7,271 research outputs found

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconïŹguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconïŹgurable STSs

    Self-Configuring Socio-Technical Systems: Redesign at Runtime

    Get PDF
    Modern information systems are becoming more and more socio-technical systems, namely systems composed of human (social) agents and software (technical) systems operating together in a common environment. The structure of such systems has to evolve dynamically in response to the changes of the environment. When new requirements are introduced, when an actor leaves the system or when a new actor comes, the socio-technical structure needs to be redesigned and revised. In this paper, an approach to dynamic reconfiguration of a socio-technical system structure in response to internal or external changes is proposed. The approach is based on planning techniques for generating possible alternative configurations, and local strategies for their evaluation. The reconfiguration mechanism is presented, which makes the socio-technical system self-configuring, and the approach is discussed and analyzed on a simple case study

    ACME vs PDDL: support for dynamic reconfiguration of software architectures

    Get PDF
    On the one hand, ACME is a language designed in the late 90s as an interchange format for software architectures. The need for recon guration at runtime has led to extend the language with speci c support in Plastik. On the other hand, PDDL is a predicative language for the description of planning problems. It has been designed in the AI community for the International Planning Competition of the ICAPS conferences. Several related works have already proposed to encode software architectures into PDDL. Existing planning algorithms can then be used in order to generate automatically a plan that updates an architecture to another one, i.e., the program of a recon guration. In this paper, we improve the encoding in PDDL. Noticeably we propose how to encode ADL types and constraints in the PDDL representation. That way, we can statically check our design and express PDDL constraints in order to ensure that the generated plan never goes through any bad or inconsistent architecture, not even temporarily.Comment: 6\`eme \'edition de la Conf\'erence Francophone sur les Architectures Logicielles (CAL 2012), Montpellier : France (2012

    A Distributed Model Predictive Control Framework for Road-Following Formation Control of Car-like Vehicles (Extended Version)

    Full text link
    This work presents a novel framework for the formation control of multiple autonomous ground vehicles in an on-road environment. Unique challenges of this problem lie in 1) the design of collision avoidance strategies with obstacles and with other vehicles in a highly structured environment, 2) dynamic reconfiguration of the formation to handle different task specifications. In this paper, we design a local MPC-based tracking controller for each individual vehicle to follow a reference trajectory while satisfying various constraints (kinematics and dynamics, collision avoidance, \textit{etc.}). The reference trajectory of a vehicle is computed from its leader's trajectory, based on a pre-defined formation tree. We use logic rules to organize the collision avoidance behaviors of member vehicles. Moreover, we propose a methodology to safely reconfigure the formation on-the-fly. The proposed framework has been validated using high-fidelity simulations.Comment: Extended version of the conference paper submission on ICARCV'1

    Reconfiguration of Distributed Information Fusion System ? A case study

    Get PDF
    Information Fusion Systems are now widely used in different fusion contexts, like scientific processing, sensor networks, video and image processing. One of the current trends in this area is to cope with distributed systems. In this context, we have defined and implemented a Dynamic Distributed Information Fusion System runtime model. It allows us to cope with dynamic execution supports while trying to maintain the functionalities of a given Dynamic Distributed Information Fusion System. The paper presents our system, the reconfiguration problems we are faced with and our solutions.Comment: 6 pages - Preprint versio

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    Towards automated composition of convergent services: a survey

    Get PDF
    A convergent service is defined as a service that exploits the convergence of communication networks and at the same time takes advantage of features of the Web. Nowadays, building up a convergent service is not trivial, because although there are significant approaches that aim to automate the service composition at different levels in the Web and Telecom domains, selecting the most appropriate approach for specific case studies is complex due to the big amount of involved information and the lack of technical considerations. Thus, in this paper, we identify the relevant phases for convergent service composition and explore the existing approaches and their associated technologies for automating each phase. For each technology, the maturity and results are analysed, as well as the elements that must be considered prior to their application in real scenarios. Furthermore, we provide research directions related to the convergent service composition phases

    Adaptive On-the-Fly Changes in Distributed Processing Pipelines

    Get PDF
    Distributed data processing systems have become the standard means for big data analytics. These systems are based on processing pipelines where operations on data are performed in a chain of consecutive steps. Normally, the operations performed by these pipelines are set at design time, and any changes to their functionality require the applications to be restarted. This is not always acceptable, for example, when we cannot afford downtime or when a long-running calculation would lose significant progress. The introduction of variation points to distributed processing pipelines allows for on-the-fly updating of individual analysis steps. In this paper, we extend such basic variation point functionality to provide fully automated reconfiguration of the processing steps within a running pipeline through an automated planner. We have enabled pipeline modeling through constraints. Based on these constraints, we not only ensure that configurations are compatible with type but also verify that expected pipeline functionality is achieved. Furthermore, automating the reconfiguration process simplifies its use, in turn allowing users with less development experience to make changes. The system can automatically generate and validate pipeline configurations that achieve a specified goal, selecting from operation definitions available at planning time. It then automatically integrates these configurations into the running pipeline. We verify the system through the testing of a proof-of-concept implementation. The proof of concept also shows promising results when reconfiguration is performed frequently
    • 

    corecore