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Abstract

This paper discusses the classic notion of characteristic formulae for
processes using variations on Hennessy-Milner logic as the underlying logi-
cal specification language. It is shown how to characterize logically (states
of) finite labelled transition systems modulo bisimilarity using a single
formula in Hennessy-Milner logic with recursion. Moreover, characteristic
formulae for timed automata with respect to timed bisimilarity and the
faster-than preorder of Moller and Tofts are offered in terms of the logic
Lν of Laroussinie, Larsen and Weise.

1 Motivation

The aim of this paper is to introduce the basic ideas and results on a piece of
classic concurrency theory that is, perhaps, not as well known as it deserves to
be, namely the notion of characteristic formulae for processes. Characteristic
formulae are neither a new nor a particularly hot topic in concurrency theory at
the time of writing. However, we believe that the notion of characteristic formula
sheds such a natural connection between automata-based formalisms as a way of
describing the actual behaviour of processes and logics—for instance, modal or
temporal logics—as formalisms for writing down specifications of the expected
behaviour of processes that it is worth surveying some of the developments on
this branch of concurrency theory here. We state at the outset that our aim
is not to give a comprehensive account of all of the work that has been carried
out on characteristic formulae and their use in concurrency theory. Rather, we
shall present the basic ideas underlying the notion of characteristic formulae
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for two specific models of concurrent computation—namely, (finite) labelled
transition systems [24] and timed automata [4]—, and we shall refer the reader
to the literature for further developments on, and applications of, this notion.
Apart from the research papers we shall refer to in this survey, an introduction
to characteristic formulae suitable for classroom use in courses on concurrency
theory may be found in the forthcoming book [1].

What are Characteristic Formulae? Various types of automata are fun-
damental formalisms for the description of the behaviour of computing systems.
For instance, a widely used model of computation is that of labelled transition
systems (LTSs) [24]. LTSs underlie Plotkin’s Structural Operational Seman-
tics [36, 37] and, following Milner’s pioneering work on CCS [32], are by now
the formalism of choice for describing the semantics of various process descrip-
tion languages.

Since automata like LTSs can be used for describing specifications of process
behaviours as well as their implementations, an important ingredient in their
theory is a notion of behavioural equivalence or preorder between (states of)
LTSs. A behavioural equivalence describes formally when (states of) LTSs afford
the same ‘observations’, in some appropriate technical sense. On the other
hand, a behavioural preorder is a possible formal embodiment of the idea that
(a state in) an LTS affords at least as many ‘observations’ as another one.
Taking the classic point of view that an implementation correctly implements
a specification when each of its observations is allowed by the specification,
behavioural preorders may therefore be used to establish the correctness of
implementations with respect to their specifications, and to support the stepwise
refinement of specifications into implementations.

The lack of consensus on what constitutes an appropriate notion of observ-
able behaviour for reactive systems has led to a large number of proposals for
behavioural equivalences and preorders for concurrent processes. In his by now
classic papers [16, 17, 18], van Glabbeek presented a taxonomy of extant be-
havioural preorders and equivalences for processes.

The approach to the specification and verification of reactive systems in
which automata like LTSs are used to describe both implementations and spec-
ifications of reactive systems is often referred to as implementation verification
or equivalence checking.

An alternative approach to the specification and verification of reactive sys-
tems is that of model checking [8, 10, 39]. In this approach, automata are still the
formalism of choice for the description of the actual behaviour of a concurrent
system. However, specifications of the expected behaviour of a system are now
expressed using a suitable logic, for instance, a modal or temporal logic [14, 38].
Verifying whether a concurrent process conforms to its specification expressed
as a formula in the logic amounts to checking whether the automaton describing
the behaviour of the process is a model of the formula.

It is natural to wonder what the connection between these two approaches
to the specification and verification of concurrent computation is. A classic,
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and most satisfying, result in the theory of concurrency is the characterization
theorem of bisimulation equivalence [32, 35] in terms of Hennessy-Milner logic
(HML) due to Hennessy and Milner [21]. This theorem states that two bisim-
ilar processes satisfy the same formulae in Hennessy-Milner logic, and if the
processes satisfy a technical finiteness condition, then they are also bisimilar
when they satisfy the same formulae in the logic. This means that, for bisimi-
larity and HML, logical equivalence coincides with behavioural equivalence, and
that, whenever two processes are not equivalent, we can always find a formula
in HML that witnesses a reason why they are not. This distinguishing formula
is useful for debugging purposes, and can be algorithmically constructed for
finite processes—see, e.g., [26, 31]. (Algorithms for computing such distinguish-
ing formulae for strong and weak bisimilarity are implemented in tools like the
Edinburgh Concurrency Workbench.)

The characterization theorem of Hennessy and Milner is, however, less use-
ful if we are interested in using it directly to establish when two processes are
behaviourally equivalent using model checking. Indeed, that theorem seems to
indicate that to show that two processes are equivalent we need to check that
they satisfy the same formulae expressible in the logic, and there are count-
ably many such formulae, even modulo logical equivalence. Is it possible to
find a single formula that characterizes the bisimulation equivalence class of
a process p—in the sense that any process is bisimilar to p if, and only if, it
affords that property? Such a formula, if it exists, is called a characteristic
formula. When a characteristic formula for a process modulo a given notion of
behavioural equivalence or preorder can be algorithmically constructed, imple-
mentation verification can be reduced to model checking, and, as the sub-title
of our paper indicates, we can translate automata to logic. (An investigation of
the model checking problems that can be reduced to implementation verification
may, for instance, be found in the paper [6].)

To sum up the above discussion, characteristic formulae provide a very el-
egant connection between automata and logic, and between implementation
verification and model checking. But, can they be constructed for natural, and
suitably expressive, automata-based models and known logics of computation?
To the best of our knowledge, this natural question was first addressed in the
literature on concurrency theory in the paper [20]. In that paper, Graf and
Sifakis offered a translation from recursion-free terms of Milner’s CCS [32] into
formulae of a modal language representing their equivalence class with respect
to observational congruence.

Can one characterize the equivalence class of an arbitrary finite process—
for instance one described in the regular fragment of CCS—up to bisimilarity
using HML? The answer is negative because each formula in that logic can
only describe a finite fragment of the initial behaviour of a process—see, for
instance, [1] for a textbook presentation. However, in the rest of this survey,
we shall show that adding a facility for the recursive definition of formulae to
(variants of) HML yields a logic that is powerful enough to support the con-
struction of characteristic formulae for various types of finite processes modulo
notions of behavioural equivalence or preorder. We shall focus on bisimilarity as
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a notion of behavioural equivalence between processes, but the formalism that
we consider is powerful enough to handle a wealth of other semantics from van
Glabbeek’s spectrum.

Roadmap of the Paper The rest of the paper is organized as follows. Sec-
tion 2 discusses the construction of characteristic formulae for finite LTSs mod-
ulo bisimilarity using HML with a facility for the recursive definition of formulae
as the logical specification language. We then proceed to show that both the
logic and the approach used in that section in the setting of finite LTSs apply
equally well to the formalism of timed automata. We conclude the paper with
suggestions for further reading and further research on the topic of characteristic
formulae (Section 4).

2 Characteristic Formulae for Finite LTSs Mod-

ulo Bisimilarity

As our first concrete example of characteristic formula construction, we now
proceed to show how to build characteristic formulae for finite labelled transition
systems modulo bisimilarity, using an extension of HML with a facility for the
recursive definition of formulae.

Definition 2.1 [Labelled transition system] A labelled transition system (LTS)
is a triple (Proc,Act, { a→| a ∈ Act}), where:

• Proc is a set of states (or processes);

• Act is a set of actions (or labels);

• a→⊆ Proc × Proc is a transition relation, for every a ∈ Act. As usual, we
shall use the more suggestive notation s

a→ s′ in lieu of (s, s′) ∈ a→, and
write s a

9 (read ‘s refuses a’) iff s
a→ s′ for no state s′.

A labelled transition system is finite if its sets of states and actions are both
finite.

In this section, LTSs and their states will be considered modulo the classic
notion of bisimulation equivalence [32, 35].

Definition 2.2 [Bisimulation and bisimilarity] A binary relationR over the set
of states of an LTS is a bisimulation iff whenever s1 R s2 and a is an action:

- if s1
a→ s′1, then there is a transition s2

a→ s′2 such that s′1 R s′2;

- if s2
a→ s′2, then there is a transition s1

a→ s′1 such that s′1 R s′2.

Two states s and s′ are bisimilar, written s ∼ s′, iff there is a bisimulation
that relates them. Henceforth the relation ∼ will be referred to as bisimulation
equivalence or bisimilarity.
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Consider a finite LTS (Proc,Act, { a→| a ∈ Act}). Our order of business will
now be to show how to associate with each process p ∈ Proc a formula Fp in a
suitable logic such that, for each process q ∈ Proc,

p is bisimilar to q if, and only if, q ‘affords the property Fp’.

Such a formula Fp will be called the characteristic formula for process p.
The logic that we shall use to define such characteristic formulae is an ex-

tension of HML with recursively defined formulae.
Let X be a countably infinite collection of formula variables. The collection

of formulae in Hennessy-Milner logic with recursion, denoted by MX , is given
by the following grammar:

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F ,

where X ranges over X and a ∈ Act.
The meaning of formula variables is specified by means of a declaration. A

declaration is a function D : X → MX that associates a formula D(X) with
each variableX . Intuitively, ifD(X) = F , then X stands for the largest solution
of the equation X = F . In general, we shall only be interested in the restriction
of a declaration to a finite collection of formula variables. In that case, we write

X1 = FX1

...
Xn = FXn ,

where {X1, . . . , Xn} is a set of variables in X , and, for 1 ≤ i ≤ n, the formula
D(Xi) = FXi can only contain variables from {X1, . . . , Xn}.

Definition 2.3 [Satisfaction relation] The binary relation |= relating processes
in Proc to formulae inMX is the largest relation satisfying the following clauses:

• p |= tt, for each p,

• p |= ff , for no p,

• p |= F ∧G implies p |= F and p |= G,

• p |= F ∨G implies p |= F or p |= G,

• p |= 〈a〉F implies p a→ p′ for some p′ such that p′ |= F ,

• p |= [a]F implies p′ |= F , for each p′ such that p a→ p′, and

• p |= X implies p |= D(X).
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The existence of the relation |= is guaranteed by classic fixed point theory [25,
41].

Semantically, a formula F that may contain occurrences of a finite subset
{X1, . . . , Xn} of variables in X is interpreted as a function OF that, given a
vector of sets of processes (S1, . . . , Sn) that are assumed to satisfy the formulae
X1, . . . , Xn, returns the set of processes that satisfy F . Similarly, a mutually
recursive system of equations of the form

X1 = FX1

...
Xn = FXn ,

where {X1, . . . , Xn} is a set of variables in X , and the formula FXi (1 ≤ i ≤ n)
can only contain variables from {X1, . . . , Xn}, is interpreted as the largest vector
of sets of processes (S1, . . . , Sn) such that

S1 = OFX1
(S1, . . . , Sn)

...
Sn = OFXn

(S1, . . . , Sn) .

This means that the logic we have just introduced enriches classic HML with
greatest fixed points, and is thus a fragment of Kozen’s µ-calculus [27]. We refer
the reader to, for instance, [1] for more details on the semantics of Hennessy-
Milner logic with recursion.

We are now ready to define the characteristic formula for each process p ∈
Proc. A characteristic formula for a process has to describe both which actions
the process can perform, which actions it cannot perform and what happens to
it after it has performed each action. Let

Der(a, p) = {p′ | p a→ p′}

be the set of states that can be reached from p by performing action a. If
p′ ∈ Der(a, p) and p′ has a characteristic property Xp′ , then p has the property
〈a〉Xp′ . We therefore have that

p |=
∧

a,p′.p a→ p′

〈a〉Xp′ .

Furthermore, if p a→ p′ then p′ ∈ Der(a, p). Therefore p has the property

[a]
( ∨

p′.p a→ p′

Xp′

)
,

for each action a. The above property states that, by performing action a,
process p (and any other process that is bisimilar to it) must become a process
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satisfying the characteristic property of a state in Der(a, p). (Note that if p a
9,

then Der(a, p) is empty. In that case, since an empty disjunction is just the
formula ff , the above formula becomes simply [a]ff—which is what we would
expect.)

Since action a is arbitrary, we have that

p |=
∧
a

[a]
( ∨

p′.p a→ p′

Xp′

)
.

If we summarize the above requirements, we may conclude that

p |=
∧

a,p′.p a→ p′

〈a〉Xp′ ∧
∧
a

[a]
( ∨

p′.p a→ p′

Xp′

)
.

As this property is apparently a complete description of the behaviour of process
p, this is our candidate for its characteristic property. Xp is therefore defined as
a solution to the equational system obtained by giving the following equation
for each q ∈ Proc:

Xq =
∧

a,q′.q a→ q′

〈a〉Xq′ ∧
∧
a

[a]
( ∨

q′.q a→ q′

Xq′

)
.

Theorem 2.1 Let (Proc,Act, { a→| a ∈ Act}) be a finite transition system and,
for each p ∈ Proc, let Xp be defined by

Xp =
∧

a,p′.p a→ p′

〈a〉Xp′ ∧
∧
a

[a]
( ∨

p′.p a→ p′

Xp′

)
.

Then Xp is the characteristic property for p—that is, q |= Xp iff p ∼ q, for each
q ∈ Proc.

To the best of our knowledge, the above theorem was first proved in the MSc
thesis [23]. The results in that study were later generalized to a family of
bisimulation-like preorders and equivalences by Steffen and the second author
in [40], which is by now the standard reference for characteristic formulae for
finite labelled transition systems.

Remark 2.1 The above construction and theorem apply equally well to finitely
branching LTSs with countably many states. However, in that case, the resulting
characteristic formulae will use infinite systems of recursive equations.

3 Characteristic Formulae for Timed Automata

The approach to (automated) verification where the problem of checking behav-
ioral relations between finite LTSs is reduced to model checking is advocated
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by Cleaveland and Steffen in [11, 12]. In their approach, the language being
model checked is a logic equivalent in expressive power to the alternation-free
fragment of the modal µ-calculus [27]. The efficiency of this approach hinges on
the following two facts:

1. the characteristic formula associated with a finite labelled transition sys-
tem has size that is linear in that of the original LTS, and

2. the time complexity of determining whether a process satisfies a formula
is proportional to the product of the sizes of the process and the formula.

The resulting algorithm offered in [12] is still considered to be one of the most
efficient for checking behavioural preorders.

In the setting of modelling and verification for real-time systems, a char-
acteristic formula construction for timed bisimulation equivalence over timed
automata [4] has been offered in [29]. In op. cit., Laroussinie, Larsen and Weise
have proposed the logic Lν , a real-time version of Hennessy-Milner Logic [21]
with greatest fixed points. Moreover, they have shown that its associated model
checking problem is decidable, and that this logic is sufficiently expressive for
representing any timed automaton as a single characteristic Lν formula. Such
a formula uniquely characterizes the timed automaton up to timed bisimilarity.

The characteristic formula construction offered in [29], together with a model
checking algorithm for the logic Lν , yields an algorithm for checking whether two
timed automata are timed bisimilar, which may be seen as an implementation of
the approach advocated in [12] in a real-time setting. Unfortunately, however,
the characteristic formula construction for timed automata proposed in [29] pro-
duces formulae whose size is exponential in that of the original automaton, and
this makes its use in checking timed bisimilarity for timed automata infeasible.
The exponential blow-up involved in the characteristic formula construction
from op. cit. is due to the fact that the formula is essentially constructed by
applying the standard, untimed construction presented in Section 2 to the re-
gion graph associated with the timed automaton [4]. As shown by Alur and Dill
in [4], the size of the region graph is exponential in that of the original timed
automaton.

Our order of business in this section will be to present characteristic formula
constructions for timed automata using the logic Lν that, like those in the
untimed setting and unlike that offered in [29], yield formulae whose size is
linear with respect to that of the timed automaton they characterize.

We limit ourselves to presenting characteristic formula constructions for
timed bisimilarity [42], and for the faster-than preorder proposed by Moller
and Tofts in [33]. Constructions of characteristic formulae for some other be-
havioural relations over timed automata, as well as proofs of the results we
mention in what follows, may be found in [2].

Timed Labelled Transition Systems Let Act be a finite set of actions,
ranged over by a, and let N and R≥0 denote the sets of natural and non-negative
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real numbers, respectively. We use L to stand for the union of Act and R≥0.
The meta-variable α will range over L.

Definition 3.1 A timed labelled transition system (TLTS) is a structure T =
(S,L, s0,−→) where S is a set of states, s0 ∈ S is the initial state, and −→⊆
S × L× S is a transition relation satisfying the following properties:

• (Time Determinism) for every s, s′, s′′ ∈ S and d ∈ R≥0, if s d→ s′ and

s
d→ s′′, then s′ = s′′;

• (Time Additivity) for every s, s′′ ∈ S and d1, d2 ∈ R≥0, s
d1+d2→ s′′ iff

s
d1→ s′ d2→ s′′, for some s′ ∈ S;

• (0-Delay) for every s, s′ ∈ S, s 0→ s′ iff s = s′.

The axioms of time determinism, time additivity and 0-delay are standard in
the literature on Yi’s TCCS (see, for instance, [42]).

Timed Automata Let C be a set of clocks. We use B(C) to denote the set
of boolean expressions over atomic formulae of the form x 1 m and x− y 1 m,
with x, y ∈ C, m ∈ N, and 1∈ {<,>,=}. Expressions in B(C) are interpreted
over the collection of time assignments. A time assignment, or valuation, v for
C is a function from C to R≥0. Given an expression g ∈ B(C) and a time
assignment v, we write v |= g if v satisfies g. Note that B(C) is closed under
negation. For every time assignment v and d ∈ R≥0, we use v + d to denote
the time assignment which maps each clock x ∈ C to the value v(x) + d. Two
assignments u and v are said to agree on the set of clocks C′ iff they assign the
same real number to every clock in C′. For every subset C′ of clocks, v[C′ 7→ 0]
denotes the assignment for C which maps each clock in C′ to the value 0 and
agrees with v over C\C′.

Definition 3.2 A timed automaton is a quintuple A = (Act, N, n0, C,E) where
N is a finite set of nodes, n0 is the initial node, C is a finite set of clocks, and E ⊆
N×N×Act×2C×B(C) is a set of edges. The quintuple e = (n, ne, a, re, ge) ∈ E
stands for an edge from node n to node ne (the target of e) with action a, where
re denotes the set of clocks to be reset to 0 and ge is the enabling condition (or
guard) over the clocks of A.

A state of a timed automaton A is a pair (n, v) where n is a node of A and v is
a time assignment for C. The initial state of A is (n0, [C 7→ 0]) where n0 is the
initial node of A, and [C 7→ 0] is the time assignment mapping all clocks in C
to 0.

The operational semantics of a timed automaton A is given by the timed
labelled transition system TA = (SA,L, s0A, −→), where SA is the set of states
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of A, s0A is the initial state of A, and −→ is the transition relation defined as
follows:

(n, v) a→ (n′, v′) iff ∃e = (n, n′, a, re, ge) ∈ E. v |= ge ∧ v′ = v[re 7→ 0]

(n, v) d→ (n′, v′) iff n = n′ and v′ = v + d ,

where a ∈ Act and d ∈ R≥0.

The Logic Lν The logic Lν is a real-time version of Hennessy-Milner Logic
with greatest fixed points that stems from [29]. We now briefly review its syntax
and semantics for the sake of completeness.

Definition 3.3 [Syntax of Lν ] Let K be a finite set of formula clocks, Id a
finite set of identifiers and k a non-negative integer. The set Lν of formulae
over K, Id and largest constant k is generated by the abstract syntax below,
with ϕ and ψ ranging over Lν :

ϕ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | ∃∃ϕ | ∀∀ϕ | 〈a〉ϕ | [a]ϕ |

x in ϕ | x 1 m | x+m 1 y + ` | Z ,

where a ∈ Act, x, y ∈ K, `,m ∈ {0, . . . , k}, 1∈ {=, <,≤, >,≥} and Z ∈ Id.

The logic Lν allows for the recursive definition of formulae by including a finite
set Id of identifiers. The formula associated with each of the identifiers is
specified by a declaration D, i.e. D assigns a formula of Lν to each identifier.
For an identifier Z we let Z = ϕ denote D(Z) = ϕ. Intuitively Z will stand for
the largest solution of the equation Z = ϕ. We refer the interested reader to
[1, 29] for more information on Lν .

Given a timed automaton A, whose set of clocks C is disjoint from K, we
interpret the formulae in Lν over extended states. An extended state of A is a
pair (n, vu), where (n, v) is a state of A, u is a time assignment for K, and we
use vu for the assignment over C∪K that agrees with v over C and with u over
K.

Definition 3.4 [Semantics of Lν ] Let A be a timed automaton andD a declara-
tion. The satisfaction relation |=D is the largest relation satisfying the following
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implications:

(n, vu) |=D tt ⇒ true
(n, vu) |=D ff ⇒ false

(n, vu) |=D ϕ ∧ ψ ⇒ (n, vu) |=D ϕ and (n, vu) |=D ψ

(n, vu) |=D ϕ ∨ ψ ⇒ (n, vu) |=D ϕ or (n, vu) |=D ψ

(n, vu) |=D ∃∃ϕ ⇒ ∃d ∈ R≥0. (n, (v + d)(u + d)) |=D ϕ

(n, vu) |=D ∀∀ϕ ⇒ ∀d ∈ R≥0. (n, (v + d)(u + d)) |=D ϕ

(n, vu) |=D 〈a〉ϕ ⇒ ∃(n′, v′). (n, v) a→ (n′, v′) and (n′, v′u) |=D ϕ

(n, vu) |=D [a]ϕ ⇒ ∀(n′, v′). (n, v) a→ (n′, v′) implies (n′, v′u) |=D ϕ

(n, vu) |=D x 1 m ⇒ u(x) 1 m

(n, vu) |=D x+m 1 y + ` ⇒ u(x) +m 1 u(y) + `

(n, vu) |=D x in ϕ ⇒ (n, vu′) |=D ϕ where u′ = u[{x} 7→ 0]
(n, vu) |=D Z ⇒ (n, vu) |=D D(Z) .

Again, the existence of |=D follows from standard fixed point theory [25, 41].
In the remainder of this section, we shall use the logic Lν to construct

characteristic formulae for timed automata with respect to timed bisimilarity
[42], and for the faster-than preorder [33].

Two Timed Behavioural Relations Timed bisimulation stems from [42]. It
is the obvious adaptation to the timed setting of the classic definition presented
in Definition 2.2.

Definition 3.5 [Timed bisimulation] Let T = (S,L, s0,−→) be a TLTS. A
timed bisimulation is a relation R ⊆ S × S such that whenever s1Rs2 and
α ∈ L, then:

- If s1
α→ s′1 then s2

α→ s′2 for some s′2 such that s′1Rs′2.

- If s2
α→ s′2 then s1

α→ s′1 for some s′1 such that s′1Rs′2.

For states s1, s2, we write s1 ∼T s2 iff there exists a timed bisimulation R with
s1Rs2.

Moller and Tofts [33] have proposed a preorder on processes that distinguishes
functionally behaviourally equivalent processes which operate at different speed.
Their original proposal applied to their version of timed CCS, but it is simple
enough to adapt it to the setting of TLTSs.

Definition 3.6 [Faster-than bisimulation] Let T = (S,L, s0,−→) be a TLTS.
A faster-than bisimulation is a relation R ⊆ S × S such that whenever s1Rs2,
a ∈ Act and d ∈ R≥0 then:
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1. if s1
a→ s′1 then there are d ∈ R≥0, s

′′
1 , s

′
2 and s′′2 such that s′1

d→ s′′1 ,

s2
d→ s′2

a→ s′′2 , and s′1 R s′2;

2. If s2
a→ s′2 then s1

a→ s′1 for some s′1 such that s′1 R s′2;

3. If s1
d→ s′1 then s2

d→ s′2 for some s′2 such that s′1 R s′2;

4. If s2
d→ s′2 then s1

d→ s′1 for some s′1 such that and s′1 R s′2.

For states s1, s2, we write s1 <∼FT s2 iff there exists a faster-than bisimulation
R with s1 R s2.

It is well-known that <∼FT is a preorder, and is the largest faster-than bisimula-
tion. Similarly, ∼T is an equivalence relation, and is the largest timed bisimu-
lation. Both of the previously defined behavioural relations can be lifted to the
setting of timed automata as follows.

Definition 3.7 Let A,B be two timed automata. We write A ∼T B iff s0A ∼T

s0B in the TLTS that results by taking the disjoint union of TA and TB. Similarly,
we write A <∼FT B iff s0A <∼FT s0B in the TLTS that results by taking the disjoint
union of TA and TB .

Characteristic Formula Constructions To increase the readability of the
characteristic formulae we make use of some derived constructs in the logic Lν .
These we now present for the sake of clarity.

For a reset set r = {x1, . . . , xk}, we use the abbreviation r in ϕ to stand for
the formula inductively defined thus:

∅ in ϕ = ϕ

{x1, . . . , xk} in ϕ = x1 in ({x2, . . . , xk} in ϕ) (k ≥ 1) .

Note that the order of the clocks is arbitrary because x in (y in ϕ) is logically
equivalent to y in (x in ϕ).

The expression g ⇒ ϕ will stand for g ∨ ϕ, where g is the negation of the
guard g. This is a formula in Lν because the collection of guards is closed under
negation.

In the remainder of this section, we shall implicitly assume a given timed
automaton A, for which the characteristic formulae will be defined. Given a
node n in A, and action a, we use E(n, a) to stand for the set of a-labelled
edges stemming from node n.

We first consider timed bisimilarity. A formula characterizing a node of a
timed automaton up to timed bisimilarity should offer a description of:

1. all the actions that are enabled in the node,

2. which node is entered by taking a given transition, together with the resets
associated with it, and
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3. the fact that arbitrary delays are allowed in the node.

The resulting characteristic formula is presented below, where we consider each
Φ(n)∼T to be an identifier. The formula consists of three sets of conjuncts, each
associated to one of the above properties, for each node n of a timed automaton
A:

Φ∼T (n) = (
∧

a∈Act

∧
e∈E(n,a)

ge ⇒ (〈a〉 re in Φ∼T (ne))) ∧

∧
a∈Act

[a](
∨

e∈E(n,a)

ge ∧ (re in Φ∼T (ne))) ∧

∀∀Φ∼T (n) ,

where n is a node of A, e = (n, ne, a, re, ge), and we recall that E(n, a) de-
notes the set of a-labelled edges from node n. We shall use D∼T

A to denote the
declaration that consists of the equations above, one for each node of A.

Theorem 3.1 Let A,B be timed automata with disjoint sets of clocks. Let n
be a node of A and m be a node of B. Assume that u and v are valuations for
the clocks of A and B, respectively. Then

(n, u) ∼T (m, v) iff (m, vu) |= Φ∼T (n) ,

where (m, vu) |= Φ∼T (n) holds with respect to the declaration D∼T

A .

In the characteristic formula construction for timed bisimilarity, no use was
made of the existential modality ∃∃ over delay transitions. The use of the ∃∃
modality will instead play a crucial role in the definition of the characteristic
property for the faster-than bisimulation preorder. This we now proceed to
present.

For every node n in a timed automaton A, we define:

Φ
<∼F T (n) = (

V

a∈Act

V

e∈E(n,a)

ge ⇒ (re in ∃∃〈a〉Φ<∼F T (ne))) ∧

(
V

a∈Act
[a](

W

e∈E(n,a)

ge ∧ (re in Φ
<∼F T (ne))) ∧

∀∀Φ<∼F T (n) ,

where e = (n, ne, a, re, ge) and E(n, a) denotes the set of a labelled edges from

node n. We shall use D
<∼FT
A to denote the declaration that consists of the

equations above, one for each node of A.

Theorem 3.2 Let A,B be timed automata with disjoint sets of clocks. Let n
be a node of A and m be a node of B. Assume that u and v are valuations for
the clocks of A and B, respectively. Then

(n, u) <∼FT (m, v) iff (m, vu) |= Φ
<∼FT (n) ,

13



where (m, vu) |= Φ
<∼FT (n) holds with respect to the declaration D

<∼FT
A .

It is interesting to remark that no other characteristic formula construction
presented in [2] uses the the existential modality ∃∃ over delay transitions.

4 Suggestions for Further Reading

It is an instructive exercise to construct characteristic formulae for (states of)
variations on finite LTSs in variants of HML with greatest fixed points for other
(bi)simulation based behavioural relations in van Glabbeek’s spectrum. This
bears witness to the naturalness of this logic for the specification of behavioural
properties of reactive systems modelled as LTSs. Examples of such construc-
tions may be found in, for instance, [15, 34]. The former reference offers a
characteristic formula in terms of the µ-calculus for each finite underspecified
transition system—essentially a transition system where transitions may have
sets of states as their target. The latter shows how to derive characteristic for-
mulae in the µ-calculus for finite LTSs up to strong or weak bisimilarity directly
from the characterization of those relations in terms of greatest fixed points.

All of the results we have surveyed in this paper show that, in light of its
beautiful connection with bisimilarity, HML and its variations are prime candi-
dates for logics in which to express characteristic properties for bisimulation-like
relations. However, there are other options.

A classic, early result on characteristic formulae was obtained in the pa-
per [7]. That paper shows that each finite Kripke structure can be characterized
by a formula in Computation Tree Logic (CTL) [9] up to the natural variation
on bisimilarity over Kripke structures.

Another characteristic formula result is presented in that paper for an equiv-
alence between states that takes ‘stuttering’ into account. (This equivalence is
closely related to van Glabbeek’s and Weijland’s branching bisimilarity [19],
for which logical characterizations have been offered by De Nicola and Vaan-
drager in the paper [13].) Browne, Clarke and Grümberg show that equivalence
classes of states in a finite Kripke structure modulo stuttering equivalence are
completely characterized by next-time-free CTL formulae. (The absence of the
next-time operator is expected in light of the inability of stuttering equivalence
to ‘count’ the number of steps in a stuttering sequence.) Kučera and Schnoebe-
len have presented a refinement of the above classic theorem by Browne, Clarke
and Grümberg in the paper [28]. To the best of our knowledge, it is not known
whether the timed version of CTL presented in [3] is sufficiently expressive to
characterize timed bisimilarity.

Larsen and Skou present a characteristic formula construction in a proba-
bilistic variation on HML for a recursion-free calculus of probabilistic processes
in [30].

Recently, Berger, Honda and Yoshida have been investigating the notion of
descriptive completeness for logics of higher-order functions. For instance, in
their paper [22], they show that, given a program in call-by-value PCF, one
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can construct a Hoare triple representing the program’s behaviour up to obser-
vational equivalence. This notion is the counterpart of characteristic formulae
in the setting of program logics. Our readers will find further information on
the, by now very substantial, body of work on this topic by Berger, Honda and
Yoshida at the URL

http://www.dcs.qmul.ac.uk/~kohei/logics/index.html.

Despite all of the aforementioned, classic studies on the notion of characteristic
formula, we feel that there is still scope for further investigation, both from the
point of view of theory and from that of applications. We hope that this small
paper will contribute to a renewed interest in this topic.
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RS-06-13 Jǐr ı́ Srba. Visibly Pushdown Automata: From Language Equiv-
alence to Simulation and Bisimulation. July 2006. 21 pp. To
appear in CSL ’06.

RS-06-12 Kristian Støvring. Higher-Order Beta Matching with Solutions
in Long Beta-Eta Normal Form. June 2006. 13 pp. To appear
in Nordic Journal of Computing, 2006.

RS-06-11 Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. An In-
terface Theory for Input/Output Automata. June 2006. 40 pp.
Appears in Misra, Nipkow and Sekerinski, editors, Formal
Methods: 14th International Symposium, FM ’06 Proceedings,
LNCS 4085, 2006, pages 82–97.


	Motivation
	Characteristic Formulae for Finite LTSs Modulo Bisimilarity
	Characteristic Formulae for Timed Automata
	Suggestions for Further Reading

