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the classifier to distinguish normal samples from SCC samples. 

Next, histologically confirmed normal samples are sub-classified 

squamous epithelium, skeletal muscle, and mucosal salivary glands. 

(b) For classification of the thyroid group, first a binary classification 

is considered to test the ability of the classifier to distinguish normal 

thyroid samples from thyroid carcinoma of multiple types. In 

addition, thyroid HSI classification is tested to discriminate MNG 

from MTC and to discriminate MNG from classical-type PTC. 
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Figure 6-3 CNN architectures implemented for classification of HSI of thyroid 

tissue (left) and tissue from the upper aerodigestive tract (right). 

144 
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Figure 6-4 HSI classification results ROC curves for HNSCC experiments 

generated using leave-one-out cross-validation. (a) binary 

classification of SCC and normal head and neck tissue; (b) multi-

class sub-classification of normal aerodigestive tract tissues. 
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Figure 6-5 Representative results of sub-classification of normal oral tissues. 

Left: HSI-RGB composites are shown with ROI of the tissue type 

outlined. Center: Respective histological gold standard with 

corresponding ROI outlined. Right: Artificially colored CNN 

classification results of the ROI only. True positive results 

representing correct tissue-subtype are visualized in blue, and false 

negatives are shown in red. Tissue within the ROI that is shown in 

grayscale represents tissue that is not classified due to glare pixels or 

insufficient area to produce the necessary patch-size. 

148 

Figure 6-6 HSI classification results ROC curves for HNSCC experiments 

generated using leave-one-out cross-validation. (c) binary 

classification of normal thyroid and thyroid carcinomas; (d) binary 

classification of MNG and MTC; (e) binary classification of MNG 

and classical PTC. 

149 

Figure 7-1 Histological images (101×101 pixel image-patches) showing 

anatomical diversity. Top: Patches of various normal structures, 

including chronic inflammation, stratified squamous epithelium, 

stroma, skeletal muscle, and salivary glands (from left to right). 

Bottom: Patches of SCC with varying histologic features: 

keratinizing SCC, keratinizing SCC with keratin pearls, basaloid 

SCC, SCC with chronic inflammation, SCC with hemorrhage (from 

left to right). 
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Figure 7-2 The ROC curves are shown for patch-level cancer detection (left) 

and slide-level cancer diagnosis (right) in the testing groups from all 

three datasets. The dotted gray line corresponds to random guess. 
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Figure 7-3 Representative whole-slide classification results. (a, b) Papillary 

thyroid carcinoma WSI from two patients. (c, d) SCC WSI from 

patients with tongue and retromolar trigone SCC. (e, f) Breast cancer 

metastasis to lymph node WSI from two patients. The cancer area is 

outlined in green on the H&E images, and the heat maps are shown 

of the cancer probability. 
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Figure 7-4 Heat maps representing cancer probability of several regions of 

interest. From left to right, the CNN correctly identifies salivary 

gland and muscular components as having a low probability of SCC; 

stratified squamous epithelium correctly shown as a true negative; a 

false positive area representing inflammatory infiltration near the 

171 



 xix 

SCC border (not shown); correctly classified true positive SCC 

classified with a high probability of SCC. 

Figure 7-5 Representative, correctly-classified cancer image-patches from each 

dataset, visualized with cancer and normal components using the 

grad-CAM technique. The gradients were traced from the last 

convolutional layer before the inception modules to the cancer and 

normal logits separately to visualize contributions from cancer and 

normal features leading to a correct cancer prediction. (a) Breast 

cancer SLN metastasis image patch correctly classified as cancer 

with 58% probability. (b) Papillary thyroid carcinoma image patch 

correctly classified as cancer with 89% probability. (c) SCC image 

patch correctly classified as cancer with 99% probability. 

172 

Figure 7-6 Representative false negative resulting from slide scanning artifacts. 

This accounts for the misclassification result of the lowest 

performing WSI in the SCC test group. The left side of the WSI was 

a correct true positive classification (green box), but the out of focus 

artifact results in false negative misclassification (red box). 
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SUMMARY 

Surgeons performing routine cancer resections utilize palpation and visual 

inspection, along with time-consuming microscopic tissue analysis, to ensure removal of 

cancer. Despite this, inadequate surgical cancer margins are reported for up to 10-20% of 

head and neck squamous cell carcinoma (SCC) operations. There exists a need for surgical 

guidance with optical imaging to ensure complete cancer resection in the operating room. 

The objective of this dissertation is to evaluate hyperspectral imaging (HSI) as a non-

contact, label-free optical imaging modality to provide intraoperative diagnostic 

information. For comparison of different optical methods, autofluorescence, RGB 

composite images synthesized from HSI, and two fluorescent dyes are also acquired and 

investigated for head and neck cancer detection. A novel and comprehensive dataset was 

obtained of 585 excised tissue specimens from 204 patients undergoing routine head and 

neck cancer surgeries.  

The first specific aim of this thesis used SCC tissue specimens to determine if HSI 

has potential to perform surgical guidance in the challenging task of head and neck SCC 

detection. Currently, during SCC resections, several intraoperative pathology consultations 

are performed to investigate the excised tissues microscopically, which can take 20 to 45 

minutes each. Therefore, it is hypothesized that, if proven reliable, HSI could reduce time 

and provide quantitative cancer predictions. Deep learning algorithms have demonstrated 

success at image classification and segmentation tasks by extracting relevant features from 

extremely large training datasets to allow generalizable learning and classification ability. 

In the first specific aim of this thesis, state-of-the-art deep learning algorithms were 

developed for SCC detection at the registered cancer margin in excised tissue specimens. 
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The ground truth for the gross-level images was obtained from histology, which was 

demonstrated to be effective up to 2 mm, and a method to estimate cancer detection 

performance at several distances from the cancer margin was developed. Investigating all 

293 tissue specimens from 102 patients with SCC, HSI detected conventional type SCC 

with a median AUC score of 85% at 2 mm from the cancer margin. Evaluating performance 

of HSI by anatomical location demonstrated good SCC detection results in regions of the 

upper aerodigestive tract, such as the larynx (85% AUC score), oropharynx (95% AUC 

score), hypopharynx (78% AUC score), and nasal cavity (93% AUC score) at distances up 

to 2 mm from the cancer margin. To understand the ability of HSI for SCC detection, the 

most salient spectral features were calculated using gradients and correlated with known 

cancer physiology signals, notably oxygenated and deoxygenated hemoglobin. In 

conventional type SCC detection with HSI, the organ that produced the lowest results was 

the tongue, which may have been confounded by myoglobin signals. In HPV+ type SCC, 

autofluorescence imaging detected in tonsillar tissue with 91% AUC score, outperforming 

other modalities. The results of this aim indicate HSI may hold potential for guiding SCC 

resections. 

The second specific aim of this investigation was to evaluate HSI for tumor 

detection in thyroid and salivary glands. For comparing HSI to traditional RGB imagery, 

RGB images were synthesized from HSI using the spectral response curves of the human 

eye. Using deep learning and our dataset of 200 thyroid tissue specimens from 76 patients 

with thyroid cancer, HSI detected thyroid tumors with 86% average AUC score, which 

outperformed fluorescent dyes and autofluorescence. However, HSI-synthesized RGB 

imagery significantly outperformed HSI with 90% AUC score. To understand why this was 
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possible for thyroid tumors, the most salient spectral features were calculated using 

gradients and indicated that for thyroid tumors the visible spectrum is sufficient. The results 

overall showed that HSI along with other modalities can be used for developing thyroid 

tumor predictive algorithms successfully with deep learning. In salivary gland tumors, HSI 

demonstrated the best performance for tissue specimens from 3 patients with parotid gland 

tumors (92% AUC score), and autofluorescence performed best for tissue specimens from 

3 patients with tumors of other salivary glands (80% AUC score).  

In the process of surgical pathologist consultations, pathologists interpret many 

histological slides, and we hypothesize that a computer aided diagnostic tool can be created 

for assistance. The final aim of this investigation was to develop deep learning algorithms 

for head and neck cancer detection in hundreds of digitized histology slides made from the 

excised tissue specimens in this study. Slides containing any amount of SCC or thyroid 

carcinoma can be distinguished from entirely normal slides with 94% and 99% AUC 

scores, respectively. Additionally, the results demonstrated that SCC and thyroid 

carcinoma can be detected and localized within digital whole-slide histology images with 

92% and 95% AUC scores, respectively. The results of this aim indicate deep learning and 

digital histology could aid surgical pathologists. 

The outcomes of this thesis work demonstrate that HSI and deep learning methods 

could aid surgeons and pathologists in detecting head and neck cancers. Future steps 

necessary for streamlining deployment for potential clinical translation of HSI are outlined, 

including moving from ex-vivo to in-vivo acquisitions. Additionally, future steps needed 

for translation of deep learning for assisting surgical pathologists are outlined. In 

conclusion, the methods developed and presented for HSI and histological imaging are 



 xxv 

valuable for the broader, medical optical imaging field and serve as an example for future 

studies and emerging modalities for optical surgical guidance. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Estimated cancer incidence world-wide in 2012 for cancers of the oral/nasal cavity, 

nasopharynx, oropharynx, hypopharynx, larynx, and thyroid combined was 1.4 million 

people newly diagnosed. This corresponds with an age-standardized incidence rate of about 

25 men out of 100,000 and 14 women out of 100,000 diagnosed in 2012 alone with these 

types of cancer [1]. Approximately 90% of cancer at sites including the lips, gums, mouth, 

palate, and anterior two-thirds of the tongue are squamous cell carcinoma (SCC) [2]. 

Significant risk factors for the development of these types of cancer are tobacco 

consumption, alcohol consumption, and infection with human papillomavirus (HPV) [3]. 

There were over 800,000 cancer deaths in 2012 from these types of cancer [1]. The 

diagnostic procedure of SCC typically involves physical examination and surgical 

evaluation by a physician, tissue biopsy, and diagnostic imaging, such as PET, MRI, or 

CT. The primary treatment for many cases of resectable SCC involves surgical cancer 

resection with potential adjuvant therapy, such as chemotherapy or radiation. For cases 

where routine surgery is the primary treatment modality, successful surgical cancer 

resection is required to prevent local disease recurrence and promote disease-free survival 

[4].  

The most common practice during surgery to identify cancer margins is frozen 

section analysis, which can take 20 to 45 minutes [5-7]. When determining negative and 

positive cancer margins, most studies on oral cavity and aerodigestive tract cancers 

typically use a threshold of normal tissue beyond the tumor site greater than 5 mm to define 
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margin adequacy [6]. Studies comparing disease recurrence using the 5 mm margin 

definition found that inadequate margins carry increased locoregional recurrence rates (30-

55%), compared to adequate, i.e. negative, margin recurrence rates (12-18%) [8-10]. 

Moreover, disease recurrence greatly affects likelihood for additional surgeries, reduced 

quality of life, and increased mortality rates [11]. Five recent studies, comprising 1,200 

patients, found that positive cancer margins significantly reduce disease-free patient 

survival rates, values reported from 7-52%, compared with disease-free survival rates of 

39-73% for cases where negative margins are achieved [8-10, 12, 13]. 

Hyperspectral imaging (HSI) is a non-contact and label-free optical imaging 

modality, which acquires a series of 2D images at hundreds of discrete wavelengths to 

capture both spatial information and a spectral signature of the target. Preliminary research 

demonstrates that HSI has potential for providing diagnostic information for a myriad of 

diseases, including anemia, hypoxia, cancer detection, skin lesion and ulcer identification, 

urinary stone analysis, enhanced endoscopy, and many potential others in development 

[14-25]. Supervised machine learning and artificial intelligence algorithms have 

demonstrated the ability to classify images after being allowed to learn features from 

training or example images. One such deep learning method, convolutional neural 

networks (CNNs), has demonstrated astounding performance at image classification tasks 

due to the capacity for robust handling of training sample variance and ability to extract 

meaningful features from large training data sizes [26, 27]. 

The need for an imaging modality that can perform diagnostic prediction could 

potentially aid surgeons with near real-time guidance during intra-operative cancer 

resection. If proven to be reliable and generalizable, this method could help provide intra-
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operative diagnostic information beyond palpation and visual inspection to the surgeon’s 

resources, perhaps enabling surgeons to achieve more accurate resections and biopsies, or 

as a computer-aided diagnostic tool for physicians diagnosing and treating these types of 

cancer. 

1.1.1 Preliminary Studies 

 Hyperspectral imaging has been applied successfully to a number of biomedical 

challenges. Preliminary research demonstrates that HSI has potential for providing 

diagnostic information for diseases, such as anemia and hypoxia, for example determining 

tissue oxygenation and altitude induced hypoxia [28]. Additionally, HSI has demonstrated 

potential for in-vivo and ex-vivo cancer detection, such as identifying residual cancer in 

the tumor bed from a multi-institute intraoperative brain cancer study and colon cancer 

identification [15, 18, 19, 22]. Moreover, HSI has shown advancements in identification of 

skin lesions, diabetic ulcers, and urinary stone subtyping [25, 29]. Because of the 

demonstrated ability of HSI for identifying diseases, we chose to implement it in our study 

for cancer detection in surgical specimens from head and neck cancer, a unique application 

of HSI that has not been explored before, and to construct an extensive patient database to 

address these problems. Before applying the methods to human surgical specimens, the 

work was first demonstrated by our lab in several animal models. 

 A previous Ph.D. student (G. Lu) also advised by Professor Fei developed the 

imaging protocol for SCC detection in a mouse model using HSI. Lu and Fei were the first 

to publish a comprehensive review on the use of HSI for biomedical application, which has 

been cited nearly 900 times [14], indicating the surge of research in the field. Specifically, 
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a subcutaneous cancer model was made using a xenograft of HNSCC cell line into mice, 

and a support vector machines (SVM) classifier was implemented with 89% accuracy 

(n=12 mice) when HSI are acquired through the skin on the back of the mouse [30]. 

Afterwards, intraoperative HSI were acquired after skin resection and tumor exposure in 

the same mouse model, and using an active-contour classifier achieved results of 97% 

accuracy for tumor detection, cross-validating with only 5 mice [31]. Next, a mouse model 

of neoplastic 4NQO-induced tongue carcinogenesis was adopted, and SVM classification 

of neoplastic versus normal tissue yielded an AUC of 0.84 for in-vivo HSI and 0.86 AUC 

for ex-vivo HSI, again using cross-validations [32].  Lastly, Lu et al. began the ex-vivo HSI 

head and neck cancer surgical specimen study in collaboration with Emory University 

Hospital Midtown. Prior to this thesis, Lu et al. published a single preliminary work on 

human, ex-vivo cancer detection using HSI classified with SVM in limited regions of 

interest (ROIs) from 6 thyroid and 20 HNSCC non-registered patients’ samples that 

achieved 86% accuracy for inter-patient validation and 91% accuracy for intra-patient 

validation, using cross-validations [33]. These works were done to establish the potential 

of HSI in a mouse model and to begin the process of evaluating HSI for ex-vivo human 

specimens. However, much more work remains to establish ground-truth registration for 

whole-tissue mapping and validation, complete investigation of more sophisticated and 

robust classification methods on a significantly larger dataset of patients, and to compare 

classification potential of HSI to other optical modalities and digitized histological images. 

1.1.2 Significance and Innovation 

 As discussed, in routine cases of resectable head and neck, complete removal of the 

cancer is required to achieve successful disease-free survival and reduce local disease 
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recurrence [8-10, 12, 13]. Hyperspectral imaging, a non-contact, non-ionizing, and label-

free optical imaging method, has demonstrated diagnostic potential that may aid surgeons 

with near real-time guidance during intra-operative cancer resection. If proven to be 

reliable and generalizable, we hypothesize the proposed method would add quantitative 

imaging to extend surgeons’ resources beyond normal palpation and visual inspection, 

becoming a candidate for clinical translation to the operating room.  

 The variability of HSI data is substantial both within and between patients and, 

therefore, must be calibrated to compare patients. Though classes of tissue may show 

significant differences on average, the large standard deviations of spectral signatures from 

classes of tissue require machine learning to make predictions about tissue class. Despite 

calibration, the machine learning algorithms implemented must be sufficiently robust to 

handle the variation of spectral signatures from different tissues of different anatomical 

sites that may occur within one type of carcinoma. To overcome these challenges, we 

propose utilizing deep learning with deep CNNs and hypothesize the results will solve 

these challenges to a clinically acceptable degree, performing well in a task where 

traditional, regression-based methods are limited. For this task, image registration is 

essential for creating an accurate ground truth to allow validation of deep learning for 

cancer detection in ex-vivo tissues, with potential for HSI to serve as intraoperative surgical 

guidance. Additionally, inspecting correct and incorrect classification results, we propose 

to analyze the weights and activations from the deep learning methods to reveal which parts 

of the optical spectra was used for making the decision; this will allow investigation inside 

the “black-box” of deep learning and correlation with cancer pathophysiology. Altogether, 

these results and developments will facilitate thorough investigation of HSI-based cancer 
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detection, and serve as a standard for ex-vivo gross-level imaging studies, within all areas 

of optical modalities. 

 Prior to this thesis study, for head and neck cancers, HSI has been demonstrated to 

have benefit in the animal model (n=12 mice), and was investigated in human surgical 

specimens with only a limited sample size (n=26 patients). This work aims to address the 

challenges and difficulties of cancer detection using human surgical specimens from head 

and neck cancers using a substantially large patient database (n=204), a thorough 

investigation of machine learning methods, and comparison of HSI to other optical imaging 

modalities. Evaluating HSI-based cancer detection on an extensive and comprehensive ex-

vivo patient database is an essential step to determine if the approach can be viable for 

clinical translation to intraoperative surgical guidance. 

 During surgical cancer resection, fresh frozen specimens are sent to the surgical 

pathology department to provide feedback on cancer margin status during surgery. 

Identifying cancer microscopically during intraoperative consultations can be challenging 

because of histological preparation and processing, time constraints, and the sheer volume 

of slides to make a final diagnosis. While we hypothesize that HSI could one day play a 

role supplying quantitative analysis to surgeons prior to resection, there is also a need for 

cancer detection in histopathological specimens. We hypothesize that a computer-aided 

diagnostic tool could be developed for assisting pathologists to quantitatively identify 

cancer is digitized histology slides made from surgical specimens. 

 To the best of our knowledge, this is the first work to identify head and neck cancer 

on histological images, which is only possible because of our extensive patient dataset. 
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Moreover, the results and developments of this work will establish a benchmark in the field 

for future work on computer aided diagnostics using histology. The major results and 

conclusions drawn from this thesis will help define the role and potential of artificial 

intelligence in the field of surgical guidance and digital pathology.  

1.2 Specific Aims 

 The objective of this work is to evaluate hyperspectral imaging (HSI) as a non-

contact, optical technique to further provide diagnostic information, for potential 

translation into the operating room. We hypothesize that label-free HSI will outperform 

autofluorescence, RGB composites, and fluorescent dye-based optical methods for the 

detection of head and neck cancer in ex-vivo fresh surgical tissue of human patients. In this 

thesis, we detail the HSI dataset obtained from 204 patients, a novel and comprehensive 

HSI database, and perform analysis using state-of-the-art deep learning methods, allowing 

thorough and complete investigation of cancer detection in ex-vivo surgical specimens of 

head and neck cancer. The results and outcomes of this comprehensive work demonstrate 

potential viability for clinical translation into intra-operative guidance systems. 

Specific Aim 1: Acquire a novel and extensive database of HSI from ex-vivo 

specimens obtained from H&N cancer patients undergoing surgery and develop and 

evaluate advanced image processing techniques. 

 (a) Construct a novel, comprehensive ex-vivo HSI database of 204 patients with 

head and neck cancer, including SCC and thyroid carcinomas. The dataset is investigated 

and detailed: patient demographics, clinical descriptors, and surgical pathology 

information. Imaging protocols to acquire reflectance broadband HSI, autofluorescence, 
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two dye-based fluorescence techniques, and standard RGB imaging. (b) A method for 

preparing accurate and reliable histopathological gold standards for HSI using a pipeline 

of rigid and deformable image registration is developed and evaluated. Serial sectioning of 

a few specimens is performed to understand variation of the cancer margin with depth. (c) 

Develop and analyze processing techniques with comparison of machine learning methods 

for the HSI data, including assessing image normalization techniques and performance 

degradation due to specular glare.  

 Impact: This aim establishes the data necessary for this investigation of HSI, which 

will draw conclusions about clinical potential. The processing and registration methods 

developed in this aim allow for inter-patient machine learning experiments and quantify 

the systematic error in using histology as the ground truth for gross-level ex-vivo tissue 

specimens. Investigation of specular glare and the variation of the cancer margin provide 

more information to facilitate thorough investigation of HSI-based cancer detection, and 

serve as a standard for future ex-vivo gross-level imaging studies with optical modalities. 

Specific Aim 2: Develop deep learning algorithms to classify head and neck 

cancer margins using HSI and optical imaging. 

 (a) Develop convolutional neural network algorithms for classification of optical 

spectral properties of ex-vivo tissue specimens, using HSI, autofluorescence, RGB 

composite imaging, 2NBDG dye, and proflavin dye-based imaging.  (b) Perform cancer 

detection in both whole tumor-only and normal-only tissues for baseline, ideal-case 

performance. Perform cancer detection at the registered tumor-normal margin and erode 

distances from the margin to identify how distance affects performance. The described 
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experiments will be performed in fully-independent patient groups for all 102 SCC patients 

and 82 thyroid cancer patients in the HSI database. Compare performance of optical 

imaging modalities. Additionally, intra-patient experiments will be performed, which 

simulates preliminary augmented surgical approach. (c) Investigate correct classification 

results to analyze CNN weights and activations from deep learning and correlate with 

cancer pathophysiology.   

 Impact: Expected results will demonstrate potential of HSI for intraoperative 

cancer detection and surgical guidance. Provide support for the hypothesis that HSI has a 

unique ability compared to optical imaging methods to capture full diagnostic, optical 

spectra that comprise biological properties of malignant neoplasms in multiple cancer types 

at difference anatomical locations. The comparison of optical imaging modalities for 

disease classification will guide which techniques have potential to be translated into intra-

operative guidance. Correlate CNN activation weights with theoretical optical features 

allows seeing inside the “black-box” of deep learning and provide physiological rationale. 

Specific Aim 3: Compare HSI outcomes to histology-based methods. Develop 

and evaluate deep learning classifiers for head and neck cancer detection on digitized 

histological images.  

 (a) Determine if HSI can provide sub-component classification for normal and 

cancerous tissues, similar to histological analysis, which provides more detail than just 

binary classification. (b) Using the digitized histological dataset of surgical specimens, 

develop CNN-based methods for classification. Implement and evaluate histological 

cancer detection for SCC and thyroid carcinoma in digitized whole-slide images. Develop 
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color and stain invariant approach for robustness. The objective is to create methods for 

(1) localizing the cancer within each slide and delineating with heat-maps, and (2) 

identifying slides with cancer from entirely normal slides. (c) Perform gradient tracing 

analysis to understand salient features from CNN-based decision making with clinical 

rationale. (d) Establish limitations of the proposed method.  

 Impact: This will be the first work to identify head and neck SCC on histological 

images using deep learning. Not only will this serve as a basis in the field for future work 

on SCC detection using histology, but it also provides a benchmark for comparison of the 

ability of HSI-based cancer detection methods, which use the exact same specimens. 

1.3 Thesis Overview 

 In this thesis work, the use of hyperspectral imaging was investigated for detection 

of excised human head and neck cancer specimens. Chapter 2 reviews the background and 

current literature available for hyperspectral imaging. Chapters 3-7 are reproductions of 

peer-reviewed, first-author journal manuscripts. Chapter 8 concludes the thesis with a 

summary of key findings, impact, and future research directions. 

 Chapter 2 is an extensive literature review on the studies utilizing HSI for cancer 

detection. It is a reproduction of the peer-reviewed manuscript, entitled “In-vivo and ex-

vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible 

features of cancer”, by Martin Halicek et al. 2019, which was published in the journal 

Cancers. 
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 Chapter 3 is a reproduction of the peer-reviewed manuscript, entitled 

“Hyperspectral imaging for head and neck cancer detection: Specular glare and variance 

of the tumor margin in surgical specimens”, by Martin Halicek et al. 2019, which was 

published in the Journal of Medical Imaging and describes machine learning, processing, 

and ground truth methods. It also contains excerpts from a conference proceedings by 

Martin Halicek et al. 2018 on image registration. 

 Chapter 4 is a reproduction of the peer-reviewed manuscript, entitled 

“Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin 

detection in surgical specimens from 102 patients using deep learning”, by Martin Halicek 

et al. 2019, which was published in the journal Cancers. This work details the complete 

investigation of HSI for SCC analysis, using all the SCC patients collected for this thesis 

divided into two cohorts, and compares the results of HSI with other optical imaging 

modalities. 

 Chapter 5 is a reproduction of the peer-reviewed manuscript, entitled “Tumor 

detection of the thyroid and salivary glands using hyperspectral imaging and deep 

learning”, by Martin Halicek et al. 2020, which was published in the journal Biomedical 

Optics Express. This work details the complete investigation of HSI for thyroid and 

salivary gland tumor analysis, using all the thyroid and salivary gland tumor patients 

collected for this thesis, and compares the results of HSI with other optical imaging 

modalities. 

 Chapter 6 is a reproduction of the peer-reviewed manuscript, entitled “Optical 

biopsy of head and neck cancer using hyperspectral imaging and convolutional neural 
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networks”, by Martin Halicek et al., which was published in the Journal of Biomedical 

Optics. It describes the use of HSI for sub-classification of normal tissue components and 

sub-classification of different thyroid tumors. 

 Chapter 7 is a reproduction of the peer-reviewed manuscript, entitled “Head and 

neck cancer detection in digitized whole-slide histology using convolutional neural 

networks”, by Martin Halicek et al. 2019, which was published in the Nature journal 

Scientific Reports. It describes the application of cancer detection in the digitized whole-

slide histological images prepared from the same tissue specimens used in the above HSI 

studies and previous chapters. 

 Chapter 8 is a summary of the key findings, limitations, future directions, and 

impacts of the research involved in this thesis work.  

 

Figure 1-1. Flowchart of the dissertation. 
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CHAPTER 2. LITERATURE REVIEW: HYPERSPECTRAL 

IMAGING FOR CANCER ANALAYSIS  

 In this first chapter, a current literature review of the state of hyperspectral imaging 

for cancer detection is provided. In contrast to conventional optical imaging modalities, 

hyperspectral imaging (HSI) can capture much more information from a certain scene, both 

within and beyond the visual spectral range (from 400 to 700 nm). This imaging modality 

is based on the principle that each material provides different responses to light reflection, 

absorption, and scattering across the electromagnetic spectrum. Due to these properties, it 

is possible to differentiate and identify the different materials/substances presented in a 

certain scene by their spectral signature. Over the last two decades, HSI has demonstrated 

potential to become a powerful tool to study and identify several diseases in the medical 

field, being a non-contact, non-ionizing, and a label-free imaging modality. In this 

literature review, the use of HSI as an imaging tool for the analysis and detection of cancer 

is presented. The basic concepts related to this technology are detailed. The most relevant, 

state-of-the-art studies that can be found in the literature using HSI for cancer analysis are 

presented and summarized, both in-vivo and ex-vivo. Lastly, we discuss the current 

limitations of this technology in the field of cancer detection, together with some insights 

into possible future steps in the improvement of this technology. 

2.1 Introduction 

 Hyperspectral imaging (HSI), also referred to as imaging spectroscopy, integrates 

conventional imaging and spectroscopy methods to obtain both spatial and spectral 

information of a scene [34]. Unlike conventional RGB (red, green, and blue) imaging, 

which only captures three diffuse Gaussian spectral bands in the visible spectrum (e.g., 

380–740 nm), HSI increases the amount of data acquired beyond the capabilities of the 
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human eye [35]. Hyperspectral (HS) sensors measure the aggregate signal of reflected, 

absorbed and emitted radiance at specific wavelengths of the material that is being 

observed. These sensors are capable of capturing a very large number of contiguous 

spectral bands (also called spectral wavelengths or spectral channels) across the 

electromagnetic spectrum (ES). Each pixel of an HS image, or average over a region of 

interest, has associated a specific vector of radiance values, commonly called spectral 

signature [34]. Image processing algorithms make use of these spectral signatures to 

automatically differentiate the materials observed by the sensor at each pixel [36]. These 

methods rely on the basis that different molecular compositions of each material present in 

nature have different responses to the incident light [34]. 

 HSI is a promising non-invasive and non-ionizing technique that supports rapid 

acquisition and analysis of diagnostic information in several fields, such as remote sensing 

[37, 38], archeology [39, 40], drug identification [41, 42], forensics [43-45], defense and 

security [46, 47], agriculture [48, 49], food safety inspection and control [50-52], among 

many others. Particularly, several studies can be found in the literature where HSI is 

applied to different medical applications [14, 53, 54]. It has been proven that the interaction 

between the electromagnetic radiation and matter carries useful information for medical 

diagnostic purposes [14]. As an alternative to other existing technologies for diagnosis, one 

of the strengths offered by HSI is being a completely non-invasive, non-contact, non-

ionizing and label-free sensing technique. In medical applications, this technology has been 

employed in several different areas such as blood vessel visualization enhancement [55, 

56], intestinal ischemia identification [57], oximetry of the retina [58-60], estimation of the 

cholesterol levels [61], chronic cholecystitis detection [62], histopathological tissue 

analysis, diabetic foot [63], etc. In recent years, medical HSI has started to achieve 

promising results with respect to cancer detection through the utilization of cutting-edge 

machine learning algorithms and increased modern computational power [14, 53]. 
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 In this literature review, the basis of the different HS acquisition systems is 

explained, as well as their applications to the different tissue sample analysis, followed by 

a brief presentation of the most common data processing approaches employed to process 

HS information. In addition, a brief introduction to the optical properties of cancer tissues 

and the current investigations performed in the literature to study and analyze in-vivo and 

ex-vivo cancer tissue samples using HSI are presented. 

2.2 Hyperspectral Imaging 

2.2.1 Hyperspectral Image Acquisition Systems 

 HSI sensors generate a three-dimensional (3D) data structure, called HS cube, 

where the spatial information is contained in the first two dimensions, while the third 

dimension encompasses the spectral information. Figure 2-1 shows the information 

structure of an HS cube. On one hand, each pixel of the HS image contains a full spectral 

signature of length equal to the number of spectral bands of the HS cube. On the other 

hand, a gray scale image of the captured scene can be obtained using any of the spectral 

bands that displays the spatial information provided by the image sensor at a particular 

wavelength. 

 

Figure 2-1. Hyperspectral imaging data. Basic structure of a hyperspectral imaging (HSI) 

cube, single band representation at a certain wavelength and spectral signature of a single 

pixel. 
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Figure 2-2. Electromagnetic spectrum. HSI is commonly employed between the visible 

and the medium-infrared range. 

Depending on the type of sensor employed, HSI cameras will cover different 

spectral ranges. Figure 2-2 shows the partitioning of the entire electromagnetic spectrum 

(ES) and the range where HS images are commonly captured depending on the sensor type. 

Charge-coupled device (CCD) silicon-based sensors are sensitive in the visible and very 

near-infrared (VNIR) spectrum in the range between 400 and 1000 nm. The standard 

indium gallium arsenide (InGaAs) sensors are able to capture HS images in the near-

infrared (NIR) range, between 900 and 1700 nm, extending in some cases the upper range 

to 2500 nm. Other types of sensors can reach larger spectral ranges. For example, the 

mercury cadmium telluride (MCT) sensors are able to acquire HS images in the short-

wavelength infrared (SWIR) range, from 1000 to 2500 nm, being able also to reach 25,000 

nm in some specific systems [64]. 

HS cameras are mainly classified into four different types (Figure 2-3) depending 

on the methods employed to obtain the HS cube: whiskbroom (point-scanning) cameras, 

pushbroom (line-scanning) cameras, cameras based on spectral scanning (area-scanning or 

plane-scanning), and snapshot (single shot) cameras [50].  
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Figure 2-3. Hyperspectral camera types and their respective acquisition and data storage 

methods. (a) Whiskbroom camera; (b) Pushbroom camera; (c) Hyperspectral (HS) camera 

based on spectral scanning; (d) Snapshot camera. 

Whiskbroom cameras (Figure 2-3a) are characterized by capturing one single pixel 

at one time containing all its spectral information. The rest of the pixels of the scene are 

captured by scanning both spatial dimensions (x and y). Whiskbroom cameras have the 

main disadvantage of being very time-consuming during the image acquisition. However, 

they can achieve very high spectral resolutions, allowing researchers to perform a more 

detailed analysis of the spectral signature of the pixel that is captured.  
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Closely related to the previous camera type, pushbroom cameras (Figure 2-3b) offer 

a faster scanning solution compared to whiskbroom, but also obtain high spectral 

resolution. In this case, the camera captures one line of pixels of the scene (y-axis) at one 

time. The other spatial dimension (x-axis) is obtained by moving the field-of-view (FOV) 

of the camera in that direction. Pushbroom cameras are the most common systems in 

remote sensing field and other industrial sectors due to their high spectral resolution, 

showing reduced capturing times with respect to the whiskbroom cameras. The main 

disadvantage of spatial scanning cameras is the presence of spatial aliasing if movement 

artifacts occur during the acquisition period [64]. 

On the other hand, HS cameras based on spectral scanning (Figure 2-3c) are able 

to obtain the entire spatial information (x-axis and y-axis) of the scene for a certain 

wavelength at one time, performing a scanning in the spectral dimension (λ-axis). These 

cameras can achieve high spatial resolutions and fast acquisition times; however, the 

spectral resolution is typically lower when compared to the spatial scanning (whiskbroom 

and pushbroom) cameras. One of the main disadvantages of spectral scanning cameras is 

that they are not suitable for capturing moving objects due to the time required to perform 

the spectral scanning, which would induce spectral aliasing artifacts. LCTF (Liquid Crystal 

Tunable Filter) and AOTF (Acousto-Optic Tunable Filter) HS cameras employ optical 

filters electronically controlled to filter each wavelength and generate the complete HS 

cube by performing a spectral scanning.  

Finally, there is an emerging type of HS camera that can provide hyperspectral 

video, having the lowest acquisition time and allowing the acquisition of moving objects 

without performing any spatial or spectral scanning. Snapshot cameras (Figure 2-3d) 
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capture the entire scene in a single shot that contains both the spectral and spatial 

information [65]. The main disadvantage of snapshot cameras is that the spectral and 

spatial resolutions are much lower with respect to the other camera types. 

In summary, the order of spectral resolution from highest to lowest is line scanning 

and point scanning being about equal, followed by spectral scanning, and snapshot. The 

order of spatial resolution from highest to lowest is spectral scanning, line scanning and 

point scanning being about equal, and snapshot. The order of fastest to slowest acquisition 

times is snapshot, spectral scanning, line scanning, and point scanning. The use of high 

spectral resolution HS cameras for cancer analysis allows researchers to study in detail the 

optical properties of the tissues, identifying the most relevant spectral channels that are 

involved in a certain application. On the other hand, the use of high spatial resolution HS 

cameras permits the analysis of samples by combining the spectral and the morphological 

properties of the tissue. Finally, HS snapshot cameras are the most suitable option for real-

time analysis situations, mainly when the analysis of in-vivo tissue is performed. In 

conclusion, the HS sensor type and acquisition system selected are highly application 

dependent. 

2.2.2 Hyperspectral Image Processing Algorithms 

An extensive literature is available on the classification of HS images [66]. 

Traditionally, HSI has been widely employed in the remote sensing field, so the majority 

of algorithms developed to classify HS images are related to this field [67]. However, more 

recently, HSI is progressively being used in other fields, such as drug analysis [68, 69], 

food quality inspection [70], or defense and security [71], among many others. That is why 
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the algorithms that were developed targeting remote sensing application have been adapted 

to classify different types of scenes. 

Pixel-wise classification methods assume that each pixel is pure or a mix of pure 

pixels and can be assigned to a certain material based on its spectral information [72-74]. 

Pixel-wise classification algorithms can be divided into two types: supervised classifiers 

and unsupervised classifiers (also called clustering or segmentation algorithms). 

Furthermore, in recent years, the use of deep learning (DL) approaches to classify HS data 

has become increasingly common, achieving excellent results when compared with 

traditional machine learning (ML) algorithms [75]. When applied to medical HSI data, 

these algorithms face two main challenges: the high dimensionality and the limited number 

of samples. However, these challenges are not necessarily present in other HSI domains, 

but are more prevalent in medical HSI because of substantial inter-patient spectral 

variability. 

The basis of supervised classification algorithms relies on training an algorithm on 

a set of spectral signatures with known class labels and using this trained model to assign 

new labels to unknown spectral signatures in a HS image. The training process of 

supervised algorithms must be performed with a library of spectral signatures where each 

type of signature has been identified with a certain membership class, with the goal that 

this library is sufficiently representative for generalization purposes. Moreover, regression-

based, statistical ML methods based on linear discriminant analysis, decision trees, random 

forest (RF) [75, 76], artificial neural networks (ANNs) [77-79], and kernel-based methods 

have been widely used to classify HS images. In particular, there are several types of 

kernel-based regression methods in the literature [80], where the support vector machine 
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(SVM) classifier is the most commonly used algorithm. In the HSI field, SVMs provide 

good performance for classifying this type of data when a limited number of training 

samples is available [80]. Due to its strong theoretical foundations, good generalization 

capabilities, low sensitivity to the problem of dimensionality and the ability to find optimal 

solutions, SVMs are usually selected by many researchers over other traditional, 

regression-based ML classification paradigms for classifying HS images [14]. As a 

relevant example, a variant of the SVM classifier, called fuzzy SVM classifier, was 

employed in the development of an emotion recognition system based on facial expression 

images [81]. In the medical field, SVMs have been used to detect multiple sclerosis in 

subjects, employing stationary wavelet entropy to extract features from magnetic 

resonance images used as inputs of the SVM classifier [82]. Furthermore, the same 

technique combined with a directed acyclic graph method has been used to diagnose 

unilateral hearing loss in structural MRI [83], demonstrating that the SVM algorithm is a 

reliable candidate to work with a variety of medical image modalities. Other relevant 

algorithms employed in HS classification problems with high dimensionality are linear and 

partial regression methods, such as partial least squares (PLS) and linear discriminant 

analysis (LDA), which are suitable for multivariate linear regressions with a large number 

of predictors; however, these perform well with small sample size, but may have problems 

generalizing to larger patient datasets [14].  

On the other hand, the goal of the unsupervised classifiers is to divide an image into 

a certain number of similar groups (also called clusters), where each group shares 

approximately the same spectral information and provides the correspondent cluster 

centroid [84]. Each cluster centroid represents a spectrum corresponding to a material in 
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the scene, while the membership functions provide the weights for these spectra. Unlike 

the supervised classifiers, unsupervised methods do not require a training process using 

labeled samples. For that reason, they cannot provide the identification of the class that 

each pixel belongs to, only relative clustering with no information about the material’s 

nature. Although unsupervised clustering does not provide any discriminant features by 

itself, it could be used to delineate the boundaries of the different spectral regions presented 

in an HS image. Unsupervised algorithms, such as the K-means algorithm [85, 86] and the 

Iterative Self-Organizing Data Analysis (ISODATA) technique [87, 88], are the most 

common clustering algorithms employed in the literature using HS data [66]. Hierarchical 

clustering is an unsupervised method of cluster analysis that seeks to obtain a hierarchy of 

clusters [89]. Several hierarchical clustering algorithms have been employed to classify HS 

images, such as Hierarchical Matrix Factorization [90], Hierarchical K-Means [91], and 

Hierarchical Spherical K-Means [92]. Some works based on HS analysis for medical 

applications use unsupervised clustering as part of the classification algorithms, such as 

those for colon tissue cell classification [93] or laryngeal cancer detection [94]. 

Deep learning (DL) techniques have been used for many applications of remote 

sensing data analysis, such as image processing, pixel-wise classification, target detection, 

and high-level semantic feature extraction and scene understanding [95]. Computationally, 

DL generates predictive models that are formed by several stacked processing layers with 

‘neurons’ that can activate with learned weights to discriminate different representations 

of data with multiple levels of abstraction. DL architectures can extract intricate features 

in large datasets through an iterative, error backpropagation approach that determines the 

gradients that lead to successful changes of internal parameters [96]. While conventional 
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machine learning techniques are limited in their ability to process data in its input form, 

DL methods can learn new mathematical representations from the input data required for 

detection or classification. These multiple levels of representation are obtained by non-

linear modules that modify the representation at one level (starting with the raw input) into 

a representation at a higher, slightly more abstract level, where very complex functions can 

be learned [96].  

Many DL frameworks have been applied to HS images in the literature. Of 

particular interest, convolutional neural networks (CNNs) [97, 98] have been employed to 

process and classify HS remote sensing data, improving upon the results obtained with 

conventional SVM-based algorithms [99, 100]. CNNs have also been employed to extract 

high-level spatial features from HS data in a spectral–spatial feature extraction algorithm 

for HS image classification [101]. In the medical field, DL is emerging in recent years as 

a powerful tool in the field of translational bioinformatics, imaging, pervasive sensing, and 

medical informatics [102]. As an example, deep neural networks (DNNs) and CNNs have 

been employed to classify electrocardiogram signals [103-105], detect retinal vessels [106-

108], classify colorectal polyps [109, 110], and cancer analysis [111, 112]. On the other 

hand, despite so much promise using DL techniques, the use of DL for medical HSI is 

recent [113] because of the large amounts of training data required, and currently there are 

not many medical HSI databases available. 

2.3 Cancer Optical Properties 

 The measured optical spectra of biological tissues from 400 to 1000 nm cover the 

visible and NIR regions and can be broken down at the molecular level, which greatly 
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contributes to the reflectance values measured in certain ranges. The hemoglobin (Hb) 

absorption and reflectance spectra vary substantially between the oxygenated and 

deoxygenated states, and Hb is a major spectral contribution of biological tissue in the 

range of 450 to 600 nm [114]. Deoxygenated Hb shows a single absorbance peak around 

560 nm, while oxygenated Hb shows two equal absorbance peaks around 540 and 580 nm 

[115]. The region of the NIR spectrum from 700 to 900 nm corresponds with the scattering 

dominant optical properties of collagen [116]. The NIR region is referred to as the 

scattering dominant region for biological tissues, mainly composed of fat, lipids, collagen, 

and water. The molecular contributions of absorbance at wavelengths in the typical HSI 

range are shown in Figure 2-4. The relationship of absorbance is inverse to reflectance 

measured by HSI systems. For a more detailed summary of the optical properties of 

biological tissue, the interested reader is directed to the canonical review by Jacques [117]. 

 

Figure 2-4. A few representative major molecular contributions to the absorbance at 

wavelengths of light typical for HSI investigations of biological tissue [117]. Reproduced 

with permission from [117]; published by IOP Publishing (2013). 
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Deal et al. investigated the contributions of normal and neoplastic colonic 

autofluorescence, which is the reflectance observed from the endogenous fluorescent 

molecules in biological tissue, using excitation wavelengths from 360 to 550 nm and 

emission at 555 nm, separated with a long-pass emission filter and dichroic beamsplitter 

[118]. Investigating neoplastic tissues, colorectal adenocarcinoma and adenomatous 

polyps, demonstrated that some autofluorescent molecules, such as elastin and 

nicotinamide adenine dinucleotide (NADH), had a significantly different abundance 

compared to normal colonic tissues, while other molecules, such as collagen, flavin adenine 

dinucleotide (FAD), and protoporphyrin IX (PPIX), showed no change between normal 

and neoplastic tissues. However, the authors acknowledge the limitation of performing 

their experiments with pairs of healthy and cancer from only nine patients and that non-

neoplastic normal tissue from a diseased colon may vary molecularly from normal healthy 

colon tissue in a subject devoid pathology. 

 Monte-Carlo (MC) methods applied to medical HSI use simulations of photons 

with random parameter perturbations to simulate the interaction of light and biological 

tissues. Herrmann et al. developed an MC simulation of HS illumination in the visible and 

NIR regions to study reflectance signals of a multi-layer model in silico with different 

blood volume and oxygen saturations per layer [119]. The authors confirmed the 

absorbance peaks of water at 1000 nm and reflectance ratios at 580/800 nm for Hb. 

Interestingly, the authors also contend that blood volume fractions of 5% and 10% are 

detectable at depths of up to 1 mm in the simulated biological tissue, but changes beyond 

this depth are likely not resolvable. Additionally, it is possible to correlate in vivo measured 

reflectance values from various cancers and healthy tissues to extract meaningful optical 
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tissue properties associated with distinct molecular components, such as collagen, keratin, 

and Hb, using an inverse-MC approach, which has been previously reviewed for its 

application to cancer diagnosis [120]. 

2.4 Medical Hyperspectral Imaging for Cancer Analysis 

In the previous sections, the basis of the HSI technology, the main algorithms 

employed to process this type of data and the optical properties of cancer tissue have been 

described. The following section is devoted to detail the state-of-the-art methods and 

primary research on the use of HSI within the medical field, focusing on cancer analysis.  

The primary research performed in the literature related to the use of HSI for cancer 

analysis can be categorized first by organ systems, next the type of tissue samples and 

experimental design (ex vivo, in vivo), and finally the type of subjects (human, animal). 

Moreover, in vitro studies will not be included in this review of state-of-the-art works for 

cancer detection.  

While it is possible to detail the investigations of HSI for cancer analysis altogether, 

HSI systems are not standardized, as different technologies were used in the following 

studies. Indeed, most of the studies work in the VNIR spectral region, employing CCD 

sensors. However, in some studies, the NIR region is also explored, requiring the use of 

InGaAs sensors. Halogen or xenon lamps are generally used as illumination systems for 

HSI applications, and sometimes optical fibers are used for light transmission to avoid the 

high temperatures produced by these types of light sources or to concentrate the light into 

a certain area. The main characteristics of the systems and analysis methods employed in 



 27 

each study are presented in this literature review, sorted by the year of publication within 

each section. 

2.5 Head and Neck Cancer 

2.5.1 Clinical Need for HSI of Head and Neck Cancer 

Head and neck (H&N) cancers are the sixth most common cancer worldwide [139]. 

Approximately 90% of the cancers at origin sites of the upper aerodigestive tract, which 

includes the oral cavity, nasal cavity, pharynx, and larynx, are squamous cell carcinoma 

(SCC). There are several well studied risk factors for H&N SCC, including consumption 

of tobacco and alcohol and oral infection with human papilloma virus (HPV) [140]. 

Patients with SCC typically present it at an advanced stage (stage 3 or 4 disease) [141]. 

The mainstay treatment for SCC is surgical cancer resection. The single largest predictor 

of patient outcomes for SCC resection is the successful removal of the entire SCC from the 

surgical wound bed, referred to as negative margins. The presence of positive or close (less 

than 2 mm of tissue clearance) margins after surgery greatly increases the likelihood for 

locoregional disease recurrence and additional surgeries [142]. Surgeons rely on intra-

operative pathologist consultations with the surgical pathology department to ensure that 

negative margins are obtained through the use of frozen-section (FS) microscopic analysis 

of the resected specimens. Despite this, in the literature it is reported that up to 20% of 

patients will have a final diagnosis of positive or close margins despite having negative FS 

intraoperatively. Because of the difficulties in treating this challenging form of cancer, the 

estimated five-year survival rate of SCC is only 40 to 60% with treatment [143]. There 
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exists a great need to provide more near-real-time information and guidance to the 

operating head and neck surgeon. 

2.5.2 In-Vivo Animal Head and Neck Cancer 

Head and neck SCC was studied in-vivo using HS images from mice with SCC. 

The studies were performed in the VNIR range between 450 and 950 nm using a CRI 

system (Perkin Elmer Inc., Waltham, Massachusetts), which is comprised of a Xenon 

illumination source, LCTF, and a 16-bit CCD camera capturing images at a resolution of 

1040 by 1392 pixels and a spatial resolution of 25 µm per pixel. Lu et al. published several 

works in this field, where the tensor decomposition, PCA and KNN methods were 

employed to perform a feature extraction and automatic classification, achieving a 

sensitivity of 94% and a specificity of 91% in the discrimination of tumor and normal tissue 

[30]. Furthermore, the group also studied the tumor margin during the surgical procedures 

performing an in-vivo/in-vitro registration between the in-vivo HS images and the 

histological images to validate the results [144].  

On the other hand, their research has analyzed which pre-processing techniques are 

more suitable to compensate the variations of the environmental conditions during the 

acquisition inside an operating theatre [31, 145]. In the work published in 2015, a method 

based on the mRMR (maximal Relevance and Minimal Redundancy) algorithm was 

proposed to address the problem of glare that usually appears in the HS images, improving 

the sensitivity and specificity results to 94% and 98%, respectively. In addition, other 

techniques were studied, such as the use of a minimum-spanning forest (MSF) algorithm 

for an automatic classification and segmentation of the in-vivo HS images [146]. Figure 
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2-5 shows the results from the MSF algorithm applied to an HS image of an in-vivo mouse 

xenografted with a line of human head and neck SCC, obtaining an accurate identification 

of the head and neck tumor with respect to the gold standard. 

 

Figure 2-5. Result of the tumor identification using the Minimum-Spanning Forest method 

developed in [146]. (a) Synthetic RGB image of the original mouse; (b) Corresponding 

gold standard image; (c) Classification result obtained. Reproduced with permission from 

[146]; published by IEEE (2015). 

2.5.3 Ex-Vivo Human Head and Neck Cancer 

Active research into the application of HSI for H&N cancers is led by our group 

under professor Baowei Fei. Currently, all experiments explore H&N cancers including 

SCC and thyroid cancer in ex-vivo surgical tissue specimens and use the previously 

described CRI Maestro HS acquisition system in the VNIR spectral range, from 450 to 950 

nm, with a spatial resolution of 1392×1040 pixels (25 µm per pixel), capturing 91 spectral 

bands. 

In 2017, several works were published in this area with the goal of discriminating 

cancerous and non-cancerous tissue. Fei et al. achieved an accurate delineation of the 

boundaries between the normal and cancerous tissue using head and neck ex-vivo samples 
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compared with the histopathological results (Figure 2-6) [147]. The ensemble linear 

discriminant analysis (LDA) was employed to perform the classification, achieving an 

average accuracy, sensitivity and specificity of 90%, 89% and 91%, respectively, using 

oral cavity samples and an average accuracy, sensitivity and specificity of 94%, 94% and 

95%, respectively, using thyroid samples. Autofluorescence, fluorescence with 2-deoxy-2-

[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) and proflavine images 

were also classified and compared with the HSI results, demonstrating that HSI offered 

better results over the other alternative reflectance-based imaging modalities (an 

improvement of more than 7% of accuracy).  

 

Figure 2-6. Preliminary results obtained in the tumor margin delineation for head and neck 

cancer [147]. After hyperspectral image acquisitions (top-left), the tissue was processed 

histologically, and tumor margins were outlined on the pathology image (bottom right) by 

a pathologist, which was used to validate the results of the classification (top-right). The 

average spectral curves are shown at the bottom left for each type of tissue, i.e., tumor, 

normal, and tumor with adjacent normal tissue. Reproduced from [147]; Creative 

Commons BY 4.0; published by SPIE (2017). 
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In addition, Lu et al. increased the number of patients (N=25) and performed a 

comparison using different machine learning classification approaches, reinforcing the 

conclusion obtained from the other study, where the ensemble LDA outperformed other 

traditional machine learning algorithms [33]. In this study, both intra-patient and inter-

patient classifications were performed, as well as different classifications using different 

spectral regions within the VNIR range (450–600 nm, 605–850 nm, 855–900 nm, and 450–

900 nm). Finally, the authors contend that the use of the entire spectral range (from 450 to 

900 nm) provides the best accuracy results. 

Recently, one of the first studies performed in the HS literature regarding the use 

of deep learning methods to classify HS images with the goal of distinguishing cancerous 

and non-cancerous tissue was performed by Halicek et al. [113]. The authors developed a 

CNN classifier to process the ex-vivo tissues from 50 different patients and compared the 

deep learning method with traditional machine learning approaches, demonstrating that 

CNNs outperform the traditional classifiers in this case. Additional works by Halicek et al. 

have not been summarized because the manuscripts are reproduced in full for this thesis in 

the following chapters and discussed in detail. 

Lastly, several works have investigated NIR HSI for SCC detection in tongue 

specimens only, using leave-one-patient cross-validations in a dataset of 14 patients. 

Trajanovski et al. 2019 incorporated a U-net for semantic segmentation of SCC in 14 

tongue specimens and achieved 0.93 validation AUC scores [148]. Using the same 14 

specimens of tongue SCC, Brouwer de Koning et al. 2019 found 84% sensitivity for visible 

(400 to 950 nm) and 77% sensitivity for NIR (950 to 1,700 nm) HSI; interestingly, 

combining visible HSI with NIR did not provide additional benefit [149].  
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2.5.4 In-Vivo Human Aerodigestive Tract Cancer 

A few studies can be found in the literature using HSI to analyze in-vivo samples 

of human subjects. Mainly, the studies are related to the use of endoscopic systems attached 

to an HS camera. In 2011, Kester et al. developed a customized real-time snapshot HSI 

endoscope system based on an image mapping technique and light dispersion that is 

capable of operating at frame rates of 5.2 fps, obtaining HS cubes of 48 bands in the visible 

range between 450 and 650 nm, with a spatial resolution of 100 µm [23]. Using this system, 

they were able to capture in-vivo tissue, resolving a vasculature pattern of the lower lip 

while simultaneously detecting oxy-hemoglobin. Figure 2-7 shows an example of the 

spectral signatures obtained by the system and the developed acquisition system. 

 

Figure 2-7. HS image example of the lower lip of a normal human acquired with the image 

mapping spectroscopy (IMS) endoscope developed in [23]. (a) RGB representation; (b) 

Spectral signature of the normal tissue pixel and a vein pixel; (c) Clinical setup of the IMS 

endoscope; (d) Miniature imaging end of the IMS endoscope; (e) Fiber optics of the IMS 

endoscope inserted into the instrument channel. Reproduced from [23]; Creative Commons 

BY 4.0; published by SPIE (2011). 

Another study was published by Jayanthi et al. related to the use of diffuse 

reflectance spectroscopy for early detection of malignant changes in the oral cavity [150]. 

The system was able to capture HS information within the visible spectral range (from 400 
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to 700 nm) based on a snapshot light dispersion technique, obtaining 40 different bands. 

They used PCA for dimensionality reduction and LDA for automatic classification of the 

data. They achieved sensitivity and specificity results higher than 95% in the discrimination 

between different lesions, such as normal/healthy, hyperplastic, dysplastic and SCC 

tissues. 

In 2016, laryngeal cancer was investigated by Regeling et al. using a flexible 

endoscopy coupled to an HSI system that was able to obtain HS images composed of 30 

bands in the visual spectrum between 390 and 680 nm [94]. This system was employed to 

obtain in-vivo HS images that required substantial image pre-processing, such as 

registration due to the patient’s heartbeat and noise removal due to specular reflections 

[151]. The images were registered using a rigid image-to-image registration based on 

normalized cross-correlation; the noise was reduced using the minimum noise fraction 

transformation; and the glare was detected using a customized method. For classification, 

a random forest (RF) algorithm was applied to distinguish between healthy and cancerous 

tissues, achieving an overall accuracy of 88%. 

Also in 2016, Laffers et al. employed a rigid HS endoscopic system to capture HS 

images between 390 and 680 nm of the oral cavity and oropharynx from 85 patients [152]. 

However, in this study they only took into consideration three patients, one of them used 

for training the algorithm and the other two for validation purposes. The classification 

results obtained using the RF algorithm were sensitivities of 61% and 43%, and specificity 

of 100% in the two validation patients. These reduced sensitivity values could be mainly 

produced by the low number of patients involved in the training of the classification 

algorithm, which would not correctly handle inter-patient variability for the training phase. 
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Finally, tongue cancer of in-vivo human samples was studied in 2012 by Liu et al. 

using HSI [153] (Figure 2-8). The HS system utilized was based on an acousto-optic 

tunable filter (AOTF), capturing 81 bands in the VNIR spectral range comprised between 

600 and 1000 nm. They developed a classifier based on the sparse representation method 

and compared the results obtained using traditional machine learning algorithms such as 

SVM and RVM (Relevance Vector Machine) classifiers. Sensitivity and specificity results 

of 91% and 94%, respectively, were obtained, increasing the accuracy by more than 4% 

with respect to the other two methods. 

 

Figure 2-8. Delineation of the tongue tumor region in [153]. Expert labeling (left) and 

classifier prediction of tumor regions (right). Reproduced from [153]; Creative Commons 

BY 4.0; published by MDPI (2012). 

 

2.6 Cancer of Other Organ Systems 

2.6.1 Gastrointestinal Cancer 

2.6.1.1 Clinical Need for HSI of Gastrointestinal Cancer 
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There are strong indications for endoscopy of the upper digestive tract and 

colonoscopy of the bowel for early detection of digestive tract cancers, with regular 

screenings for higher risk individuals [121]. Gastric carcinomas, most frequently caused 

by infection with helicobacter pylori or dietary contributions, are the second leading cause 

of cancer death globally. For the approximately two-thirds of gastric cancer patients that 

are diagnosed with locally advanced or metastatic disease, with a five-year survival of only 

10%, the only curative therapy remains surgical resection [122]. Colorectal cancers, mostly 

adenocarcinomas, are thought to arise mainly from secondary risk factors of dietary and 

lifestyle origins, such as excessive caloric and fat intake, smoking, and physical inactivity 

[123]. Laparoscopic surgeries, performed in a way that is minimally invasive and guided 

by endoscopy, have been shown to be clinically equivalent in randomized controlled trials 

[124]. However, during this minimally invasive surgery, there is a loss of tactile feedback 

that surgeons often require, so there is a need to overcome this lost information [125]. HS 

imaging has been proposed as a solution to this problem with potential for more accurate 

digestive tract cancer resections. 

2.6.1.2 Ex-Vivo Human Gastric Cancer 

In 2011, Akbari et al. performed a study to identify gastric tumors in human ex-

vivo tissues using an HS system, which was capable of capturing images in the range 

between 1000 and 2500 nm, obtaining 239 spectral bands [126]. An integral filter and the 

normalized cancer index (NDCI) was applied to perform an automatic classification of the 

tumor tissue determining the boundaries between tumor and normal tissue using 

histopathological analysis to validate their results (Figure 2-9). From their experiments, 

they determined that the spectral regions between 1226 and 1251 nm and 1288 and 1370 
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nm are the most salient ranges for distinguishing between non-cancerous and cancerous 

gastric tissue.  

 

Figure 2-9. Gastric cancer detection acquisition system, cancer detection results using the 

NDCI and integral filter, and comparison with histopathological results obtained in [126]. 

(a) HS acquisition system setup; (b) RGB representation of the ex-vivo sample; (c) Cancer 

enhanced regions using an integral filter in the hyperspectral image (1057–2440 nm); the 

tissues are shown in a blue to red spectrum, where the red regions represent the tumor; (d) 

Cancer enhanced regions using NDCI; (e) Pathological sectioning and results; (f) Detected 

tumor using an integral filter; (g) Detected tumor using NDCI. Reproduced with permission 

from [126]; published by Wiley (2011). 

In 2013, Kiyotoki et al. collected HS images in the spectral range comprised 

between 400 and 800 nm from ex-vivo tissue gastric samples to perform a preliminary 

study of gastroduodenal tumors removed by endoscopic resection or surgery from 14 

different patients [127]. The system was able to obtain HS images comprised of 72 spectral 

bands with a spatial dimension of 640×480 pixels. Using these images, they were able to 

determine the optimal wavelength that allowed the most accurate classification between 

tumor and normal mucosa using the cutoff point method at the 726 nm wavelength. The 

sensitivity, specificity, and accuracy obtained in the test samples were 79%, 92%, and 86%, 
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respectively. This work was expanded upon in 2015 by the same group, increasing the 

number of patients to 96 and performing the selection of the optimal wavelength using the 

Mahalanobis distance, which in this case was 770 nm [128]. Sensitivity, specificity, and 

accuracy results obtained were 71%, 98%, and 85%, respectively, demonstrating that the 

increment in the number of patients to analyze did not decrease the accuracy of the method. 

Although the classification method employed to distinguish the different types of samples 

was quite basic, the studies revealed promising results in the use of HSI as a diagnostic 

tool for gastric cancer. 

Baltussen et al. performed a study of laparoscopic HS imaging using two HS 

cameras collectively sensing between 400 and 1700 nm to distinguish normal fatty tissue, 

healthy colorectal mucosa, and adenocarcinoma in order to provide more diagnostic 

information back to surgeons, given the loss of tactile feedback during endoscopic 

procedures [129]. The authors utilized 32 patient samples to perform a three-class detection 

using quadratic SVMs of fat, muscle, and tumor, and obtained a tissue-level accuracy of 

88% and a patient-level accuracy of 93%. One limitation of the presented HSI technique 

was focusing only on muscle and fat as normal tissues, but the authors acknowledge that 

future work should involve the entire specimen. 

2.6.1.3 In-Vivo Human Colon Cancer 

HS endoscopic systems have been used to study in-vivo colorectal tumors in the 

literature. One of the main studies in this field was performed in 2016, when Han et al. 

used a flexible hyperspectral colonoscopy system based on a motorized filter wheel, 

capable of obtaining 27 different bands in the range comprised between 405 and 665 nm, 
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to discriminate between malignant colorectal tumors and normal colonic mucosa in human 

patients [130]. They used a wavelength selection algorithm based on the recursive 

divergence method to identify the most relevant wavelengths in the spectral range 

employed, demonstrating that HSI can be used in-vivo for outlining the disease region and 

enhancing the microvascular network on the mucosa surface. 

2.6.2 Breast Cancer 

2.6.2.1 Clinical Need for HSI of Breast Cancer 

Breast conserving surgery, also known as lumpectomy, with adjuvant radiation 

therapy, is the recommended surgical approach over traditional mastectomy without 

radiation for women diagnosed with early breast cancer. Women diagnosed with stage I or 

II breast cancer showed increased overall survival and disease-survival rates when treated 

with lumpectomy and radiation compared to complete mastectomy without radiation 

therapy, and this result was seen for all age groups and cancer types [131]. Successful 

breast conserving surgery is directly dependent on complete removal of the tumor mass 

with adequate margins, meaning there is a buffer of healthy tissue on the free cut edge. 

There is evidence to suggest that conservatively around 20% of women who undergo 

partial mastectomy have a final, post-operative diagnosis of positive margin status, which 

requires additional surgeries, with some studies reporting higher figures [132]. 

Intraoperative biopsies along with pathologist consultations are necessary tools to guide 

surgeons, but the need remains to provide more intraoperative diagnostic information with 

one potential solution being HSI. 

2.6.2.2 In-Vivo Animal Breast Cancer 
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One of the first and most relevant works performed using HSI to study breast cancer 

was performed in 2007 by Panasyuk et al. [133]. In this work, a HS system based on LCTFs 

was used to acquire HS images in the visual spectral range, between 450 and 700 nm and 

composed of 34 bands, during intraoperative surgery of 60 rats affected by an induced 

breast cancer. They generated classification maps, where different types of tissue including 

tumor, blood vessels, muscle, and connective tissue were clearly identified. Furthermore, 

comparison to the histopathological examination of the tumor bed yielded a sensitivity of 

89% and a specificity of 94% for the detection of the residual tumor by HS imaging. One 

of the limitations of this work was the use of light-emitting diode (LED) illumination in 

the HS acquisition system, which produced a non-standard spectral signature because LED 

light does not provide a uniform, broadband spectrum, such as that obtained by halogen or 

xenon light sources. 

McCormack et al. performed a study of mouse models of breast cancer that aimed 

to evaluate the use of in-vivo HSI for microvessel oxygen saturation (sO2) monitoring 

during surgical procedures, studying also the response of the microvessels to different types 

of treatments [134]. The HS acquisition system was based on LCTFs and a halogen lamp, 

capturing images in the spectral range between 500 and 600 nm and composed of 26 bands 

because the absorption levels of both oxy and deoxy-hemoglobin are known to peak in this 

range.  

2.6.2.3 Ex-Vivo Human Breast Cancer 

Breast cancer has also been studied using ex-vivo samples with the goal of 

automatically delineating the regions of interest (ROI) in the samples and classifying the 
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tumor and normal tissue samples. In 2013, two studies were published with both previously 

mentioned goals using an HS system capable of obtaining images in the spectral range 

between 380 and 780 nm. The study conducted by Kim et al. performed an automatic ROI 

detection based on contrast and texture information achieving a true positive rate and a true 

negative rate of 97% and 96%, respectively, similar to the results obtained in a manual 

segmentation (99% and 96%) [135]. In the study performed by Pourreza-Shahri et al., the 

authors performed a feature extraction (using the Fourier coefficient selection features 

method) and a dimensional reduction (using the Minimum Redundancy Maximum 

Relevance method) to the HS images and then performed an automatic classification, using 

the SVM classifier with the radial basis function (RBF) kernel, of the tissue samples, 

differentiating between cancerous and non-cancerous tissue [136]. Sensitivity and 

specificity results of 98% and 99%, respectively, were obtained, demonstrating that HSI is 

a powerful imaging modality that has potential for use in the aided diagnosis of breast 

cancer. Lastly, Kho et al. utilized a U-Net CNN to perform breast cancer detection and 

segmentation with two HS cameras, one in the visible and one in the NIR regions, which 

achieved successful results when combining both spectra [137, 138].  

 

2.6.3 Brain Cancer 

2.6.3.1 Clinical Need for HSI of Brain Cancers 

Brain tumors are categorized based on their histology and molecular parameters 

[154], with malignant gliomas the prevailing form of primary brain tumors in adults, 

causing between 2 and 3% of cancer deaths worldwide [155]. Surgery is one of the major 
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treatment options for brain tumors alongside radiotherapy and chemotherapy. 

Nevertheless, the surgeon’s naked eye is often unable to accurately distinguish between 

tumor and normal brain tissue as brain tumors infiltrate and diffuse into the surrounding 

normal brain. During neurosurgeries, it is frequent that too much normal brain tissue is 

taken out (called safety margin) or that tumor tissue is unintentionally left behind (called 

residual tumor). Several studies have demonstrated that the residual tumor is the most 

common cause of tumor recurrence, and it is a major cause of morbidity and mortality [156, 

157]. In contrast, over-resection of brain tumor tissue has been shown to cause permanent 

neurological damages that affect patients’ quality of life [158].  

Several image guidance tools, such as intraoperative neuronavigation, 

intraoperative magnetic resonance imaging (MRI), intraoperative ultrasound (US) and 

fluorescent tumor markers (for example 5-aminolevulinic acid, 5-ALA), are commonly 

used to assist surgeons in the delineation of brain tumors. Conversely, these technologies 

present several limitations. Intraoperative neuro-navigation is affected by the brain shift 

phenomenon [159], where the preoperative image link to the patient is affected by the brain 

deformation produced after craniotomy and durotomy. MRI significantly extends the 

duration of the surgery (between 20 and 75 min per image), generating a limited number 

of images and requiring special operating rooms [160]. On the other hand, US is 

inexpensive, real-time and unaffected by brain shift [161-163]. However, the use of US 

can lead to resection of histologically normal parenchyma. Finally, although 5-ALA is able 

to identify the tumor boundaries, it produces relevant side effects on the patient and should 

only be used for high-grade tumors [164, 165]. Thus, HSI can be a potential solution to 
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intraoperative margin delineation of brain tumors, being a label-free and non-ionizing 

imaging modality. 

2.6.3.2 In-Vivo Human Brain Cancer  

The goal providing intraoperative detection and delineation of brain tumors has 

been investigated by the European project HELICoiD (HypErspectraL Imaging Cancer 

Detection). Several studies have been performed to develop the HSI technology and 

machine/deep learning algorithms for in-vivo identification of the brain tumor margins [15, 

166-169]. 

The main goal of which was to use HSI to generalize a methodology to discriminate 

between normal and malignant tissues in real time during neurosurgical procedures [168]. 

For this purpose, an intraoperative demonstrator was designed and built with the aim of 

acquiring intraoperative HS images and processing them in real time to assist 

neurosurgeons during resection [167]. This demonstrator captured HS images in the 

spectral range comprised between 400 and 1700 nm in approximately 2 min using two 

pushbroom cameras, one in the VNIR range (400 to 1000 nm) formed by 826 spectral 

bands with a high spatial resolution of 1004×1787 pixels and another HS camera in the 

NIR range (900 to 1700 nm) formed by 172 spectral bands with a low spatial resolution of 

320×479 pixels. The HELICoiD brain cancer database is publicly available and consists of 

labeled samples from 33 HS cubes from 22 different patients [168]. Ravi et al. [15] 

investigated dimensional reduction approaches to evaluate and compare with a proposed 

modification of T-distributed Stochastic Neighbors (t-SNE). These methods were 

employed to generate three-band images from the HS cubes in order to provide high 
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contrast images used as inputs of a semantic segmentation classifier. In addition, due to the 

high dimensionality of the VNIR data, a pre-processing chain was proposed to reduce HS 

cubes to 129 spectral bands, which demonstrated increased performance for SVM-based 

methods [169].  

In 2018, Fabelo et al. presented a classification algorithm for HS brain cancer 

detection using a chain of supervised classification methods combining SVM, PCA and 

kNN to combine spatial and spectral information, and the final result was obtained by 

majority voting with an unsupervised segmentation method, k-means, to delineate tumor 

boundaries [169]. The results were quantitatively and qualitatively evaluated following an 

intra-patient cross-validation method, achieving specificity and sensitivity results higher 

than 98%. Figure 2-10 shows the synthetic RGB representations of the HS cube and the 

corresponding thematic maps obtained when using this algorithm for normal brain and 

brain affected by cancer. In the thematic maps, the tumor tissue is represented in red color, 

the normal tissue in green, the hypervascularized tissue in blue and the background in 

black. The classification results obtained demonstrated the capabilities of HSI in the 

identification of different types of tumors, not only high-grade gliomas.  
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Figure 2-10. HELICoiD demonstrator set-up and normal and cancerous brain image results 

obtained from the database employed in [167]. (a) HELICoiD demonstrator. (b) Synthetic 

RGB images and classification maps of the normal brain HS images. (c) Synthetic RGB 

images and classification maps of the cancerous brain HS images, with the brain tumor 

outlined in yellow. For classification maps, predicted normal brain tissue (green), cancer 

(red), hypervascularized tissue (blue), and background (black). Reproduced from [167]; 

Creative Commons BY 4.0; published by MDPI (2018). 

 

Lastly, in Fabelo et a. 2019, one of the latest studies related to the use of HSI for 

brain cancer presented a comparison between the use of SVM-based algorithms and deep 

learning approaches [166]. These experiments were carried out using only the glioblastoma 

tumor samples available in the database, 26 HS images from 16 patients, and performed 
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leave-one-patient-out cross-validation. The results obtained using deep learning 

architectures were promising, improving the accuracy of the tumor identification by ~16% 

with respect to the SVM-based algorithm results. However, these studies require a higher 

amount of data in order to validate the results obtained so far and also a clinical validation 

of the system should be carried out to assess it.  

2.7 Discussion 

Several questions that remain unanswered as we look back at hyperspectral imaging 

for cancer detection and analysis can be asked again. The best HS sensor for the clinical 

adoption of HSI necessary to make the leap from basic research to clinical translational 

medicine is unknown and debatable. The sensor is likely to be task specific. We have 

reviewed that line-scanning pushbroom HS acquisition systems produce higher spectral 

resolutions, but spectral scanning HS cameras allow for higher spatial resolution. For 

example, in clinical cases where real-time is not a critical issue but a higher spectral 

resolution is required, a pushbroom HS camera is appropriate, but in cases where there is 

need for faster acquisition and where fewer spectral bands are required, spectral scanning 

or snapshot HS cameras would work well. Traditional, regression-based algorithms may 

yield optimal performance and accuracy using only spectral signatures as inputs when the 

HS sensor exhibits high spectral resolution. However, there are certain tasks that also 

require interpretation of spatial information, and these types of tasks may require the use 

of a CNN or other method for contextual spatial information along with the spectral 

signatures. 
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Regardless of the sensors and HS acquisition system implemented, it is yet 

unknown which wavelength range of the electromagnetic spectrum is optimal for each 

application, and this could very well be again task specific. Most of the works reviewed in 

this article have been performed in the range of 400 to 1000 nm, broadly. Currently, as 

discussed in the HS sensor section, we appear to be lower-limited to 400 nm in the short 

wavelength range, but in the NIR and IR (infrared) range, it is possible to extend beyond 

1000 nm, as some works have investigated. As reviewed in Section 2.3, the optical 

properties of biological tissue vary in spectra. It could be useful to have HS cameras below 

400 nm for tasks sensitive to FAD (flavin adenine dinucleotide) or NADH. On the other 

hand, some tasks might require extending into the SWIR range for fat, water, or collagen 

analysis. Additionally, with regards to the broad-band spectrum, different algorithms that 

have been previously deployed and validated on other parts of the spectrum may not be 

generalizable in different ranges. It may happen that some algorithms work better 

compared with others for certain parts of the spectrum. For example, deep learning may 

have the potential to learn and tolerate more noise in the input signals, so a spectral range 

that contains more noise, either organic or systemic from the sensor, could be handled 

better by a CNN [140]. However, deep learning can be prone to over-fitting if there is 

insufficient data, and false negatives or positives can sometimes be predicted with 

exceptionally high confidence that the prediction is correct, which can lead to difficulties 

in interpreting the results. Therefore, it is conceivable that there are scenarios where 

traditional methods, such as SVM, may suppose the best choice for some specific works. 

There has been a wide variety of works performed both ex-vivo and in-vivo, but 

there are challenges, both known and unknown, in moving from the former to the latter. 
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Mainly, it is unknown whether ex-vivo HS data correlates well with in-vivo data. If an 

algorithm is trained on ex-vivo data, there is no guarantee that the algorithm can be 

generalizable enough to apply to in-vivo data for testing or for clinical use. What is more, 

it cannot be assured that the same algorithms would work for the same task when moving 

from ex-vivo to in-vivo. For example, the in-vivo data collection could degrade the quality 

of the HS data or induce artifacts from the patient and surgical environment, and this could 

result in a certain family of algorithms being less effective than others. Therefore, if this 

phenomenon was observed, then entire datasets of large numbers of ex-vivo patient data 

need to be re-collected if the system is adopted for in-vivo clinical use. 

Currently, several systematic limitations of general HSI hinder its use in the 

operating theater or in the clinic. The most obvious one from a user perspective will be the 

size of the machinery and apparatus. The imaging time, which can be up to one minute, 

can be another limitation. With the increased imaging time, there is more room for artifact 

induction due to reasons such as patient movement or instrumentation movement. In 

addition, there are several potential problems when imaging biological tissue. Because the 

light sources are so close to the HS sensors and the biological tissue is often wet, there is a 

problem with specular glare. The human body is not topographically uniform, so imaging 

a small area with changes in elevation can create inconsistent illumination of the scene or 

cast shadows. Aside from inconsistencies with illumination, this could lead to issues with 

the HS camera focusing on multiple imaging planes. It is difficult to forecast the effects of 

this on large-scale HSI, and this could lead to issues with reproducibility or false 

negative/positive results because of insufficient HS quality to produce an accurate and 
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reliable result. A level of quality control is necessary where the algorithms can 

automatically detect if the scene is not correctly captured to make an accurate prediction. 

In conclusion, the reviewed studies present promising results for a wide variety of 

cancer detection applications based on medical imaging and for surgical guidance. 

However, currently we are limited in the field of HSI by technology restrictions and small 

datasets. The preliminary results warrant further research across all organ systems to 

determine if HSI has a place in the operating theater or in the clinic. Since HSI is non-

contact, non-ionizing, non-invasive, and label-free, it is an attractive imaging modality with 

great potential. Most importantly, like all future translational technologies, HSI needs to 

be evaluated to demonstrate that it can be reliable, reproducible, and generalizable before 

it takes its place in medicine. The following chapters of this thesis work will explore HSI 

and deep learning on sufficiently large patient datasets, performing the crucial comparisons 

with RGB imaging and other forms of optical imaging. 
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CHAPTER 3. HYPERSPECTRAL IMAGING OF HEAD & NECK 

CANCER EX-VIVO TISSUE SPECIMENS: REGISTRATION, 

SPECULAR GLARE, AND VARIANCE OF THE TUMOR 

MARGIN 

 In this chapter, the necessary pre-processing and machine learning approaches for 

SCC detection using HSI is evaluated with a subset of ex-vivo surgical specimens. 

Additionally, the registration method and effectiveness of histological ground truths for 

gross-level ex-vivo specimens are developed and evaluated. Several machine learning 

methods are investigated, including convolutional neural networks (CNNs) and a spectral-

spatial classification framework based on support vector machines (SVMs). Quantitative 

results demonstrate that additional data pre-processing and unsupervised segmentation can 

improve CNN results to achieve optimal performance when the training dataset is small. 

The methods are investigated in two paradigms: with and without specular glare. 

Classifying regions affected by specular glare degrade the overall performance, but the 

combination of the CNN probability maps and unsupervised segmentation using a majority 

voting method produces better results if the training data is limited. It is well known that 

different wavelengths of light used in HSI have different penetrate depths into biological 

tissue. Cancer margins may change with depth and create uncertainty in the ground-truth. 

Through serial histological sectioning, the variance in cancer-margin with depth is 

investigated and paired with qualitative classification results. Through compounding error 

of registration and depth variability, the validity of the ground truth may be limited to 1-2 

mm. This chapter focuses on the study of specular glare, registration, pre-processing, and 
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margin variation to provide better understanding of the potential of HSI for use in the 

operating room. 

3.1 Introduction 

 Head and neck cancer is the 6th most common cancer world-wide, with majority of 

cancers of the upper aerodigestive tract, comprising the oral and nasal cavities, pharynx 

and larynx being squamous cell carcinoma (SCC) [2]. Approximately two-thirds of SCC 

patients present with advanced disease, either stage III or IV [141]. Surgical resection is 

the primary management of SCC of the aerodigestive tract, potentially with concurrent 

chemo-radiation therapy depending on the extent of the disease [4]. The local recurrence 

rates for SCC cases depend on the successful removal of the cancer. For surgeries with 

negative cancer margins, the local recurrence rate is 12-18%, compared to local recurrence 

rates up to 30-55% if positive cancer margins are determined [8-10]. Moreover, positive 

cancer margins have a greatly reduced disease-free survival, with estimates ranging from 

7 to 52%, compared to disease-free survival rates of 39-73% for negative margins [12, 13]. 

Disease recurrence greatly affects likelihood for additional surgeries, reduced quality of 

life, complications from surgery, and increased mortality rates [11].  

 Hyperspectral imaging (HSI) is a non-contact optical imaging modality capable of 

acquiring a single image of potentially hundreds of discrete wavelengths. Preliminary 

research demonstrates that HSI has potential for providing diagnostic information for 

various diseases [14]. Preliminary studies from our group show that HSI combined with 

machine learning may yield diagnostic information with potential applications for surgical 

use in head and neck cancers [33, 170-172]. Fabelo et al. have demonstrated the need and 
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utility of HSI for in-vivo brain cancer detection and developed a visualization system that 

could lead to near-real-time guidance by using and machine learning-based classification 

algorithm [166, 167, 169]. Moreover, the use of deep learning techniques to process the 

same dataset was study, demonstrating that they outperforms the traditional machine 

learning methods [166]. Many applications of HSI for gastrointestinal procedures have 

been explored, including anatomical organ identification, anastomosis and ischemia 

classification, and cancer detection [173]. Recently, the implementation of HSI for guided 

colorectal surgery as a replacement for tactile information lost in laparoscopic surgeries 

has been explored in an ex-vivo study, and Baltussen et al. demonstrated that HSI could 

distinguish between normal healthy colon wall and colorectal adenocarcinoma [129]. 

Much work has been explored in head and neck HSI as well. Salmivuori et al. detailed the 

assistance of HSI in ill-defined, cutaneous basal cell carcinomas of the head and neck, and 

the authors contend that HSI offers clinical utility in more accurately assessing margins 

[174]. Farah et al. demonstrated that narrow band imaging (NBI) at green (400–430 nm) 

and blue (525–555 nm) visible light could reveal the extent of oral SCC under white light 

[175]. Non-encoding portions of RNA called micro-RNA function to regulate the 

expression of DNA [176]. Moreover, Farah et al. obtained micro-RNA and mRNA 

expression levels from both the primary tumor core and near-tumor normal tissues; it was 

determined that NBI spatially correlated with tumor-like expression levels in detecting the 

abnormality in near-tumor normal tissues [177, 178].  

 Machine learning methods, including support vector machines (SVMs) and 

convolutional neural networks (CNNs), the latter being an implementation of artificial 

intelligence, have demonstrated near human-level ability for image classification tasks [26, 
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27]. These experiments have been conducted on gross-level HSI acquired of ex-vivo tissues 

specimens from patients undergoing surgical cancer resection. However, HSI uses 

wavelengths of light that can penetrate different depths into biological tissue, so it is 

possible that the superficial cancer margin may change with depth and create uncertainty 

in ground truth, which is used to obtained evaluation metrics for these experiments. 

 Selected previous works from our group performing head and neck SCC detection 

in ex-vivo samples from the upper-aerodigestive tract used only single class tissue 

specimens (purely tumor or normal tissues) to demonstrate classification potential with 

HSI [113, 179]. Lu et al. 2017 incorporated tumor-involved cancer margin specimens from 

head and neck SCC, but these methods were implemented on selected ROIs of normal and 

tumor near the margin [33]. Therefore, the AUCs reported for head and neck SCC detection 

thus far from our group ranges from 0.8 to 0.95, but these results may be limited to ROIs 

or single class tissues. Similarly, Manni et al. 2019 used ROIs from tumor-margin 

specimens from 7 patients with tongue SCC and obtained an AUC of 0.92 [180]. 

Weijtmans et al. 2019, developed a deep learning architecture that separately extracts 

spectral and spatial features from HSI, a dual-streamed approach, also validated on 7 

patients with tongue SCC; the proposed model performed better with both feature streams 

(AUC of 0.90) compared to individually [181]. A few works have investigated SCC 

detection at the actual cancer margin; Halicek et al. 2018 performed SCC detection at the 

cancer margin, upon which the proposed method in this paper expands, but this previous 

work was limited by ignoring regions of specular glare [182]. Trajanovski et al. 2019 

performed semantic segmentation with deep learning of entire ex-vivo tissue specimens 
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with excellent validation performance (AUC of 0.93) on gross specimens of the cancer 

margin from 14 tongue SCC samples [148].  

 This study aims to investigate the ability of HSI to detect SCC in surgical specimens 

from the upper aerodigestive tract using several distinct machine learning pipelines. 

Additionally, another objective of this work is to investigate the limiting factors of HSI-

based SCC detection, including specular glare, noise and blur, and uncertainty in the 

ground truth due to changes in superficial cancer margin with depth, all of which must be 

thoroughly explored to understand the potential of HSI in the operating room. A 

preliminary version of this work was presented at the 2019 SPIE Medical Imaging 

Conference [182]. The new contributions of this journal paper include a proposed 

algorithm combining deep learning and unsupervised machine learning, additionally five 

testing patients have been serially sectioned to reveal changes in the cancer margin. This 

work expands upon previous cross-validation experiments with CNN-only methods on our 

H&N dataset to include multiple machine learning pipelines involving CNNs and other 

state-of-the-art methods. The proposed methods are tested on five HSI from five SCC 

patients, and the accuracy of the corresponding ground truths from these five tissues are 

discussed in detail along with potential directions for incorporating the outcomes of this 

work to improve future studies with HSI for cancer detection. 

3.2 Methods 

3.2.1 Experimental Design 

 In collaboration with the Otolaryngology Department and the Department of 

Pathology and Laboratory Medicine at Emory University Hospital Midtown, head and neck 
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cancer patients undergoing surgical cancer resection were recruited for our hyperspectral 

imaging studies. Written and informed consent was obtained from all patients before 

acquiring surgical tissue specimens for inclusion in our study, which was used for research 

purposes only and de-identified by a clinical research coordinator. The experimental 

methods and protocols were approved by the Institutional Review Board at Emory 

University. In previous studies, we have evaluated the efficacy of using HSI for optical 

biopsy of head and neck tissues [147, 170]. Excised tissue samples of head and neck 

squamous cell carcinoma (HNSCC) and normal tissue were collected from the upper 

aerodigestive tract sites, including tongue, larynx, pharynx, and mandible. Three tissue 

samples, with approximate size of 10×10×3 mm, were collected from each patient: a 

sample of the primary tumor specimen, a normal tissue sample, and a sample at the tumor-

involved cancer margin with adjacent normal tissue; these specimens were scanned with a 

HSI system [33, 113].  

 In this study, we selected 26 tissue specimens from 12 patients with moderate to 

poorly differentiated primary SCC of the upper aerodigestive tract for this analysis, 

including primary origin sites of the larynx, pharynx, tongue, floor of mouth, alveolar 

ridge, buccal mucosa, and maxillary sinus. The patients were divided into two groups, 

cross-validation and testing groups. The first 7 patients and corresponding 21 tissues 

samples were collected early in the course of this project that met the criteria of having the 

ideal distribution of tumor, tumor-normal and normal tissues, and were used for evaluating 

quantitative results, expanding from previously published results with this group of patients 

[172]. Additionally, 5 tumor-involved margin tissue specimens from 5 patients acquired at 

the end of the data collection period were selected to comprise the testing group. These 
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tissue specimens were selected because they had approximately equal amounts of cancer 

and normal tissue in each specimen and were verified by the collaborating pathologist as 

of interest to undergo serial histological sectioning through the depth of the tissue. These 

5 patients’ tissues were classified using models trained from the first 7 patient cross-

validation group (following a leave-one-patient-out cross-validation method), and these 5 

patients’ results are presented qualitatively to compare with the variability in the superficial 

cancer margin. 

3.2.2 Hyperspectral Imaging 

 Hyperspectral images were acquired of ex-vivo surgical specimens using a 

previously described CRI Maestro imaging system (Perkin Elmer Inc., Waltham, 

Massachusetts), which captures images that are 1,040 by 1,392 pixels and a spatial 

resolution of 25 µm per pixel [113, 145, 170, 183]. Each hypercube contains 91 spectral 

bands, ranging from 450 to 900 nm with a 5 nm spectral sampling interval. The HS data 

were normalized by a standard white-dark calibration normalization, which involved 

subtracting the inherent dark current from the measured spectra and dividing by a white 

reference spectra for all wavelengths sampled for all pixels [145, 170]. Figure 3-1 shows 

the RGBs, grayscale images at representative bands, and spectral signatures of the patients’ 

HSI data. The grayscale images at selected bands highlight the choice of the cutoffs due to 

noise at the ends of the broadband spectrum. The HSI was used to construct RGB 

composite images by implementing a Gaussian function centered on each color component 

of the spectrum: red (625 to 700 nm), green (520 to 560 nm), and blue (450 to 490 nm). 
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Figure 3-1. Two representative tissue specimens from different patients. Left: spectral 

signatures of SCC and normal ROIs are shown for both patients in (a) and (b). The HSI-

RGB composite images and selected spectral bands are shown to highlight the noisy band 

cutoffs during pre-processing. Binary ground-truth masks including glare regions, 

generated by only removing patches centered on specular glare is shown; binary ground-

truth mask excluding glare regions, generated by sufficient area to extract 25×25 patches 

and avoiding specular glare (white: SCC, and normal: grey). 

3.2.3 Histological Imaging 

 To obtain a ground-truth labelling for the tissue specimens imaged with HSI, tissues 

were inked after imaging to preserve orientation, fixed in formalin, paraffin embedded, 

sectioned from the top of the imaging surface, haemotoxylin and eosin (H&E) stained, and 

digitized using a Hamamatsu Photonics NanoZoomer at 40x objective (specimen-level 

pixel size, 0.23 μm). The ex-vivo tissue sections were reviewed by a board-certified 

pathologist with expertise in H&N pathology, and the cancer margins were annotated 

directly on the slide using digitized histology in Aperio ImageScope (Leica Biosystems 

Inc, Buffalo Grove, IL, USA).  

 There exists the possibility for substantial deformation of the histological images 

during processing relative to the HSI setup. The registration challenges are explored using 

a deformation-based image registration pipeline of the histological image with known 
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registration landmarks, and an error of 0.5 mm for SCC tissues was calculated [184]. For 

the cross-validation group patients in this work, the histological images were automatically 

registered using this deformable registration pipeline to produce the HSI ground truth. 

However, to calculate the error of histology ground truths for HSI in millimeters, a more 

accurate registration is needed than the automated approach. For the testing group patients, 

since each had 6 histological slices, we manually registered each histological image using 

mutual landmarks to the HSI that were serially sectioned to reduce error. 

3.2.4 Deformable Registration Pipeline 

 A binary mask is created from the HSI RGB composite image. A binary mask is 

also created from the histological image. These two binary masks are used as the input of 

the registration algorithm that was implemented with MATLAB (MathWorks Inc, Natick, 

MA, USA). A flowchart of the proposed registration method is shown in Figure 3-2. For 

samples with needle-bored holes, the average target registration error (TRE) was calculated 

from the center of the needle-bored hole after registration. An affine registration is 

performed using rotation, translation, and scale to produce a non-reflective similarity 

transformation [185]. This step is necessary to get the histology mask approximately 

aligned to the neighborhood of the HSI mask. If the affine registration is not sufficient by 

visual inspection, an optional control-point registration is applied using control-point pairs 

selected from the tissue edges of the masks. The control-point registration is implemented 

by a local weighted mean of inferred second degree polynomials from each neighboring 

control-point pair to create a transformation mapping [144, 186].  



 58 

 Demons registration is based on an analogy to Maxwell’s demons, in which every 

pixel in an image is an effector with a force, referred to as a demon, in total used to create 

a deformation field. A free-form deformation is made from the individual displacements 

of the complete grid of effectors (demons) in an image, and a Gaussian filter is applied to 

smooth the image and to create a regular displacement field [187]. The displacement field 

is determined by points scattered along the contours of binary masks. This process is 

performed iteratively, and the displacement of each effector at each iteration is calculated 

using optical flow, which represents small displacements derived from diffusion model 

behavior [187, 188].  

 The demons registration method was applied in the deformable registration pipeline 

[187]. After the affine and control-point based registration, the transformed histology mask 

is registered to the HSI mask using deformable demons registration with an accumulated 

field smoothing value of 0.5 for five pyramid levels with one thousand iterations per 

pyramid level [187].  

 To evaluate the efficacy of the proposed registration methods, 17 tumor-margin 

tissue samples from 11 HNSCC and 6 thyroid cancer patients were registered. Dice 

similarity coefficient (DSC) was calculated by measuring the overlap of the histological 

and HSI mask. Target registration error (TRE) was calculated using both needle-bored 

holes in samples when available and tissue landmarks visible between gross and histology 

to obtain an average Euclidean distance representing error [144]. The TRE and DSC were 

calculated for each tissue sample, and averages were obtained for both groups. 
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Figure 3-2. Flowchart of the proposed registration method for histological cancer margins 

to HSI of surgical tissue specimens. 

3.2.5 HSI Binary Ground-Truth 

Specular glare is detected in each spectral band by fitting a gamma distribution to 

the pixel intensities of that band. Next, the top 1% of intensities are identified in this 

distribution, and any pixels with intensities of these bins are identified as specular glare. 

There were two types of specular glare observed: near-infrared (NIR) and visible, which 

usually were spatially independent. Visible glare occurs between 450 to 790 nm, and NIR 

glare occurs after 800 nm, which can be seen in the selected bands in Figure 3-1. A pixel 

was identified as a specular glare pixel and removed if there was glare identified using the 

distribution method in any spectral band from 490 to 790 nm. This range was selected 

because bands before and after this range were removed during pre-processing. NIR glare 

is observed beyond this range, so it is not relevant. 

Binary masks are constructed from the histological images and used to construct 

the ground truth for HSI in two methods. The first method is to investigate only ideal 

quality pixels, which is constructed by avoiding HSI regions with a large amount of 

specular glare. For the ground-truth mask avoiding glare, only regions that contain 

sufficient area to extract 25×25 spatial patches without any specular glare are included. 

The second method is to investigate the degrading effect of specular glare on classification 

accuracy. For the ground-truth mask including glare regions, the entire tissue area is 
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included for patch-making, but the top 1% of glare pixels are identified by fitting a gamma 

distribution to pixel intensities, such that no patches are centered on a glare pixel. A binary 

mask of the specular glare pixels was generated, and patches were produced automatically 

using this mask in the regions around the specular glare. Figure 3-1 shows an example of 

the two masks generated from two different patients. Both masks will be used for 

evaluating quantitative testing results and are referred to as ‘ground-truth mask excluding 

glare’, and ‘ground-truth mask including glare’, respectively. The specular glare pixels are 

represented by the black pixels within the first mask in the middle. The automatic patch-

making process can be seen to avoid the regions of specular glare shown in the second 

mask on the right of Figure 3-1. 

3.2.6 Effect of Sectioning Depth on Cancer Margin Ground-Truth  

HSI uses wavelengths of light in the visible and near-infrared spectrum that can 

penetrate different depths into biological tissue. It possible that the cancer margin may 

change with depth and create uncertainty in the classification results because of the variable 

penetration of the HSI broad-band spectrum. To investigate this, additional histological 

sectioning was performed on 5 tumor-involved margin tissue specimens (see Figure 3-3).  
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Figure 3-3. Representative tissue specimen that underwent serial histological sectioning to 

evaluate cancer margin variation with tissue depth. Left to right: HSI-RGB composite 

image; first histological slice (the green outlined area is the pathologist annotation of the 

SCC region); combined merged image of the 6 binary masks from the 6 histological images 

(cancer shown in white, normal in gray); merged image of the SCC contours from the 6 

histological images. The two rightmost images are used to depict the total variation of the 

cancer margin. 

During histological sectioning, it is standard procedure to discard the first sections 

until the first good quality section is obtained that contains the entire perimeter of the tissue 

specimen. The five specimens used for additional histological sectioning were retroactively 

enrolled for serial sectioning, so it was unknown what initial depth of tissue was discarded 

in the first sections before the first to obtain the first good quality slice. In discussion with 

the pathology laboratory technician, who performed the histological sectioning, and 

through observation of specimen sectioning, it was estimated that approximately 100-200 

microns were discarded on average during initial sectioning before obtaining the first high-

quality, tissue-encompassing slide.  

To produce serial histological sectioning further into the depth of the tissue 

specimens, the thickness of the remaining paraffin embedded tissue was estimated. The 

microtome used for this study produced slices at 5 microns, so the number of additional 

sections was documented and the distances of additional depth could be measured. From 
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the sectioned surface, which corresponds to the top of the tissue that was optically imaged, 

five more sections were obtained, up to 300 microns further into the depth of the tissue, by 

discarding non-included slices. The extent of the additional serial sections were obtained 

for 100 to 300 microns beyond the first good quality slice; the exact values for the five 

tissue specimens’ total additional sectioning depths were 100 microns, 150 microns, 200 

microns, and 300 microns, depending on the unique tissue specimen. Therefore, the 

combined total estimate of additional sectioning is approximately 200 to 500 microns into 

the tissue depth from the original HS image surface. Penetration depth depends on the 

tissue composition and wavelength of light. This sectioning depth was investigated because 

it represents the effective penetration depth for biological tissue in the shorter wavelengths 

of HSI used, which correspond to the most relevant features for HSI classification, such as 

hemoglobin between 550 to 600 nm [189-191]. 

3.2.7 Machine Learning Techniques 

3.2.7.1 Data Pre-processing 

A further pre-processing chain was applied to the data mainly to reduce the noise 

in the spectral signatures (Figure 3-4) and compared with the standard white-reference 

calibration. The machine learning methods detailed below were tested with and without the 

following pre-processing steps. The proposed pre-processing chain is based on 4 steps: 

image calibration, operating bandwidth selection, noise filtering, and data normalization. 

In the first step, the previously described method to normalize the data using white 

reference and dark current is performed. Next, the spectral bands are truncated between 

490-790 nm, so the final HS cube contains only 61 bands, which will be used for 
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classification. Spectral bands outside this range were noisy because they were too close to 

the detectable limits of the HS camera. In the third step, a smoothing filter is applied to the 

data in order to reduce the spectral noise. A moving average with a span of 10 spectral 

bands was used as the smoothing filter, implemented as a sliding low-pass filter with 

coefficients equal to the reciprocal of the span. Finally, each pixel’s spectral signature is 

normalized between 0 and 1, using a function to map the minimum and maximum to these 

values.  

 

Figure 3-4. Block diagram of the proposed pre-processing chain. 

3.2.7.2 Convolutional Neural Networks 

A deep convolutional neural network was used to detect SCC in the ex-vivo 

specimens of the upper aerodigestive tract, implemented using TensorFlow in Python on a 

NVIDIA Titan-XP GPU [26, 27, 172, 192]. In summary, an Inception-V1-style 3D CNN 

was designed and trained using leave-one-patient-out cross-validation [27]. The 3D 

convolutional kernels that comprised the modified 3D inception V1 modules were of sizes 

1×1×1, 3×3×3, and 5×5×5, and in total, the CNN architecture contained 2 inception 

modules, 3 convolutional layers, and 2 fully connected layers using the 3D patch input size 

of 25×25×91 (height × width × spectral bands) for un-processed HSI patches and 

25×25×61 for pre-processed HSI patches. The total number of HSI samples in the cross-

validation group was 647,000 normal HSI pixels and 877,000 cancer HSI pixels, calculated 

from the binary masks excluding glare, from the 21 tissue specimens from 7 patients. Each 
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HSI pixel served as the center for an image patch (height × width × spectral bands). Drop-

out was employed to avoid over-fitting in the CNN models.  

In total, the CNN described was separately trained using 4 different scenarios using 

the information from two versions of the binary ground truth masks and the two proposed 

processing methods, which produces different models: first, CNN trained without specular 

glare patches (trained separately both with and without added pre-processing of spectral 

data), and second, CNN trained with specular glare patches (trained separately both with 

and without added pre-processing of spectral data). The 95% confidence intervals were 

calculated using a bootstrapping method by sampling 1000 pixels from each class with 

replacement from each patient and calculating the area under the curve (AUC) of the 

receiver-operator characteristic; the method was performed 1000 times for each patient and 

the 2.5 and 97.5 percentiles were reported. The saved, trained models from the patients 

from the previous work were used to classify the HS images of the 5 testing group patients 

that underwent serial histological sectioning for surgical margin variation with depth 

evaluation. The probabilities of all models were averaged per patient to obtain qualitative 

probability heat-maps, scaled from 0 to 1, where 0 represents normal class and 1 represents 

high probability that the tissue belongs to the cancer class.  

3.2.7.3 HELICoiD Algorithms 

The results of the CNN classification method and the generated probability maps 

were compared to the results obtained by a machine learning pipeline previously developed 

for intraoperative detection of brain cancer using HSI [15, 167, 193-195]. In summary, a 

spatial-spectral classification algorithm, here referred to as HELICoiD (Figure 3-5a), was 
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implemented using a classification map obtained by a SVM classifier that is spatially 

homogenized by employing a combination of a one-band-representation obtained from the 

first principal component analysis (PCA) decomposition through a K-nearest Neighbors 

(KNN) filtering method (Figure 3-5a, part A). After that, the result of the KNN filtering is 

merged with an unsupervised segmentation map generated by a hierarchical K-means 

(HKM) algorithm through a majority voting (MV) method [169]. The result of this 

algorithm is a classification map that includes both the spatial and spectral features of the 

HS images. In addition, for this application, the KNN filtering is applied again to the MV 

probabilities and the PCA one-band-representation to homogenize the results (Figure 3-5a, 

part B).  

 

Figure 3-5. Block diagrams of the proposed classification frameworks. (a) HELICoiD 

algorithm with the additional KNN filter. (b) Pipeline of the mixed algorithm. 

A component of the HELICoiD algorithm was isolated and referred to as spatial-

SVM, which uses both the spectral and spatial components of HSI for machine learning 

through a combination of PCA+SVM+KNN. This spectral-spatial implementation of SVM 

is performed with and without the additional pre-processing pipeline to be used as a 
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surrogate for direct comparison to the CNN with and without pre-processing. Furthermore, 

a pipeline that combines the CNN architecture with the entire HELICoiD algorithm was 

proposed. In this case, the spatial-spectral stage of HELICoiD (PCA+SVM+KNN) is 

replaced by the CNN architecture trained with the pre-processed data (Figure 3-5b). Both 

HELICoiD and CNN+HELICoiD algorithms use the pre-processed HS data as input. 

In summary, we present 6 algorithms for investigation of HSI machine learning: 

the CNN (with and without pre-processing), the spatial-SVM (with and without pre-

processing), the HELICoiD algorithm, and finally the CNN+HELICoiD algorithm. These 

6 machine learning algorithms were tested first on the group of experiments using the 

binary ground truth masks that exclude specular glare, and again the experiments were 

performed with the binary ground truth masks that include specular glare. The 6 algorithms 

were compared using box plot distributions of the values and median AUC with 95% 

confidence intervals, and, a paired, one-tailed t-test on the classification results was used 

to determine statistical differences with a 0.05 threshold for significance. The quantitative 

classification results of 7 patients are reported in Table 3-2, obtained by using leave-one-

patient-out cross-validation. In addition, like the CNN method, the saved, trained models 

from these patients were used to classify 5 tissue specimens that were imaged with HSI 

and underwent serial histological sectioning for cancer margin variability evaluation. The 

probabilities of all models were averaged per patient to obtain qualitative probability heat-

maps, scaled from 0 to 1, where 0 represents normal class and 1 represents high probability 

that the tissue belongs in the cancer class. 

 



 67 

3.3 Results 

3.3.1 Deformable Registration from Histology to HSI 

Seventeen patient tissue samples were registered according to the described methods, 

divided into two groups: HNSCC (n=11) and thyroid (n=6). As a representative patient, 

Figure 3-6 shows a glossal SCC cancer margin with a needle-bored hole for TRE 

evaluation. 

 

Figure 3-6. Results of affine and deformable demons registration of the cancer-normal 

margin on glossal SCC tissue sample with needle-bored holes. The cancer margin is 

outlined by a head & neck pathologist. The transformed margin from affine registration is 

outlined in yellow, and the margin from demons registration is outlined in green. The fixed 

HSI mask (green) and moving histology mask (magenta) overlap area is shown white. The 

TRE for this sample is evaluated using needle-bored holes shown on the masks in the center 

column. The deformation fields of the registration methods are shown on the right. 

Affine registration alone of the representative tissue samples is insufficient to 

establish the cancer margin on the HSI, but the Demons-based method achieved successful 

alignment. Table 3-1 shows the complete experimental results. For the HNSCC group only, 
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Demons registration produced better matched images (TRE of 0.43 ± 0.16 mm) with more 

consistent results between tissue samples compared to affine registration alone (TRE of 

0.51 ± 0.23 mm). Moreover, the result for HNSCC Demons registration was statistically 

significant (p=0.02) compared to affine, using a one-tailed, paired Student’s t-test. In 

addition, for HNSCC, the proposed deformable pipeline had a better image overlap 

compared to affine alone, DSC of 0.98 versus 0.93, which was also statistically significant 

(p<0.001). 

 

Table 3-1. Targeted registration error (TRE) and Dice similarity coefficient (DSC) for the 

registration between hyperspectral images and digitized histological images.   

Group Registration Method TRE (mm) DSC (%) 

HNSCC Affine 0.51 ± 0.23 93 ± 2 

N=11 Deformable Demons 0.43 ± 0.16* 98 ± 2* 

Thyroid Affine 0.92 ± 0.45 91 ± 2 

N=6 Deformable Demons 0.98 ± 0.42 98 ± 2* 
*Statistically significant compared to affine registration (p<0.05) 

 

The efficacy of both registration methods, affine and Demons, differed significantly 

for the thyroid group. On average the error for Demons registration of thyroid samples 

(TRE of 0.98 ± 0.42 mm) was comparable with affine registration alone (TRE of 0.92 ± 

0.45 mm). However, the proposed deformable pipeline had a better image overlap for 

thyroid samples compared to affine alone, DSC of 0.98 versus 0.91, which was statistically 

significant (p<0.001). However, Demons registration did not show an advantage over 

affine registration for the thyroid samples.  
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Using a one-tailed, unpaired Student’s t-test, the results of average error for HNSCC 

Demons registration were compared to thyroid sample Demons registration, and the result 

was statistically significant (p<0.001). This indicates that the registration of thyroid 

samples induces a substantially larger amount of error when compared to HNSCC samples, 

most likely due to less structural integrity of the glandular thyroid tissue. 

3.3.2 Comparison of Machine Learning Methods with Specular Glare 

Quantitative results from the leave-one-patient-out cross-validation, using both the 

ground-truth regions that include glare pixels and the sub-sampled masks that include only 

ideal quality regions that exclude glare, show that the CNN-based classifier group 

outperformed the SVM-based classifier group using the average area under the curve 

(AUC) of the receiver operator characteristic (ROC), as shown in Table 3-2 and Figure 

3-7. The results are reported using seven-fold cross-validation to validate on all 7 patients.  

Table 3-2. Results of inter-patient cross-validation of SCC versus normal, obtained using 

the leave-one-patient-out method. Average AUCs reported with bootstrapped 95% 

confidence interval. 

Ground Truth Classifier Average AUC [95% CI] 

Excluding Glare spatial-SVM 0.71 [0.68, 0.74] 
 CNN 0.86 [0.82, 0.89] 
 spatial-SVM (Pre-processed HSI) 0.82 [0.80, 0.84] 
 CNN (Pre-processed HSI) 0.84 [0.81, 0.86] 
 HELICoiD (Pre-processed HSI) 0.82 [0.79, 0.84] 
 CNN+HELICoiD (Pre-processed HSI) 0.82 [0.79, 0.85] 

Including Glare spatial-SVM 0.69 [0.67, 0.71] 
 CNN 0.73 [0.71, 0.76] 
 spatial-SVM (Pre-processed HSI) 0.76 [0.74, 0.77] 
 CNN (Pre-processed HSI) 0.78 [0.76, 0.81] 
 HELICoiD (Pre-processed HSI) 0.79 [0.77, 0.81] 
 CNN+HELICoiD (Pre-processed HSI) 0.81 [0.80, 0.83] 
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When classification is performed of only ideal quality pixels (obtained from the sub-

sampled mask; see Figure 3-1), the results indicate that additional pre-processing of the 

spectral signature and addition of the HELICoiD method and KNN filtering do not 

significantly improve the results compared to only using the CNN, see Figure 3-7a. The 

average AUCs for the CNN groups are 0.86, 0.84, and 0.82 for the CNN, CNN with pre-

processed input data, and CNN+HELICoiD method, respectively. The average AUCs for 

the SVM-based groups are 0.71, 0.82, and 0.82 for the spatial-SVM without and with 

preprocessed input data, and HELICoiD method, respectively. The 95% confidence 

intervals overlap for all groups except for basis spatial SVM, as shown in Table 3-2. 

Additionally, all methods have a similar interquartile range and median distribution, see 

Figure 3-7. 

 

Figure 3-7. Results of inter-patient cross-validation of SCC versus normal, obtained using 

the leave-one-patient-out method. Top: average AUCs reported with 95% confidence 

interval. Bottom: box plots with the range in black, 75th and 25th percentile in blue, and 

median in red. 
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However, when the classification is performed over the entire HS image tissue area, 

which includes classification of specular glare pixels that contain more noise and 

variability, the CNN+HELICoiD method outperforms other methods tested with an 

average AUC of 0.81 for classification. This classification scheme including specular glare 

pixels represents a more realistic application of HSI. The CNN algorithm alone with or 

without pre-processing has an average AUC of 0.78 and 0.73, respectively, both which 

constitute a statistically significant decrease in performance compared the 

CNN+HELICoiD method (𝑝 = 0.03 and 0.04, respectively). The average AUC values 

range from 0.69 to 0.79 for the SVM-based groups, and the HELICoiD algorithm 

significantly outperforms the spatial SVM (𝑝 = 0.01). The additional pre-processing 

pipeline, described in Figure 3-4, only offers a statistically significant increase in 

performance for the spatial-SVM algorithm (𝑝 = 0.02), not the CNN (𝑝 = 0.1); see Table 

3-2 for complete results with 95% confidence intervals. In summary, from cross-validation 

experiments, the best classification method was using the CNN as the input for the 

HELICoiD+KNN filtering method, and for comparison, using the spectral-spatial 

SVM+PCA+KNN for input to the HELICoiD algorithm instead of the CNN component 

yielded slightly lower results that were not statistically significant.  

3.3.3 Variance of the Tumor Margin with Depth 

For generalization and application, HS images from five tissue specimens from five 

patients with SCC comprised the hold-out testing group and were classified using the saved 

models that were trained and cross-validated using the 7 patient cross-validation group. 

The testing patients were classified by all cross-validation models and averaged to obtain 

qualitative probability heat-maps. Qualitative investigation of the five, testing patients, 
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classified with the CNN trained with pre-processed data alone, and the 

CNN+HELICoiD+KNN filtering method is shown in Figure 3-8. As shown in Figure 3-8, 

the CNN+HELICoiD+KNN technique performs better on the 5 testing patients, in 

agreement with the quantitative metrics from the cross-validation group. The SCC 

probability heat maps are shown with binary masks depicting the uncertainty and variation 

in the cancer margin with depth. Depending on the tissue, as demonstrated, the margin 

changes by about 1 mm depending on sectioning depth. Therefore, our qualitative results 

can be interpreted within the range of uncertainty of the ground-truth to provide more 

insight to the classification potential of machine learning methods using HSI for cancer 

detection. 
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Figure 3-8. Representative results of binary cancer classification of the 5 testing patients. 

From left to right: HSI-RGB composite; histological ground truth showing variation in 

cancer margins with cancer area outlined; heat maps for cancer probability for CNN-

HELICoiD+KNN and HELICoiD+KNN techniques. The extremes in the superficial cancer 

margin are overlaid on to the heat maps. 

3.4 Discussion 

In this work, we presented and quantified the combination of two state-of-the-art 

machine learning-based classification methods for HSI of ex-vivo head and neck SCC 

surgical specimens. In summary, there are two methods for generating SCC prediction 

probability maps: the first uses a CNN, and the second uses a combination of 
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SVM+PCA+KNN. After generation of the predicted cancer probabilities on a pixel level, 

the probability map is combined with a HKM unsupervised segmentation layer through a 

majority voting algorithm that determines the class belonging of the region of interest. 

Therefore, two distinct methods are compared using leave-one-patient cross-validation to 

obtain quantitative evaluation metrics. Additionally, the methods are tested on a group of 

HSI obtained from 5 SCC patients that underwent serial histological sectioning to evaluate 

the variation in the cancer margin with penetration depth of the light wavelengths. 

The quantitative results of this paper suggest that when working with ideal quality 

pixels, such as the spectral signatures generated from flat surface tissue surfaces with no 

glare, the CNN techniques and spatial-spectral machine learning algorithms will perform 

with no significant difference and that no additional pre-processing is necessary. The 

average AUCs for these methods using the pre-processed input data range from 0.82 to 

0.86 with overlapping confidence intervals. However, when the pixels classified contain 

noise, for example due to sloping of the tissue edges or specular glare from completely 

reflected incident light, additional spectral smoothing and additional HELICoiD+KNN 

filtering of the classifier improve classification results of the CNN. The best performing 

method tested was CNN+HELICoiD+KNN with an average AUC of 0.81 [0.80, 0.83]. 

These tested methods outperform the traditional spectral-spatial machine learning methods 

employed in this study. Therefore, the HELICoiD+KNN techniques using both the CNN 

and SVM+PCA+KNN for cancer probability maps performed best for the 7 cross-

validation patients, so both were employed on the 5 patients testing set. One major 

limitation of the approach used in this paper was the small sample-size, and therefore, the 

proposed ML models could be prone to overfitting and lack generalization to larger testing 
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datasets. To investigate potential overfitting in this experiment, we analyzed the training 

and cross-validation accuracies for the CNN trained with pre-processed HSI data. The 

average training accuracy was 85%, and the average cross-validation accuracy with 

confidence interval was 79% [78, 81] for excluding glare and 74% [73, 76] for including 

glare. This result indicates that our models did not suffer substantially from overfitting. 

Excluding glare, the CNN alone without pre-processing performs best. It is 

hypothesized that CNN and deep learning methods should be expected to outperform 

traditional ML techniques because a substantially large dataset should allow learning of 

variance, tolerance of noise, and remove the need for pre-processing. Also, the 

CNN+HELICoiD method performs only slightly better than the original HELICoiD; this 

could be produced because the CNN probability maps are out-weighted by the PCA and 

KNN filtering that are applied afterwards. After the inclusion of specular glare, the results 

change relative to each method, with the CNN with pre-processing out-performing the 

CNN without pre-processing. This outcome could be the result of the classification 

problem becoming more challenging compared to excluding glare, so the dataset is now 

too small for the CNN to perform well without pre-processing. Expanding the training 

dataset with more patients with specular glare and large amounts of noise may allow 

original CNN methods to outperform other techniques. 

In order to test the general application of the proposed methods, HSI from 5 testing 

group patients with SCC were classified using the models that were trained and cross-

validated using the 7 patient group. To qualitatively investigate these results, histological 

images of the 5 ex-vivo tissue specimens were obtained down to about 0.3 mm to determine 

how the superficial cancer margin may change with depth. As shown in Figure 3-8, the 
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CNN+HELICoiD+KNN technique performs best on the 5 patient SCC testing group, 

which was the same result obtained from the 7-fold quantitative cross-validation 

experiment.  

The 5 patients’ tumor-involved margin specimens were classified with the CNN 

trained with the fully pre-processed image patches that were extracted from the complete 

binary ground-truth mask including specular glare pixels. These probability maps are 

shown in Figure 3-8, and the CNN map is also used as the input for the HELICoiD+KNN 

filtering technique. In the top three rows of Figure 3-8, there are regions of glare with tissue 

specimens that are classified incorrectly as normal with the CNN, but the CNN+HELICoiD 

correctly classifies these regions of interest as SCC. It is also possible to observe that the 

CNN+HELICoiD method tends to over-predict SCC at regions of normal tissue near the 

cancer margin. We hypothesize that the CNN+HELICoiD technique outperforms the 

patch-based CNN alone because it can incorporate more local and regional spatial and 

spectral information to overcome the degrading effect of specular glare. Therefore, future 

work could involve the application of a fully-convolutional CNN for SCC detection on 

tissues with specular glare. This algorithm requires more data necessary for training as it 

produces labels that are end-to-end, a full pixel classification map for a full HSI input, so 

it would require the entire HSI dataset acquired for this project. 

An additional aim of this investigation was to determine the variation of the 

superficial cancer margin through the depth of the tissue. From the 5 testing patient tissue 

specimens, it can also be seen that the superficial cancer margin of the ex-vivo tissue 

specimens can vary from the extreme near and far margins in range of 1 to 2 mm. These 

results allow interpretation of the cancer prediction probability maps with observed 
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variation in the ground truth. However, additional possible uncertainty may exist in the 

histological ground-truth. For example, if the angle of the sectioning plane is skewed from 

the tissue plane, then the ground-truth could be warped, which could lead to errors that 

cannot be corrected by deformable registration. In a previous work, we explored a pipeline 

of affine and deformable demons-based registration for alignment of the histological 

ground-truth to gross-level images of specimens, and it was determined via needle-bored 

control points that target registration error was 0.4 ± 0.2 mm [184]. The combination of 

these two main sources of uncertainty in the histological ground-truth for the ex-vivo tissue 

specimens allows for error propagation of up to 2.5 mm in the binary mask. This would 

greatly affect the results of pixel-wise evaluation metrics such as accuracy, sensitivity, and 

specificity.  

 Future work includes development and implementation of a new performance 

evaluation method to handle this margin uncertainty, for instance evaluating primary tumor 

clearance at several millimeter increments from the ideal tumor margin. Currently, the 

standard for surgeons’ opinions on margin adequacy is 5 mm for head and neck SCC, with 

margins between 1 to 5 mm defined as ‘close margins’ [196]. However, some studies 

suggest that outcomes may be similar for margin of 2.2 to 5 mm [197]. It is evident that 

the question of margin adequacy is still being determined, and surgeons would be interested 

in performance of optical imaging methods at different margin distances. Therefore, the 

proposed, new error metric should extend to about 2 to 3 mm. Figure 3-9 demonstrates how 

the cancer-margin could be systematically eroded and used to determine accuracies at 

several distances from the cancer margin to better provide surgeons and physicians with a 

method for interpreting results for HSI studies, given the conclusions of this paper on the 
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uncertainty of the cancer-margin. The outcomes of this work suggest the use of this new 

error metric for future studies.  

 

Figure 3-9. Proposed evaluation metric demonstrates millimetric, systematic cancer-

margin erosion that could provide performance updates at several distances from the cancer 

margin to provide physicians with an easily interpretable method for understanding results 

of HSI studies. 

 Another avenue of future work involves the rethinking of the definition of normal 

tissues in the tissue specimens of the tumor-involved margin. In oral SCC, it has been 

studied that normal tissue directly adjacent to the primary SCC is molecularly distinct from 

normal tissues farther from the SCC, and additional resection to this extended margin may 

lead to increased disease-free survival and reduced local recurrence [177, 178]. Moreover, 

this result was obtained by investigation that NBI at 400–430 nm and 525–555 nm reveals 

changes in normal tissue that correlate to significantly different levels of micro-RNA 

epigenetic regulation compared to primary tumor and normal tissue that are not visible 

under white-light alone [175, 177, 178]. Therefore, it may be possible to extract micro-

RNA expression levels to determine a molecular ground-truth for certain tissues employed 

in this study, as Liu et al. have demonstrated that micro-RNAs can be reliably obtained 

from formalin-fixed paraffin embedded tissue samples [198]. 
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3.5 Conclusion 

 This chapter investigated the effects of specular glare, noise, blurring, and tissue-

edge sloping artifacts on hyperspectral imaging-based cancer detection. It explored the 

potential of hyperspectral imaging and machine learning for the detection of head and neck 

cancer in a limited subset of tissue specimens. According to the experimental results, the 

CNN seems to be more robust against the environmental conditions of the acquired images 

and provides better classification results even without data pre-processing. Additionally, 

another objective was to evaluate the general efficacy on example test cases with 

uncertainty in the ground truth as the superficial cancer margin varies with penetration 

depth. This was tested by serially sectioning the tissue samples in the testing group to reveal 

the variation of the cancer margin through the depth of the tissue. This determined that the 

validity of the top section alone as the ground truth may be limited to 1-2 mm, suggesting 

an alternative approach for obtaining performance metrics should be developed. All the 

above factors were necessary to explore and understand the potential of HSI in the 

operating room. This chapter lays the foundation for the systematic limitations of the 

proposed experimental design that will be detailed in the following chapters, which will 

detail deep learning methods employed in sufficiently large patient datasets for training, 

validation, and testing to understand the potential role of HSI for clinical translation.  
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CHAPTER 4. HEAD & NECK SCC DETECTION IN 102 

PATIENTS WITH HSI 

 This chapter details the work of using HSI for SCC detection on all SCC tissues 

collected in our dataset. Surgical resection of head and neck (H&N) squamous cell 

carcinoma (SCC) may yield inadequate surgical cancer margins in 10 to 20% of cases. This 

chapter investigates the performance of label-free, reflectance-based hyperspectral 

imaging (HSI) and autofluorescence imaging for SCC detection at the cancer margin in 

excised tissue specimens from 102 patients and uses fluorescent dyes for comparison. Fresh 

surgical specimens (n = 293) were collected during HNSCC resections (n = 102 patients). 

The tissue specimens were imaged with reflectance-based HSI and autofluorescence 

imaging and afterwards with two fluorescent dyes for comparison. Deep learning tools 

were developed to detect SCC with new patient samples (inter-patient) and machine 

learning for intra-patient tissue samples. The performance was estimated in mm increments 

circumferentially from the tumor-normal margin. In intra-patient experiments, HSI 

classified conventional SCC with an AUC of 0.82 up to 3 mm from the cancer margin, 

which was more accurate than proflavin dye and autofluorescence (both p < 0.05). Intra-

patient autofluorescence imaging detected human papilloma virus positive (HPV+) SCC 

with an AUC of 0.99 at 3 mm and greater accuracy than proflavin dye (p < 0.05). The inter-

patient results showed that reflectance-based HSI and autofluorescence imaging 

outperformed proflavin dye and standard RGB images (p < 0.05). In new patients, HSI 

detected conventional SCC in the larynx, oropharynx, and nasal cavity with 0.85–0.95 

AUC score, and autofluorescence imaging detected HPV+ SCC in tonsillar tissue with 0.91 
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AUC score. This work demonstrates that label-free, reflectance-based HSI and 

autofluorescence imaging methods can accurately detect the cancer margin in ex-vivo 

specimens within minutes. This non-ionizing optical imaging modality could aid surgeons 

and reduce inadequate surgical margins during SCC resections. 

4.1 Introduction 

 Surgery is often the primary treatment for head and neck squamous cell carcinoma 

(HNSCC) [199]. Primary surgery is the modality of choice for resectable oral cavity 

cancers and late stage disease of the larynx and hypopharynx [200]. Management of locally 

advanced SCC may also require a multimodal approach with adjuvant chemoradiation 

therapy [199, 201]. Nearly 90% of cancers of the upper aerodigestive track of the head and 

neck are SCC [2, 139]. Depending on the extent of the disease, radiation therapy or 

chemotherapy alone may be the primary curative modality selected, such can be the case 

with unresectable, recurrent, or metastatic cancers and also with cases known to be 

susceptible to chemoradiation [199, 200]. Human papilloma virus (HPV) is an identified 

cause of SCC, and the most common location for HPV positive (HPV+) SCC is the 

oropharynx, with nearly 60% of oropharyngeal SCC cases being HPV+ [199, 202]. 

Approximately two-thirds of patients with HNSCC present with stage III or IV advanced 

disease [141]. Adequate surgical removal of the primary SCC is vital to successful patient 

outcomes, improved quality of life, survival, and reduced recurrence [140, 196]. Surgeons 

can use pre-operative imaging, such as CT or MRI, for planning, but during the surgery, 

surgeons rely on experience, visual cues, and tactile palpation to determine the extent of 

the disease. Excised samples and tissue biopsies can be sent for pathological analysis and 

consultation to determine if the cancer has been sufficiently resected [196, 203, 204].  
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 Intraoperative pathologist consultations (IPCs) can be time-consuming and may not 

fully reflect the extent of the disease due to limitations in tissue sampling and preparation. 

While the overall accuracy of frozen-sections in IPCs is upwards of 97%, the accuracy for 

challenging cases, such as positive and close margins, ranges from 71 to 92%, with 

sensitivities reported as low as 34 to 77% [203-207]. These errors can compound, leading 

to reported positive margins in up to 12% and close margins in up to 19% of HNSCC 

surgeries, despite having negative frozen sections during IPC [203-207]. For example, in 

oral cavity SCC, up to 30% of patients have positive margins after surgery [201, 208]. 

 The task of surgical guidance for SCC resections in the head and neck has been 

explored with increasing volume in the past five years using several imaging modalities 

coupled with machine learning [209]. Some methods propose using fluorescently-tagged 

monoclonal antibodies that require intravenous administration but have specific optical 

signatures in the near-infrared (NIR) spectrum, with successful outcomes of studies with 

21 patients [201, 208], and other methods utilize topical fluorescent dyes for targeting SCC 

[33, 210]. Label-free optical imaging methods that utilize only narrow bands in the blue 

and green visible spectrum have also demonstrated success at delineating oral SCC margins 

in-vivo in studies with 20 patients [177, 178]. 

 Hyperspectral imaging (HSI) is an emerging technology in biomedicine [14] and 

has been used for cancer detection studies both ex-vivo and in-vivo [211, 212]. HSI has 

been utilized for brain cancer detection in-vivo using machine learning algorithms and an 

optimized, clinical workflow for neurosurgeons [166, 168]. Additionally, HSI has been 

proposed for laparoscopic cancer detection in colorectal surgeries with demonstrated 

potential [22, 129].  
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 Our group reported proof-of-concept studies on HSI for the detection of head and 

neck SCC in fresh surgical specimens from human patients [33, 147]. In our previous pilot 

studies with HSI, manually selected regions of interest (ROIs) were classified, and image 

preprocessing was used to remove specular glare pixels before tissue classification [33, 

210]. In our other works [113, 172, 179], deep learning algorithms were developed for HSI 

tissue classification in both whole primary-tumor specimens and at the SCC cancer-normal 

margin, but only in limited sample sizes from 21 to 29 patients employing cross-validation. 

Previous works from other groups focus on SCC detection in excised tongue SCC 

specimens, using both proof-of-concept ROI-based detection of SCC in 7 specimens [180] 

and tumor semantic segmentation of the entire cancer-margin specimens [148] with 

promising results in leave-one-patient-out cross-validation experiments of 14 patients. 

 In this large study of 293 tissue specimens from 102 patients with SCC, we develop 

deep learning methods to classify the whole tissue specimens instead of ROIs and thus 

further investigate the full potential of label-free HSI-based imaging methods for SCC 

detection. This is the first work to conduct fully-independent training, validation, and 

testing directly of the SCC tumor margin with a large patient dataset (N = 102 patients), 

divided into conventional, keratinizing SCC with variants (N = 88) and HPV+ (N = 14) 

SCC cohorts. The tissues represent a variety of anatomical sites to give an accurate 

assessment of the feasibility of label-free, non-contact, and non-ionizing HSI-based 

imaging modalities for SCC detection. Additionally, this is the first study to investigate 

and quantify HSI-based methods for HPV+ SCC detection directly. It is hypothesized that 

deep learning algorithms can be developed to enable label-free HSI-based methods, namely 

reflectance-based HSI and autofluorescence imaging, to perform with substantial accuracy 
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to provide meaningful information to guide complete surgical resections. Furthermore, it 

is hypothesized that label-free HSI-based methods will outperform the fluorescent dye-

based methods due to lack of target specificity with sufficient signal-to-noise in SCC 

tissues. The results of this study will inform if HSI and other fluorescence imaging 

modalities can be expected to provide specific benefits to cancer margin detection during 

SCC resection surgeries. 

4.2  Materials 

4.2.1 Head and Neck SCC Patient Dataset 

 Patients with head and neck SCC undergoing routine surgery at the Emory 

University Hospital Midtown (EUHM) were recruited by providing informed, written 

consent to the research coordinator, who de-identified the patient data. All methods and 

procedures were approved by the Emory University Institutional Review Board (IRB) 

under the Head and Neck Satellite Tissue Bank protocol. Fresh, ex-vivo surgical specimens 

were collected from the surgical pathology laboratory, making sure not to impede routine 

clinical service. Three tissue samples from each patients’ gross tissue specimen were 

collected: a tissue specimen of the primary tumor (T), an all normal tissue (N), and a 

specimen at the tumor-involved cancer margin (TN). The specimens were transported to 

an imaging laboratory to perform gross-level optical imaging of the ex-vivo specimens for 

SCC detection [33, 113, 210]. The median sizes (height × width) of the tissues were 9×6 

mm, 10×7 mm, and 9×5 mm for the T, TN, and N tissues, respectively, with an approximate 

tissue depth of 2 to 3 mm. In total, 293 tissue specimens were collected from 102 patients 

with head and neck SCC to be included in this study. 
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 A pathologist with expertise in head and neck cancer categorized the tissue samples 

collected for this study into two groups per cancer subtype: Conventional SCC with 

variants and HPV+ SCC. The conventional SCC group (N = 88 patients) was comprised of 

conventional, keratinizing SCC (N = 85), adenosquamous carcinoma (N = 1), basaloid SCC 

(N = 1), and spindle cell SCC (N = 1). The HPV+ SCC group consisted of 14 patients that 

were all identified as p16 marker positive using immunohistochemistry, and one was a 

neuroendocrine SCC. Table 4-1 shows the breakdown of tissue samples for different 

locations of primary tumors along with other patient characteristics and cancer properties. 

For this study, we defined the oral cavity as broadly consisting of non-tongue structures 

inside the oral cavity: Oral mucosa (N = 3), gingiva (N = 5), floor of mouth (N = 12), 

retromolar trigone (N = 4), maxillary (N = 2), and mandibular surfaces (N = 9). Although 

it is not the clinical standard, tongue specimens were presented separately because it was 

the single largest anatomical site in this study, and the excised specimens we acquired from 

the tongue were typically very distinct, both optically and anatomically, with thick surface 

epithelium and large amounts of skeletal muscle, compared with the rest of the oral cavity 

cases. The pharynx consisted of cases originating in the oropharynx (N = 12 total; 10 HPV+ 

and 2 HPV-), hypopharynx (N = 4), and N = 3 cases of HPV+ tonsillar SCC. One patient’s 

primary location was unknown, only nodal HPV+ neck mass was available. 
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Table 4-1. Demographics and cancer properties for the patients recruited for this study. 

Values are reported for the two cohorts, conventional SCC with variants and p16+ SCC, 

separately and combined. Percentages for conventional are out of 88 patients, HPV+ out 

of 14 patients, and combined out of 102 patients. TNM staging was not available for one 

patient in the HPV+ cohort. All cases were M0. Tobacco history represents current or past 

smoking or chewing tobacco history. 

Property 

Conventional SCC 

(N = 88) 

HPV+ SCC 

(N = 14) 

All SCC 

(N = 102) 

No. % No. % No. % 

Demographics       

Mean Age (y.o.) 64.5 - 58.1 - 63.6 - 

Male 59 67% 12 86% 71 70% 

Female 29 33% 2 14% 31 30% 

Tobacco History 58 66% 5 36% 63 62% 

Primary Location       

Oral Cavity 35 40% 0 0% 35 34% 

Tongue 19 22% 0 0% 19 19% 

Oropharynx 2 2% 13 93% 15 15% 

Hypopharynx 4 5% 0 0% 4 4% 

Larynx 19 22% 0 0% 19 19% 

Nasal Cavity 4 5% 0 0% 4 4% 

Maxillary Sinus 5 6% 0 0% 5 5% 

Unknown 0 0% 1 7% 1 1% 

Cancer Stage       

pT1 3 3% 2 14% 5 5% 

pT2 7 8% 6 43% 13 13% 

pT3 16 18% 2 14% 18 18% 

pT4 62 70% 3 21% 65 64% 

Avg. T Size (cm) 4.4 - 3 - 4.2 - 

N+ 53 60% 5 36% 58 57% 

Histologic Grade       

G1 8 10% - - 8 8% 

G2 60 71% - - 60 59% 

G3 16 19% - - 16 16% 

IPC (Averages)       

IPC/Surgery 2.1 - 2.0 - 2.1 - 

Time/IPC (min) 41 - 42 - 41 - 

Tissues/Surgery 3.5 - 2.6 - 3.4 - 

Time/Tissue (min) 25 - 33 - 25 - 
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4.2.2 Hyperspectral Imaging 

 The HSI were acquired of the gross-level surgical specimens using a Maestro 

spectral imaging system (Perkin Elmer Inc., Waltham, Massachusetts), which captured 2D 

images at full spatial resolution using a 16-bit charge coupled device and stepped through 

the spectral bands using a liquid crystal tunable filter [33, 113, 210]. The spatial resolution 

of the HS sensor was 1040 by 1392 pixels, which corresponds to a specimen-level 

resolution of 25 µm per pixel. The HSI were captured from 450 to 900 nm in 5 nm spectral 

bands to produce a hyperspectral data cube (hypercube) with 91 spectral bands. The 

average imaging time for acquiring a single HSI at this resolution was about one minute. 

The hyperspectral data were normalized in each spectral band individually by subtracting 

the inherent dark current (imaging with a closed camera shutter) and dividing by a white 

reference disk. An RGB composite image was generated from the normalized hypercube 

by applying a Gaussian kernel in each color region. Figure 4-1 shows a representative 

patient tissue specimen and average spectral signatures of SCC and normal tissues. 
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Figure 4-1. A representative cancer-involved tissue specimen of conventional, keratinizing 

SCC of the mandibular gingiva. (a) From left to right: RGB image made from HSI. The 

histological image, which serves as the ground truth, has SCC annotated in green. HSI 

single band at 550 nm. Fluorescence imaging modalities of the same specimen; (b) Spectral 

feature saliency from CNN gradients of correctly classified HSI for conventional SCC and 

normal upper aerodigestive tract tissues. Left: Full spectra from 450 to 900 nm of SCC and 

normal tissues. Symbol colors represents the relative, scaled importance of the spectral 

feature for making the correct prediction of cancer or normal from the HSI (0 is low 

saliency; 1 is high saliency). Right: Spectral cutout from 520 to 580 nm, corresponding to 

the hemoglobin range. The double asterisk (**) indicates that statistically significant 

differences (p < 0.01) were observed in reflectance values between SCC and normal for all 

spectral bands (450 to 900 nm). The most important spectral feature for correctly predicting 

SCC in HSI was the oxygenated hemoglobin peak at 560 and 565 nm. 

 

4.2.3 Fluorescence Imaging 

 To compare the ability of HSI for cancer margin detection, several optical imaging 

modalities were acquired afterwards: A second label-free and two dye-based methods [33, 

210]. Figure 4-1 shows a representative patient tissue specimen of all imaging modalities 
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and the histological ground truth. Autofluorescence imaging is a label-free imaging 

modality that captures the light emission from intrinsic fluorophores in biological tissue 

that are stimulated to fluoresce by external excitation. The autofluorescence images were 

produced by an excitation light source of 455 nm and a long-pass filter of 490 nm. The 

autofluorescence images were acquired from 500 to 720 nm in 10 nm increments to 

produce a hypercube of 23 spectral bands, and this imaging protocol was also used for the 

fluorescent dyes. 

 In addition to the two label-free modalities (HSI and autofluorescence), two dye-

based fluorescence imaging modalities were acquired for SCC detection [33, 210]. A 

fluorescently tagged glucose molecule, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) 

amino]-D-glucose (2-NBDG), is a dye that produces a stronger signal measured from 

regions with higher metabolic glucose uptake, often associated with cancer regions. The 

tissue specimens were incubated for 20 minutes in a 160 µM 2-NBDG solution (Cayman 

Chemical, Ann Arbor, MI, USA) at 37 degrees Celsius, after which tissues were rinsed in 

1× phosphate buffered solution (PBS) before imaging.  

 Proflavin dye images were acquired last before fixing the tissues [33, 210]. 

Proflavin is a DNA-binding fluorescent dye that has demonstrated utility for nuclear 

morphology visualization in a mouse model of oral carcinogenesis [213]. The effect of 

proflavin staining allows greater signal-to-noise in non-keratinizing tissues, as keratin is 

also a target of the dye [213, 214]. The tissue specimens were incubated for 120 seconds 

in a 0.01% proflavin solution (Sigma Aldrich, St. Louis, MO, USA) at room temperature, 

after which tissues were rinsed in PBS.  
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4.3 Methods  

4.3.1 Histological Ground Truth and Registration 

 After acquiring the HSI, the fresh, ex-vivo tissue specimens were inked to preserve 

the optical imaging orientation, fixed in formalin, and paraffin embedded. Using a 

microtome, only the first, high-quality top section corresponding to the surface that was 

optically imaged was obtained, stained with hematoxylin and eosin, and digitized using 

whole-slide scanning at 40× objective [215]. The digital histology images from each 

specimen were annotated to outline the cancerous and normal areas by a board-certified 

pathologist with expertise in H&N cancer [33, 210].  

 The digital histology ground truth served as the gold standard for the optical 

imaging modalities. The histology ground truth image was registered in a semi-automated 

fashion according to a previously established pipeline of deformable registration to the 

gross-level HSI [184]. This registration was subject to errors in tissue-deformation, 

uncertainty in the cancer margin with depth, and off-plane slices that in total were estimated 

to be about 1 mm [184]. Moreover, the variation in photon penetration depth from the 

optical imaging modalities and the variation in the cancer margin throughout the depth of 

the tissue specimens was also estimated to create another 1 to 2 mm of error in the margin, 

according to our previous work [216]. Therefore, a systematic and objective method for 

calculating classification performance was implemented by removing the area near the 

cancer margin in millimeter increments and reporting all values [216]. The regions near 

the cancer margin are both included and excluded from performance calculations because 

the tissue near the margin can be degenerated or have undergone pre-cancerous 
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transformation. Here the registered cancer margin is referred to as the ‘actual TN’ margin, 

and mm increments estimated from the TN margin are identified. The ‘actual TN’ margin 

calculates performance metrics for all tissues right up to the pixels that comprise the 

interface of tumor and normal. For distance calculations for example, ‘TN at 1 mm’ 

represents that evaluation metrics are calculated from all distances up to 1 mm from the 

margin. The ‘TN margin at 2 mm’ is also reported, which calculates performance up to 2 

mm from the margin. 

4.3.2 Intra-Patient Experiments 

 Intra-patient experiments used a patient’s known cancer and normal specimens to 

train a machine learning algorithm and simulated a personalized approach for SCC 

detection on-the-fly in the operating room. For intra-patient experiments, linear 

discriminant analysis (LDA) was used in ensemble to train, validate, and test the SCC data 

from the same patient. Each SCC patient with all tissue types (meaning a purely normal 

specimen, a specimen containing only primary tumor, and a specimen of the cancer margin) 

was included and divided into each cohort, conventional SCC (N = 41) and HPV+ SCC (N 

= 6). Despite collecting 102 patients for this study, only 47 fit this distribution of all three 

tissue types exactly. Independently, an ensemble LDA of 500 learners was trained and 

validated in 5 folds from each patient’s tumor and normal samples. After each patient’s 

model development, the patient’s tumor-normal margin specimen was used as the testing 

data. The LDA method was selected because our previous work demonstrated that it 

outperformed other regression-based machine learning algorithms [33]. Training time for 

5 cross-validated folds of one patient’s model was about one to three minutes, depending 

on the size of regions selected for training, which is reasonable for simulating training of a 
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patient’s data for HSI during surgery. All statistical analyses were performed using a 

paired, one-tailed t-test. 

4.3.3 Inter-Patient Experiments 

 To explore the ability of HSI and fluorescence imaging modalities to detect SCC 

on patients fully-independent from algorithm development, two experiments were 

performed. The first experiment consisted of training the CNN on primary tumor (T) and 

all normal (N) tissues, while testing on T and N tissues from other patients. The second 

experiment consisted of training on primary tumor (T) and all normal (N) tissues, while 

testing only tumor-involved cancer margins (TN) tissues from other patients.  

 To perform these experiments, within each SCC cohort, patients were randomly 

divided into 5 folds, each fold served as the fully-independent testing group, while training 

and validation was performed on the patients in the remaining 4 folds, which allows test-

level performance metrics for all patients in our dataset. For the conventional SCC cohort, 

each model from each fold was trained and validated on approximately 25,000 patches 

from 110 tissue specimens from 70 patients, and the independent testing group from each 

fold was approximately 50 tissues from 20 patients. This was performed once for each fold, 

until the entire cohort dataset, comprised of 70,000 patches from 255 tissue specimens from 

88 patients was used as the testing group. For the HPV+ SCC cohort, training/validation 

was performed in the same fashion in 5 folds, until the entire cohort dataset of 16,000 

patches from 38 tissue specimens from 14 patients was used as the testing group. All 

statistical analyses were performed using a paired, one-tailed t-test. 
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4.3.4 Convolutional Neural Network 

 For inter-patient experiments, a convolutional neural network (CNN) was 

developed to quickly and efficiently classify cancerous and normal tissues at the cancer 

margin. Due to the uniqueness of HSI data, the inception-v4 CNN architecture [217] was 

customized in several key ways to optimize the CNN to hypercube data in image-patches 

that were 25×25×C, where C is the number of spectral bands of each HS optical modality. 

The full CNN architecture schematic is presented in detail in Figure 4-2. The CNN was 

developed in TensorFlow on an Ubuntu machine running NVIDIA Titan-XP GPUs [192]. 

The early convolutional layers were modified to handle the selected patch-size and create 

smaller inception blocks that would allow for faster training and classification using the 

CNN. Training was performed up to 50 epochs; one epoch of training data ran for up to 1 

hour using HSI; and deployment of the fully-trained CNN on a single GPU to classify a 

new HSI scene with hundreds of patches required only 25±10 seconds. The relative 

saliency of spectral features for correctly predicting SCC or normal in HSI, shown in Figure 

4-1b and Figure 4-7, were extracted from the CNN using the class-activated gradients per 

the grad-CAM algorithm [218]. 
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Figure 4-2. Schematic of the customized Inception V4 CNN architecture with added 

squeeze-and-excitation layers. The CNN was modified to operate on the 25×25×91 patch-

size selected. The receptive field size and number of convolutional filters is shown at 

bottom of each inception block. The convolutional kernel size used for convolutions is 

shown in italics inside each convolution box. 

4.3.5 Image Processing and Reconstruction 

 For all experiments, the 10 pixels, corresponding to 0.25 mm, at the edge of each 

tissue were discarded for performance calculations. Since the imaging protocol for tissue 

specimens required using a flat imaging surface, the tissue free edges created false 

curvature where the tissue was too thin to provide an adequate imaging signal. 

Implementation of the inter-patient CNN experiments involved a patch-based approach 

using a sliding window of size 25×25×91 and an overlap of 13 pixels. The overlapping 

regions of image-patches were averaged to produce a smoother result for calculation of the 

performance metrics of the inter-patient experiments. 

4.3.6 Evaluation 

 To evaluate performance of the machine learning algorithms employed in the 

experiments for detecting SCC, the area under the curve (AUC) of the receiver operator 
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characteristic (ROC) curve was calculated. The AUC score was selected because it 

describes the accuracy at all possible thresholds of identifying the positive class and is not 

susceptible to errors when the classes are imbalanced. For each experiment, the optimal 

operating point on the ROC was calculated for the validation group data. This validation 

group threshold was used as the threshold for the testing group to best distinguish between 

cancer and normal, objectively. Using this threshold, the overall accuracy was calculated. 

Sensitivity, the ratio of true positives to total positive predictions, and specificity, the ratio 

of true negatives to total negative predictions, were also calculated and presented. 

4.4 Results 

4.4.1 Surgical Specimens Results 

 The accuracy of pathologist assistants in the surgical pathology department was 

calculated on their ability to identify the desired tissue specimen type (T, TN, or N) for 

research purposes. To obtain this performance, the label (prediction) given by the 

pathologist assistant (T, TN, or N) was compared to the ground-truth label from histology. 

This value is reported only to give an estimate of the difficulty of the task of positive margin 

and primary tumor specimen identification. It is important to note that these specimens 

were for research purposes only and do not attempt to reflect the accuracy of the clinical 

service in determining SCC during intraoperative guidance. The accuracy for identifying 

tissue specimens correctly was normal specimens with 92% accuracy, tumor-normal 

margin tissues with 95%, and primary tumor-only specimens with 60% accuracy. Figure 

4-3a shows the breakdown by tissue specimen type. The most common reason for the 

misidentified tissue specimens was normal tissue in the primary tumor specimen. To 
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calculate the accuracy, sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) of the specimen identification in surgical pathology, the 

TN tissues and predictions were separated into T and N components for calculation of 

true/false positives/negatives. For example, a true TN predicted as all T would count as 

both a true-positive and a false-positive; alternatively, a true T predicted as TN, would 

count as both a true-positive and a false-negative. The specificity and PPV were both 82%, 

the lowest metrics obtained, as the most common misidentification was tumor-margins as 

tumor-only, and overall an accuracy of 88% was determined for tissue type identification. 

Figure 4-3b details the complete performance metrics calculated and the number of each 

tissue components. 

 

 

Figure 4-3. Accuracy of ex-vivo tissue samples acquired. (a) The types of tissue samples 

acquired were all normal (N), primary tumor (T) specimen, or specimen at the tumor-

normal (TN) margin. Accuracies shown are for the desired tissue type in the column. (b) 

The performance metrics when TN tissues and predictions were separated into T and N 

components for calculation of accuracy, sensitivity, specificity, PPV, and NPV. For 

example, a true TN predicted as all T would count as both a true-positive and a false-

positive; alternatively, a true T predicted as TN, would count as both a true-positive and a 

false-negative. Therefore, the 139 true TNs and 5 false predicted TNs are double counted, 

so the specimen total is now 437 instead of 293 specimens. 
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4.4.2 Intra-patient Results of Tumor-Involved Cancer Margins 

 The results of reflectance-based HSI intra-patient (N = 47) accuracy ranged from 

80 to 90% for conventional SCC and 82 to 97% for HPV+ SCC. The results of reflectance-

based HSI intra-patient AUC were 0.75 to 0.82 for conventional SCC and 0.77 to 0.91 for 

HPV+ SCC. Table 4-2 shows the complete results for HSI and the fluorescence imaging 

modalities. The accuracy for both SCC cohorts peaked at 3 mm from the cancer margin, 

but the number of patients decreased with increasing distance from the cancer margin 

because not all distances up to 3 mm could be estimated from all tissue specimens. For the 

conventional SCC cohort (N = 41), HSI outperformed autofluorescence, proflavin, and 2-

NBDG at nearly all distances from the cancer-margin and significantly outperformed 

proflavin and autofluorescence (p ≤ 0.05) close the margin (Figure 4-4a,b). The results for 

the HPV+ SCC cohort (N = 6) are not as conclusive as the conventional cohort because the 

limited number of tissue samples causes a discontinuous trend, with autofluorescence 

imaging being among the top performing modalities in terms of accuracy and AUC (Figure 

4-4c,d), and the AUC obtained for autofluorescence imaging detection of HPV+ SCC was 

0.99 at 3 mm, which was greater than other modalities (p > 0.05). In terms of accuracy, 

autofluorescence imaging significantly outperforms proflavin at 2.5 mm from the cancer 

margin (p < 0.05). Therefore, the label-free methods, HSI and autofluorescence, perform 

best for intra-patient testing at the cancer margin. 
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Table 4-2. Accuracy (Acc.) and area under the curve (AUC) results for all modalities 

performed using intra-patient experiments for conventional SCC and HPV+ p16-positive 

cohorts. Bolded values represent the greatest value in the column for each patient cohort. 

Imaging Modality SCC Cohort 
1mm 2mm 3mm 

AUC Acc. AUC Acc. AUC Acc. 

HSI 
SCC, Conventional 0.77 85% 0.80 88% 0.78 90% 

SCC, HPV+ 0.79 88% 0.69 88% 0.91 97% 

Autofluorescence 
SCC, Conventional 0.67 85% 0.72 85% 0.73 87% 

SCC, HPV+ 0.81 89% 0.84 95% 0.99 98% 

Proflavin 
SCC, Conventional 0.73 82% 0.76 85% 0.73 89% 

SCC, HPV+ 0.85 88% 0.82 94% 0.93 97% 

2-NBDG 
SCC, Conventional 0.76 84% 0.79 87% 0.80 89% 

SCC, HPV+ 0.74 90% 0.69 95% 0.70 97% 

 

Figure 4-4. Results from intra-patient training and testing with LDA using HSI, 

autofluorescence, proflavin, and 2-NBDG. Results for Conventional SCC are shown in (a) 

AUC and (b) accuracy. Results for HPV+ SCC are shown in (c) AUC and (d) accuracy. 

Statistically significant results between imaging modalities are indicated by a colored 

asterisk. Sample size (N) is reported above plots to indicate that not all distances in mm 

can be estimated from each tissue specimen, so sample size decreases as the distance 

estimated increases, which causes noticeable jumps in the plots. 
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4.4.3 Inter-patient Results of Tumor vs Normal 

 For the conventional SCC cohort (N = 88), the results of the inter-patient 

experiments using only one-class specimens of the tumor-only (T) or normal-only (N) 

yielded similar median and average AUC scores for HSI and autofluorescence of 0.92 and 

0.93 (median) and 0.87 and 0.86 (average). Both of HSI and autoluorescence outperformed 

the fluorescent dye-based techniques, 2-NBDG and proflavin, which had 0.88 and 0.87 

(median) and both with 0.85 average AUC scores (all differences not significant with p > 

0.05). Figure 4-5c,d shows the median and average AUCs for all imaging modalities for 

the conventional SCC cohorts. For the HPV+ SCC cohort (N = 14), autofluorescence 

imaging yielded a median AUC of 0.86 and average AUC of 0.74, which was significantly 

more accurate than proflavin or RGB imaging (both p < 0.05). For tonsillar HPV+ SCC 

tissues (N = 3), the average SCC detection was 0.89 AUC score (Figure 4-6b,d). The grad-

CAM algorithm [218] was used to show that the salient spectral features necessary for 

distinguishing SCC from normal across all anatomical sites encompassed both the visible 

and NIR spectrum (Figure 4-1b and Figure 4-7). In particular, it can be observed that 

normal tissues have more absorption and salient spectral features in the NIR range, 

indicating that normal tissues have greater fat, collagen, and water content than cancer 

[116]. The most important spectral feature for correctly predicting SCC with HSI was the 

oxygenated hemoglobin peak at 560 and 565 nm, which is correlated with increased 

metabolic activity. Additionally, the spectral signatures and spectral feature saliency maps 

are shown separated by anatomical location in Figure 4-7. 



 100 

 

Figure 4-5. Median and average AUC results from inter-patient classification (a value of 

0.5 corresponds to random guess). AUC values for the conventional SCC cohort: (a) 

Median AUC values for TN margin tissue specimens; (b) average AUC shown with SEM 

for TN margin specimens with statistical significance, shown as (*) for p<0.05 and (**) 

for p<0.01; (c) median AUC values for T and N whole tissue specimens; (d) average AUC 

shown with SEM for T and N whole specimens; (e) Average AUC at 2mm from the SCC 

margin using HSI across different anatomical sites; (f–h) representative patient examples 

of conventional SCC at the maxillary gingiva, nasal cavity, and larynx, respectively. From 

left to right: RGB made from HSI, histology ground truth, and predicted cancer heat-map. 

The white and green contours outline the SCC area. 
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Figure 4-6. Median and average AUC results from inter-patient classification (a value of 

0.5 corresponds to random guess). AUC values for the HPV+ SCC cohort: (a) median AUC 

values TN margin specimens; (b) median AUC values T and N whole specimens; (c) 

average AUC of TN margin specimens with SEM; (d) average AUC of T and N whole 

specimens shown with SEM and statistical significance; , shown as (*) for p<0.05 and (**) 

for p<0.01; (e) Average AUCs of HPV+ SCC in tonsillar tissues; (f) Representative patient 

example of HPV+ SCC in tonsillar tissue from the oropharynx. From left to right: RGB 

made from HSI, histology ground truth, and predicted cancer heat-map. The white and 

green contours outline the SCC area. 

4.4.4 Inter-patient Results of Tumor-Involved Cancer Margins 

 The results of the inter-patient experiments with HSI in the conventional SCC 

cohort (N = 88) revealed that testing on specimens of the tumor-only (T) or normal-only 
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(N) yielded median and average AUCs greater than testing at the tumor margin (TN) at 

distances up to 2 mm from the margin, 0.92 and 0.87 compared to 0.85 and 0.77, 

respectively (Figure 4-5a–d). As can been seen in Figure 4-5b, for all distances HSI and 

autofluorescence outperform 2-NBDG, proflavin, and RGB imaging in average AUC 

score. Both HSI and autofluorescence significantly outperformed proflavin dye imaging at 

distances 1 mm (both p < 0.05) and 2 mm (both p < 0.01) from the cancer margin. HSI and 

autofluorescence significantly outperform RGB imaging in AUC at the actual cancer 

margin and 1 mm from the margin (all p < 0.05). Table 4-3 shows the full results from 

conventional SCC with HSI at distances from the cancer margin. 

Table 4-3. Performance results from the best label-free HSI methods from the inter-patient 

experiments for each patient cohort by distance from margin (shown with ± SEM). In the 

conventional SCC cohort, reflectance-based HSI is presented. Additionally, the HSI results 

are separated by anatomical location. For the HPV+ SCC cohort, autofluorescence is 

presented, which all came from the pharynx. 

Cohort / Method 
Median 

AUC 

Average 

AUC 
Accuracy Sensitivity Specificity 

Conventional SCC 

Reflectance-based HSI 
     

TN Actual 0.75 0.68 ± 0.02 60 ± 2% 60 ± 4% 54 ± 3% 

TN 1mm 0.81 0.73 ± 0.02 66 ± 2% 60 ± 4% 61 ± 4% 

TN 2 mm 0.85 0.77 ± 0.03 64 ± 3% 65 ± 4% 59 ± 5% 

Conventional SCC 

Reflectance-based HSI 
     

Oral Cavity, TN 2mm 0.81 0.79 ± 0.04 63 ± 5% 71 ± 8% 49 ± 8% 

Tongue, TN 2mm 0.78 0.64 ± 0.07 61 ± 7% 57 ± 9% 53 ± 9% 

Nasal Cavity, TN 2mm 0.98 0.93 ± 0.06 79 ± 11% 69 ± 17% 73 ± 24% 

Max. Sinus, TN 2mm 0.95 0.78 ± 0.18 58 ± 19% 93 ± 5% 52 ± 18% 

Larynx, TN 2mm 0.86 0.85 ± 0.05 79 ± 5% 69 ± 11% 71 ± 9% 

Hypopharynx, TN 2mm 0.84 0.78 ± 0.13 42 ± 9% 20 ± 14% 99 ± 1% 

Oropharynx, TN 2mm 0.95 0.95 ± 0.001 95 ± 4% 49 ± 49% 78 ± 22% 

HPV+ SCC 

Autofluorescence 
     

TN Actual 0.63 0.55 ± 0.05 60 ± 4% 45 ± 6% 65 ± 6% 

TN 1mm 0.63 0.56 ± 0.07 65 ± 5% 49 ± 8% 62 ± 8% 

TN 2 mm 0.77 0.68 ± 0.09 63 ± 7% 64 ± 8% 60 ± 9% 
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 The conventional SCC cohort was separated into the anatomical sites described in 

Table 4-1, and the highest average AUCs at 2mm from the cancer margin were observed 

in the nasal cavity (0.93), larynx (0.85), and oropharynx (0.95), while specimens from the 

tongue performed the lowest (Figure 4-5e). Representative tissue specimens from the oral 

cavity, nasal cavity, and larynx are classified with HSI and shown in Figure 4-5f–h. 

 

Figure 4-7. Spectral feature saliency from CNN gradients of correctly classified HSI (per 

grad-CAM) for conventional SCC and normal upper aerodigestive tract tissues separated 

by anatomical location. (a): Spectral signatures with spectral feature importance for normal 

tissues from the maxillary sinus, nasal cavity, oral cavity, tongue, larynx, and pharynx. 

Color of symbol represents the relative importance of the spectral feature for assigning the 

correct label of the class (0 – blue, low saliency; 1 – red, high saliency). (b): Spectral 

signatures with spectral feature importance for primary conventional SCC tissues from the 

maxillary sinus, nasal cavity, oral cavity, tongue, larynx, and pharynx. 

 For the HPV+ SCC cohort (N = 14) inter-patient experiments, autofluorescence 

imaging yielded the best results compared to the other imaging modalities at 2 mm from 

the cancer margin with 0.68 average AUC and 0.77 median AUC (Figure 4-6a,c; not 

significant, p > 0.05). For tonsillar HPV+ SCC tissues (N = 3), the average SCC detection 

with autofluorescence imaging at 2 mm from the cancer margin was 0.91 AUC (Figure 

4-6e). A representative tissue specimen from HPV+ SCC is classified with 

autofluorescence imaging in Figure 4-6f. Table 4-3 shows the full results from HPV+ SCC 

with autofluorescence imaging at distances from the cancer margin. 
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4.5 Discussion 

 The results of this large study of 293 tissue specimens from 102 patients with SCC 

show that label-free, reflectance-based hyperspectral imaging and autofluorescence 

imaging both outperform the fluorescent dye-based imaging methods, i.e., proflavin and 2-

NBDG, and this technology could aid in the detection of SCC. The fluorescent dyes 

employed are not specific enough to target SCC with a high signal-to-noise ratio in ex-vivo 

tissue specimens because of the large inter-patient variability. Proflavin allows 

visualization of nuclear structures, but is washed out by excessive keratin. The regional 

metabolic uptake of 2-NBDG to localize cancerous areas was not evident or demonstrated 

by the results of this ex-vivo study. Label-free HSI techniques may yield potential but the 

best machine learning protocols for training HSI classifier is undetermined. It may be task 

specific, but the results of this study show that with a large SCC HSI database, deep 

learning algorithms can be trained with high fidelity to work across a large number of 

anatomical sites in the upper aerodigestive tract.  

 IPC analysis with frozen sections remains the current standard for intraoperative 

guidance, but it is time and labor intensive. Across all 102 patients with SCC recruited for 

this study, an average number of 2.1 IPCs were performed per surgery, each taking about 

41 minutes in total. On average, each surgery typically investigated 3.4 tissues, each of 

which take about 25 minutes to report final diagnosis. The average imaging time for HSI 

was about 1 minute with up to 35 seconds for HSI classification using the CNN, which is 

significantly less than IPC.  
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 Detection of SCC for surgical purposes is a challenging task, whether performed 

by a surgeon, pathologist, or computer-aided optical imaging modality. In the literature, 

the accuracy of detecting positive or close margins in frozen sections ranges from 71 to 

92% with sensitivity from 34 to 77% [203-207]. As sampling and tissue preparation is the 

main source of error, careful sectioning of small biopsies and vigilant communication is 

recommended to reduce errors during IPCs [196]. Nonetheless, significant need for 

guidance remains, with up to 20% to 30% of cases reported with close or positive margin 

results after SCC resections [203-207]. To this end, to put the SCC detection ability of HSI-

based methods into context, we present the pathologist assistant accuracy of 88% for 

research purposes-only tissue identification. Since current practice is imperfect, the 

potential benefit of HSI for SCC detection should be evaluated on two criteria: firstly, to 

establish no potential harm; and secondly, to assess HSI-based intraoperative information 

that has clinical utility in achieving negative margins, especially considering the time 

advantage. 

 The results presented in this study using 293 specimens from 102 patients can be 

compared to previous pilot studies from our group. Lu et al. 2017 reported results from a 

small (N = 24) proof-of-concept study using manual ROIs that showed that training and 

testing on the same patient with HSI yielded an intra-patient accuracy of 89–94% and intra-

patient AUC of about 0.96 [33]. Our objective and systematic approach yielded equivalent 

results using nearly double the intra-patient cohort (N = 47) for distances 1 mm beyond the 

cancer margin, 85–90% accuracy for conventional SCC and 88–97% accuracy for HPV+ 

SCC, across all anatomical tissue sites. Moreover, the AUCs obtained from 0.82 to 0.91 

for conventional and HPV+ SCC cohorts at 2.25 mm from the cancer margin, importantly, 
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are not limited by the selection of manual ROIs and include specular glare pixels. 

Therefore, slightly lower results are to be expected, but provide a more realistic 

performance estimate for HSI-based methods in the operating room. The experimental 

results of this study were a median AUC of 0.92 for HSI and 0.93 for autofluorescence for 

all conventional SCC T vs N tissues using the most patient data in an HSI study to date. 

The previous proof-of-concept work by Lu et al. reported an accuracy of 85% for T versus 

N tissues only, an accuracy of 76% for manual ROIs near the cancer-margin, and an overall 

average AUC of 0.88 for all tissues (T, TN, and N) for SCC at comparable tissues and 

anatomical sites. In comparison, in this study, for larynx, nasal cavity, and oropharyngeal 

SCC, we achieved AUC scores of 0.85, 0.93 and 0.95 with accuracies above 79%. 

 The optical imaging modalities in this study were all acquired using HSI 

technology, including proflavin, 2-NBDG, and autofluorescence, and all were saved as 

hypercubes for CNN training. Moreover, even RGB images were generated from HSI, and 

recent work has suggested that CNNs can recover the full HSI spectrum from RGB 

composites constructed from HSI [219]. Therefore, it is possible that the results from these 

modalities benefitted from being HS data, which is one possible explanation for not 

observing more statistically significant differences. The results of this study are promising 

at tissue sites that perform with high AUCs in both SCC cohorts. However, the results 

suggest that HPV+ SCC requires more data to perform well with deep learning. Therefore, 

the results of this study support the hypothesis that label-free HSI methods significantly 

outperform the dye-based methods and could provide value for clinical SCC detection. 
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4.6 Conclusion 

 In summary, this chapter investigated HSI for SCC detection using all 293 

specimens from 102 patients with SCC in the dataset acquired for this thesis, and it was 

demonstrated that HSI may offer utility for intraoperative SCC detection. This study was 

published as the first comprehensive report on a large SCC dataset that could be used to 

train a deep learning model that can predict SCC across multiple anatomical locations with 

high fidelity. There is a critical need to provide rapid information in the operating room for 

guidance during SCC resection, with errors reported up to 10–30% of missed positive and 

close margins in current practice. Our results show that AUCs upwards of 0.80 to 0.90 may 

be obtained for SCC detection with HSI-based methods in less than 2 minutes for SCC 

detection, which could save significant time as compared to intraoperative frozen section 

analysis. 
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CHAPTER 5. THYROID & SALIVARY TUMOR DETECTION IN 

82 PATIENTS WITH HSI 

 This chapter details the work of using HSI for thyroid and salivary gland tumor 

detection on all such tissues collected in our dataset. The performance of hyperspectral 

imaging (HSI) for tumor detection is investigated in ex-vivo specimens from the thyroid 

(N=200) and salivary glands (N=16) from 82 patients. Tissues were imaged with HSI in 

broadband reflectance and autofluorescence modes. For comparison, the tissues were 

imaged with two fluorescent dyes. Additionally, HSI was used to synthesize three-band 

RGB multiplex images to represent the human-eye response and Gaussian RGBs, which 

are referred to as HSI-synthesized RGB images. Using histological ground truths, deep 

learning algorithms were developed for tumor detection. For the classification of thyroid 

tumors, HSI-synthesized RGB images achieved the best performance with an AUC score 

of 0.90.  In salivary glands, HSI had the best performance with 0.92 AUC score. This study 

demonstrates that HSI could aid surgeons and pathologists in detecting tumors of the 

thyroid and salivary glands. 

5.1 Introduction 

 Thyroid cancer incidence has significantly increased worldwide from 1970 to 2012, 

despite the fact that mortality from thyroid cancer has decreased [220]. Surgery is the 

standard treatment for thyroid cancers, and the 5-year survival rate for localized or regional 

thyroid cancers (excluding anaplastic variant) is above 90% [221]. The most common 

malignant tumor of the thyroid is papillary thyroid carcinoma (PTC), comprising 70% of 
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thyroid cancers, and there are several variants of PTC, including conventional, follicular, 

tall-cell, and oncocytic [222]. The initial diagnosis of thyroid tumors is with fine-needle 

aspiration (FNA) biopsy and histological evaluation of the specimen [222]. Follicular 

tumors are another cytological type of thyroid neoplasms, which include follicular 

adenoma, a benign tumor, and follicular thyroid carcinoma (FTC), the malignant form. The 

requisite diagnostic criterion for follicular carcinoma versus adenoma is definitive 

invasiveness; no cytological features can provide the diagnosis of FTC, so FNA is therefore 

useless is making the distinction [223]. Medullary thyroid carcinoma (MTC) is a rare form 

of thyroid cancer, comprising only 4% of thyroid cancers, that occurs sporadically in most 

cases, but can be associated with a familial germline mutation [224]. 

 During thyroid tumor resections, intraoperative frozen section (FS) analysis and 

pathologist consultation can be useful for determining extent of the disease and, according 

to recent American guidelines, may occasionally confirm malignancy and escalate 

treatment from partial to total thyroidectomy [225]. For example, in thyroid tumors, 15-

30% of preoperative FNA biopsies may be indeterminate [226]. It remains controversial in 

thyroid tumor surgeries whether the practice of intraoperative FS can provide relevant 

diagnostic information, as it can be prone to misdiagnosis [226]. In 4% cases with benign 

intraoperative FS reports, clinically significant malignancy was found, compared to 6.8% 

in cases where no FS was performed [227]. This translates to a sensitivity of 22% for 

identifying malignancy in patients with benign FNA [227]. In the literature, it is suggested 

that the practice of intraoperative FS may lead to over or under treatment of thyroid tumors 

[226]. 
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 Salivary tumors involve the salivary glands, which are a system of exocrine glands 

in the mouth that produce saliva to initiate digestion. The major salivary glands are the 

parotid, the submandibular, and the sublingual salivary glands [228]. The classification of 

benign and malignant salivary tumors is complex, with over 20 distinct entities according 

to the most recent standard proposed by the World Health Organization [228-230]. Overall, 

more than 80% of primary tumors of the salivary glands arise in the parotid gland, which 

is the largest salivary gland [228, 230]. Pleomorphic adenoma is the most common benign 

tumor of the salivary glands (60%) and typically occurs in the parotid glands [230]. 

Mucoepidermoid carcinoma is the most common malignant neoplasm of the parotid gland 

[228]. Adenoid cystic carcinoma is a malignant tumor that can occur with equal likelihood 

in the submandibular and parotid glands [228]. Polymorphous low-grade adenocarcinoma 

(PLGA) is a rare malignant tumor, commonly found in minor salivary glands of the hard 

or soft palate [231]. In surgical resection of salivary tumors, the sensitivity of intraoperative 

FS for detecting malignant parotid gland tumors with benign FNA was only 33%, 

suggesting difficulty in diagnosing low grade tumors [232]. Moreover, FS for salivary 

tumors carries the risk of tumor seeding and may not provide definitive diagnosis [233]. 

Nonetheless, the combination of preoperative FNA and intraoperative FS leads to high 

diagnostic accuracy overall for salivary tumors [234].  

 With the goal of image-guided surgery, hyperspectral imaging (HSI) is an emerging 

technology in biomedicine that has been used for cancer detection studies both ex-vivo and 

in-vivo [14, 211, 212]. HSI has been explored for brain cancer detection in-vivo [166, 168]. 

Additionally, HSI has been proposed for laparoscopic cancer detection in colorectal 

surgeries with demonstrated potential [22, 129]. The ability of HSI to identify ideal 
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transection margins for colorectal tissues has been demonstrated after devascularization by 

blocking vascular anastomoses [235]. Our group reported HSI studies of head and neck 

cancer using ex-vivo human surgical specimens [33, 113, 179, 236]. 

 In order to leave the parathyroid glands intact during surgery, Barberio et al. 

demonstrated that HSI may be beneficial in detecting parathyroid glands from thyroid 

tissue during thyroidectomy [237]. For surgeries of salivary tumors, one challenge is 

leaving the facial nerve intact, which runs through the parotid gland and can cause facial 

paresis if injured. Wisotzky et al. showed that HSI can identify the facial nerve in the 

parotid gland [238]. The submandibular and sublingual salivary glands are surrounded by 

an anatomical variety of normal tissues in the oral cavity. Previous work from our group 

has demonstrated that HSI can distinguish amongst normal tissues in the oral cavity, such 

as stratified squamous epithelium, normal salivary gland, and skeletal muscle [179]. 

 In this large study of 82 patients, we perform tumor detection in 200 thyroid tissue 

specimens from 76 patients in inter-patient testing experiments, and salivary gland tumor 

detection was investigated using 16 salivary gland tissue specimens from 6 patients. This 

is the most comprehensive study to date of tumor detection in thyroid and salivary glands 

to thoroughly assess the feasibility of label-free, non-contact, and non-ionizing HSI-based 

imaging modalities for computer aided tumor detection. The outcomes of this work will 

help guide future HSI and autofluorescence studies and determine the specific benefits that 

HSI may offer for tumor detection in thyroid and salivary gland tissues. 
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5.2 Methods 

 In this study, ex-vivo tissue specimens from the thyroid and salivary glands were 

imaged with optical imaging modalities; histological sections were prepared from the 

specimens for ground truths; patients were categorized and used to train, validate, and test 

deep learning algorithms; and performance was calculated to compare the methods. 

5.2.1 Ex-vivo Surgical Specimen Dataset 

 For this study, 216 surgical specimens were acquired from 82 patients undergoing 

routine resection of thyroid tumors or salivary gland tumors at the Emory University 

Hospital Midtown, who were recruited by giving written, informed consent to an 

institutional research coordinator. Table 5-1 shows the categorization of patients and tissue 

specimens. All patient data were de-identified by the research coordinator. The Institutional 

Review Board (IRB) of Emory University approved all research protocols and imaging 

methods. Three types of fresh, ex-vivo surgical specimens were obtained from the surgical 

pathology department during clinical service. We aimed to acquire a sample of normal 

tissue (N), tissue from the primary tumor (T), and a specimen of the tumor-involved margin 

that contains both tumor and normal tissue (TN), all of which were confirmed by 

histopathological analysis. The size of the tissue specimens was approximately 10×6×2 

mm on average. Additionally, the final clinical pathology report was made available after 

de-identification. 
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Table 5-1. Number of patients and tissue specimens for this study. Patients are divided by 

cohort and sub-group. The tissue specimens are categorized into tumor (T), tumor-normal 

margin (TN), and normal (N). 

Group Patients 
Number of Tissue Specimens 

T TN N 

Thyroid Tumor Cohort     

 Papillary Thyroid Carcinoma (PTC) 54 41 38 59 

 Medullary Thyroid Carcinoma (MTC) 

& Insular Carcinoma 
6 4 6 8 

 Follicular Adenoma & Carcinoma 13 14 10 12 

 Poorly Differentiated Carcinoma 3 4 2 2 

Salivary Tumor Cohort     

 Parotid Gland Tumor 3 2 3 3 

 Other Salivary Gland Tumor 3 4 2 2 

Total 82 69 61 86 

 

 The tissue samples collected for this study were categorized by an experienced 

pathologist into six groups according to tumor subtype, divided into two broad cohorts: 

thyroid tumors and salivary gland tumors. The thyroid tumor cohort was comprised of 200 

tissue specimens from 76 patients. The malignant tumors included in this cohort were PTC 

(N=54), MTC (N=5), insular carcinoma (N=1), follicular carcinoma (N=8), and poorly 

differentiated thyroid carcinoma (N=3). The benign tumors of the thyroid were follicular 

adenoma (N=5). The only thyroid cohort tissues excluded from this study were six patients 

with benign thyroid hyperplasia/goiter.  

 The cohort of salivary gland tumors was comprised of 16 tissue specimens from 6 

patients. Two patients had benign pleomorphic adenoma (N=2) of the parotid gland. Four 

patients had malignant tumors of the salivary glands: mucoepidermoid carcinoma (N=1), 

salivary duct carcinoma of the parotid gland (N=1), PLGA of the hard palate (N=1), and 
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adenoid cystic carcinoma (N=1). The patient demographics and relevant cancer properties 

are shown in Table 5-2. 

Table 5-2. Patient demographics and cancer properties for the patients recruited for this 

study. Intraoperative pathologist consultations (IPCs) using intraoperative frozen section 

(FS) analysis are also reported. 

 Property  Number Percentage 

Demographics   

 Average Age (years) 49.7 - 
 Male 28 34% 
 Female 54 66% 
 Tobacco History 26 32% 
Ethnicity   

 White 47 57% 
 Black 19 24% 
 Asian 6 7% 
 Other / Unknown 10 12% 
Primary Location / Tumor Type   

Thyroid Gland   
 Papillary Carcinoma 54 66% 
 Follicular Carcinoma 8 10% 
 Follicular Adenoma 5 6% 
 Medullary Carcinoma 5 6% 
 Poorly Differentiated Carcinoma 3 4% 
 Insular Carcinoma 1 1% 
Salivary Gland   
 Pleomorphic Adenoma 2 2% 
 Adenoid Cystic Carcinoma 1 1% 
 Mucoepidermoid Carcinoma 1 1% 
 Adenocarcinoma (PLGA) 1 1% 
 Salivary Duct Carcinoma 1 1% 
Cancer Stage   

 pT1 19 23% 
 pT2 19 23% 
 pT3 26 32% 
 pT4 9 11% 
 Avg. T Size (cm) 3 - 
 N+ Status 33 40% 
IPC (Averages)   

 Surgeries with IPC 19 23% 
 IPC/Surgery 1.6 - 
 Tissues/Surgery 1.1 - 
 Time/IPC (min) 19.1 - 
 Time/Tissue (min) 17.3 - 
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5.2.2 Optical Imaging Modalities 

 To assess the ability of HSI for tumor detection, several other optical imaging 

modalities were acquired for comparison, including both label-free and fluorescent dye-

based methods. It was hypothesized that HSI would outperform fluorescence methods due 

to lack of sufficient target specificity in 2-NBDG and proflavin. In the following sections, 

the image acquisition systems are described for hyperspectral reflectance imaging, HSI-

synthesized RGB multiplex imaging, autofluorescence imaging, and two fluorescent dye-

based imaging techniques: 2-NBDG and proflavin. 

5.2.2.1 Hyperspectral Imaging 

 A CRi Maestro HS system (Perkin Elmer Inc., Waltham, Massachusetts) was used 

to acquire HSI of the ex-vivo specimens. The HS system performs spectral scanning from 

450 to 900 nm using a Xenon light source and liquid crystal tunable filter (LCTF) with 5 

nm spectral resolution [33, 239]. The image size of the HSI was 1040×1392×91 pixels 

(height×width×spectral bands), and the corresponding specimen-level spatial resolution 

was 25 µm per pixel. Acquisition time for an HSI was approximately one minute.  

 The raw HS data (Iraw) were normalized band-by-band (λ) by subtracting the 

inherent dark current of the sensor and dividing by a white reference disk for all pixels 

(x,y), according to the following equation. 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦, 𝜆) =
𝐼𝑟𝑎𝑤(𝑥, 𝑦, 𝜆) − 𝐼𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦, 𝜆)

𝐼𝑤ℎ𝑖𝑡𝑒 𝑟𝑒𝑓(𝑥, 𝑦, 𝜆) − 𝐼𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦, 𝜆)
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The average spectral signatures after white-dark calibration are shown for all groups 

included in this paper by cohort in Figure 5-1. 

 

 

Figure 5-1. Average hyperspectral signatures for the tissues in the thyroid cohort (a) and 

the salivary cohort (b). 

5.2.2.2 HSI-Synthesized RGB Images 

 A multiplex image is a synthetic composite image generated from a hyperspectral 

image. For this work, several three-band (RGB) multiplex images were synthesized from 

the normalized reflectance HSI hypercubes. The first synthetic RGB was generated from 

the HSI by applying a Gaussian kernel in each color region, which is referred to as HSI-

synthesized Gaussian RGB composite. The second RGB image was constructed from 

human color perception curves originally proposed by Judd et al. 1951 and expanded by 

Vos 1978 [240]. For some tissues, a standard RGB image was also captured for comparison 

by an RGB camera. Figure 5-2 shows a representative surgical tissue specimen of thyroid 

cancer from an RGB-captured camera, HSI-synthesized Gaussian RGB multiplex, and 

HSI-synthesized RGB with human eye perception. 
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 In this paper, we use HSI to simulate three-band images using RGB multiplex 

imaging. However, the sensors of RGB cameras typically employ the Bayer filter [241, 

242] for adapting RGB color spectrums similar to human-eye. While the spectrum of blue 

and green are typically consistent, different RGB camera sensor types have differing 

sensitivity to the red channel components between 400 and 500 nm [241, 242]. Therefore, 

for a subset of thyroid tumor specimens, the component of red channel response between 

400 and 500 nm was manipulated to simulate if this would have an effect on performance 

from the HSI-synthesized human eye RGB multiplex images. 

 

Figure 5-2. A representative specimen of thyroid cancer. (a) Left to right: RGB image from 

standard RGB camera; HSI-synthesized RGB human-eye multiplex image made from 

reflectance HSI using Vos et al. 1978 method; HSI-synthesized Gaussian RGB multiplex 

image made from reflectance HSI. (b) Spectral signatures of human-eye color perception 

of red (R), green (G), and blue (B) colors proposed by Vos et al. 1978. (c) Gaussian kernels 

used for generating Gaussian RGB multiplex images. 

5.2.2.3 Autofluorescence imaging 

 Autofluorescence imaging uses the emission from intrinsic fluorophores in 

biological tissue that are stimulated to fluoresce by external excitation light at specific 

wavelengths. The autofluorescence images were captured using a 455 nm excitation source 
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and a 490 nm long-pass filter using the CRi Maestro imaging system. The long-pass filter 

removes any of the external light from the source that would be reflected into the image 

and allows capturing images of emission-only photons, according to Stokes’ theorem. The 

autofluorescence images were acquired from 500 to 720 nm in 10 nm increments to 

produce a hypercube with 23 spectral bands and final size of 1040×1392×23 pixels. 

5.2.2.4 2-NBDG Imaging 

 A fluorescently tagged glucose molecule, 2-deoxy-2-[(7-nitro-2,1,3-

benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG), is a dye that targets cancer regions by 

producing a stronger signal measured from regions with higher metabolic glucose uptake. 

After the hyperspectral and autofluorescence imaging methods described above, the tissues 

were incubated for 20 minutes in a 160 µM 2-NBDG solution (Cayman Chemical, Ann 

Arbor, MI, USA) at 37 degrees Celsius, quickly rinsed in 1× phosphate buffered solution 

(PBS) to remove excess dye, and fluorescence imaging was performed using the CRi 

Maestro. The images were acquired with the same excitation light source at 455 nm and a 

long-pass filter at 490 nm from 500 to 720 nm in 10 nm increments, producing a hypercube 

that has 23 spectral bands. 

5.2.2.5 Proflavin Imaging 

 The second dye used for fluorescence imaging was proflavin dye, which is 

unaffected by previous 2-NBDG dye because it has a significantly stronger optical signal 

comparatively. Proflavin fluorescent dye binds to DNA and thus allows visualization of 

nuclear morphology, which can improve the ability of machine learning based cancer 

detection methods [213]. Keratin is also a target of proflavin dye, but this should not affect 
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the glandular tissues involved in this study [213, 214]. For proflavin imaging, the tissue 

samples were incubated for 2 minutes in a 0.01% proflavin solution (Sigma Aldrich, St. 

Louis, MO, USA) at room temperature, and the tissues were rinsed in PBS before imaging 

with the CRi Maestro. The images were acquired with an excitation light source at 455 nm 

and a long-pass filter at 490 nm from 500 to 720 nm in 10 nm increments, producing a 

hypercube that contains 23 spectral bands. 

5.2.3 Histological Ground Truth 

 The ground truths for the optical imaging modalities were achieved using digitized 

histology imaging. After acquiring all images, the tissue specimens were inked at the top, 

bottom, left and right edges, and back surface of the tissue to identify tissue orientation in 

histological sections. Tissues were then fixed in formalin, paraffin embedded, and 

sectioned with a microtome, and 5 μm slices were made from the surface that was optically 

imaged. The first high quality slice was kept to serve as the histology ground truth, 

processed with hematoxylin and eosin staining, and digitized using whole-slide scanning 

at 40× objective [243]. A board-certified pathologist with expertise in head and neck 

pathology annotated the tumor and normal areas on the digital histology images.  

 A binary mask was made of the contoured digital histology images, which served 

as the ground truth for the optical imaging modalities. Due to tissue deformations during 

histological processing and slide preparation, the histology ground truth masks needed to 

be registered to the gross-level optical images. The digital histology slide was registered in 

a semi-automated method according to a previously established pipeline of affine, land-

mark, and deformable registration to the gross-level HSI [184, 216]. The transformation 
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was applied to the binary histology mask, and thus a ground truth mask was generated 

matching the gross-level optical images of the tissue specimens. 

5.2.4 Experimental Design 

 The deep learning experimental designs involved training, validation, and testing. 

However, for the two cohorts, thyroid tumors (N=76 patients) and salivary tumors (N=6 

patients), there were different designs of the data partitioning, which was required because 

of the significant differences in sample size. Therefore, the thyroid cohort is used to 

produce fully-independent inter-patient results. However, the salivary cohort is used to 

produce intra-patient training and testing, as described below in detail. 

5.2.4.1 Thyroid Tumors 

 Tumor detection of the thyroid gland was performed in fully-independent patients, 

divided across 5 folds. Each fold served as the fully-independent testing group, while 

training and validation was performed on the patients in the remaining 4 folds, as depicted 

in Figure 5-3. This design was selected to allow test-level performance metrics for all 76 

thyroid patients. 

 

Figure 5-3. Schematic depicting the experimental design of fully-independent training, 

validation, and testing paradigms for the 76 patient thyroid tumor cohort. 
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5.2.4.2 Salivary Gland Tumors 

 Tumor detection in the limited sample size of salivary gland tumors was performed 

using intra-patient experiments. Training and validation was performed on the patients’ 

primary tumor (T) and normal (N) tissues, and testing was performed on the tumor-normal 

(TN) margin tissue. Figure 5-4 shows a schematic diagram of the training and testing 

paradigm. The salivary gland cohort was separated into tumors of the parotid gland (N=3 

patients) and other salivary glands (N=3), as shown in Table 5-1. 

 

Figure 5-4. Flow diagram of intra-patient experiments of the salivary gland, with 

representative tumor of the parotid gland. Intra-patient T and N tissues were used for MLP 

(multilayer perceptron) training, and TN tissue specimens were used for testing. The 

histological ground truth is shown with tumor contour in green. The predicted tumor heat-

map overlay onto the RGB image is shown with tumor predictions (red) and normal 

predictions (green). Areas of specular glare in the heat-map are not classified, and the 

ground-truth tumor contour is in blue. 

5.2.5 Convolutional Neural Network 

 For thyroid tumor detection using 200 tissue specimens from 76 patients, a 

convolutional neural network (CNN) was developed for the effective classification of 

thyroid tissue into tumor and normal using a patch-based approach. The inception-v4 CNN 

architecture [217] was selected because it is one of the top performing CNNs on standard 

tasks like Image-Net, yet has a manageable number of hyperparameters. HSI data has 

several unique challenges due to data size. Therefore, the CNN required modification for 
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HS data pre-processed into image-patches of size 25×25×C pixels, where C represents the 

number of spectral bands. The first convolutional layers were modified for the smaller 

patch-size necessitated by HS data, and the operating resolution in the modular inception 

blocks was reduced to allow more efficient training and classification using the CNN. 

Additionally, squeeze-and-excitation modules were added to increase the performance of 

the CNN [244]. The implemented CNN architecture schematic is detailed in Figure 5-5.  

 

Figure 5-5. Schematic diagram of the modified inception v4 CNN architecture. The CNN 

was customized to operate on the 25×25×91 patch-size selected. The receptive field size 

and number of convolutional filters is shown at bottom of each inception block. The 

convolutional kernel size used for convolutions is shown in italics inside each convolution 

box. Squeeze-and-excitation modules were added to the CNN to increase performance. 

 Image patches (25×25×C) were generated using a sliding window approach with a 

stride of 13 pixels, and the data pre-processing of HSI was performed in MATLAB 

(MathWorks, Inc., Natrick, MA). All deep learning programming was done in the 

TensorFlow python software package [192] on an Ubuntu machine and accelerated with 

CUDA execution on Titan-XP NVIDIA GPUs (Nvidia Corp., Santa Clara, CA). The CNN 

loss function was cross-entropy, the optimizer utilized was Adadelta with an initial learning 

rate of 1.0, and validation performance was calculated every 2 epochs of training data. 
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Training each CNN model was performed for 14 epochs of 8× augmented (reflections and 

rotations) training data, which took about 23 hours to train. Deployment of a fully-trained 

CNN model on a single GPU to classify a new thyroid tissue specimen, which consisted of 

hundreds of patches, was 20 ± 8 seconds (avg. ± st. dev.) for all imaging modalities. The 

heatmaps were produced by averaging the results of overlapping pixel regions in image-

patches, since the 25×25 patches were produced with a stride of 13 pixels, which was used 

to produce a smoother and less coarse final result. 

5.2.5.1 Multilayer Perceptron 

 For salivary gland tumor detection of 16 tissue specimens from 6 patients, a 

simplified artificial neural network, called a multilayer perceptron (MLP), was used for 

intra-patient detection with spectral information only. The MLP consisted of a 91 unit 

spectral vector input, a single hidden layer with 128 neurons, and an output layer of 2 nodes 

(normal or tumor). This simplified MLP was applied only to the salivary gland tumor 

cohort and selected to limit overfitting in this small dataset. The salivary gland cohort was 

separated into parotid gland tumors (N=3 patients) and other salivary gland tumors (N=3 

patients).  

 The spectral signatures of tissue were extracted by local averaging of 5×5 pixel 

blocks to reduce noise. Image pre-processing was used to remove the specular glare pixels 

from both training and testing. For each group, the normal (N) and tumor-only (T) 

specimens’ spectra were used for training (85%) and a subset for validation (15%), and the 

tumor-normal (TN) margin tissue spectra was used for testing. For the parotid group and 

other salivary gland group separately, all patients’ training samples were combined into 
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one training group (6 tissues), and the three TN test specimens were classified. Training 

was performed on the order of a few minutes, and testing was produced in about one 

second. 

5.2.6 Performance Evaluation 

 The principal evaluation metric used for this study was area under the curve (AUC) 

of the receiver operator curve (ROC). The AUC score was selected because it is robust to 

class imbalances within tissues and provides an estimate of performance at all possible 

thresholds of separating the normal and tumor classes. Additionally, the accuracy, 

sensitivity, and specificity were calculated and reported using the tumor probability 

threshold from the validation data. All results were calculated on a tissue specimen level 

and averaged. Additionally, for the final testing results of both cohorts, the 10 pixels at the 

edge of tissue, corresponding to 0.25 mm, were excluded from performance calculations. 

The imaging protocol for ex-vivo tissue specimens was performed using a flat imaging 

surface, so the tissue edges created unnatural curvature where the tissue was too thin to 

provide an adequate imaging signal. Statistical significance was calculated for the test 

results using Student’s t-test and a 0.05 p-value threshold. 

5.3 Results 

5.3.1 Thyroid Tumor Detection 

 Tumor detection for the thyroid cohort with all cancer types combined (N=76) 

demonstrated that the HSI-synthesized RGB multiplex images generated from the HSI 

were the best performing results in terms of average AUC scores with 0.89 and 0.90 for 
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HSI-synthesized Gaussian RGB multiplex and the HSI-synthesized human-eye RGB 

multiplex, respectively. HSI performed with an average AUC score of 0.86. Full results of 

thyroid tumor detection by AUC score, accuracy, sensitivity, and specificity for all imaging 

methods are shown in Table 5-3 and separated by cancer type.  

Table 5-3. Performance results of the optical imaging modalities for the thyroid tumor 

cohort (average ± SEM). The best performing modality for each groups’ evaluation metrics 

is bolded. 

    AUC Accuracy Sensitivity Specificity 

HSI 

All Thyroid Tumors (N=82) 0.86 ± 0.02 78 ± 2% 80 ± 3% 74 ± 3% 

PTC (N=54) 0.86 ± 0.02 76 ± 2% 79 ± 3% 71 ± 4% 

MTC & Insular Ca. (N=6) 0.81 ± 0.09 85 ± 5% 85 ± 5% 72 ± 11% 

Follicular Ad. & Ca. (N=13) 0.90 ± 0.04 80 ± 4% 80 ± 7% 82 ± 5% 
Poorly Diff. Ca. (N=3) 0.90 ± 0.08 81 ± 15% 73 ± 23% 96 ± 4% 

Auto-

fluorescence 

All Thyroid Tumors (N=82) 0.85 ± 0.02 76 ± 2% 83 ± 2% 68 ± 3% 
PTC (N=54) 0.81 ± 0.03 72 ± 2% 79 ± 3% 62 ± 4% 
MTC & Insular Ca. (N=6) 0.86 ± 0.06 80 ± 5% 83 ± 7% 78 ± 6% 

Follicular Ad. & Ca. (N=13) 0.95 ± 0.02 87 ± 3% 93 ± 3% 81 ± 5% 
Poorly Diff. Ca. (N=3) 0.98 ± 0.01 95 ± 1% 95 ± 3% 93 ± 1% 

2-NBDG Dye 

All Thyroid Tumors (N=82) 0.86 ± 0.02 78 ± 2% 75 ± 3% 80 ± 3% 
PTC (N=54) 0.84 ± 0.02 76 ± 2% 72 ± 3% 79 ± 3% 
MTC & Insular Ca. (N=6) 0.84 ± 0.05 80 ± 5% 74 ± 8% 72 ± 10% 
Follicular Ad. & Ca. (N=13) 0.92 ± 0.03 84 ± 4% 82 ± 6% 89 ± 4% 
Poorly Diff. Ca. (N=3) 0.91 ± 0.08 79 ± 11% 81 ± 15% 89 ± 11% 

Proflavin 

Dye 

All Thyroid Tumors (N=82) 0.83 ± 0.02 75 ± 2% 68 ± 3% 80 ± 3% 

PTC (N=54) 0.82 ± 0.02 73 ± 2% 66 ± 4% 77 ± 4% 
MTC & Insular Ca. (N=6) 0.70 ± 0.08 71 ± 4% 60 ± 9% 71 ± 8% 
Follicular Ad. & Ca. (N=13) 0.91 ± 0.03 81 ± 4% 73 ± 7% 93 ± 2% 
Poorly Diff. Ca. (N=3) 0.98 ± 0.01 95 ± 2% 91 ± 5% 97 ± 2% 

HSI-

synthesized 

Gaussian-

RGB 

All Thyroid Tumors (N=82) 0.89 ± 0.02 79 ± 2% 77 ± 2% 82 ± 3% 
PTC (N=54) 0.87 ± 0.02 77 ± 2% 76 ± 3% 79 ± 4% 
MTC & Insular Ca. (N=6) 0.95 ± 0.03 88 ± 4% 91 ± 4% 82 ± 8% 
Follicular Ad. & Ca. (N=13) 0.90 ± 0.02 77 ± 3% 67 ± 6% 91 ± 2% 
Poorly Diff. Ca. (N=3) 0.98 ± 0.01 94 ± 3% 92 ± 4% 95 ± 4% 

HSI-

synthesized 

Human-Eye 

RGB 

All Thyroid Tumors (N=82) 0.90 ± 0.02 79 ± 2% 80 ± 2% 79 ± 3% 
PTC (N=54) 0.88 ± 0.02 78 ± 2% 80 ± 3% 76 ± 4% 
MTC & Insular Ca. (N=6) 0.96 ± 0.02 88 ± 3% 93 ± 3% 85 ± 6% 
Follicular Ad. & Ca. (N=13) 0.92 ± 0.02 76 ± 3% 68 ± 7% 86 ± 4% 
Poorly Diff. Ca. (N=3) 0.99 ± 0.01 91 ± 3% 92 ± 3% 93 ± 5% 

 

 The average and median AUC scores are presented in Figure 5-6A and B across all 

thyroid tumor types with statistical significance. Combining all thyroid tumors, both 
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implementations of three-band, HSI-synthesized RGB multiplex imaging (average AUC 

score of 0.89 for Gaussian-RGB multiplex and 0.90 for human-eye RGB multiplex) 

outperformed autofluorescence (0.85 AUC score), 2-NBDG (AUC score of 0.86), and 

proflavin (0.83 AUC score) to a degree of statistical significance (all p<0.05). Additionally, 

HSI-synthesized human-eye RGB multiplexing also significantly outperformed HSI 

(p<0.05). For the PTC sub-group (N=54), both HSI-synthesized RGB multiplex images 

statistically outperformed autofluorescence, 2-NBDG, and proflavin (all p<0.05). For the 

MTC group (N=6), both HSI-synthesized RGB multiplex images significantly 

outperformed 2-NBDG and proflavin (all p<0.05). For the follicular tumor group, 

autofluorescence outperforms the other methods in AUC score, but the difference is not 

significant (p>0.05). Lastly, poorly differentiated thyroid carcinomas were classified with 

the highest AUC score from HSI-synthesized human-eye RGB multiplex imaging, but not 

significantly (p>0.05). 

 

Figure 5-6. Average and median AUC scores from thyroid tumor detection. (a) average 

AUC scores for thyroid tumor detection across all tissue specimens grouped by tumor 

subtype; statistical significance (*, p<0.05) is shown above. (b) median AUC scores of 

tumor subtype detection. 

 The different imaging modalities and respective probability heat-maps for tumor 

detection are shown in Figure 5-7 for all groups of thyroid tumors. As can be seen, HSI 
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shows the most consistent heat-maps around regions of specular glare, compared to the 

HSI-synthesized RGB multiplex methods. As shown in Figure 5-6B, the median AUC 

scores show that HSI (0.95) and the two HSI-synthesized RGB multiplex methods (0.95 

and 0.96) have approximately equivalent median performance for combined thyroid 

tumors.  

 

Figure 5-7. Representative tissue images and corresponding classification heat-maps from 

all modalities from patients with thyroid carcinoma. Columns from left to right: histology, 

HSI with heat-map, HSI-synthesized Gaussian-RGB multiplex with heat-map, HSI-

synthesized  human-eye RGB multiplex with heat-map, autofluorescence with heat-map, 

2-NBDG dye image with heat-map, Proflavin dye image with heat-map. Rows from top to 

bottom: papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), 

follicular thyroid carcinoma, and poorly differentiated thyroid carcinoma. The contours in 

white (in heat-maps) and green (on histology) outline the cancerous regions. Predicted 

tumor heat-maps range from dark blue (predicted normal) to dark red (predicted cancer). 

 The median AUC scores are substantially greater than the averages, which indicates 

that the distribution of performance results tends to be more accurate than the average 

reflects. Histogram analysis of percent difference of the HSI and HSI-synthesized RGB 

multiplex imaging methods shows that HSI-synthesized RGB outperforms HSI in a 
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relatively small number of tissue specimens, which causes the average AUC scores for 

HSI-synthesized RGB multiplexing to be greater than HSI. Figure 5-8A and C show the 

histograms of percent difference in tissues from HSI to both Gaussian-RGB multiplex and 

the human-eye RGB multiplex, respectively. Additionally, Figure 5-8B and D show the 

tissue specimens with the largest differences in AUC scores compared to HSI, where HSI-

synthesized RGB multiplexing still works quite well.  

 

Figure 5-8. Differences in AUC score performance comparing HSI against HSI-

synthesized Gaussian-RGB multiplex and HSI-synthesized human-eye RGB multiplexing. 

(a) Histogram of percent difference in AUC scores of tissue specimens between HSI and 

HSI-synthesized Gaussian-RGB multiplex imaging. The arrows show the bins that contain 

the patient specimens shown in the right panels, which are the two worst performing 

tissues. (b) RGB image of tissue specimen with large difference in AUC score performance 

between heat-maps produced from HSI, HSI-synthesized Gaussian multiplex, and HSI-

synthesized human-eye multiplex image. (c) Histogram of percent difference in AUC 

scores of tissue specimens between HSI and HSI-synthesized human-eye RGB multiplex 

imaging. The arrows show the bins that contain the patient specimens shown in the right 

panels, which are the two worst performing tissues. (d) RGB image of the tissue specimen 

with the largest difference in AUC score performance between heat-maps produced from 

HSI, HSI-synthesized Gaussian multiplex, and HSI-synthesized human-eye multiplex 

image. The tumor margin is delineated in white. 

 



 129 

 The three-band HSI-synthesized RGB multiplex images from HSI are meant to 

represent RGB imaging. However, these multiplex images are still constructed from HSI 

data. Standard RGB camera sensors have different responses to the component of the red 

channel between 400 and 500 nm. Therefore, for fold 1 of the HSI-synthesized human-eye 

RGB multiplex thyroid tumor detection, the red channel component from 400 to 500 nm 

was multiplied by half and by zero, and two more CNNs were trained. The results are 

plotted in Figure 5-9. The original human-eye multiplex result for fold 1 using the original 

400-500 nm red component was an AUC score of 0.90 for thyroid tumor detection. 

Completely eliminating the 400-500 nm red component (by multiplying by zero) in human-

eye multiplex still resulted in an equivalent AUC score of 0.90 for thyroid tumor detection 

(p>0.05). Lastly, an equivalent AUC score of 0.89 for thyroid tumor detection was obtained 

when the 400-500nm red component was set to half the original value for human eye 

multiplexing (p>0.05). 

 

Figure 5-9. AUC score results with 95% confidence interval from 1 fold of the testing data 

comparing different methods of constructing HSI-synthesized RGB multiplex images. Left 

to right: Standard HSI; Gaussian-RGB from HSI; original HSI-synthesized human-eye 

RGB from HSI; human-eye RGB from HSI synthesized with half of the 400-500 nm red 

component; human-eye RGB from HSI synthesized with zero of the 400-500 nm red 

component.  
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 To further investigate how CNN methods can utilize HSI and the relevant 

wavelengths for correctly predicting normal and thyroid tissues, we incorporated the 

gradient class-activated maps (grad-CAM) algorithm [218]. Briefly, the method is used for 

tracing the most relevant gradients from the input data to the class of interest, either normal 

or tumor, which is used to infer spectral feature saliency. The mean spectral signatures and 

class-activated gradients were averaged for 89 tissues that were correctly classified with 

high AUC scores and separated into normal thyroid and tumor (Figure 5-10). As can be 

observed in Figure 5-10A, the salient spectral features for correctly classifying normal 

thyroid tissues were from 570-700 nm. In Figure 5-10B, the most salient spectral features 

for correctly classifying thyroid tumors were also in the range of 550-700 nm, with 

additional bands near 500 and 750 contributing some lesser importance for classification.  

 

 

Figure 5-10. Mean spectral signatures of correctly-classified normal thyroid tissues (a) and 

thyroid tumors (b). The saliency of spectral features is identified below each plot using the 

grad-CAM technique. Red hues represent the most important features for correctly 

predicting each tissue class, and blue color hues represent less important wavelengths for 

correctly predicting each class. 
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5.3.2 Salivary Gland Tumor Detection 

 The intra-patient tumor detection results of the salivary gland tumors cohort are 

separated into parotid gland tumors and other salivary gland tumors. For parotid gland 

tumors, HSI was the best performing imaging modality with an AUC score of 0.92, 

accuracy of 88%, sensitivity of 90%, and specificity of 79% (all differences were not 

significant, p>0.05). For tumors of other salivary glands, autofluorescence was the best 

performing imaging modality with an AUC score of 0.80, accuracy of 84%, sensitivity of 

77%, and specificity of 85% (all differences were not significant, p>0.05). The full results 

are shown in Table 5-4.  

Table 5-4. Performance results from all optical imaging modalities for the salivary tumor 

cohort, separated by salivary gland group (average ± SEM). The best performing modality 

for each groups’ evaluation metrics is bolded. 

Group Imaging AUC Accuracy Sensitivity Specificity 

Parotid 

(N=3) 

HSI 0.92 ± 0.04 88 ± 4% 90 ± 4% 79 ± 7% 

Autofluorescence 0.60 ± 0.30 87 ± 2% 99 ± 1% 26 ± 26% 

2-NBDG Dye 0.77 ± 0.12 87 ± 2% 97 ± 3% 31 ± 31% 

 Proflavin Dye 0.64 ± 0.32 89 ± 2% 96 ± 2% 54 ± 27% 
 Gaussian-RGB 0.66 ± 0.15 81 ± 5% 97 ± 2% 38 ± 24% 
 Human-Eye 0.72 ± 0.02 78 ± 15% 95 ± 5% 35 ± 20% 

Other 

Salivary 

(N=3) 

HSI 0.59 ± 0.14 76 ± 12% 55 ± 29% 85 ± 15% 

Autofluorescence 0.80 ± 0.14 84 ± 10% 77 ± 13% 85 ± 6% 

2-NBDG Dye 0.52 ± 0.08 76 ± 11% 49 ± 28% 84 ± 16% 

Proflavin Dye 0.62 ± 0.10 77 ±11% 60 ± 30% 78 ± 22% 

 Gaussian-RGB 0.45 ± 0.03 70 ± 10% 62 ± 31% 57 ± 43% 
 Human-Eye 0.78 ± 0.15 84 ± 9% 76 ± 12% 87 ± 6% 

 

5.4 Discussion 

 The results of this extensive study suggest that label-free HS-based imaging and 

autofluorescence does indeed outperform the two fluorescent dye-based imaging methods 
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tested here for thyroid tumor detection, but not to a significant degree. Interestingly, we 

discovered that HSI-synthesized RGB multiplex imaging significantly outperforms all 

imaging methods tested for thyroid tumor detection, including HSI and autofluorescence 

(p<0.05). For salivary tumor detection, HSI performs best in the parotid gland and 

autofluorescence in performs best in other salivary glands, but no difference was 

significant. As can be observed in Figure 5-6B, one main conclusion from this work is that 

with sufficiently large datasets, many different optical imaging modalities can be used to 

create deep learning algorithms for tumor detection with median AUC scores of 0.90 and 

upwards. This phenomenon can be seen specifically for the thyroid tumors combined 

cohort. 

 The experiments for the thyroid cohort and salivary gland cohort were processed 

separately in different ways because of vastly different numbers of tissue samples 

collected. The thyroid tumor cohort experiment was investigated in fully-independent 

testing patients because 200 tissue specimens from 76 patients were available. The salivary 

tumor cohort was comprised of only 16 tissues from 6 patients, so intra-patient experiments 

were performed using tumor-only and normal specimens for training and testing on tumor-

normal margin tissues.  

 The hypothesis that HSI-based methods would outperform fluorescent dye-based 

methods was upheld in the thyroid tumor combined category, largely because it was 

supported in the PTC group (N=54), which comprises 71% of cases. However, it was not 

supported for MTC, FTC, and poorly differentiated thyroid carcinoma groups (all p values 

were not significant). Additionally, the thyroid tumor detection results show that HSI-

synthesized human-eye RGB multiplex imaging made from HSI statistically outperforms 
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reflectance-based HSI. Despite differences in average AUC scores, the median values are 

equivalent around 0.95 (see Figure 5-6). Exploring this phenomenon further in Figure 5-8, 

it was demonstrated that only a few tissues differ between the HSI and HSI-synthesized 

RGB multiplex modalities. Moreover, the probability heat-maps from HSI seem to provide 

more consistent classification around regions of significant specular glare compared to the 

HSI-synthesized multiplex methods (Figure 5-7). These results are consistent with a 

previous study from our group that was limited to only 11 thyroid patients, in which RGB 

composite images (AUC score of 0.95) also outperformed HSI (AUC score of 0.92) [33]. 

 The purpose of the three-band HSI-synthesized multiplex images synthesized from 

HSI was to represent standard RGB imaging from a standard camera. However, these 

multiplex images are still constructed from HSI data. Additionally, there are differences in 

the spectral responses to the red channel component from 400-500 nm in standard RGB 

camera sensors. The impact of this red component value was studied, and no effect was 

observed in AUC score by altering these values for HSI-synthesized human-eye RGB 

multiplexing. To provide physical intuition for this conclusion, the grad-CAM method 

reveals that the most salient spectral features for correctly classifying normal thyroid 

tissues were from 570-700 nm, well above this range. Future studies are required to 

investigate if a standard RGB camera would indeed outperform HSI directly. Additionally, 

future work is needed to capture more thyroid tumor HSI data with higher spatial and 

spectral resolution HS cameras. It is possible that the spectral resolution of 5 nm in this 

LCTF spectral-scanning HS system was inadequate for this study.   
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5.5 Conclusion 

 In conclusion, this chapter presents the extensive study using 216 glandular tissue 

samples from all 82 patients with thyroid and salivary gland tumors in our acquired dataset 

for this thesis work to evaluate the performance of HSI for tumor detection of the thyroid 

and salivary glands. For comparison to HSI, the tissues were imaged with label-free 

autofluorescence and two fluorescent dyes, 2-NBDG and proflavin dye. Additionally, HSI-

synthesized three-band multiplex images, representing the human-eye response and 

Gaussian RGBs, were synthesized from HSI. Several CNNs were developed for tumor 

detection that perform with median AUC scores of 0.90 and higher for all imaging 

modalities in combined thyroid tumors. Investigating each group specifically, our results 

suggest that HSI-synthesized human-eye RGB multiplexing can classify thyroid tumors 

significantly better than HSI. In salivary glands, label-free HSI and autofluorescence may 

offer the best performance for tumor detection. The conclusions from this chapter 

demonstrate that HSI may aid surgeons and pathologists in tumor detection in glands. 
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CHAPTER 6. TISSUE SUB-COMPONENT CLASSIFICATION 

USING HSI 

  This chapter details the investigation of the ability for HSI to perform sub-

component analysis, beyond normal versus cancer, in a subset of the head and neck tissues. 

We developed a method to use HSI, a non-contact optical imaging modality, and 

convolutional neural networks (CNNs) to perform an optical biopsy of ex-vivo, surgical 

gross-tissue specimens, collected from 21 patients undergoing surgical cancer resection. 

Using a cross-validation paradigm with data from different patients, normal tissue from the 

upper aerodigestive tract can be sub-classified into squamous epithelium, muscle, and 

gland with an average AUC score of 0.94. After separately training on thyroid tissues, the 

CNN can discriminate between thyroid carcinoma and normal thyroid with an AUC score 

of 0.95 and 92% accuracy/sensitivity/specificity. Moreover, further analysis was 

performed, detecting medullary thyroid carcinoma from benign multi-nodular goiter 

(MNG) with an AUC of 0.93, and papillary thyroid carcinoma from MNG with an AUC 

of 0.91. These preliminary results demonstrate that an HSI-based optical biopsy method 

using CNNs can provide multi-category diagnostic information for normal and cancerous 

head and neck tissue. 

6.1  Introduction 

 Cancers of the head and neck are the sixth most common cancer world-wide, 

including cancers that are predominately of squamous cell origin, for instance the oral 

cavity, nasopharynx, pharynx, and larynx, and others like carcinomas of the thyroid gland 
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[139]. Major risk factors include consumption of tobacco and alcohol, exposure to 

radiation, and infection with human papilloma virus (HPV) [140, 245]. Approximately 

90% of cancer at sites including the lips, gums, mouth, hard and soft palate, and anterior 

two-thirds of the tongue are squamous cell carcinoma (SCC) [2]. The diagnostic procedure 

of SCC typically involves physical examination and surgical evaluation by a physician, 

tissue biopsy, and diagnostic imaging, such as PET, MRI, or CT. Patients with SCC tend 

to present with advanced disease, with about 66% presenting as stage III or IV disease, 

which requires more procedures for successful treatment of the patient [141]. The standard 

treatment for these cancers usually involves surgical cancer resection with potential 

adjuvant therapy, such as chemotherapy or radiation, depending on the extent, stage, and 

location of the lesion. Successful surgical cancer resection is a mainstay treatment of these 

cancers in order to prevent local disease recurrence and promote disease free survival [4].  

 Previous studies have investigated the optical properties of normal and malignant 

tissues from areas of the upper aerodigestive tract [246-249]. Muller et al. acquired in-vivo 

reflectance-based spectroscopy from normal, dysplasia, inflammation, and cancer sites in 

the upper aerodigestive tract from patients with SCC to extract tissue parameters that yield 

biochemical or structural information for identifying disease. Varying degrees of disease 

and normal tissue could be distinguished because of their different optical properties that 

were believed to be related to collagen and nicotinamide adenine dinucleotide (NADH) 

[246]. Similarly, Beumer et al. acquired reflectance spectroscopy measurements from 450 

to 600 nm from patients with SCC and implemented an inverse Monte Carlo method to 

derive oxygenation-based tissue properties from the optical signatures, which were found 

to be significantly different in malignant and non-malignant tissues [249]. 
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 Hyperspectral imaging (HSI) is a non-contact, optical imaging modality capable of 

acquiring a series of images at multiple discrete wavelengths, typically on the order of 

hundreds of spectral bands. Preliminary research demonstrates that HSI has potential for 

providing diagnostic information for a myriad of diseases, including anemia, hypoxia, 

cancer detection, skin lesion and ulcer identification, urinary stone analysis, enhanced 

endoscopy, and many potential others in development [14-25]. Supervised machine 

learning and artificial intelligence algorithms have demonstrated the ability to classify 

images after being allowed to learn features from training or example images. One such 

method, convolutional neural networks (CNNs), have demonstrated astounding 

performance at image classification tasks due to their capacity for robust handling of 

training sample variance and ability to extract features from large training data sizes [26, 

27]. 

 The need for an imaging modality that can perform diagnostic prediction could 

potentially aid surgeons with real-time guidance during intra-operative cancer resection. 

This study aims to investigate the ability of HSI to classify tissues from the thyroid and 

upper aerodigestive tract using convolutional neural networks. This work was initially 

presented as a conference proceedings and oral presentation [171]. First, a simple binary 

classification is performed, i.e. cancer versus normal, and second, multi-class sub-

classification of normal upper aerodigestive tract samples is investigated. If proven to be 

reliable and generalizable, this method could help provide intra-operative diagnostic 

information beyond palpation and visual inspection to the surgeon’s resources, perhaps 

enabling surgeons to achieve more accurate cuts and biopsies, or as a computer-aided 

diagnostic tool for physicians diagnosing and treating these types of cancer. 
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6.2 Methods 

 To investigate the ability of HSI to perform optical biopsy, we recruited patients 

with thyroid or upper aerodigestive tract cancers into our study, acquired and processed 

gross-level HSI of freshly excised tissue specimens, trained our convolutional neural 

network, and evaluated system performance. 

6.2.1 Experimental Design 

 In collaboration with the Otolaryngology Department and the Department of 

Pathology and Laboratory Medicine at Emory University Hospital Midtown, 21 head and 

neck cancer patients who were electing to undergo surgical cancer resection were recruited 

for our study to evaluate the efficacy of using HSI for optical biopsy [147, 170]. From these 

21 patients, a total of 63 excised tissue samples were collected. From each patient, 3 tissue 

samples were obtained from the primary cancer gross specimen in the surgical pathology 

department after the primary cancer had been resected. The specimens were selected to 

include tumor, normal, and a tissue at the tumor-normal interface. Each specimen was 

typically around 10 by 10 mm in area and 3 mm in depth. The collected tissues were kept 

in cold PBS during transport to the imaging laboratory where the specimens were scanned 

with a hyperspectral imaging system [33, 113].  

 Two regions of interest were used for this study: firstly, the upper aerodigestive 

tract sites, including tongue, larynx, pharynx, and mandible; and secondly, the thyroid and 

associated carcinomas. Head and neck squamous cell carcinoma (HNSCC) of the 

aerodigestive tract represented the first group, comprised of 7 patients. Normal tissue was 

obtained from all patients in the HNSCC group, and SCC was obtained from 6 of these 
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patients. In head and neck cancers, the non-cancerous tissues adjacent to SCC may be 

dysplastic, inflammatory, or keratinized, which could affect the hyperspectral imaging 

results. Therefore, the normal tissues included in this study were regions of normal tissue 

that were not dysplastic or heavily inflamed tissues. The thyroid group consisted of 14 

patients total and included one benign neoplasm and three malignant neoplasms: benign 

multi-nodular goiter (MNG, 3 patients), classical-type papillary thyroid carcinoma (cPTC, 

4 patients), follicular-type papillary thyroid carcinoma (fPTC, 4 patients), and medullary 

thyroid carcinoma (MTC, 3 patients), respectively.  

 After imaging with HSI, tissues were fixed in formalin, underwent haemotoxylin 

and eosin (H&E) staining, paraffin embedded, sectioned, and digitized. A certified 

pathologist with head and neck expertise confirmed the diagnoses of the ex-vivo tissues 

using the digitized histology slides in Aperio ImageScope (Leica Biosystems Inc, Buffalo 

Grove, IL, USA). The histological images serve as the ground truth for the experiment. 

6.2.2 Hyperspectral Imaging and Processing 

 The hyperspectral images were acquired using a CRI Maestro imaging system 

(Perkin Elmer Inc., Waltham, Massachusetts), which is comprised of a Xenon white-light 

illumination source, a liquid crystal tunable filter, and a 16-bit charge-coupled device 

(CCD) camera capturing images at a resolution of 1040 by 1,392 pixels and a spatial 

resolution of 25 µm per pixel [113, 145, 170, 183]. The hypercube contains 91 spectral 

bands, ranging from 450 to 900 nm with a 5 nm spectral sampling interval. The average 

imaging time for acquiring a single HSI was about 1 minute.  
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 The hyperspectral data were normalized at each wavelength (λ) sampled for all 

pixels (i, j) by subtracting the inherent dark current (captured by imaging with a closed 

camera shutter) and dividing by a white reference disk according to the following equation 

[145, 170]. The normalized HSI spectral signatures are plotted by class in Figure 6-1. 

𝐼𝑛𝑜𝑟𝑚(𝜆, 𝑖, 𝑗) =
𝐼𝑟𝑎𝑤(𝜆, 𝑖, 𝑗) − 𝐼𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝜆, 𝑖, 𝑗)

𝐼𝑤ℎ𝑖𝑡𝑒 𝑟𝑒𝑓(𝜆, 𝑖, 𝑗) − 𝐼𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝜆, 𝑖, 𝑗)
 

 

Figure 6-1. Normalized spectral signatures, which were averaged across tissues. Presented 

by anatomical location: (a) normal tissue and SCC of the upper aerodigestive tract, (b) 

normal, benign, and carcinoma of the thyroid. 

 Specular glare is created on the tissue surfaces due to wet surfaces completely 

reflecting incident light. Glare pixels do not contain useful spectral information for tissue 

classification and are hence removed from each HSI by converting the RGB composite 

image of the hypercube to grayscale and experimentally setting an intensity threshold that 

sufficiently removes the glare pixels, assessed by visual inspection. 

 A schematic of the classification scheme is shown in Figure 6-2. For binary cancer 

classification, the classes used are normal aerodigestive tissue versus SCC, and medullary 

and papillary thyroid carcinoma versus normal thyroid tissue. For multi-class classification 

of oral and aerodigestive tract tissue, squamous epithelium, skeletal muscle, and salivary 
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glands in the oral mucosa are used. For binary classifications of thyroid cancer, classical-

type papillary thyroid carcinoma, medullary thyroid carcinoma, and multi-nodular thyroid 

goiter tissue are used.  

 

Figure 6-2. Tissue classification scheme. (a) For classification of the HNSCC group, first 

a binary classification is considered to test the ability of the classifier to distinguish normal 

samples from SCC samples. Next, histologically confirmed normal samples are sub-

classified squamous epithelium, skeletal muscle, and mucosal salivary glands. (b) For 

classification of the thyroid group, first a binary classification is considered to test the 

ability of the classifier to distinguish normal thyroid samples from thyroid carcinoma of 

multiple types. In addition, thyroid HSI classification is tested to discriminate MNG from 

MTC and to discriminate MNG from classical-type PTC. 

 To avoid introducing error from registration of tissue samples that contain a tumor-

normal boundary, only samples that contain exactly one class were used for binary 

classification. For example, the tumor sample and normal sample are held out for testing, 

so that validation performance can be evaluated on both class types. Out of the initial 63 

samples acquired from 21 patients recruited for this study, this elimination process 

excluded 22 tissue samples because it was found that two tumor-normal margin samples 

were obtained from one patient. The normal samples from the patients with MNG thyroid 

neoplasm were not included in the binary cancer detection experiment. Additionally, after 

clinical histological evaluation, it was determined that one ex-vivo specimen from one 
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papillary thyroid carcinoma patient was an adenomatoid nodule. This type of lesion is 

reported in the literature to commonly cause misdiagnoses in initial needle biopsies [250, 

251], and importantly, this lesion type was not adequately represented in the current study. 

Therefore, the two remaining tissue samples from this patient were removed from this 

study because we aimed to have balanced tissue specimens from the thyroid carcinoma 

patients, normal and tumor. After all exclusionary criteria were determined, there were 36 

tissue specimens from 20 patients, 7 HNSCC and 13 thyroid, incorporated in this study, 

and the epithelium, muscle, and gland tissue components were selected as ROIs from 7 

tissue samples from the HNSCC group. The number and type of tissue specimens is 

detailed in Table 6-1. 

Table 6-1. Number of ex-vivo tissue specimens included in this study from the 13 patients 

with thyroid neoplasms and 7 patients with SCC. The number of image patches for CNN 

classification obtained from each specimen type is also reported. 

Group Class No. Tissue Specimens Total Patches 

Thyroid Normal Thyroid 10 14,491 

MNG 3 9,778 

MTC 3 10,334 

Classical PTC 3 6,836 

Follicular PTC 4 13,200 

HNSCC Squamous Epithelium 4 6,366 

Skeletal Muscle 3 5,238 

Mucosal Gland 4 5,316 

SCC 6 4,008 

 

 For training and testing the CNN, each patient HSI needs to be divided into patches. 

Patches are produced from each HSI after normalization and glare removal to create 

25×25×91 non-overlapping patches that do not include any “black-holes” where pixels 
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have been removed due to specular glare; see Table 6-1 for the total number of patches per 

class. Glare pixels are intentionally removed from the training dataset to avoid learning 

from impure samples. In addition, patches were augmented by 90, 180, and 270 degree 

rotations and vertical and horizontal reflections, to produce six times the number of 

samples. For cancer classification, the patches were extracted from the whole tissue. While 

for multi-class sub-classification of normal tissues, the regions of interest comprised of the 

classes of target tissue were extracted using the outlined gold-standard histopathology 

images. 

6.2.3 Convolutional Neural Network 

 The convolutional neural networks used in this study were built from scratch using 

the TensorFlow application program interface (API) for Python. A high-performance 

computer was used for running the experiments, operating on Linux Ubuntu 16.04 with 2 

Intel Xeon 2.6 GHz processors, 512 GB of RAM, and 8 NVIDIA GeForce Titan XP GPUs. 

Two distinct CNN architectures were implemented for HNSCC classification, which 

incorporated inception modules, and thyroid classification, which used a 3D architecture. 

Both architectures are detailed below and shown schematically in Figure 6-3. During the 

following experiments, only the learning-related hyper-parameters that were adjusted 

between experiments, which include learning rate, decay of the Adadelta gradient 

optimizer, and batch-size. Within each experiment type, the same learning rate, rho, and 

epsilon were used, but some cross-validation iterations used different numbers of training 

steps because of earlier or later training convergence.  
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Figure 6-3. CNN architectures implemented for classification of HSI of thyroid tissue (left) 

and tissue from the upper aerodigestive tract (right). 

 To classify thyroid tissues, a 3D-CNN based on AlexNet, an architecture originally 

designed for ImageNet classification, was implemented using TensorFlow [26, 192]. The 

model consisted of six convolutional layers with 50, 45, 40, 35, 30, and 25 convolutional 

filters, respectively. Convolutions were performed with a convolutional kernel of 5×5×9, 

which correspond to the x-y-λ dimensions. Following the convolutional layers were two 

fully connected layers of 400 and 100 neurons each. A drop-out rate of 80% was applied 

after each layer. Convolutional units were activated using rectified linear units (ReLu) with 

Xavier convolutional initializer and a 0.1 constant initial neuron bias [252]. Step-wise 

training was done in batches of 10 patches for each step. Every one thousand steps the 

validation performance was evaluated, and the training data were randomly shuffled for 

improved training. Training was done using the AdaDelta, adaptive learning, optimizer for 

reducing the cross-entropy loss with an epsilon of 1×10-8 and rho of 0.9 [253]. For thyroid 

normal versus carcinoma, the training was performed at a learning rate of 0.1 for two to six 

thousand steps depending on the iteration. For MNG versus MTC and for MNG versus 
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cPTC, the training was done at a learning rate of 0.005 for exactly two thousand steps for 

all iteration.  

 Classification of upper aerodigestive tract tissues was hypothesized to be a more 

complex task, so a 2D-CNN architecture was constructed to include a modified version of 

the inception module appropriate for HSI that does not include max-pools and uses larger 

convolutional kernels, implemented using TensorFlow [26, 27, 192]. The modified 

inception module simultaneously performs a series of convolutions with different kernel 

sizes: a 1×1 convolution; and convolutions with 3×3, 5×5, and 7×7 kernels following a 1×1 

convolution. The model consisted of two consecutive inception modules, followed by a 

traditional convolutional layer with a 9×9 kernel, followed by a final inception module. 

After the convolutional layers were two consecutive fully connected layers, followed by a 

final soft-max layer equal to the number of classes. A drop-out rate of 60% was applied 

after each layer. For binary classification, the number of convolutional filters were 355, 

350, 75, and 350, and the fully connected layers had 256 and 218 neurons. For multi-class 

classification, the number of convolutional filters were 496, 464, 36, and 464, and the fully 

connected layers had 1024 and 512 neurons. Convolutional units were activated using 

rectified linear units (ReLu) with Xavier convolutional initializer and a 0.1 constant initial 

neuron bias [252]. Step-wise training was done in batches of 10 (for binary) or 15 (for 

multi-class) patches for each step. Every one thousand steps the validation performance 

was evaluated and the training data were randomly shuffled for improved training. Training 

was done using the AdaDelta, adaptive learning, optimizer for reducing the cross-entropy 

loss with an epsilon of 1×10-8 (for binary) or 1×10-9 (for multi-class) and rho of 0.8 (for 

binary) or 0.95 (for multi-class) [253]. For normal oral tissue versus SCC binary 
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classification, the training was done at a learning rate of 0.05 for five to fifteen thousand 

steps depending on the patient-held-out iteration. For multi-class sub-classification of 

normal aerodigestive tract tissues, the training was done at a learning rate of 0.01 for three 

to five thousand steps depending on the patient-held-out iteration.  

6.2.4 Validation 

 The final layer of the CNN labels each test case as the class with the highest 

probability overall, so each test patch has exactly one label. In addition, the probabilities 

of each test patch belonging to all classes are output from the network. All testing is done 

on a patch-based level to ensure class accuracy. The typical classification time for one 

patient’s entire HSI was on the order of several minutes. The class probabilities for all 

patches of a test patient case are used to construct receiver operator characteristic (ROC) 

curves using MATLAB (MathWorks Inc, Natick, MA, USA). For binary classification, 

only one ROC curve is created per patient test case, but for multi-class classification, each 

class is used to generate a respective ROC curve; true positive rate and false positive rate 

are calculated as that class against all others. The CNN classification performance was 

evaluated using leave-one-patient-out external-validation to calculate the sensitivity, 

specificity, and accuracy, defined below, using the optimal operating point of each patient’s 

ROC curve [33, 170]. The area under the curve (AUC) for the ROC curves is calculated as 

well and averaged across patients.  

Sensitivity =
True Positives

True Positives + False Negatives
 

Specificity =
True Negatives

True Negatives + False Positives
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Accuracy =
True Positives + True Negatives

Total Number of Samples
 

6.3 Results 

6.3.1 Aerodigestive Tract Normal Tissue Sub-classification 

 Using a leave-one-patient-out cross-validation paradigm with HSI obtained from 

different patients, the CNN can distinguish SCC from normal oral tissues with an AUC of 

0.82, 81% accuracy, 81% sensitivity, and 80% specificity. Table 6-2 shows the full results. 

The ROC curves for all HNSCC patients are shown in Figure 6-4. Additionally, normal 

oral tissues can be sub-classified into squamous epithelium, muscle, and glandular mucosa 

using a separately trained CNN, with an average AUC of 0.94, 90% accuracy, 93% 

sensitivity, and 89% specificity. Representative normal sub-classification results are shown 

in Figure 6-5, and full results are detailed in Table 6-3.  

Table 6-2. Results of inter-patient CNN classification (leave-one-patient-out cross-

validation). Values reported are averages across all patients shown with standard deviation. 

Group Classification 
# Tissue 

Specimens 
AUC Acc. (%) Sens. (%) Spec. (%) 

Thyroid Normal vs Carcinoma 20 0.95±0.07 92±9 92±8 92±10 

cPTC vs MNG 7 0.91±0.10 86±13 86±14 86±13 

MTC vs MNG 6 0.93±0.04 87±5 88±4 85±7 

HNSCC Normal vs SCC 13 0.82±0.13 81±11 81±15 80±16 

Multi-class 7 0.94±0.08 90±9 93±6 89±13 
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Figure 6-4. HSI classification results ROC curves for HNSCC experiments generated 

using leave-one-out cross-validation. (a) binary classification of SCC and normal head and 

neck tissue; (b) multi-class sub-classification of normal aerodigestive tract tissues. 

 

Figure 6-5. Representative results of sub-classification of normal oral tissues. Left: HSI-

RGB composites are shown with ROI of the tissue type outlined. Center: Respective 

histological gold standard with corresponding ROI outlined. Right: Artificially colored 

CNN classification results of the ROI only. True positive results representing correct 

tissue-subtype are visualized in blue, and false negatives are shown in red. Tissue within 

the ROI that is shown in grayscale represents tissue that is not classified due to glare pixels 

or insufficient area to produce the necessary patch-size. 
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Table 6-3. Results of inter-patient CNN classification of sub-classified normal upper 

aerodigestive tract tissues. Values reported are averages shown with standard deviation. 

 

6.3.2 Thyroid Tissue Sub-classification  

 After separately training on thyroid tissue, the CNN differentiates between thyroid 

carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 

92% specificity. The ROC curves for all thyroid patients are shown in Figure 6-6. 

Moreover, the CNN can discriminate MTC from benign MNG with an AUC of 0.93, 87% 

accuracy, 88% sensitivity, and 85% specificity. Classical-type papillary thyroid carcinoma 

is differentiated from MNG with an AUC of 0.91, 86% accuracy, 86% sensitivity, and 86% 

specificity. 

 

Figure 6-6. HSI classification results ROC curves for HNSCC experiments generated 

using leave-one-out cross-validation. (c) binary classification of normal thyroid and 

thyroid carcinomas; (d) binary classification of MNG and MTC; (e) binary classification 

of MNG and classical PTC. 

 

Group 
No. Tissue 

Specimens 
AUC Accuracy Sensitivity Specificity 

Squamous Epithelium 4 0.94±0.06 90±5% 91±3% 91±7% 

Skeletal Muscle 3 0.99±0.01 98±3% 98±3% 97±4% 

Mucosal Gland 4 0.89±0.10 83±13% 90±8% 79±18% 
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6.4 Discussion 

 We developed a deep learning based classification method for hyperspectral images 

of fresh surgical specimens. The study demonstrated the ability of HSI and convolutional 

neural networks for discriminating between normal tissue and carcinoma. The novel results 

of normal tissue sub-classification into categories of squamous epithelium, skeletal muscle, 

and glandular mucosa demonstrate that there is further classification potential for HSI. 

 A review of surgical cases found that head and neck surgery has the most intra-

operative pathologist consultations (IPC) per surgery, typically around two consultations 

per surgery, compared to other organ systems [254]. The average time at our institution 

was about 45 minutes per IPC. Despite being currently un-optimized and performed off-

line, our method takes around 5 minutes including imaging time, classification, and post-

processing. The main benefit is that the proposed method does not require excising tissue 

or any tissue processing to provide diagnostic information of the surgical area. 

Additionally, our method is demonstrated to be significantly faster than an average IPC. 

However, we do not suggest that the proposed method could replace an IPC, but rather 

provide guidance during surgery to reduce the number or increase the quality of IPCs.  

 In this study, the limited patient dataset reduces the generalizability of the results. 

In addition, the ROI technique for outlining tissues of interest for normal multi-class sub-

classification creates the potential to introduce error into the experiment. Both of these 

issues could be resolved by utilizing a large number of patient data. Moreover, the gross 

tissue specimens utilized in this study are entirely cancer or normal, so the cancer samples 

are comprised of sheets of malignant cells. In order for the proposed method to be extended 
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to the operating room to aid in the resection of cancer, the method needs to be investigated 

on detecting cancer cells extending beyond the cancer edge. Therefore, future studies will 

investigate the ability of the proposed method to accurately predict the ideal resection 

margin of cancerous tissues.  

 When the diagnosis of thyroid cancer is suspected, a needle biopsy is performed, 

which can provide information on the histological and intrinsic type of cancer that is 

present. It is not uncommon for thyroid cancer to be present with benign hyperplasia of the 

non-malignant portions of the effected lobe. However, the co-occurrence of both MTC and 

PTC is rare, although cases have been documented [255-257]. We hypothesized that HSI 

has further potential than binary cancer detection, as we explored in this work, and that 

different types of cancer can be identified from benign hyperplasia. Therefore, we 

performed a set of two binary classifications (MTC versus MNG, and PTC versus MNG) 

to show both can be successfully identified from MNG. In order to determine if HSI can 

detect normal thyroid and the range of thyroid neoplasms: MTC, PTC, hyperplasia, 

follicular carcinoma, adenomas, and nodules; all in one multi-class approach, more patient 

data collection and more investigation into the robustness HSI and the classifiers needs to 

be performed. 

 We acknowledge that with a limited patient set for the experiments detailed, we do 

not have a fully-independent test set and employ a leave-one-patient-out cross validation 

approach, as was reported in the results section. This approach has several limitations with 

regards to potential over-fitting from hyper-parameter tuning. However, in order to avoid 

bias, the CNN architectures and number of filters in each network were not adjusted during 

the experiments conducted. As stated, a more complex CNN design was used for SCC 
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because it was deemed a more complex problem. During the experiments, the only 

parameters that were adjusted were the learning-related parameters, which are detailed in 

the method section. These included the learning rate and the epsilon and rho of Adadelta, 

which control the decay of learning rate and gradient optimization. Importantly, the same 

learning rate, rho, and epsilon were used within each experiment type so that all cross-

validation iterations had the same hyper-parameters. We found that different experiments, 

for example HNSCC binary compared to multi-class, required different learning-based 

parameters because they trained at different rates. 

 Another potential source of errors from the cross-validation experiments was the 

effect of over-fitting during training of each cross-validation iteration, within an 

experiment type. With the relatively small sample sizes employed in this study, swapping 

one patient from the validation to training set could drastically change the training time of 

the network.  Therefore, performance of each cross-validation iteration was evaluated 

every 1,000 training steps, and different training steps for cross-validations were 

sometimes used. In the methods section, we report the range of training steps for each 

experiment type; in order to reduce bias, the same training step number was used when it 

was possible for all or most cross-validation iterations. 

 Another limitation of this work is the issue of specular glare. Glare was 

systematically removed during pre-processing, so that training patches did not contain any 

glare pixels. This was done to avoid any training biases or error that could have been 

introduced from glare. Moreover, since glare was removed from training, it was also 

removed from the testing dataset to ensure that the quantified results were unblemished by 
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glare artifacts to fully evaluate the classification potential of HSI. Regions that were not 

classified due to large amount of surface glare can be seen as grayscale in Figure 6-5.  

6.5 Conclusion 

 In summary, this chapter presented preliminary results for this proof-of-principle 

experiment, which demonstrates that an HSI-based optical biopsy method using CNNs can 

provide multi-category diagnostic information for normal head and neck tissue and thyroid 

carcinomas. Future work involves acquiring and processing more patient HSI data for these 

types of tissue and to conduct studies of more tissue types and potentially produce results 

with a more universal application. Additionally, this line of research will be important in 

determining if the proposed technique has the potential to aid surgeons, providing a wealth 

of information just as histological analysis, as our preliminary results suggest. 
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CHAPTER 7. HEAD & NECK CANCER DETECTION IN 

DIGITIZED HISTOLOGY 

 This chapter presents the development and evaluation of a computer-aided 

diagnostic algorithm with the goal of aiding surgical pathologists in the detection of cancer 

in digitized whole-slide histological images. Pathologists guide surgeons during head and 

neck cancer resection operations by performing microscopic analysis of histology slides 

made from the excised tissue. In this study, 381 digitized, histological whole-slide images 

(WSI) from 156 patients with head and neck cancer were used to train, validate, and test 

an inception-v4 convolutional neural network. The proposed method can detect and 

localize primary head and neck SCC on WSI with an AUC of 0.916 for patients in the SCC 

testing group and 0.954 for patients in the thyroid carcinoma testing group. Moreover, the 

proposed method can diagnose WSI with cancer versus normal slides with an AUC of 

0.944 and 0.995 for the SCC and thyroid carcinoma testing groups, respectively. For 

comparison, we tested the proposed, diagnostic method on a publicly-available dataset of 

WSI from sentinel lymph nodes with breast cancer metastases, CAMELYON 2016, to 

obtain patch-based cancer localization and slide-level cancer diagnoses. The experimental 

design yields a robust method with potential to help create a tool to increase efficiency and 

accuracy of pathologists detecting head and neck cancers in histological images. 

7.1 Introduction 

 Head and neck cancer is the sixth most common cancer world-wide, and majority 

of cancers of the upper aerodigestive tract are squamous cell carcinoma (SCC) [2]. 
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Approximately two-thirds of SCC patients present with either stage III or IV advanced 

disease [141]. Surgical cancer resection remains the primary management SCC of the head 

and neck, with concurrent chemotherapy or radiation therapy depending on the extent of 

the disease [4].  

 Commonly, the safe margin for surgical resection of oral squamous cell carcinoma 

(SCC) at sites including the surfaces of the lips, gums, mouth, plate, and anterior two-thirds 

of the tongue is considered 5 mm from the permanent edge of the tumor [196]. Alternative 

distances for resection margins have been proposed, as low as tumor clearance of 2.2 mm 

to be declared a “negative” margin [197]. However, closer margins, for example within 1 

mm, are associated with significantly increased recurrence rates [258]. In head and neck 

surgical histology, there are two techniques to investigate surgical margin clearance: 

perpendicular sectioning and en-face technique. Perpendicular sectioning, also known as 

“bread loafing”, allows the margin clearance from the edge of the resected tissue to be 

easily quantified, but it is resource exhaustive and limited by the number of slices, which 

can create false negatives. The en-face technique evaluates the surface area in a 

longitudinal fashion to determine if there is any cancer on surface of the submitted 

specimen [196]. Both require examining a large quantity of histological slides and 

considerable diagnostic time. 

 Previous studies have implemented computer-assisted detection methods using 

histological images for machine learning [259]. Colorectal epithelial and stromal tissues 

have been classified on histological images using support vector machines with hand-

crafted features, such as color and texture [260, 261]. Additionally, convolutional neural 

networks (CNNs), which are a family of machine learning algorithms that learn to extract 
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features from training images, have also been applied to classifying epithelium and stromal 

tissues from colorectal and breast cancers [262]. Non-small cell lung cancers, including 

metastatic SCC to the lungs, have been classified in histological images using CNNs that 

are trained to work regions of the image, called image-patches [263]. Another method for 

detecting lung cancers in histological images of needle core biopsies used morphological 

and color features for classification with an ensemble of artificial neural networks [264]. 

Head and neck SCC was investigated once before, but only in cell lines xenografted into 

mice, and a CNN was implemented with histological images to predict hypoxia of tumor-

invaded microvessels [259, 265]. Additionally, computerized methods have been 

developed for thyroid carcinomas to detect and classify malignant versus benign nuclei 

from thyroid nodules and carcinomas, including follicular and papillary thyroid 

carcinomas, in histological images on a cellular level with promising results [266-268]. 

However, most of the work involving thyroid carcinoma has been implemented on a 

cellular or nuclear level using hand-crafted features, such as texture or shape, and support-

vector-machines are employed for nuclei classification, with many algorithms using an 

ensemble of classifiers [267-271]. 

 In the field of digital pathology, whole slide imaging (WSI) refers to the acquisition 

of high-resolution images of stained tissue slides, which retains the ability to magnify and 

navigate these digital slides just as standard microscopy [272]. After reviewing nearly 

2,000 patient cases, it has been concluded that WSI is non-inferior to microscopy for 

primary diagnosis in surgical pathology across multiple staining types, specimen types, and 

organ systems [273]. Computer-assisted detection algorithms have recently been 

implemented using CNNs for diagnosis in WSI with considerable success for identifying 
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metastasis in lymph nodes [274, 275]. Several state-of-the-art methods using CNNs have 

been applied during a grand challenge hosted at the IEEE International Symposium for 

Biomedical Imaging in 2016 and 2017 to detect breast cancer metastasis in WSI of sentinel 

lymph nodes (CAMELYON) with AUCs up to 0.99, comparable to expert pathologists 

performing with an AUC of 0.81 to 0.97, with and without a time constraint [274, 276, 

277].  

 This study aims to investigate the ability of CNNs for detecting head and neck SCC 

and thyroid carcinomas in a novel dataset of digitized whole-slide histological images from 

surgical pathology. A recent literature review shows that this is the first work to investigate 

SCC and thyroid carcinoma detection on a WSI level in primary head and neck cancers 

[259], and we implement state-of-the-art classification methods in an extensive dataset 

collected from our institution. The major contribution of this paper focuses on the first 

application of deep learning for the histological detection of H&N SCC and thyroid cancers 

in a sufficiently large head and neck cancer dataset that is best suited for a patch-based 

CNN approach. The anatomical variation of the head and neck is astonishingly complex. 

The inclusion of multiple, most common locations of SCC yields a successful and 

substantial generalization for this application. Additionally, three of the major forms of 

thyroid carcinoma are studied, and despite extensive morphological differences, the 

method allows successful performance. Altogether, the dataset and applied methodology 

of this work demonstrate the current potential to create a tool to increase the efficiency and 

accuracy of surgical pathologists performing real-time SCC cancer detection on WSI for 

intraoperative guidance during primary head and neck cancer resection operations. 
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7.2  Materials and Methods 

 In this section, the materials for this study, including the cancer histological 

datasets, are described. Additionally, the methods of image processing, convolutional 

neural networks, and performance evaluation are detailed.  

7.2.1 Head and Neck Cancer Dataset 

 Informed, written consent was obtained from all patients consented for our study. 

All experimental methods were approved by the Institutional Review Board (IRB) of 

Emory University under the Head and Neck Satellite Tissue Bank (HNSB, IRB00003208) 

protocol. In collaboration with the Otolaryngology Department and the Department of 

Pathology and Laboratory Medicine at Emory University Hospital Midtown, freshly 

excised, ex-vivo head and neck cancer tissue samples were obtained from previously 

consented patients undergoing surgical cancer resection [113, 147].  Tissue specimens 

collected from patients were de-identified and coded by a clinical research coordinator 

before being released to our laboratory for research purposes only. Three tissue samples 

were collected from each patient: a sample of the tumor, a normal tissue sample, and a 

sample at the tumor-normal interface.  

 For this study, we present the first application of the histological component of this 

dataset of 381 WSI from 156 patients, which is detailed by dataset in Table 7-1. In the 

upper aerodigestive tract SCC group, there were 228 tissue samples collected from 97 

patients. The number of patients and tissue specimens is enumerated per anatomical origin 

of the SCC in Table 7-2. The only tissues that were excluded in this study were from three 

patients that had SCC of Waldeyer’s ring. These tissues were excluded because they were 
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comprised of entirely lymphoid tissue, and the samples from only 3 patients of this diverse 

tissue type was not sufficient for inclusion in this study. The normal specimens collected 

were non-dysplastic and non-cancerous, which may have inflammation, atypia, or reactive 

epithelium.  

Table 7-1. Summary of the number of patients and whole-slide images (WSI) included in 

this study for training, validation, and testing of the proposed method. 

Dataset 
Training Validation Testing Total 

Patients WSI Patients WSI Patients WSI Patients WSI 

Head & Neck SCC 45 91 13 32 39 105 97 228 

Thyroid Carcinoma 24 48 8 23 27 82 59 153 

Breast Cancer Mets. 250 250 20 20 129 129 399 399 

 The thyroid carcinoma group was comprised of primary papillary, medullary, and 

follicular thyroid carcinomas. There were 153 tissue specimens collected from 59 patients, 

which included 47 patients with papillary thyroid carcinoma, 5 patients medullary thyroid 

carcinoma, and 7 patients with follicular carcinoma. Each dataset was subdivided into 

separate groups for training, validation, and testing of the proposed computer-assisted 

cancer detection algorithm.  

 Fresh ex-vivo tissues were collected from the surgical pathology department and 

fixed, paraffin embedded, sectioned, stained with haemotoxylin and eosin (H&E), and 

digitized using whole-slide scanning at an equivalent magnification to 40x objective using 

a NanoZoomer (Hamamatsu Photonics), which produces a final digital slide with pixel-

level resolution of 0.23 μm × 0.23 μm. A board-certified pathologist with expertise in H&N 

pathology outlined the cancer margins on the digital slides using Aperio ImageScope 

(Leica Biosystems Inc, Buffalo Grove, IL, USA). 
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Table 7-2. Summary of the number of patients in the SCC dataset and WSI obtained from 

tissue specimens per anatomical location of the head and neck. Tissue specimens refer to 

the ex-vivo samples used to construct the histological WSI (T: tumor, N: normal, TN: 

tumor-normal interface). 

Location # Patients # T # N # TN 

Tongue 18 9 17 17 

FOM 12 7 10 13 

Larynx 10 10 9 3 

Mucosal 

Gingiva 
9 7 9 4 

Mandible 8 6 6 5 

Maxillary 

Sinus 
6 4 6 5 

Oral Cavity 6 4 7 6 

Hypopharynx 5 4 5 1 

RMT 5 6 3 5 

Tonsil 5 4 3 6 

Supraglottis 4 2 4 3 

BOT 4 0 4 4 

Nasal Cavity 2 2 1 0 

Other 3 2 2 3 

Total 97 Patients 228 WSI 

 

7.2.2 Breast Cancer Lymph Node Metastases Dataset 

 For external validation, we implemented the proposed cancer detection algorithm 

on the open-source CAMELYON 2016 dataset [275, 278], in order to compare the results 

of our proprietary head and neck cancer dataset since currently no similar independent 

dataset exists. The CAMELYON 2016 dataset consists of 399 whole-slide digital images 

from sentinel lymph nodes (SLN) obtained from 399 patients, one SLN from each patient 

that underwent breast cancer surgical resection. The dataset is collected at two institutions: 

Radboud University Medical Center (RUMC) Netherlands and University Medical Center 
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Utrecht (UMCU) Netherlands [275, 278]. One slide was constructed from one SLN from 

each patient. Table 7-1 shows the numbers of patients and slides in each group. 

 The whole-slide images were digitized at each institution separately, so the 

different hospitals each use a different scanner. The slides that were digitally scanned at 

RUMC were produced at 20× objective magnification using a Pannoramic 250 Flash II 

digital slide scanner (3DHISTECH), which corresponds to the pixel-level resolution of 

0.24 μm × 0.24 μm. The slides that were digitized at UMCU were acquired with a 

NanoZoomer-XR digital slide scanner at 40x objective magnification (Hamamatsu 

Photonics) with a pixel-level resolution of specimens of 0.23 μm × 0.23 μm [275, 278]. 

7.2.3 Histological Image Processing 

 The histological dataset presented consists of primary tumor specimens acquired 

from surgical resections. Our SCC and thyroid cancer datasets do not have fine cellular-

level annotations. Instead, regions were broadly marked as cancer if there were any cancer 

cells present, even if surrounded by normal structures, to establish which areas would 

require surgical removal. For this task, cell-by-cell annotations are not necessary. 

Clinicians require accurate regional diagnosis of cancer invaded tissues with an estimate 

of border clearance distance to the edge of the resected tissue. Therefore, the nature of the 

ground-truth for this work necessitates a patch-based deep learning approach. Moreover, a 

fully-convolutional network (FCN), as is widely used in the literature, would be 

problematic for this approach. Firstly, the tissue specimens of primary cancers collected 

tend to have large regions of each class. Therefore, the large majority of patches tend to be 

one class (all normal or all tumor), with few border patches that contain both classes. This 
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would create problems with loss calculation and gradient optimization for training an FCN. 

Lastly, as stated the ground truth is coarse, so if a FCN could be adequately trained to 

produce fine-level segmentations, not only are they not needed for this task, but the ground 

truth would call potentially correct areas as misclassifications. 

 A ground-truth binary mask of the cancer area is produced from each outlined 

histology slide. The WSIs and corresponding ground-truths were down-sampled by a factor 

of four using nearest neighbor interpolation. The proposed method classifies the WSI in a 

patch-based method using a window that slides over the entire image. Due to the unique 

challenges of working with digital pathology images, which can create datasets of hundreds 

of images that are each tens of gigabytes, it is the current state-of-the-art to perform both 

down-sampling and patch-based image reconstruction approaches to computationally 

handle this type of data [112, 274, 279-284]. Image patches (I) are produced from each 

down-sampled H&E slide using 101×101 pixels and are labeled corresponding to the center 

pixel, where 𝑰 ∈ ℝ101×101×3. Representative patches from H&N SCC are shown in Figure 

7-1 showing the histological variation of normal anatomical structures and various 

appearances of SCC of various identifiable difficulty. The SCC and thyroid carcinoma 

training groups were comprised of patches only from the tumor and normal tissue WSI, 

and the validation and testing groups were comprised of patches from all slides. Since the 

lymph node dataset contained more WSI but with smaller cancer areas, the training dataset 

was constructed by taking up to 5000 image patches from the cancerous area of each of the 

101 cancer WSI in the training dataset, and using up to 1000 image patches from each slide 

of the 149 normal WSI. The training group was approximately balanced between cancer 

and normal patches for better performance.  
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Figure 7-1. Histological images (101×101 pixel image-patches) showing anatomical 

diversity. Top: Patches of various normal structures, including chronic inflammation, 

stratified squamous epithelium, stroma, skeletal muscle, and salivary glands (from left to 

right). Bottom: Patches of SCC with varying histologic features: keratinizing SCC, 

keratinizing SCC with keratin pearls, basaloid SCC, SCC with chronic inflammation, SCC 

with hemorrhage (from left to right). 

 

 Histology slides have no canonical orientation, meaning the tissue will have the 

same diagnosis from all vantage points. Therefore, the number of image patches were 

augmented by 8× by applying 90-degree rotations and reflections to develop a more robust 

diagnostic method. Additionally, to establish a level of color-feature invariance and 

tolerance to differences in H&E staining between slides, the hue, saturation, brightness, 

and contrast of each patch were randomly manipulated to make a more rigorous training 

paradigm. 

7.2.4 Convolutional Neural Network Implementation 

 The three distinct cancer datasets in this study were employed to separately train, 

validate, and test a 2D-CNN classifier based on the Inception V4 architecture, implemented 

in TensorFlow on 8 Titan-XP NVIDIA GPUs [27, 192, 217, 285]. The Inception V4 CNN 
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architecture was modified slightly in the early layers, which is detailed in Table 7-3, in 

order to accommodate the patch-size selected for this study. The CNN architecture 

consisted of 3 convolutional layers and 1 max-pooling layer to accommodate the patch-

size used, and in total the CNN contained 141 convolutional layers and 18 pooling layers 

[27, 217]. Gradient optimization was performed using the Adadelta optimizer with an 

initial learning rate of 1.0 that was exponentially decayed by 0.95 every 3 epochs of training 

data [253]. The softmax cross entropy was used as the loss function. If the kth training patch 

is denoted as 𝑰𝑘 ∈ ℝ101×101×3, 𝑘 = 1, 2, … , 𝐾, where K is the number of training patches 

in a batch, the CNN training process is to find a function 𝐹: ℝ101×101×3 → ℝ that minimize 

the following cost function ℒ: 

ℒ = −
1

𝐾
∑[𝑔𝑘

𝑁𝑙𝑜𝑔(𝑝𝑘) + 𝑔𝑘
𝑃𝑙𝑜𝑔(1 − 𝑝𝑘)]

𝐾

𝑘=1

 

where  

𝑝𝑘 =
𝑒𝐹(𝑰𝑘)

∑ 𝑒𝐹(𝑰𝑗)𝐾
𝑗=1

 

and 𝑔𝑘
𝑁 and 𝑔𝑘

𝑃 are the ground truth labels for cancer-negative and cancer-positive tissue 

classes, respectively, corresponding to the kth patch. 
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Table 7-3. Schematic of the proposed modified Inception V4 CNN. The input size is given 

in each row, and the output size is the input size of the next row. All convolutions were 

performed with sigmoid activation and 40% dropout. 

Layer Kernel size / Remarks Input Size 

Conv 3×3 / ‘valid’ 101×101×3 

Conv 3×3 / ‘valid’ 98×98×32 

Max Pool 2×2 / stride=2 ‘valid’ 96×96×64 

Conv 3×3 / stride=2 ‘valid’ 48×48×64 

4 x Inception-A Block 1×1 and 3×3 / ‘same’ 23×23×80 

Reduction-A Block 1×1 and 3×3 / ‘same’ 25×25×384 

7 x Inception Block 1×1, 1×7, 7×1, and 3×3 / ‘same’ 11×11×1024 

Reduction-B Block 1×1, 1×7, 7×1, and 3×3 / ‘same’ 11×11×1024 

3 x Inception-C Block 1×1, 1×3, 3×1, and 3×3 / ‘same’ 5×5×1024 

Avg. Pool 5×5 / ‘valid’ 5×5×1536 

Linear Logits 1×1536 

Softmax Classifier 1×2 

 

 The validation groups were used to determine the optimal number of training 

epochs used for each of the three datasets. Each CNN was trained with a batch size of 128 

image patches, and batches were converted from RGB to HSV before being passed into 

the CNN. Both RGB and HSV were tested in early validation experiments, and HSV 

without any other modification out-performed RGB results. One reason could be the 

separation of the image intensity from the color information in HSV color model. 

Additionally, one major challenge of H&E stained images is inconsistency of the stain 

quality. To demonstrate that color feature augmentation can solve this problem, working 

in HSV directly, the hue, saturation, and brightness were perturbed randomly in each 

channel independently. The SCC CNN was trained for 30 epochs of training data, 

equivalent to 295,000 steps using a batch-size of 128 patches. The random color 

augmentation was using the native color feature variance in the training group: hue 4%, 

saturation 15%, brightness 8%, and contrast 2%. The thyroid carcinoma CNN was trained 
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for 70 epochs of training data (equivalent to 433,000 steps). HSV and contrast perturbation 

was 5%, 5%, 8%, and 5% respectively. The breast cancer SLN metastasis CNN was trained 

for 20 epochs (equivalent to 203,400 steps). HSV and contrast were each randomly 

perturbed in range of -10% to 10%.  

7.2.5 Image Reconstruction and Post Processing 

 Each of the 𝑁 testing slides (𝑺𝑇𝑡 , 𝑡 = 1,2, … , 𝑁) were tiled into image patches of 

size 101×101 pixels (𝑰𝑚,𝑛
𝑇𝑡 ), produced with a stride of 50 pixels, which makes an overlap of 

51 pixels. 

𝑰𝑚,𝑛
𝑇𝑡 = {𝑺𝑇𝑡(𝑥, 𝑦)|𝑚 ≤ 𝑥 ≤ 𝑚 + 100, 𝑛 ≤ 𝑦 ≤ 𝑛 + 100} 

where 𝑚 = 1,51,101, … , 𝑀𝑡, 𝑛 = 1,51,101, … , 𝑁𝑡, and 𝑀𝑡 × 𝑁𝑡 is the size of the tth testing 

slide. Therefore, the final classified whole-slide image is a cancer probability heat-map 

with a level of detail equal to 50×50 pixel blocks. Each image patch, 𝑰𝑚,𝑛
𝑇𝑡 ∈ ℝ101×101×3, 

was classified in all 8 orientations with randomized HSV and contrast features and 

averaged to obtain a single cancer prediction value, according to the following equation.  

𝑝̅(𝑰𝑚,𝑛
𝑇𝑡 ) =

1

8
∑ 𝑝𝑠(𝑰𝑚,𝑛

𝑇𝑡 )

8

𝑠=1

 

where 𝑝𝑠(𝑰𝑚,𝑛
𝑇𝑡 ) is the cancer prediction for the sth orientation of 𝑰𝑚,𝑛

𝑇𝑡  and 𝑝̅(𝑰𝑚,𝑛
𝑇𝑡 ) ∈ [0,1] 

is the average cancer prediction of the patch. Additionally, the results of overlapping image 

patches were averaged in the overlapping area, as follows.  
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𝑞̅(𝑯𝑖,𝑗) =
1

4
(𝑝̅(𝑰𝑖,𝑗

𝑇𝑡 ) + 𝑝̅(𝑰𝑖+49,𝑗
𝑇𝑡 ) + 𝑝̅(𝑰𝑖,𝑗+49

𝑇𝑡 ) + 𝑝̅(𝑰𝑖+49,𝑗+49
𝑇𝑡 )) 

where 𝑞̅ is the final probability of the final resolution block size (𝑯𝑖,𝑗 ∈ ℝ50×50) of the 

heat-map. The benefit of this post-processing method was to increase the resolution of the 

heat-map from 101-pixel image patches to 50-pixel image patches. Moreover, the image 

patches that constituted the free edge of the tissue were averaged less than four times 

because they did not have the complete number of neighboring patches. This image 

reconstruction and post-processing method was determined to increase accuracy by about 

2% in early validation experiments.  

 To investigate the ability of the CNN to detect cancer on histological images, we 

implemented the gradient class-activated map (grad-CAM) method to visualize gradients 

activated by each class for the example input image patches [218]. We traced the gradients 

from the last convolutional layer before the inception modules to the logits layer to 

separately visualize cancer and normal components. This technique produces a weighted 

combination of the convolutional filters and gradients as the CNN is activated by a specific 

input image for each class. 

7.2.6 Performance Evaluation 

 The reference standard cancer margin was annotated by hand for all digital slides 

employed in this study. For the head and neck cancer database, a board-certified pathologist 

with expertise in H&N pathology outlined the cancer margins on the digital slides.  For the 

breast cancer metastasis database, an experienced lab technician and a clinical Ph.D. 
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student outlined the cancer margins, which were then confirmed by one of two board-

certified pathologists with expertise in breast cancer [278].  

 During training, the performance of the validation group was calculated and 

monitored. The optimal operating threshold was calculated from the validation group for 

generalizable results, and it was used for generating performance evaluation metrics for the 

testing group. To reduce bias in the experiment, the fully-independent testing group was 

only classified a single time at the end of the experiment, after all the network optimizing 

had been determined using the validation set. To test the ability to diagnose and localize 

cancer on WSI, we used AUC, F1 score, accuracy, sensitivity, and specificity to evaluate 

cancer detection on a patch-based level. Confidence intervals were calculated using a boot-

strapping algorithm. Additionally, the ability of the proposed algorithm to diagnose slides 

with cancer from normal slides was investigated. This slide-level AUC was calculated by 

assigning the value of the image patch with the maximum cancer probability to the entire 

WSI.  

7.3 Results 

7.3.1 Digital Whole-slide Image Cancer Detection 

 Head and neck primary SCC was detected on digitized WSI with an AUC of 0.916 

and 85% accuracy for patients in the testing group. The ideal threshold for distinguishing 

SCC from normal tissue was SCC probability of greater than 62%. Thyroid carcinoma was 

detected on digitized WSI with an AUC of 0.954 and 89% accuracy for patients in the 

testing group. The ideal threshold for distinguishing thyroid carcinoma from normal 

thyroid tissue was cancer probability of greater than 50%. Breast cancer lymph node 
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metastasis was detected on digitized WSI with an AUC of 0.967 and 93% accuracy for 

patients in the testing group. The ideal threshold for identifying metastasis in SLNs was 

cancer probability of greater than 28%. Reported in Table 7-4 are the AUC for the 

validation groups and the AUC, accuracy, sensitivity, and specificity of the testing groups.  

Table 7-4. Cancer detection results, obtained from ROC curves using all histological 

images’ patch-level statistics. Reported are the AUC for the validation group and the AUC, 

F1 score, accuracy, sensitivity, and specificity of the testing group with 95% confidence 

intervals for all values. Also shown in the right-most column is the ability of the proposed 

method to distinguish slides that contain cancer from slides that are all normal. 

Group 
Validation 

AUC 
Test AUC F1 Score Accuracy Sensitivity Specificity 

Slide Level  

AUC 

SCC 
0.913 

(0.90,0.93) 

0.916  

(0.90, 0.93) 
84.8±1.5% 84.8±1.6% 84.7±2.2% 85.0±2.2% 

0.944 

(0.91, 0.97) 

Thyroid 
0.927  

(0.92, 0.94) 

0.954  

(0.94, 0.97) 
89.4±1.3% 89.4±1.3% 89.6±1.8% 89.1±1.9% 

0.995 

(0.99, 1.00) 

Lymph 

Node 

0.986  

(0.96, 0.99) 

0.967  

(0.96, 0.98) 
91.8±1.3% 93.4±1.2% 90.1±1.8% 93.6±1.6% 

0.901 

(0.86, 0.94) 

 

 Receiver operator characteristic (ROC) curves for slide-level and patch-level 

cancer detection in the testing groups from all three datasets are shown in Figure 7-2. Patch-

level ROC curves are generated using all histological images’ patch-level data for cancer 

localization, and slide-level ROC curves demonstrate WSI diagnosis. Additionally, two 

representative WSI from each of the three testing groups and their corresponding predicted 

heat-maps are shown in Figure 7-3. Several regions of interest (ROI) are detailed in Figure 

7-4 to identify the strengths and weaknesses of the proposed method in the detection of 

SCC. The ideal threshold for whole-slide level detection of SCC was above 95% 

probability, so the regions detailed as true negatives in Figure 7-4 fall below this threshold. 

Additionally, the grad-CAM technique was used to visualize the contributing normal and 

cancerous components of a few example input images that were corrected classified with 
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high probability (Figure 7-5). This approach reveals that a contribution of the cancer 

prediction is made by nuclear features. 

 

Figure 7-2. The ROC curves are shown for patch-level cancer detection (left) and slide-

level cancer diagnosis (right) in the testing groups from all three datasets. The dotted gray 

line corresponds to random guess. 

 

Figure 7-3. Representative whole-slide classification results. (a, b) Papillary thyroid 

carcinoma WSI from two patients. (c, d) SCC WSI from patients with tongue and 

retromolar trigone SCC. (e, f) Breast cancer metastasis to lymph node WSI from two 

patients. The cancer area is outlined in green on the H&E images, and the heat maps are 

shown of the cancer probability. 
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Figure 7-4. Heat maps representing cancer probability of several regions of interest. From 

left to right, the CNN correctly identifies salivary gland and muscular components as 

having a low probability of SCC; stratified squamous epithelium correctly shown as a true 

negative; a false positive area representing inflammatory infiltration near the SCC border 

(not shown); correctly classified true positive SCC classified with a high probability of 

SCC. 

 

 The ability of the proposed method to diagnose the entire WSI that contain any 

cancer was also investigated. WSIs with SCC were diagnosed with an AUC of 0.944. 

Thyroid carcinoma WSIs were diagnosed with an AUC of 0.995. WSI of SLN with breast 

cancer metastases were diagnosed with an AUC of 0.901.  
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Figure 7-5. Representative, correctly-classified cancer image-patches from each dataset, 

visualized with cancer and normal components using the grad-CAM technique. The 

gradients were traced from the last convolutional layer before the inception modules to the 

cancer and normal logits separately to visualize contributions from cancer and normal 

features leading to a correct cancer prediction. (a) Breast cancer SLN metastasis image 

patch correctly classified as cancer with 58% probability. (b) Papillary thyroid carcinoma 

image patch correctly classified as cancer with 89% probability. (c) SCC image patch 

correctly classified as cancer with 99% probability. 

7.4 Discussion 

 In this work, we present a new and extensive histological dataset of primary head 

and neck cancer and implement a state of the art Inception V4 CNN architecture for cancer 

detection and WSI diagnosis. The results are generalizable because of the division of 

patients across training, validation, and testing. To the best of our knowledge, this is the 
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first work to investigate SCC detection in digitized whole-slide histological images from 

primary head and neck cancers. 

 The digitized, whole-slide histological images were saved as TIF files with 

resolution equivalent to 40x microscopic objective. After 4x down-sampling, the image 

patches correspond to 10x objective equivalence. Different down-sampling factors and 

patch-sizes were explored, but this method yielded the best validation group results, so it 

was used for testing. Similarly, pathologists detecting SCC in histology slides use a variety 

of objectives, not exclusively 40x, which may be too zoomed-in to determine if the region 

is cancerous or benign. We see this issue in our dataset as well. It is not only possible, but 

likely that in some slides labeled as ‘tumor only’, there may be some areas inside the tissue, 

or in between tumor nests, that is entirely normal. Therefore, it is understandable that 

classification using 4x down-sampled images obtains the highest accuracy. Other CNN 

architectures were explored in early experiments using the validation set only, and various 

patch-sizes were experimented with, but ultimately the Inception V4 CNN architecture 

with a patch-size of 101×101×3 in HSV color space, yielded the most promising validation 

results. 

 Additionally, the regions of interest that are presented show true negative, false 

positive, and true positive regions that vary from 1 to 3 mm in size. These results 

demonstrate the proposed method is able to distinguish normal anatomical structures like 

epithelium and salivary gland from SCC with high probability. Also, the most common 

false positive observed in the classified result is tissue areas that contain dense 

inflammation. This result is most likely a by-product of the training paradigm. As SCC 

develops, there is an accompanying immune response that leads to massive inflammatory 
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infiltration into the tissue [286]. Therefore, the proposed algorithm learned the association 

between SCC and inflammation. 

 To our knowledge, there are no other studies that attempt to detect or diagnose 

H&N SCC or thyroid carcinoma on WSI, and we used a proprietary dataset collected from 

patients at our institution. Therefore, we wanted to test the proposed, diagnostic algorithm 

on a similar, open-source dataset for comparison. Our slide-level results would have placed 

3rd in the original CAMELYON 2016 [275, 278].  

 The grad-CAM technique was used to visualize what components of the input 

image are determined as useful features with a significant contribution to the cancer 

prediction from the CNN, as shown in Figure 7-5. This reveals that the decision is made 

by looking at the nuclei, just like a pathologist detects cancer. The proposed method does 

not segment all cancerous nuclei in the image patch, but it identifies a few cancerous nuclei 

with a high probability of being cancer and uses this information for making the decision. 

We did not train the proposed algorithm specifically with this in mind. Rather, this 

phenomenon was learned naturally by the training paradigm. The trained CNN model also 

has a level of stain invariance.  

7.5 Limitations 

 One limitation of the presented approach results from the application of the down-

sampled resolution and the patch-based Inception V4 CNN implementation. After down-

sampling, each pixel represents approximately 0.91 microns, which produces a patch size 

that spans about 92 microns in each x-y dimension for the patch size of 101×101 that was 

implemented in this approach. The typical diameter of an SCC single-cell nucleus in our 
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dataset was about 12 microns, which agrees with values reported in the literature of about 

13 +/- 2 microns [287]. Therefore, the theoretical limit of the smallest carcinoma that could 

be detected would be a nest of SCC cells with an approximate diameter of 92 microns. This 

value corresponds with an SCC nest on the order of tens of cells of SCC, depending on the 

cytoplasmic overlap in the arrangement of the SCC nest.  

 Another limitation of this approach was that the algorithm suffered from whole-

slide scanning artifacts, such as out-of-focus regions and including errors from slide 

processing, such as tissue folding and tearing. This was discovered after the completion of 

the experiment, and the effect was substantial, accounting for the reason in 

misclassification of the lowest performing WSI in the SCC testing dataset, which is shown 

in Figure 7-6. As can been in Figure 7-6, the left side of the WSI is classified correctly as 

a true positive SCC region, but the out-of-focus regions result in misclassification a similar 

ROI (shown in the cut-out boxes on the right) to be classified as false negative incorrect 

result. These misclassifications were retained in the testing dataset to not manipulate or 

bias the results, but in future work, slide scanning artifact detection should be additionally 

performed to determine which slides cannot be classified because of limited quality. 
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Figure 7-6. Representative false negative resulting from slide scanning artifacts. This 

accounts for the misclassification result of the lowest performing WSI in the SCC test 

group. The left side of the WSI was a correct true positive classification (green box), but 

the out of focus artifact results in false negative misclassification (red box). 

 Digital pathology with WSI allows pathologists to view high-resolution 

histological images, just as standard microscopy, and it was concluded that digital 

pathology is non-inferior to microscopy for primary diagnosis in surgical pathology cases 

across multiple institutions, staining types, and organ systems [272, 273]. Therefore, we 

believe the robust experimental procedure of the proposed method, designed to eliminate 

bias, has demonstrated potential benefit in a modern, digitized clinical setting. However, 

primary diagnosis of surgical specimens for intraoperative guidance is performed on 

frozen-sections rather than formalin-fixed, paraffin embedded tissues, as were investigated 

in this study. Additionally, frozen-sections are typically lower quality than those created 

from fixed, embedded specimens because they suffer from many different artifacts and 

depend heavily on the skill of the operator. Therefore, we believe the presented work 

demonstrates potential for clinical benefit, but more investigation needs to be performed. 
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Moreover, the generalization of the results beyond head and neck cancers to breast cancer 

metastasis in sentinel lymph nodes suggests this method is not limited to any organ system 

and could be adapted to serve multiple purposes if implemented in a more clinical setting.  

7.6 Conclusion 

 In summary, this chapter details the first application of deep learning for the 

histological detection of H&N SCC and thyroid cancers. The proposed method can detect 

and localize primary head and neck SCC on whole-slide, digitized histological images with 

an AUC of 0.916 for patients in the SCC testing group and 0.954 for patients in the thyroid 

carcinoma testing group. Moreover, the proposed method can discriminate WSI with 

cancer versus normal slides with an AUC of 0.944 and 0.995 for the SCC and thyroid 

carcinoma testing groups, respectively. The SCC detection method is performed across all 

anatomical locations, which indicates the algorithm is not limited to one location of the 

head and neck anatomy. For thyroid cancers, three major thyroid carcinomas are studied 

together, which additionally demonstrates the generalizability of the method. For external 

validation, we tested the proposed method on a publicly-available dataset, CAMELYON 

2016, and obtained good results. The agreement between validation and testing 

demonstrate that the technique is generalizable due to the robustness of the training 

paradigm and the careful experimental design to reduce bias. Together, the novel 

application to our dataset and promising results of this work demonstrate potential that 

such methods as the one proposed could help create a tool to increase efficiency and 

accuracy of pathologists performing head and neck cancer detection on histological slides 

for intraoperative guidance during head and neck cancer resection operations. 
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CHAPTER 8. CONCLUSION 

8.1 Summary and Key Findings 

8.1.1 Ex-vivo HSI Patient Database 

 A dataset of 204 patients with head and neck cancer was acquired (Table 8-1). 

Optical imaging was performed with HSI, autofluorescence, 2-NBDG dye, and proflavin 

dye on all the 204 patients collected for this thesis work. Digitized histological slides were 

made from all tissue specimens and annotated by a pathologist. The data were sorted into 

groups according to the patients’ medical and histological information. All imaging data 

were calibrated, processed, and registered to the ground truth with the method described in 

Chapter 3. Thus, this processed dataset was prepared for analysis within this thesis work 

and can be used for future studies in HSI using this same dataset by other researchers. 

Table 8-1. Summary of patient dataset acquired for this thesis. 

HNSCC (Chapter 4)  Thyroid (Chapter 5)  

SCC, Conventional 85 Thyroid, Papillary Carc. 54 

SCC, HPV+ (p16+) 13 Thyroid, Follicular 13 

SCC, Basaloid 1 Thyroid, Medullary Carc. 5 

SCC, Neuroendocrine 1 Thyroid, Insular Carc. 1 

SCC, Spindle Cell 1 Thyroid, Poorly Diff. Carc. 3 

Adenosquamous Carcinoma 1 Thyroid, Benign Goiter 6 

Total 102 Total 82 
    

Other (Not used)  Salivary Glands (Chapter 5)  

Spindle Cell Carcinoma 1 Pleomorphic Adenoma 2 

Osteosarcoma 1 Mucoepidermoid Carcinoma 1 

Reactive Tonsil 1 Salivary Duct Carcinoma 1 

Lymph Nodes 1 Polymorphous LG Adenoma 1 

Lung Adenocarcinoma 1 Adenoid Cystic Carcinoma 1 

Jugular Vein SCC Metastasis 1 Total 6 

Incomplete Information 8   

Total 14   
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8.1.2 Cancer Detection with HSI 

This thesis work focused on the use of deep learning, particularly deep CNNs for 

cancer detection using HSI input. As discussed in Chapter 3, the rationale of the selection 

was that CNNs can tolerate variance in the training data, learn generalizable features, can 

be deployed in seconds after the model is fully-trained, and have demonstrated superior 

performance to traditional, regression-based machine learning methods since CNNs utilize 

non-linear activations. In the ML methods compared in this thesis, both spectral only and 

spectral-spatial methods that utilized traditional regression-based ML were tested, and it 

was observed that the CNN could outperform them, particularly when using a large training 

group. However, the experiments comparing different ML algorithms were intentionally 

limited in number and performed on a subset of the patients to reduce the substantial bias 

that could arise from “over-testing” with our only large dataset.  

 In Chapter 4, we reported on the investigation of deep CNNs for SCC detection and 

the performance of label-free, reflectance-based HSI and autofluorescence imaging in 293 

tissue specimens from 102 patients, comparing with fluorescent dyes. The inter-patient 

experiments showed that reflectance-based HSI and autofluorescence imaging 

outperformed proflavin dye and standard RGB images (p<0.05) for conventional SCC 

detection. Up to 2 mm near the cancer margin, in specimens from the larynx, oropharynx, 

and nasal cavity, HSI detected conventional SCC with 0.85–0.95 AUC score. In the oral 

cavity, hypopharynx, and maxillary sinus, HSI detected conventional SCC with around 

0.80 AUC score. The tongue specimens were the worst performing location for SCC 

detection using HSI, around 0.65 AUC score, which may be a result of myoglobin 

absorption signals interfering with the hemoglobin absorption signal that the CNN uses for 
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prediction. These results confirmed the hypothesis that HSI would outperform other 

imaging modalities for conventional type SCC. In HPV+ SCC, autofluorescence imaging 

detected in tonsillar tissue with 0.91 AUC score, outperforming other modalities. This 

study demonstrates that label-free, reflectance-based HSI and autofluorescence imaging 

methods can accurately detect the cancer margin in ex-vivo specimens within minutes, 

which could aid surgeons and reduce inadequate surgical margins during SCC resections. 

 In Chapter 5, we reported on the use of CNNs for thyroid and salivary gland tumor 

detection with HSI and autofluorescence imaging in 216 tissue specimens from 82 patients, 

comparing with fluorescent dyes. For thyroid tumor detection, with average and median 

AUC scores of 0.86 and 0.95, HSI outperformed autofluorescence, 2-NBDG, and proflavin 

dyes, thus confirming the initial hypothesis. However, we observed an unexpected result. 

Additionally, HSI was used to synthesize three-band RGB multiplex images to represent 

the human-eye response and Gaussian RGBs. The average and median AUC scores of 0.90 

and 0.96 results for human-eye HSI-synthesized RGB images significantly outperformed 

HSI (p<0.05). In salivary gland tumors, HSI had the best performance for parotid gland 

tumors with 0.92 AUC score, and autofluorescence had the best performance for other 

salivary glands (0.80 AUC score). This study demonstrates that HSI could aid surgeons 

and pathologists in detecting tumors of the thyroid and salivary glands. 

A major contribution of this work was to provide a solution to the specular glare 

problem, shown in Chapters 4 and 5. Previously, one major limitation of HS acquisitions 

of wet tissue surfaces was creating specular glare from perfect reflections, which contain 

no useful information for diagnosis and confound ML classifiers. When using a very large 

number of tissues for training, the CNN methods demonstrated in both SCC and thyroid 
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cancers to be invariant or agnostic to specular glare with HSI, compared to RGB imaging 

methods, which was very susceptible to glare-induced misclassifications. Originally, 

specular glare was believed to be a large confounding factor with tissue classification, even 

in deep learning, but it was discovered that training a very deep CNN (hundreds of layers) 

with a large number of HSI tissue specimens (here several hundred) could solve the glare 

issue. 

8.1.3 Tissue Sub-component Classification using HSI 

 In Chapter 6, we reported sub-component classification of normal aerodigestive 

tract tissues into skeletal muscle, salivary glands, and stratified squamous epithelium. 

Additionally, the ability of HSI to discriminant benign hyperplasia / goiter from two kinds 

of thyroid carcinoma was investigated. This chapter presented proof-of-principle results 

with limited patient sample size experiments to study the ability HSI to provide multi-

category diagnostic information for normal head and neck tissue and thyroid carcinomas.  

8.1.4 Cancer Detection on Histology Slides 

 In Chapter 7, we reported on the use of deep learning algorithms for cancer 

detection in RGB digitized whole-slide histology imaging using the histological specimens 

acquired in our database. The rationale for this investigation is that during operations, 

pathologists guide surgeons by detecting cancer in histology slides made from the excised 

tissue. We reported on the results of automated cancer detection in 381 digitized, 

histological whole-slide images (WSI) from 156 patients with head and neck cancer, using 

CNNs. The proposed method demonstrated ability to detect and localize head and neck 

SCC in WSI with an AUC score of 0.92 and with 0.95 AUC score for thyroid carcinoma. 
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Moreover, we reported that simplifying the task to determine if the slide has any cancer 

resulted in AUC scores of 0.94 and 0.99 for the SCC and thyroid carcinoma cohorts, 

respectively. The experimental design yields a robust method with potential to help create 

a tool to increase efficiency and accuracy of pathologists detecting head and neck cancers 

in histological images. 

 

8.2 Limitations 

One of the major limitations that should be discussed first is that the tissue specimens 

collected for this study were excised, ex-vivo specimens. This imposes restrictions for two 

main reasons: (1) the imaging acquisition settings are ideal, and (2) the ability of ex-vivo 

cancer detection is not necessarily equivalent to in-vivo detection. The HSI system used in 

this work was intended for small animal studies and ex-vivo tissues samples. Tissues were 

imaged in a black box with ideal illumination conditions, focusing, and no motion artifacts. 

Acquiring in-vivo HSI creates all of these issues commonly [168].  Additionally, in Chapter 

4, we demonstrated that the oxy-hemoglobin signal is the most salient spectral component 

for the CNN to extract strong gradients that enable correct cancer prediction. In ex-vivo 

tissues, all hemoglobin will be oxygenated, which creates a distinct absorption profile from 

deoxygenated hemoglobin [288], which may be found more abundantly in in-vivo 

acquisitions.  

The metabolism of cancer has a well-studied change, called the Warburg effect, 

which states that cancer tends to prefer metabolism with glycolysis instead of the normal, 

efficient oxidative phosphorylation pathway [289]. The relative tissue compositions of key 
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molecules, such as pyruvate (the final product of glycolysis), oxidized and reduced FAD 

and NAD, with spectral signatures in the range of the VNIR acquired for this study, may 

yield differences in-vivo compared to ex-vivo. This change could lead to in-vivo 

observations that could confound or enhance the ability of HSI for cancer detection. As 

discussed, our ex-vivo results found oxy-hemoglobin to be the most significant feature for 

deep learning-based predictions. In the literature on diffuse spectroscopy of breast cancer 

using in-vivo acquisitions, it was demonstrated that both oxy- and deoxy-hemoglobin 

increase significantly in cancer compared to normal tissue, but the deoxy-hemoglobin 

signal was more predictive [290]. Therefore, by extension, not only will the spectral 

signature likely change moving from ex-vivo to in-vivo, but the most significant spectral 

features may also change. 

The ex-vivo HSI acquisition system used for this study employed a LCTF for 

separating spectral bands, which may have limited the performance of this study. The 

resolution between spectral bands was only 5 nm, which produced a coarse spectral 

signature, but allowed for very high spatial resolution. Currently, systems, such as the snap-

scan system, are able to capture very high-quality spectral signatures, with spectral 

resolution around 1-2 nm, and spatial resolutions that are beyond or equivalent the 1040 

by 1392 pixels used for this thesis work. These evolving technologies allow for fast 

acquisitions that will hopefully limit motion artifacts. Additionally, these systems are easy 

to focus and more compact, which are two key components necessary for clinical 

translation.  

The deep learning-based computer-aided diagnostic algorithm for histological 

images presented in Chapter 7 demonstrated successful performance in head and neck 
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SCC, thyroid carcinomas, and breast cancer metastasis to lymph nodes. Cancer was 

detected in whole-slide images with pixel-level resolution, which suggests that there is 

clinical value is exploring these methods further. However, there were several notable 

limitations. Firstly, inspecting the theoretical limit of the proposed method, cancer was 

detectable down to micro-carcinomas with diameter of 92 microns, which may not be 

sufficient for all use cases. Second, the algorithm performance suffered significantly at 

instances of slide scanning artifacts, such as out-of-focus regions, and errors from slide 

processing, such as tissue folding and tearing. 

The deep learning methods used for cancer detection with HSI for this thesis were 

tested on our dataset, which contained many samples from many sites, but was obtained 

from a single institution with a single HS acquisition system. The methods presented here 

for both HSI and digital histology must be rigorously investigated on large patient 

populations from multiple institutions and using different HS cameras and slide scanners. 

Deep learning systems are ideal for HSI-based detection because they can be rapidly 

deployed once fully-trained. Therefore, additionally, a streamlined user interface should be 

designed for straight-forward HS acquisitions, deployment, and prediction maps that can 

be easily interpreted by clinicians. 

 

8.3 Future Work 

The future research in the field of medical HSI should be directed in the following 

areas: more in-vivo patient acquisitions, fine tuning machine learning diagnostic programs, 

developing better HS acquisition systems, and user-friendly deployment systems. 
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8.3.1 In-vivo HSI Acquisition 

This thesis has both reviewed current works in the literature and presented the use 

of HSI and optical imaging for a comprehensive and large 204 patient ex-vivo tissue 

specimen dataset. Future work of this thesis work on head and neck cancer involves the 

extension from ex-vivo imaging with tissue specimens to in-vivo intraoperative 

acquisitions of human patients. There are challenges, both known and unknown, in moving 

from the former to the latter. Once the new in-vivo data is acquired, it should be 

investigated if an algorithm trained on ex-vivo data, such as presented in Chapter 4 and 5, 

can be generalizable enough to apply to in-vivo data for testing. Additionally, it should be 

investigated if the ex-vivo data can serve as pre-training or transfer learning for deep 

learning methods to initiate weights, which would allow fine-tuning of the models with a 

lower learning rate, which can be achieved using a limited number of patient HS images. 

Therefore, even with a smaller number of in-vivo acquisitions, the work presented in this 

thesis using ex-vivo HSI from 204 patients will be utilized for clinical and translational 

purposes.  

Alternatively, if there is a delay with in-vivo acquisitions during routine clinical 

surgical service, it would be possible to obtain human cadaveric in-situ acquisitions to 

establish geometry and lighting challenges and test transfer learning from ex-vivo deep 

learning models. More acquisitions are required to determine the clinical viability of HSI 

for surgical guidance, as ex-vivo alone does not provide enough information since the 

acquisition protocols are in ideal circumstances. Another avenue of exploration is to 

determine if a single predictive model for an entire organ system, such as all sub-locations 

head and neck in Chapter 4 or all thyroid tumor types in Chapter 5, can be sustainable and 
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reliable. If not, it would require investigation into subcategorizing and re-training the 

cancer predictive models to obtain, for example, one model for oral cancers, one model for 

laryngeal cancers and so on. However, since deep learning allows meaningful feature 

extraction and learning from large and varied datasets, we hypothesize that a broad organ 

system approach as was implemented will be proven to be acceptable. 

8.3.2 Emerging HSI Technology 

 While the use of HSI for clinical application is still in its adolescence, the 

development of new and emerging HSI will undoubtedly help accelerate the translation. 

Firstly, as described above, the HS cameras are becoming higher quality, both in spatial 

and spectral resolution, with faster acquisitions. However, currently a specific HS camera 

is needed for a specific window of the electromagnetic spectrum, such as visible, VNIR, 

NIR, or SWIR. The development of HS cameras that acquire shorter wavelengths than 

visible light (below 400 nm) needs to be established to allow for spectroscopy of signals 

like NAD and keratin, which are less than 350 nm. Additionally, extending the signal of 

HS cameras beyond 1000 nm for these same cameras would greatly help clinical utility. 

The depth penetration of NIR light is up to tens of millimeters, which is significantly deeper 

than shorter UV and visible light, which ranges from one-tenth to only a few millimeters.  

In a clinical scenario, it is challenging and unrealistic to expect multiple 

acquisitions on multiple HS cameras in the operating room, so this process needs to be 

streamlined into one HS camera. Additionally, the computer aided diagnostic programs 

need to be packaged in operator friendly interfaces. The current acquisition programs and 

computer diagnostic programs for surgical guidance are cumbersome and finicky without 
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expert knowledge, which would stall adoption. The hurdles to both HS acquisition and 

deployment need to be addressed. If this happens, the wealth of HS data that can be 

captured could lead to better performance and accuracy across more types of cancer in 

other organ systems as well. 

8.3.3 Computer-Aided Histology Detection 

Current practice for pathological consultation during head and neck surgeries 

involves processing specimens using frozen-sections and standard microscopy. A recent 

study found that digital pathology, navigating digital images of slides in a fashion 

equivalent to standard microscopy, was non-inferior for primary diagnosis [273]. 

Therefore, if pathologists and surgeons adopt digital histology for making diagnoses, the 

deep learning models developed in this thesis in Chapter 7 could aid in the clinical 

workflow with quantitative cancer detection. On the other hand, even if pathologists do not 

adopt digitized slides for reading, for example because it adds time, microscopes are being 

developed that scan simultaneously and seamlessly without interrupting standard 

pathology workflows to instantly detect cancer in the microscope field of view and apply 

an augmented reality overlay for cancer visualization [291].  

The wealth of histological data available to clinics can be utilized for training 

models with reduced expert annotations. Specifically, training deep learning approaches 

can be automated even for training, without requiring human pathologist annotations, 

simply needing one label per slide [292]. Reducing the work needed by expert pathologists 

could make it possible to create a training dataset with tens of thousands of slides from 

multiple institutions. Therefore, to make the translational leap from proof-of-concept to 
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improving surgical pathologists’ clinical workflow, thousands of slides should be made 

available for training and more research should be conducted to these new digital 

microscopy methods. 

8.3.4 Summary of Future Research Directions 

 In conclusion, several future research steps are outlined, which are necessary for 

the clinical translation of hyperspectral imaging: testing of new and emerging HS cameras 

for better acquisition systems, collecting cadaveric or in-vivo HS acquisitions, exploring 

how this affects CNN-based deep learning algorithms, rigorously investigating on large 

patient populations from multiple institutions, and streamlining the deployment of these 

systems clinically. Additionally, future steps needed for translation of deep learning for 

assisting surgical pathologists are outlined.  However, the methods developed and 

presented in this thesis are not exclusive to HSI or histological imaging, and this work can 

be of value to any aspiring optical imaging modality for translation surgical guidance. 

Indeed, it is possible that future and emerging optical imaging modalities currently under 

investigation by the scientific community could be combined with the methods developed 

in this thesis to offer equivalent or superior cancer detections abilities for guiding surgeons 

in the operating room.  
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APPENDIX A. HISTOLOGICAL GRADING OF SCC USING 

HYPERSPECTRAL IMAGING 

 In this appendix section, we explore the predictive ability of HSI beyond cancer 

detection to investigate the use HSI for predicting histological SCC grade. Histological 

grading of SCC of the head and neck has been correlated with disease prognosis and patient 

survival. SCC is graded from well, moderately, to poorly differentiated (grades 1, 2, and 3, 

respectively). The objective of this project is to determine the ability of label-free, non-

contact HSI for predicting histological grade of SCC in gross-level ex-vivo tissue 

specimens. Using tissue specimens from patients with known histological grade from the 

head and neck SCC dataset (N=56 patients, N=73 tissue specimens), we trained a CNN to 

predict the SCC grade. Validation and testing was performed on 22 tissues specimens from 

15 fully-independent patients to determine performance. Overall accuracy for predicted 

grade of tissue specimens was 67% and 60%, which is significantly higher than randomly 

guessing SCC grade (33%). Agreement, measured with Cohen’s kappa statistic, was 0.50 

and 0.44, indicating a fair to moderate agreement. The inter-reader reproducibility of SCC 

grading is about 0.60 in the literature. The preliminary results of this work show that HSI 

may hold potential for automatic grading of head and neck SCC of gross-level tissue 

specimens. This work warrants future investigation into the comparison of the automated 

methods as performed with digitized histology of the same specimens to determine the 

agreement of grade predictive algorithms with different imaging modalities. 
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A.1     Introduction 

 Label-free HSI is a non-contact, non-ionizing, optical imaging modality that 

acquires a sequence of two-dimensional images over discrete wavelengths (2-5 mm) in a 

broadband electromagnetic spectrum, typically from 400 to 900 nm [14, 211]. Originally 

implemented in biomedical imaging for calculating vascularization and hemoglobin 

saturation, HSI has been recently applied to cancer detection, in multiple areas, including 

brain cancer and head and neck cancer [113, 166, 169, 179].  

 Head and neck cancer is the sixth most common cancer worldwide, and surgery 

remains the well-established standard treatment. Recurrence rates for cancer after surgical 

resection are largely dependent on negative, cancer-free surgical margins, along with 

several factors that cannot be controlled, such as histological cancer grade and staging of 

the cancers [293, 294]. Nearly two-thirds of patients with head and neck SCC present with 

advanced, late stage disease. 

 The histological grade of head and neck SCC has been studied as an independent 

prognostic factor in Cox's multivariate survival analysis (p <0.01) [293]. Several studies 

have calculated the inter-pathologist agreement for determining histological SCC grading, 

with Cohen kappa values of agreement ranging from 0.60 to 0.64 [293, 295, 296]. 

Therefore, current practice, which involves performing histological preparation of ex-vivo 

tissue specimens/biopsies, only yields moderate inter-rater agreement. We hypothesize that 

deep learning can provide an automated tool to improve SCC grading, with potential to 

provide clinically relevant information in-vivo and in-situ using non-contact optical 

imaging. Previously in the literature, similar studies have been performed to predict 
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histological grade of other cancer types with other imaging modalities, such as MRI and 

digitized histology, with acceptable values of correlation agreements [111, 297, 298]. 

 The objective of this project is to determine the ability of label-free, non-contact 

HSI for automatically predicting the histological grade of SCC in gross-level, ex-vivo tissue 

specimens using deep convolutional neural networks. The preliminary results of this work 

suggest that the combination of HSI and deep learning has the potential to produce near 

real-time SCC grading labelling, and future investigation is warranted. 

A.2     Materials and Methods 

 Patients with head and neck squamous cell carcinoma (SCC) were recruited for this 

study after written and informed consent, conducted at Emory University School of 

Medicine, in collaboration with the Emory University Hospital Midtown (EUHM) 

departments of surgical pathology and otolaryngology [33, 113, 179]. Patient information 

was de-identified by a research coordinator at EUHM. For this investigation, we included 

only specimens of conventional, keratinizing SCC without HPV, all histological grades 

from well to poorly differentiated, and acquired tissue specimens of both the primary 

cancer and the tumor-involved cancer margin. The size of tissue specimens was 

approximately 10 mm in width and from 10 to 20 mm in height, by 2 to 3 mm in depth. 

Tissue specimens were acquired for research purposes from the surgical pathology 

department after being grossly examined, and the remaining tissue was used for the clinical 

pathology service.  

 The ex-vivo tissue specimens were imaged with HSI at an off-site imaging 

laboratory, after being transported in cold, buffered saline solution. After optical imaging, 
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specimens were fixed in formalin, paraffin embedded, microtome sectioned, and 

underwent H&E staining to produce histological glass slides. The H&E slides were used 

to obtain the ground truth for the gross, ex-vivo tissue specimens [33, 113, 179]. For 

specimens of the tumor-involved cancer margin, the cancerous SCC area was segmented 

and registered according to a previously reported protocol [184]. The histological ground 

truth was annotated by a board-certified pathologist with expertise in head and neck SCC. 

 This SCC grading study included 73 conventional SCC tissue specimens from all 

56 patients undergoing surgical SCC resection with histological grade. The origin sites for 

the primary cancer were from the upper aerodigestive tract. A summary of the SCC grades 

and groups is shown in Table A-1. Because of insufficient tissue size to perform image 

patch making, described below, 10 tissue specimens were excluded from this study: not 

reported in Table A-1. The histological grade of SCC differentiation was obtained from the 

de-identified pathology report used for EUHM clinical service. There was a relative excess 

of grade 2 compared to 1 and 3, so only one primary cancer specimen was used from each 

patient with grade 2, moderately differentiated SCC.  

Table A-1. Head and neck SCC data and samples, organized by histological grade of 

differentiation. Groups are shown as number of tissue specimens (number of patients). 

SCC Histological Grade Train Validation Test Total 

Well-differentiated (G1) 7 (4) 2 (1) 2 (1) 11 (6) 

Moderately differentiated (G2) 30 (28) 5 (4) 4 (4) 39 (36) 

Poorly differentiated (G3) 14 (9) 5 (3) 4 (2) 23 (14) 

Total 51 (41) 12 (8) 10 (7) 73 (56) 

 



 193 

 Hyperspectral images were acquired using a Maestro imaging system (Perkin 

Elmer Inc., Waltham, Massachusetts). The imaging system consists of a Xenon white-light 

illumination source, a liquid crystal tunable filter to separate spectral bands, and a 16-bit 

charge-coupled device that acquires high-resolution images, 1,040 by 1,392 pixels, with a 

specimen-level resolution of approximately 25 microns per pixel [33, 113, 179]. The HSI 

were captured throughout the broad-band spectral range from 450 to 900 nm in 5 nm 

spectral increments, producing a hypercube with 91 spectral bands. The HSI data was 

calibrated and normalized using a standardized white reference disk and subtracting the 

inherent dark current of the sensor to obtain arbitrary units of reflectance [33, 113, 179]. 

There was substantial specular glare on some tissue specimens; this was left intact in the 

HSI, but reflectance values were capped at an intensity of 1. 

 To perform automatic SCC grading into three categories using HSI, a convolutional 

neural network (CNN) was used to train and classify the 3 SCC grades, validated on 12 

tissues from 8 patients, and tested on 10 tissues from 7 patients to determine final 

performance. The CNN was implemented in TensorFlow [192] in Python on an Ubuntu 

machine with an i5 processor and NVIDIA Titan-XP GPU. The CNN architecture was 

originally inspired by the Inception-V4 CNN [217], but substantial modifications were 

made and squeeze-and-excitation modules were added. The input for the CNN was 3D HSI 

patches of size 101×101×91 (height, width, spectral bands). Patches were augmented by 

flips and rotations to be balanced across the three classes.  

 The CNN architecture was customized due to the uniqueness of the HSI input data 

and differing patch size from the original Inception-V4 architecture [217]. The customized 

CNN consisted of two convolutional layers, one max-pooling layer, and a final strided 
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convolutional layer with dropout to reduce the size to 25×25 before the inception modules. 

Only one inception-v4 A module was used, followed by 3 squeeze-and-excitation layers, 

before the reduction A module. One inception-v4 B module was used, followed by 6 

squeeze-and-excitation layers, before the reduction B module. Lastly, one inception-v4 C 

module was used, followed by 2 squeeze-and-excitation layers, which was output to the 

logits by global average pooling. The adaptive delta gradient descent optimizer, AdaDelta, 

used to for training and weight optimization. The CNN was trained for 35 epochs of 

training data, using a batch size of 24 and learning rate of 0.01. The validation performance 

of all validation patches was calculated every 5 epochs, and training was stopped when 

patch-level performance peaked. The training time for one epoch was about 2 hours, and 

performing the testing on a series of patches was on the order of tens of seconds. After 

stopping training, tissue-level validation performance was calculated by taking the 

maximum probability of belonging to a SCC grade across all patches produced from a 

tissue and assigning that grade label to the entire tissue. Assigning tissue-level SCC grade 

using the maximum probability of all patches was also used for testing results. The 

rationale for this technique is that SCC grade is determined by the most aggressive grade 

present in a cancer specimen; therefore, it does not have to be uniform across and entire 

cancer tissue. 

 The CNN classification performance was evaluated using an external validation 

group and a fully-independent testing group of tissue specimens and patients. To evaluate 

the performance, the metrics of tissue level percent accuracy, Cohen’s kappa statistic, and 

predictive probability were implemented. Cohen’s kappa statistic (κ) for is a commonly 

used metric for determining agreement or concordance in ranking tasks, and the kappa 
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values ranges from [-1, +1], where 0 corresponds to randomly guessing. The predictive 

probability (Pk) was selected because it converges to area under the curve (AUC) for 

binary, continuous problems, so it offers relatability [299]. Values for predictive 

probability range from 0 to 1, where 0.5 corresponds to randomly guessing, just like AUC 

values. 

 The labels for the training data and the labels for the validation and testing groups 

was the SCC grade obtained from the EUHM clinical service. It is possible that there is 

some uncertainty in the grade labels because the labels were obtained from the entire 

clinical service gross tissue, not only the small specimens used for this research study. 

Additionally, there may be some inter-reader variability in the SCC grades labelled. 

A.3     Results and Discussion 

 The overall multiclass performance on a tissue level for the validation group was 

67% accuracy, 0.81 predictive probability, and a Cohen’s kappa of 0.50 agreement. Within 

the validation group, one out of two grade 1 SCC were predicted correctly, with one 

incorrectly predicted as grade 2. Four out of five, grade 2 were predicted correctly, with 

one incorrectly predicted as grade 1. Three out of five, grade 3 were predicted correctly, 

with two incorrectly predicted as grade 1.  

 The tissue level multiclass performance for the testing group (10 tissues from 7 

patients) was 60% accuracy, 0.70 predictive probability, and a Cohen’s kappa of 0.44 

agreement. One out of two grade 1 SCC were predicted correctly, with one incorrectly 

predicted as grade 2. All four grade 2 were predicted correctly. One out of four, grade 3 
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were predicted correctly, with three incorrectly predicted as grade 1. Table A-2 shows the 

summarized results for validation and testing groups. 

Table A-2. Performance of HSI using CNN for automatic SCC grading, reported with 

predictive probability (Pk), percent accuracy, and Cohen’s kappa (κ) calculated on a tissue 

specimen level. 

HSI vs. Clinical Service Tissues (Patients) Pk Acc. κ 

Validation 12 (8) 0.81 67% 0.50 

Testing 10 (7) 0.70 60% 0.44 

 

 According to interpretation values for kappa, the validation and testing results 

represent fair to moderate agreement (0.44-0.50), while the inter-rater agreement represents 

borderline moderate to substantial agreement (0.60-0.64) [300]. This indicates that the 

results are promising, but the CNN training could benefit from more patient data, 

particularly grades 1 and 3, where we did not have enough samples. In the literature, 

automated histological grade has been performed directly using digitized histology with 

high kappas for different cancers: prostate cancer (0.71-0.75) [301], lung cancer (0.53) 

[284], and breast cancer (0.64) [302]. It is evident that maximum agreement, even using 

histology directly, differs by cancer type. Our results comparatively range from 0.44 to 

0.50 and use gross-level tissue information only.  

 There a several limitations of this study. Firstly, due to a limited sample size, the 

statistical power of the results cannot be confidently stated. Moreover, with the limited 

number of specimens for grade 1 and 3, it can be seen that our proposed CNN method may 

be prone to over-predicting grade 2 carcinoma. Because of the over-abundance of grade 2 

tissue specimens, it was possible to only use specimens of the primary tumor for grade 2. 
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However, grade 1 and 3 required including both primary tumor tissues and cancer-involved 

margin tissues that need to be registered and have the normal components segmented out.  

 It is possible that there could be disagreement between independent pathologist 

graders for SCC, as the literature suggests. With only one set of SCC grades for this study, 

we cannot identify the bounds of grade ranking disagreement for this sample size. A 

potential reason for the disagreement in SCC grading of the HSI predicted labels and the 

results of the EUHM clinical service could be that the tissue specimens acquired were not 

the exact grade of the entire gross-level tissue removed. This would confound the results 

and yield artificially lower evaluation metrics. The solution to this problem would be 

having several independent pathologist graders assign scores to the testing and validation 

groups for comparison. Nonetheless, the promising preliminary results demonstrate fair 

agreement of HSI predicted grade and pathologist assigned SCC grade. 

 We consider this study to be innovative because it designs and validates a 

quantitative, non-contact, and label-free approach for determining histological grade using 

optical imaging and deep learning. This method could have potential in helping surgeons 

and pathologist identify the aggressiveness of SCC either in the operating room or in the 

surgical pathology department without the need for histological sample preparation. The 

promising preliminary results warrant future investigation into the comparison of the 

automated methods as performed with digitized histology of the same specimens. 

A.4     Conclusion 

 In conclusion, this addendum section reports the preliminary results from HSI for 

automatically predicting SCC grade of head and neck gross-level tissue specimens. This 
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work is the first of its kind to explore HSI for the automatic grading of SCC gross tissues, 

and predictions from the proposed HSI and CNN method agree with the SCC grade from 

clinical service to a fair to moderate degree. The clinical problem of SCC grading is a 

challenging task with only moderate inter-rater agreement. This warrants future 

investigation into the comparison of the automated methods performed with digitized 

histology of the same specimens to determine the agreement of grade predictive algorithms 

with different imaging modalities. This addendum to the thesis work further demonstrates 

the potential of HSI for clinical application. 
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