 2003) and epileptogenic focus localization (L. 

D. Iasemidis et al., 1990; Sabesan et al., 2009).  

 Takens’ delay embedding theorem states the conditions under which a 

chaotic dynamical system can be reconstructed from its observations and is 

explained as follows: 

For a given measured time series ��	��, the time-delay vectors (embedding 

vectors) ��	�� are given by 

��	�� � ���	��, ��	� � ��, … , ��	� � 	� � 1����                  	2.2� 

where ‘m’ is the embedding dimension which should be sufficiently large for a 

perfect state space reconstruction and � is the time-delay (or embedding lag). 

These parameters have to be carefully selected in order to facilitate a good state 

space reconstruction. An embedding dimension of m=7 for epileptic seizures has 

been reported by Iasemidis et al (Olson, Iasemidis, & Sackellares, 1989) and is 

used in our research too. According to Takens, in order to properly embed a signal 

in the state space, the embedding dimension should at least be equal to 2� � 1, 

where D is called as the Box Counting Dimension or Minkowski-Bouligand 



20 

dimension (Dubuc, Quiniou, Roques-Carmes, Tricot, & Zucker, 1989; Pašić, 

2003). One of the measures used to estimate � is the state space correlation 

dimension (Liebovitch & Toth, 1989). The brain, being a nonstationary system, is 

not expected to be in a steady state in the strict dynamical sense at any location. 

The activity at brain sites is constantly moving through steady states, which are 

functions of certain parameter values at a given time. According to bifurcation 

theory, when these parameters change slowly over time (e.g., when the system is 

close to a bifurcation point), dynamics slow down and conditions of stationarity 

are better satisfied. In the ictal state (Haken, 1996), temporally ordered and 

spatially synchronized oscillations in the EEG usually persist for a relatively long 

period of time (in the range of minutes).  

Dividing the ictal EEG into short segments ranging from 10.24 sec to 50 

sec in duration and estimating   from ictal EEG has produced values between 2 

and 3 (L. Iasemidis, Principe, & Sackellares, 2000), implying the existence of a 

low-dimensional manifold in the ictal state. Therefore, an embedding dimension 

� of at least 7 can be used to properly reconstruct the attractor of the ictal state. 

The embedding dimension for inter-ictal (between seizures) period is expected to 

be higher than that of the ictal state, but a constant embedding dimension of �=7 

will be used in this thesis to reconstruct all relevant state spaces from both ictal 

and inter-ictal period, so that comparison of measures from the two periods makes 

physical sense. The advantage of this approach is that any irrelevant information 

in dimensions higher than 7 would not affect our results. The disadvantage is that 

relevant information in higher dimensions than �=7 is missed. 
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The time-delay � can be estimated from the decay time of the 

autocorrelation function. The purpose of time delay � is to make the components 

of the vectors in the embedding sufficiently independent. A low value of the delay 

time results to adjacent components be correlated and hence they cannot be 

considered as independent variables. On the other hand, a high value of delay may 

make the adjacent components uncorrelated (almost independent) and cannot be 

considered as part of one system that supposedly generated them. Methods used 

to estimate an optimum time delay are the first minimum of the mutual 

information, the 1/e of autocorrelation and the first zero of the autocorrelation 

(Abarbanel, 1996). 

 

2.3 Lyapunov Exponents 

A positive Lyapunov exponent is a signature of chaos. A chaotic system has at 

least a positive Lyapunov exponent. This is because of the exponentially growth 

over time of distances of initially nearby states. The Lyapunov exponent measures 

the rate of a trajectory’s divergence (or convergence) over time. A positive 

Lyapunov exponent indicates orbital divergence and hence chaos in the system. A 

negative Lyapunov exponent indicates orbital convergence and hence a 

dissipative system. Wolf et al. described the first practical algorithm for 

estimating the largest Lyapunov exponent from real data by following the 

divergence/convergence rate of nearby trajectories (Wolf, Swift, Swinney, & 

Vastano, 1985).  
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The Lyapunov exponents measure the information flow in bits/sec along 

local eigenvectors in the state space as the system moves through such attractors. 

An improved method for calculating this dynamical measure from experimental 

EEG data has been published by Iasemidis & Sackellares (L. Iasemidis, Principe, 

& Sackellares, 2000). This method to estimates an approximation of !"#$ from 

nonstationary data, called STL (Short-term Lyapunov), developed via a 

modification of the Wolf's algorithm used to estimate !"#$ from stationary data. 

The procedure is depicted in Fig. 2.2 and is given by the formula 

 

%&!"#$ ' �  
1

( �
 log,

-�	��' �( �� � �	�.' �( ��-

-�	��'� � �	�.'�-
                 	2.3� 

 

The estimation of the largest Lyapunov exponent (!"#$) in a chaotic 

system has been shown to be more reliable and reproducible than the estimation 

of the remaining exponents, especially when the correlation dimension is 

unknown and changes over time, as is in the case of high-dimensional and 

nonstationary data (e.g., interictal EEG). 

 



Figure 2.2: State space reconstruction of EEG

 

2.4 Teager Energy (TE) 

Teager energy operators 

and discrete domains and are very useful tools for 

signals from an energy point of view. This energy function is a local property of 

the signal depending on the signal

popular algorithm having

its simplicity in implementation. 

formula, 

where  is the first derivative of 

 

In discrete time domain, TE is defined by the formula,
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State space reconstruction of EEG data by the method of delays

 

Teager energy operators (Kaiser, 1993) are defined in both the continuous 

and discrete domains and are very useful tools for detecting single component

signals from an energy point of view. This energy function is a local property of 

the signal depending on the signal amplitude and its first two derivatives

having wide applications in the field of signal processing due to 

implicity in implementation. In continuous time domain, TE is defined 

is the first derivative of x, and  is the second derivative of x. 

domain, TE is defined by the formula, 

 

data by the method of delays 

are defined in both the continuous 

single components of 

signals from an energy point of view. This energy function is a local property of 

and its first two derivatives. It is a 

signal processing due to 

defined by the 
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 We know that ictal EEG is characterized by high frequency and high 

amplitude oscillations and hence possesses higher signal energy when compared 

to inter-ictal EEG with low frequency and low amplitude oscillations. Thus, TE 

can in principle differentiate between ictal and inter-ictal EEG segments.  

While the performance of TE was found to be good for high SNR, for low 

SNR its performance is markedly reduced. An improvement of the traditional TE 

is called multi-resolution TE and was proposed for detection of action potentials, 

and outperformed the traditional TE (Choi & Kim, 2002). The new measure was 

called k-TEO and is given by    

Ψ'	�0�1� � �2
, �  �23'�24'                                 	2.6� 

The parameter k is optimized to give the best performance. In a real case 

scenario, this optimal value for k varies over time, and hence having a single 

value for k reduces the algorithm’s performance, which is a major drawback. 

 

2.5 Autocorrelation Function 

Autocorrelation is a statistical measure used to describe the correlation 

between observations (how closely the observations are related) of a dataset for 

different time lags �. It can be seen as a measure to detect the presence of any 

related periodic patterns in a dataset. In statistics, is given by the formula, 

6	�� �  
70	�8 �  9�	�84: � 9�1

�,                                  	2.7� 

where 9 is the mean of all observations with a variance of �, . 
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The autocorrelation function is estimated by the Sample Autocorrelation. 

It is a widely used measure to find the embedding lag � for nonlinear time series 

analysis. For a process Xt, the sample autocorrelation is given by the formula, 

<	�� �  
∑ 	�2 �  �>�	�24: �  �>�?

2@A

∑ 	�2 � �>�,?
2@A

                                	2.8� 

 

where �> = 
A

?
∑ ��

?
�@A  , is the sample mean and N is the number of observations. 

 

2.6 Ictal vs Inter-ictal EEG 

To design an algorithm for seizure detection, it is important to understand the 

difference between ictal and inter-ictal EEG. Two datasets, one with ictal EEG 

segments and another with inter-ictal EEG segments from the same patient, were 

first analyzed from a single electrode resulting in 5 ictal EEG segments and 117 

inter-ictal EEG segments (duration of 30sec with 20sec overlap). The frequency 

band 0-15 Hz of EEG from these two datasets was divided into sub-bands using 

band-pass filters with bandwidth of 1Hz. Average power spectral density was 

estimated for each of these bands using Welch periodogram. The lag index 

corresponding to the point where the value of the autocorrelation function crosses 

a lower confidence bound was used as an estimate for delay time � using the 

formula 

� �  
!CD E�FG�

7��GFFH�D FH�G�IHJ� � 1 
                                   	2.8� 
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STLmax values for these segments where then estimated using their respective 

delay time �. The results of this analysis are given in Tables 2.1 and 2.2. 

 

Table 2.1: Analysis of Ictal vs Inter-ictal EEG (30sec with sub-band frequencies)   

Ictal EEG Analysis Inter-ictal EEG Analysis 
Frequency 

Band  
(Hz) 

Average 
PSD 

(µW/Hz) 

Tau 
(mean) 

 

STLmax 
(mean) 

(bits/sec) 

Average 
PSD 

(µW/Hz) 

Tau 
(mean) 

 

STLmax 
(mean) 

(bits/sec) 
0-1 0.0304 12.8 2.3384 0.0569 13.5726 2.0952 
1-2 0.1293 5.2 4.0093 0.0442 6.1795 3.5536 
2-3 0.2198 3.6 4.2445 0.0159 4 3.8563 
3-4 0.2248 3 3.7923 0.0098 3 3.7989 
4-5 0.2195 2 3.9673 0.0054 2 4.4882 

5-6 0.2187 2 3.4582 0.0037 2 3.5942 
6-7 0.1046 2 2.7230 0.0030 2 2.9241 
7-8 0.0695 1 4.8693 0.0020 1 5.4545 
8-9 0.0636 1 5.0614 0.0013 1 4.7323 
9-10 0.0558 1 3.6738 0.0009 1 3.9764 
10-11 0.0536 1 3.0993 0.0008 1 3.5396 

11-12 0.0437 1 3.3560 0.0007 1 3.5040 
12-13 0.0450 1 3.0684 0.0006 1 3.1765 
13-14 0.0304 1 3.2492 0.0005 1 2.9894 
14-15 0.0250 1 2.3577 0.0004 1 2.9181 

 

 

Table 2.2: Analysis of ictal and inter-ictal EEG (with all frequencies)   

  
Tau 

(mean) 
STLmax 
(mean) 

Ictal  2.6 5.9360 

Inter-Ictal 8.3162 2.0978 
 

From Table 2.1, we see that the frequency band between 3-5Hz has the 

highest average power spectral density for epochs of ictal EEG. The 

corresponding time lags � are between 2 and 3. On the other hand, for inter-ictal 
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epochs of EEG, the highest average PSD is in the frequency band 0-2Hz with 

time lags between 6 and 13. Additionally, the corresponding STLmax values for 

these bands indicate that the inter-ictally more dominant slow activity (1-2Hz) is 

more ordered (STLmax =2-3) than the dominant activity (3-5Hz) in the ictal state 

(STLmax =3-4).  

Estimation of STLmax and time lag for the same ictal and inter-ictal 

segments of EEG without sub-band filtering are shown in Table 2.2. The time lag 

selected for both the interictal and ictal segments corresponds to the time lag 

obtained from the filtered data at the frequency bands with the highest average 

PSD. In this sense the use of a data-adaptive lag in the estimation of STLmax 

effectively acts as a filtering process that automatically captures the dominant 

frequency in the signal. This is especially useful in the case of seizure detection, 

since there is no uniqueness in the ictal frequency activity that is present in 

different types of seizures, or even in different seizures from the same subject.     

Using these initial observations, we designed an algorithm using adaptive 

estimation of the involved parameters from the data. In the next section, we 

present the two measures used in our proposed seizure detection algorithm. 

  

2.7 Adaptive Lyapunov exponents (ASTLmax) 

In traditional STLmax estimation, the time lag � is fixed for EEG analysis 

optimized for reconstruction of the state space from the ictal period. The idea here 

was to capture ictal features of the system (brain) as it moves from a normal state 

(inter-ictal) towards an abnormal state (ictal), and thus facilitate the prediction of 
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such events. Here, our aim is to detect rather than predict seizures. We have seen 

from the previous section that there is a clear distinction between ictal and inter-

ictal EEG if we use different time delays in the state space reconstruction. Hence 

a constant value of time delay is not advisable for use in a seizure detection 

algorithm.  

Fig. 2.3 shows that ASTLmax values are different for ictal EEG when 

compared with pre-ictal and post-ictal EEG. Activities in low frequency (0-2 Hz) 

during pre-ictal and post-ictal periods correspond to lower complexity (low values 

of ASTLmax). On the other hand, activities in the high frequency (3-5 Hz) 

correspond to higher complexity (higher ASTLmax). This difference in the values 

of the ASTLmax, in conjunction with the one in Teager energies (see next section) 

is used to detect a seizure by our algorithm. 

 

2.8 Adaptive Teager Energy (ATE) 

In accordance to the estimation of ASTLmax we propose an adaptive time lag �, 

derived from sample autocorrelation function, as the lag index k for TE. The 

rationale for the use of an adaptive TE is the same as in (Choi & Kim, 2002), i.e., 

to utilize its sensitivity to the frequency content of the signal. Hence, ATE can be 

defined by the following equation 

 

Ψ'	�0�1� � �2
, �  �23:�24:                                      	2.9� 
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Figure 2.3: Teager Energy for 10minutes of EEG from electrode RD4 in 

Patient-3 that includes a seizure: (a) Sample EEG with a seizure at 

300sec (blue). (b) ASTLmax values (black) estimated every 10 sec(c) ATE 

values (green) estimated every 10 sec. 

a) 

b) 

c) 
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Chapter 3 

SEIZURE DETECTION 

3.1 Background 

The task of detecting epochs of EEG having seizure-like activity is non-trivial due 

to several factors, including the differences in seizure morphologies within and 

across patients, and the presence of movement and other recording artifacts. This 

has motivated researchers to work towards the development of robust seizure 

detection algorithms. An initial automated seizure detection algorithm was 

designed by Gotman (Gotman, 1982), using recorded events like seizure 

anticipation/experience by the patient or an observer, and spikes detected by an 

automatic spike recognition program. This experimental setup facilitated the study 

of correlation between electrographic seizures (epileptic activity recorded in the 

EEG) and their clinical manifestations. In a similar study, it was estimated that 

nearly 30% of electrographic seizures are not accompanied by clinical 

manifestations (Ives & Woods, 1980). These studies showed that a seizure 

detection algorithm based on electrographic recordings always outperforms the 

push-button approach which uses perception of a seizure by the patient or an 

observer. The earlier approach by Gotman depended heavily on amplitude 

changes in the EEG recording and was found that even with the assistance of an 

artifact removal system to cancel false positives the algorithm reached at most a 

sensitivity of 70-80%. The algorithm was later updated with modifications and 

after extensive evaluation it is now integrated into several commercial medical 

devices for clinical use (Gotman, 1990). Despite the modifications and 
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improvements the algorithm still suffers performance-wise, with the major 

drawback being the large number of false positives (1-3 per hour). 

Automated seizure detection based on artificial neural networks involves a 

training procedure that improves the algorithm’s performance. The training 

involves samples of seizure and non-seizure segments, thereby making the 

algorithm learn to discriminate between these segments in future (testing) EEG 

data. The detection performance of these algorithms relies on the features 

extracted from EEG during the training phase. Webber et al. (Webber, Lesser, 

Richardson, & Wilson, 1996) have reported on the use of amplitude, slope, 

curvature, rhythmicity, and frequency components of EEG in 2sec epochs that 

improves the specificity to 1 false positive/hr. Gabor et al. (Gabor, Leach, & 

Dowla, 1996) used an unsupervised training approach in conjunction with a 

matched filter constructed by wavelet transform using 8-channel subsets of 18 

channel scalp EEG recordings. Their algorithm achieved 90% sensitivity with a 

considerable reduction in false positives rate to less than 1 per hour. A seizure 

detection algorithm primarily aimed at intracranial EEG developed by Osorio et 

al. (Osorio, Frei, & Wilkinson, 1998) claimed an ideal sensitivity of 100% with 

no false detections utilizing advanced digital signal processing techniques like in 

time-frequency localization, image processing and identification of time-varying 

stochastic systems. It should be noted though, that their algorithm was not 

evaluated on continuous EEG. A wavelet-based approach for seizure detection in 

intracranial EEG was presented by Khan et al. (Khan & Gotman, 2003) claiming 

a reduction in false detections to 0.3 per hour. Usually, the length of training data 
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is more than the length of testing data, which in itself should be considered as a 

disadvantage for the development of a seizure detection algorithm. Additionally, 

the huge variability of seizures across patients makes it harder to have a trained 

network on a set of one patient’s EEG recordings and test it on another patient.  

Single electrode time-frequency analysis using matching pursuit algorithm 

was applied qualitatively for detection of seizures originating from the mesial 

temporal lobe (Franaszczuk, Bergey, Durka, & Eisenberg, 1998). Significant parts 

of the ictal period like initiation, rhythmic bursting activity, organized rhythmic 

bursting activity and intermittent bursting activity were identified in this study. 

Recently, attempts have been made towards applications of nonlinear techniques 

for seizure detection. The findings in (Päivinen et al., 2005) suggest that best 

results could be achieved by using a combination of linear and nonlinear measures 

as features for seizure detection. A novel wavelet-chaos neural network method 

for EEG segment classification into healthy, ictal, and inter-ictal EEGs using 

correlation dimension and largest Lyapunov exponent was introduced by Adeli et 

al. (Adeli, Ghosh-Dastidar, & Dadmehr, 2007). It was shown in this study that the 

largest Lyapunov exponent can be effectively used to classify ictal and inter-ictal 

EEG. 

Approaches based on artificial neural networks have improved the seizure 

detection performance at the cost of algorithm’s training. The attempts made 

towards development of algorithms for classification of segments of EEG can be 

used to assist in the development of algorithms for online seizure detection. 

Algorithms based on user-defined thresholds prevent the use of such algorithms 
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across patients without any intervention of a trained person. We focused our 

research towards development of a seizure detection algorithm eliminating the 

need for algorithm’s training or user-defined thresholds. We intended to develop 

an algorithm which is patient-independent and data-adaptive eliminating the need 

for any changes in the algorithm when applying it across patients. Although our 

final aim is to develop a real-time seizure-onset detection algorithm, we worked 

towards development of an online seizure detection algorithm during this MS 

research.  

 

3.2 Seizure Detection Algorithm 

Our automated seizure detection algorithm with data-adaptive threshold and 

capability of selecting the “optimum electrode” over time for seizure detection is 

presented below. 

• Preprocessing of EEG 

The sampling frequency of the multichannel analog EEG across patients was 

typically 200 Hz or down-sampled to 200 Hz. The digital EEG recording was 

filtered to remove noise and artifacts in frequency bands outside 0.1-30 Hz. 

This digitally filtered EEG signal was then segmented into overlapping 30sec 

epochs (20sec overlap per consecutive epochs).  
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• Embedding dimension m for reconstruction of the state space per EEG epoch 

and electrode site 

We selected � � 7 for reconstruction of state space as per the findings 

reported by Iasemidis et al (L. Iasemidis, Principe, & Sackellares, 2000). 

 

• Time lag � for reconstruction of the state space per EEG epoch and electrode 

site 

For every 30sec EEG segment the time lag � at which the sample 

autocorrelation of this segment first reduces to zero is estimated. 

 

• Adaptive Estimation of the Maximum Lyapunov exponent 

The Adaptive Short-Term maximum Lyapunov exponent (ASTLmax) is then 

estimated from the state space reconstructed as above for each EEG epoch 

according to Iasemidis et. al algorithm (L. Iasemidis, Principe, & Sackellares, 

2000).  

 

• Adaptive Teager Energy (ATE) 

The data Adaptive Teager Energy is calculated using the previously estimated 

time lag � for each EEG epoch.  

 

• Seizure detection algorithm 

The ASTLmax and ATE measures are used in cascade for seizure detection. 

The following steps are employed towards this goal:  
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i. 360 values of ASTLmax and ATE per electrode (corresponding to 1 hour of 

EEG) are fed into the electrode selector routine. The parameter 360 was 

selected so that we have enough data for a statistically sound selection of 

an electrode in step (ii) and detection of outliers in step (iii) below.   

ii.  The electrode selector selects one “optimum electrode” per EEG epoch 

based on the range of the ASTLmax values. The electrode that exhibits the 

maximum range in ASTLmax values is selected for further analysis.  

iii.  From the ASTLmax values of the electrode selected in (ii) above, a 

statistical threshold is calculated as: 

&LA �  �GC�	M%&!NOP� �  5 R I�C�FC�F FGSHC�HJ�	M%&!NOP�        	3.3� 

which implies statistical significance of α=0.00001. 

ASTLmax values above Th1 (outliers) are then identified and stored as 

possible segments Si that contain seizures. The EEG data of the identified 

segments Si are subsequently given as input to the next step (iv) for the 

algorithm to further refine the detection of possible seizures using ATE. 

iv. The ATE values for the 1 hour EEG segment under consideration, and 

only for the electrode selected in step (iii) above, are employed to define a 

second threshold Th2 for outliers such that 

&L, � �GC�	M&7� �  3 R I�C�FC�F FGSHC�HJ�	M&7�           	3.4� 

with statistical significance of α=0.001. 

We should note that the condition of having at least 2 ATE values to stay 

above the threshold &L, to generate a seizure warning corresponds to a 
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statistical significance equal to α2=0.001*0.001=0.00001, the same used in 

step (ii).   

Then for every candidate EEG segment Si that was identified in step (iii) 

21 consecutive TE values that span about 2minutes, that is, its immediate 

previous ten 10sec segments, the segment itself and its immediate ten 

subsequent segments are considered. Seizure detection in Si is declared if 

at least 2 out of the 21 ATE values are found to be above Th2. In this case, 

we conclude that a seizure is included in that 30sec EEG segment Si. The 

values 21 and 2 we assigned to the relevant parameters of the algorithm in 

this step were selected so that  

a) Seizures of 2 minutes maximum duration (typical for focal temporal 

lobe clinical seizures we analyzed) are captured.  

b) Seizures of duration as short as 40sec (typical for subclinical seizures in 

patients we analyzed) are captured. 

 

 

 

 

 

 

 

 

 



Figure 
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 3.1: Flowchart of Seizure Detection Algorithm 
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3.3 Example of Application of our Seizure Detection Algorithm  

The workings of our seizure detection algorithm with a step-by-step flow analysis 

will be explained in this section. Our algorithm can be perceived as a 2-block 

procedure, with one block detecting all possible segments that include seizures 

(sensitivity) and the second block verifying them (specificity).  

 An EEG segment of duration 1 hour containing a seizure was selected from 

Patient-3. The algorithm’s steps for this segment are shown in Fig. 3.2(a)-(d). 

Initially the ASTLmax values for all electrodes are given to the electrode selector 

routine. For clarity of presentation, ASTLmax values from only four electrodes are 

shown in Fig. 3.2(a). The selector routine picks electrode Electrode2 as the 

optimum electrode for seizure detection. Fig 3.2(b) shows ASTLmax values of 

Electrode2 along with the threshold Th1. It was verified from visual inspection of 

the EEG that only the segment corresponding to the first peak (marked in green as 

true detection) contained seizure activity whereas the other two peaks (marked in 

red as false detections) did not. The corresponding ATE values for Electrode2 are 

shown in Fig 3.2(c), where we can see that the two false detections from ASTLmax 

were cancelled since the respective ATE values fall below Th2.  

It should also be noted that ATE in block-2 produced 1 false detection 

(marked as false detection in red in Fig 3.2(d)). But this had no effect as ASTLmax 

values in block-1 did not generate any warning. The above example was carefully 

selected to show the working of both measures, ASTLmax and ATE in tandem. A 

more detailed analysis that shows that this setup is optimal is presented in chapter 

4. 



Figure 3.2: Flow of seizure detection algorithm: (a) ASTL

EEG recording from 4 electrodes

(Electrode-2) with threshold Th

Th2. (d) 21 ATE values of 

detection in green) in (c).

time in both Figures 3.2(c) and 3.2(d).
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Flow of seizure detection algorithm: (a) ASTLmax values for 1 hour of 

4 electrodes. (b) ASTLmax values of selected electrode 

with threshold Th1. (c) ATE values of Electrode-2 with threshold 

. (d) 21 ATE values of Electrode-2 corresponding to peak (marked as True 

detection in green) in (c). Seizures are announced if outliers occur at 

time in both Figures 3.2(c) and 3.2(d). 

 

values for 1 hour of 

values of selected electrode 

with threshold 

corresponding to peak (marked as True 

 the same 
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Chapter 4 

APPLICATION TO SCALP AND INTRACRANIAL EEG 

4.1  EEG Data Acquisition 

For our study, data from intracranial EEG (3 patients) and scalp EEG (2 patients) 

recordings were collected. Intracranial EEG recordings were obtained from 

epileptic patients with bilaterally, surgically implanted microelectrodes in the 

hippocampus, temporal and frontal lobe cortexes. The EEG signals were recorded 

using amplifiers with an input range of ±0.6 mV, a frequency range of 0.5-70 Hz 

and a sampling frequency of 200Hz using an analog-to-digital converter with 10-

bit quantization. The EEG signal was filtered using an analog low-pass filter at 

70Hz, digital band-pass filter between 0.1-30Hz and notch filter at 60Hz. The 

multichannel EEG signals (28–32) were obtained from long-term continuous 

recordings in three patients (6-11.7 days). Fig. 4.1(a) shows the electrode 

placement for the intracranial recordings. 

 Scalp EEG recordings with 21 recording electrodes (according to general 

technical standards) were obtained from 2 epileptic patients. The recording 

electrodes were placed according to the international 10-20 system as shown in 

Fig. 4.1(b). Additional electrodes were placed between the standard electrodes as 

proposed by the American Clinical Neurophysiology Society. The sampling 

frequency was typically chosen to also be 200Hz. An analog low-pass filter with 

70Hz cutoff with digital band-pass filter between 0.1-30Hz and notch filter at 

60Hz were used. The obtained recording was around 12hrs in duration for each 

patient. The long-term EEG recordings from five epileptic patients were obtained 



to evaluate the performance of our proposed seizure detection algorithm. 

Information on Patient ID, recording duration, type of recording

of seizures is given in Table 4.1.   

 

 

(a) 

Figure 4.1: Electrode 

(a) Placement of depth and subdural electrode

left orbitofrontal (LOF), right orbitofrontal (ROF),

right subtemporal cortex (RST). Depth electrodes

depth (LTD) and right temporal depth (RTD) to

activity. (b) Arrangement of electrodes for r

international 10-20 system. 
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to evaluate the performance of our proposed seizure detection algorithm. 

Information on Patient ID, recording duration, type of recording and total number 

of seizures is given in Table 4.1.    

(b) 

 

Electrode montage for intracranial and scalp EEG recording

and subdural electrodes. Electrode strips placed over the 

(LOF), right orbitofrontal (ROF), left subtemporal (LST) and 

right subtemporal cortex (RST). Depth electrodes are placed in the left temporal 

depth (LTD) and right temporal depth (RTD) to record hippocampal EEG 

(b) Arrangement of electrodes for recording scalp-EEG according to 

20 system.  

to evaluate the performance of our proposed seizure detection algorithm. 

and total number 

 

recording:           

strips placed over the 

left subtemporal (LST) and 

are placed in the left temporal 

record hippocampal EEG 

EEG according to 
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Table 4.1: Patient Data   
Patient ID Recording duration (hrs) Type of recording No. of Seizures 

1 281.34 Intracranial 7 

2 217.94 Intracranial 24 

3 145.75 Intracranial 20 

4 13.73 Scalp 2 

5 12 Scalp 3 

 

 

4.2 Evaluation Procedure of Seizure Detection Algorithm 

The performance of a seizure detection algorithm is measured by using the 

following criteria: 

• True positives 

The number of marked seizures declared as seizure warnings by the seizure 

detection algorithm. 

• False positives 

The number of seizure warnings generated by the seizure detection algorithm 

which were not seizures (when there was no marked seizure event by the 

physician). 

• False negatives 

The number of missed seizures for which no seizure warning was generated 

by the seizure detection algorithm. 
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• Sensitivity 

This is a statistical measure to quantify the ability of the seizure detection 

algorithm to effectively identify true seizure events. It is given by Eq. 4.1 as 

%G�IH�HSH�U �  
&�VG WJIH�HSGI 

&�VG WJIH�HSGI � XCYIG �GDC�HSGI
R 100%                	4.1� 

 

• False positive rate per hour (Specificity) 

It is the ratio of the number of false positives generated by the algorithm to the 

total recording duration (in hours). 

An “ideal”  seizure detection algorithm would have a sensitivity of 100% 

with 0 false positives per hour, which would mean that all marked seizure 

events were correctly identified by the algorithm without generating any false 

positives.  

 

4.3 Case Analysis: Patient-3 

We choose an intracranial long-term EEG recording from a patient with medically 

intractable epilepsy, admitted to the hospital for detection of epileptogenic focus 

and possible resective surgery, to present a full-scale analysis of our seizure 

detection algorithm. The electrode placement was similar to Fig. 4.1(a). 25 out of 

the 28 recording electrodes were used in our analysis, as 3 electrodes had 

recording problems and were excluded. For a recording duration of 145.75 hours, 

a total of 20 epileptic seizures were documented in the patient report, with 9 

subclinical seizures and 11 typical complex partial seizures. 
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Our seizure detection algorithm detected 19 out of the 20 seizures 

(sensitivity 95%) with 0.0207 false detections per hour. The performance of the 

algorithm was evaluated using the sensitivity and the number of false detections 

per hour for different combinations of threshold values (Th1 and Th2) and is 

shown in Fig. 4.2. The combination of thresholds giving the best performance in 

terms of both sensitivity and false detections per hour (marked in green) was 

found to be for Th1 = 5 and Th2 = 3.5. For the threshold chosen in our algorithm, 

(Th1 = 5 and Th2 = 3), sensitivity was found to be the same as the optimal at 95% 

with a small increase in the number of false positives per hour from 0.0069 to 

0.0207 (marked in black). The missed seizure was found to be of duration of only 

around 10sec as shown in Fig. 4.3, that is, of duration close to the resolution of 

our algorithm in its current form, which is not typical for seizures and should be 

considered as a difficult seizure to be captured by the seizure detection algorithm. 

The difference in the performance of the used threshold values versus the optimal 

ones is small and can thus be claimed that the proposed algorithm is pretty robust. 
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Figure 4.2: Performance (ROC) of seizure detection algorithm for different 

combination of thresholds Th1 and Th2 (in blue). The green dot marks the best 

performance. The black dot marks the performance for the threshold selected in 

our algorithm. The magenta and red dots correspond to cases of worst 

performance, producing respectively 5% sensitivity and 0 false positives per hour 

and 95% sensitivity with 1 false positive every 2 hours.   
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Figure 4.3: 60sec of EEG with a subclinical seizure missed by our detection 

algorithm (Patient-3). 

 

4.4 Results 

The corresponding results from running our seizure detection algorithm on the 

EEG from all five epileptic patients are given in Table 4.2. The sensitivity ranged 

from 85.71% to 100%, while the false positive rate per hour ranged from 0 to 1 

every 6.5 hours. The average sensitivity for seizure detection across all 5 patients 

was 93.64% with an average specificity of 0.0484 false positives per hour. 

Interestingly, the best results sensitivity-wise were obtained from the scalp 

recordings (100% in both scalp-EEG patients), but for one of them (patient 5) we 

had the worst specificity of 0.154, almost 3 times larger than the worst for 

intracranial recordings. This is indicative of the quality of scalp EEG recordings 

and their susceptibility to recording artifacts. Lastly, we should note here that the 

majority of missed seizures in the intracranial recordings were of small duration. 

The seizure missed in Patient-1 and Patient-3 were subclinical events having EEG 
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duration of less than 10sec. The 3 seizures missed in Patient-2 were localized to a 

specific region of brain having EEG duration of less than 10sec.  

 
Table 4.2: Performance of Seizure Detection Algorithm 

Patient ID True 

positives 

False 

positives 

Sensitivity 

(%) 

False 

positives / hr 

1 6 12 85.71 0.04 

2 21 6 87.5 0.027 

3 19 3 95 0.021 

4 2 2 100 0.154 

5 3 0 100 0 

TOTAL/ 

AVERAGE 

51 23 93.64 0.0484 

 

  

4.5 Full Comparison 

The seizure detection algorithm uses two measures, with two different thresholds 

(e.g. Th1=5 and Th2=3). In this cascade arrangement, the order of the use of the 

measures could affect the performance of the algorithm. To evaluate the 

performance of the algorithm with a different order, the sequence of the steps 

where each measure is evaluated was interchanged. We also tested an additional 

frequency-based measure, earlier used for seizure detection (Temko, Nadeu, 

Marnane, Boylan, & Lightbody, 2011). An additional motivation for this was the 

dependence our measures have (by construction) to the frequency content of the 

EEG. We wanted to test if this dependency is a primary factor for our seizure 

detection algorithm’s performance. The “purely” frequency measure we used was 
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the maximum energy in 8 sub-band frequencies (2-3Hz, 3-4Hz, …., 9-10Hz) and 

we denote it by Fmax. 

 Results from the exhaustive comparison of performance of the seizure 

detection algorithm for different combinations of these 3 features (STLmax,TE and 

Fmax) are given in Table 4.3. The seizure detection algorithm was considered to 

have 2 outlier detection blocks as before, with block-1 identifying the candidate 

EEG segments Si for having seizure-like activity and block-2 checking whether 

these candidate segments Si pass the condition of the second block and be finally 

asserted as a seizure. The thresholds Th1=5 and Th2=3 for block-1 and block-2 

respectively were retained for all combinations of selected features. 

Our detailed analysis on 5 epileptic patients using mean sensitivity and 

mean specificity in terms of false positives/hr shows that the combination of 

ASTLmax and ATE in block-1 and block-2 respectively performed the best, giving 

a mean sensitivity of 93.64% with a mean specificity of 0.049 false positives/hr. 

Other combinations provided better specificity, but at the expense of sensitivity 

(e.g. ASTLmax in block-1 and a combination of ATE--Fmax in block-2; specificity 

0.0208, sensitivity 67.88%). No other combination had better sensitivity than the 

original order of blocks depicted in Fig. 3.2. It is also very interesting that use of 

ASTLmax alone in block-1 and omitting block-2 provides the same sensitivity, but 

with a huge reduction in specificity (almost 20 times worse), a fact that validates 

both the usefulness of the second block, and the complementary nature of the two 

measures for a good seizure detection performance.    
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Table 4.3: Performance of seizure detection algorithm for different combination 

of features for Patient-3 (Intracranial EEG recording) with mean performance 
across patients. 

 Patient - 3 Across 5 Patients 
Features Sensitivity 

(%) 
False 

positives/hr 
Mean 

Sensitivity (%) 
Mean false 
positives/hr 

 T -- L & F* 85 0.014 49.2619 0.0839 
T -- L | F 95 0.103 65.7857 0.4510 

F -- L & T 80 0.021 46.4762 0.0412 
F -- L | T 85 0.186 59.9762 0.3662 

L -- T & F 90 0 67.8809 0.0208 
L -- T | F 95 0.028 93.6429 0.0655 

L -- T 95 0.021 93.6429 0.0490 
L -- F 90 0.007 67.8809 0.0372 
T -- F 95 0.103 62.9286 0.4406 
F -- T 85 0.172 59.9762 0.3295 
T -- L 90 0.014 53.1190 0.1199 
F -- L 80 0.041 46.4762 0.0868 

T 95 0.2396 76.1429 0.9060 
F 85 0.1982 66.6429 0.6170 
L 95 0.5945 93.6429 0.7210 

*where T -- L&F denotes that the feature used in the block-1 was ATE followed 
by a logical ‘AND’ condition between features ASTLmax and Fmax in block-2, 
while T – L | F denotes a logical ‘OR’ condition in block-2. Similarly for the rest 
of the entries in the first column.  
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Chapter 5 

CONCLUSION 

 

The motivation for the development of an automated seizure detection algorithm 

in this MS research was to assist physicians in the laborious, time consuming and 

expensive task of seizure detection from long-term EEG recordings. Within this 

framework, we developed and tested a new seizure detection algorithm based on 

measures from linear and nonlinear dynamics, i.e., the adaptive short-term 

maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy 

(ATE). The algorithm was tested on long-term (0.5-11.7 days) continuous EEG 

recordings from five patients (3 with intracranial and 2 with scalp EEG) and a 

total of 56 seizures, producing a mean sensitivity of 93% across all seizures and 

mean specificity of 0.048 false positives per hour. The developed seizure 

detection algorithm is data-adaptive, training-free and patient-independent. It is 

expected that this algorithm lead to faster and more accurate diagnosis, better 

evaluation of treatment, and possibly to better treatments if it is incorporated on-

line and real-time with advanced neuromodulation therapies for epilepsy. 
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