415 research outputs found

    Autofluorescence spectroscopy of a human gastrointestinal carcinoma cell line - design of optical sensors for the detection of early stage cancer

    Get PDF
    Human tissues show autofluorescence (AF) emission spectra when excited by ultraviolet or shortwavelength visible light. The intensity and shape of these spectra are dependent on the tissues pathological state and, therefore, its measurement gives information about the degree of malignant transformations that could lead to cancer. In this article, it is characterized the AF spectra of one human gastrointestinal carcinoma cell line (CACO-2). The obtained results showed significant AF signal for the presence of amino acids. The spectral information obtained can be used for the design of fluorescence optical sensors that will be incorporated on an endoscopic capsule, for measuring the AF emission spectra of normal and cancer cells. This integrated optical system will innovate on the diagnosis of early stage cancer

    Methods and instrumentation for raman characterization of bladder cancer tumor

    Get PDF
    High incidence and recurrence rates make bladder cancer the most common malignant tumor in the urinary system. Cystoscopy is the gold standard test used for diagnosis, nevertheless small flat tumors might be missed, and the procedure still represents discomfort to patients and high recurrence can result from of urethral injuries. During cystoscopy, suspicious tumors are detected through white light endoscopy and resected tissue is further examined by histopathology. after resection, the pathologist provides information on the differentiation of the cells and the penetration depth of the tumor in the tissue, known as grading and staging of tumor, respectively. During cystoscopy, information on tumor grading and morphological depth characterization can assist onsite diagnosis and significantly reduce the amount of unnecessarily resected tissue. Recently, new developments in optical imaging and spectroscopic approaches have been demonstrated to improve the results of standard techniques by providing real-time detection of macroscopic and microscopic biomedical information. Different applications to detect anomalies in tissues and cells based on the chemical composition and structure at the microscopic level have been successfully tested. There is, nevertheless, the need to cope with the demands for clinical translation. This doctoral thesis presents the investigations, clinical studies and approaches applied to filling the main open research questions when applying Raman spectroscopy as a diagnostic tool for bladder cancer tumor grading and general Raman spectroscopy-based oncological clinical studies

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Goggle Augmented Imaging and Navigation System for Fluorescence-Guided Surgery

    Get PDF
    Surgery remains the only curative option for most solid tumors. The standard-of-care usually involves tumor resection and sentinel lymph node biopsy for cancer staging. Surgeons rely on their vision and touch to distinguish healthy from cancer tissue during surgery, often leading to incomplete tumor resection that necessitates repeat surgery. Sentinel lymph node biopsy by conventional radioactive tracking exposes patients and caregivers to ionizing radiation, while blue dye tracking stains the tissue highlighting only superficial lymph nodes. Improper identification of sentinel lymph nodes may misdiagnose the stage of the cancer. Therefore there is a clinical need for accurate intraoperative tumor and sentinel lymph node visualization. Conventional imaging modalities such as x-ray computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound are excellent for preoperative cancer diagnosis and surgical planning. However, they are not suitable for intraoperative use, due to bulky complicated hardware, high cost, non-real-time imaging, severe restrictions to the surgical workflow and lack of sufficient resolution for tumor boundary assessment. This has propelled interest in fluorescence-guided surgery, due to availability of simple hardware that can achieve real-time, high resolution and sensitive imaging. Near-infrared fluorescence imaging is of particular interest due to low background absorbance by photoactive biomolecules, enabling thick tissue assessment. As a result several near-infrared fluorescence-guided surgery systems have been developed. However, they are limited by bulky hardware, disruptive information display and non-matched field of view to the user. To address these limitations we have developed a compact, light-weight and wearable goggle augmented imaging and navigation system (GAINS). It detects the near-infrared fluorescence from a tumor accumulated contrast agent, along with the normal color view and displays accurately aligned, color-fluorescence images via a head-mounted display worn by the surgeon, in real-time. GAINS is a platform technology and capable of very sensitive fluorescence detection. Image display options include both video see-through and optical see-through head-mounted displays for high-contrast image guidance as well as direct visual access to the surgical bed. Image capture options from large field of view camera as well high magnification handheld microscope, ensures macroscopic as well as microscopic assessment of the tumor bed. Aided by tumor targeted near-infrared contrast agents, GAINS guided complete tumor resection in subcutaneous, metastatic and spontaneous mouse models of cancer with high sensitivity and specificity, in real-time. Using a clinically-approved near-infrared contrast agent, GAINS provided real-time image guidance for accurate visualization of lymph nodes in a porcine model and sentinel lymph nodes in human breast cancer and melanoma patients with high sensitivity. This work has addressed issues that have limited clinical adoption of fluorescence-guided surgery and paved the way for research into developing this approach towards standard-of-care practice that can potentially improve surgical outcomes in cancer

    Seeing the Big Picture: System Architecture Trends in Endoscopy and LED-Based hyperspectral Subsystem Intergration

    Get PDF
    Early-stage colorectal lesions remain difficult to detect. Early development of neoplasia tends to be small (less than 10 mm) and flat and difficult to distinguish from surrounding mucosa. Additionally, optical diagnosis of neoplasia as benign or malignant is problematic. Low rates of detection of these lesions allow for continued growth in the colorectum and increased risk of cancer formation. Therefore, it is crucial to detect neoplasia and other non-neoplastic lesions to determine risk and guide future treatment. Technology for detection needs to enhance contrast of subtle tissue differences in the colorectum and track multiple biomarkers simultaneously. This work implements one such technology with the potential to achieve the desired multi-contrast outcome for endoscopic screenings: hyperspectral imaging. Traditional endoscopic imaging uses a white light source and a RGB detector to visualize the colorectum using reflected light. Hyperspectral imaging (HSI) acquires an image over a range of individual wavelength bands to create an image hypercube with a wavelength dimension much deeper and more sensitive than that of an RGB image. A hypercube can consist of reflectance or fluorescence (or both) spectra depending on the filtering optics involved. Prior studies using HSI in endoscopy have normally involved ex vivo tissues or xiv optics that created a trade-off between spatial resolution, spectral discrimination and temporal sampling. This dissertation describes the systems design of an alternative HSI endoscopic imaging technology that can provide high spatial resolution, high spectral distinction and video-rate acquisition in vivo. The hyperspectral endoscopic system consists of a novel spectral illumination source for image acquisition dependent on the fluorescence excitation (instead of emission). Therefore, this work represents a novel contribution to the field of endoscopy in combining excitation-scanning hyperspectral imaging and endoscopy. This dissertation describes: 1) systems architecture of the endoscopic system in review of previous iterations and theoretical next-generation options, 2) feasibility testing of a LED-based hyperspectral endoscope system and 3) another LED-based spectral illuminator on a microscope platform to test multi-spectral contrast imaging. The results of the architecture point towards an endoscopic system with more complex imaging and increased computational capabilities. The hyperspectral endoscope platform proved feasibility of a LED-based spectral light source with a multi-furcated solid light guide. Another LED-based design was tested successfully on a microscope platform with a dual mirror array similar to telescope designs. Both feasibility tests emphasized optimization of coupling optics and combining multiple diffuse light sources to a common output. These results should lead to enhanced imagery for endoscopic tissue discrimination and future optical diagnosis for routine colonoscopy

    Development of deep learning methods for head and neck cancer detection in hyperspectral imaging and digital pathology for surgical guidance

    Get PDF
    Surgeons performing routine cancer resections utilize palpation and visual inspection, along with time-consuming microscopic tissue analysis, to ensure removal of cancer. Despite this, inadequate surgical cancer margins are reported for up to 10-20% of head and neck squamous cell carcinoma (SCC) operations. There exists a need for surgical guidance with optical imaging to ensure complete cancer resection in the operating room. The objective of this dissertation is to evaluate hyperspectral imaging (HSI) as a non-contact, label-free optical imaging modality to provide intraoperative diagnostic information. For comparison of different optical methods, autofluorescence, RGB composite images synthesized from HSI, and two fluorescent dyes are also acquired and investigated for head and neck cancer detection. A novel and comprehensive dataset was obtained of 585 excised tissue specimens from 204 patients undergoing routine head and neck cancer surgeries. The first aim was to use SCC tissue specimens to determine the potential of HSI for surgical guidance in the challenging task of head and neck SCC detection. It is hypothesized that HSI could reduce time and provide quantitative cancer predictions. State-of-the-art deep learning algorithms were developed for SCC detection in 102 patients and compared to other optical methods. HSI detected SCC with a median AUC score of 85%, and several anatomical locations demonstrated good SCC detection, such as the larynx, oropharynx, hypopharynx, and nasal cavity. To understand the ability of HSI for SCC detection, the most important spectral features were calculated and correlated with known cancer physiology signals, notably oxygenated and deoxygenated hemoglobin. The second aim was to evaluate HSI for tumor detection in thyroid and salivary glands, and RGB images were synthesized using the spectral response curves of the human eye for comparison. Using deep learning, HSI detected thyroid tumors with 86% average AUC score, which outperformed fluorescent dyes and autofluorescence, but HSI-synthesized RGB imagery performed with 90% AUC score. The last aim was to develop deep learning algorithms for head and neck cancer detection in hundreds of digitized histology slides. Slides containing SCC or thyroid carcinoma can be distinguished from normal slides with 94% and 99% AUC scores, respectively, and SCC and thyroid carcinoma can be localized within whole-slide images with 92% and 95% AUC scores, respectively. In conclusion, the outcomes of this thesis work demonstrate that HSI and deep learning methods could aid surgeons and pathologists in detecting head and neck cancers.Ph.D

    Morphological Features of Dysplastic Progression in Epithelium: Quantification of Cytological, Microendoscopic, and Second Harmonic Generation Images

    Get PDF
    Advances in imaging technology have led to a variety of available clinical and investigational systems. In this collection of studies, we tested the relevance of morphological image feature quantification on several imaging systems and epithelial tissues. Quantification carries the benefit of creating numerical baselines and thresholds of healthy and abnormal tissues, to potentially aid clinicians in determining a diagnosis, as well as providing researchers with standardized, unbiased results for future dissemination and comparison. Morphological image features in proflavine stained oral cells were compared qualitatively to traditional Giemsa stained cells, and then we quantified the nuclear to cytoplasm ratio. We determined that quantification of proflavine stained cells matched our hypothesis, as the nuclei in oral carcinoma cells were significantly larger than healthy oral cells. Proflavine has been used in conjunction with translational fluorescence microendoscopy of the gastrointestinal tract, and we demonstrated the ability of our custom algorithm to accurately (up to 85% sensitivity) extract colorectal crypt area and circularity data, which could minimize the burden of training on clinicians. In addition, we proposed fluorescein as an alternative fluorescent dye, providing comparable crypt area and circularity information. In order to investigate the morphological changes of crypts via the supporting collagen structures, we adapted our quantification algorithm to analyze crypt area, circularity, and an additional shape parameter in second harmonic generation images of label-free freshly resected murine epithelium. Murine models of colorectal cancer (CRC) were imaged at early and late stages of tumor progression, and we noted significant differences between the Control groups and the late cancer stages, with some differences between early and late stages of CRC progression
    • …
    corecore