153 research outputs found

    Computational Soundness of Formal Encryption in Coq

    Get PDF
    We formalize Abadi and Rogaway's computational soundness result in the Coq interactive theorem prover. This requires to model notions of provable cryptography like indistinguishability between ensembles of probability distributions, PPT reductions, and security notions for encryption schemes. Our formalization is the first computational soundness result to be mechanized, and it shows the feasibility of rigorous reasoning of computational cryptography inside a generic interactive theorem prover

    Deterministic Constrained Multilinear Detection

    Get PDF

    Covering Vectors by Spaces: Regular Matroids

    Get PDF
    We consider the problem of covering a set of vectors of a given finite dimensional linear space (vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study the Space Cover problem, where we are given a matrix M and a subset of its columns T; the task is to find a minimum set F of columns of M disjoint with T such that that the linear span of F contains all vectors of T. This is a fundamental problem arising in different domains, such as coding theory, machine learning, and graph algorithms. We give a parameterized algorithm with running time 2^{O(k)}||M|| ^{O(1)} solving this problem in the case when M is a totally unimodular matrix over rationals, where k is the size of F. In other words, we show that the problem is fixed-parameter tractable parameterized by the rank of the covering subspace. The algorithm is "asymptotically optimal" for the following reasons. Choice of matrices: Vector matroids corresponding to totally unimodular matrices over rationals are exactly the regular matroids. It is known that for matrices corresponding to a more general class of matroids, namely, binary matroids, the problem becomes W[1]-hard being parameterized by k. Choice of the parameter: The problem is NP-hard even if |T|=3 on matrix-representations of a subclass of regular matroids, namely cographic matroids. Thus for a stronger parameterization, like by the size of T, the problem becomes intractable. Running Time: The exponential dependence in the running time of our algorithm cannot be asymptotically improved unless Exponential Time Hypothesis (ETH) fails. Our algorithm exploits the classical decomposition theorem of Seymour for regular matroids

    Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

    Get PDF
    We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of ?-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is ?-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be ?-regular. This provides a game-theoretic characterization of ?-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which ?-regularity depends on the value of some parameters

    Designing Cost-Sharing Methods for Bayesian Games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE). We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players
    • …
    corecore