74,963 research outputs found

    New security notions and feasibility results for authentication of quantum data

    Get PDF
    We give a new class of security definitions for authentication in the quantum setting. These definitions capture and strengthen existing definitions of security against quantum adversaries for both classical message authentication codes (MACs) and well as full quantum state authentication schemes. The main feature of our definitions is that they precisely characterize the effective behavior of any adversary when the authentication protocol accepts, including correlations with the key. Our definitions readily yield a host of desirable properties and interesting consequences; for example, our security definition for full quantum state authentication implies that the entire secret key can be re-used if the authentication protocol succeeds. Next, we present several protocols satisfying our security definitions. We show that the classical Wegman-Carter authentication scheme with 3-universal hashing is secure against superposition attacks, as well as adversaries with quantum side information. We then present conceptually simple constructions of full quantum state authentication. Finally, we prove a lifting theorem which shows that, as long as a protocol can securely authenticate the maximally entangled state, it can securely authenticate any state, even those that are entangled with the adversary. Thus, this shows that protocols satisfying a fairly weak form of authentication security automatically satisfy a stronger notion of security (in particular, the definition of Dupuis, et al (2012)).Comment: 50 pages, QCrypt 2016 - 6th International Conference on Quantum Cryptography, added a new lifting theorem that shows equivalence between a weak form of authentication security and a stronger notion that considers side informatio

    Phishing attack prediction by smart mobile devices

    Get PDF
    In recent times, phishing is a wide spread technique to steal user’s authentication information, especially password. The key issue is that it is difficult for user to differentiate fake Login User Interface from normal login. This paper presents a unique method to predict phishing by smart device. In our technique, a smart device pre-stores feature information of Login User Interface. Before entering authentication information, a plug-in of Web browser at host side will verify the validation of Login Inter face according to pre-stored Login Interface information. Wi-Fi provides a communication channel between the plug-in and the smart device. Furthermore, the smart device can automatically fill the field of user id and password to the Login User Interface if Login User Interface passes the verification of smart mobile device. Compared with other solutions, this solution cans greatly improve the security of authentication

    Service re-routing for service network graph: efficiency, scalability and implementation

    Get PDF
    The key to success in Next Generation Network is service routing in which service requests may need to be redirected as in the case of the INVITE request in Session Initiation Protocol. Service Path (SPath) holds the authentication and server paths along side with service information. As the number of hops in a redirection increases, the length of SPath increases. The overhead for service routing protocols which uses SPath increases with the length of SPath. Hence it is desirable to optimize SPath to ensure efficiency and scalability of protocols involving service routing. In this paper, we propose a re-routing strategy to optimize service routing, and demonstrate how this strategy can be implemented using SPath to enhance the efficiency and scalability of Service Network Graph (SNG)

    SLRV: An RFID Mutual Authentication Protocol Conforming to EPC Generation-2 Standard

    Get PDF
    Having done an analysis on the security vulnerabilities of Radio Frequency Identification (RFID) through a desynchronization and an impersonation attacks, it is revealed that the secret information (i.e.: secret key and static identifier) shared between the tag and the reader is unnecessary. To overcome the vulnerability, this paper introduces Shelled Lightweight Random Value (SLRV) protocol; a mutual authentication protocol with high-security potentials conforming to  electronic product code (EPC) Class-1 Generation-2 Tags, based on lightweight and standard cryptography on the tag’s and reader’s side, respectively. SLRV prunes de-synchronization attacks where the updating of internal values is only executed on the tag’s side and is a condition to a successful mutual authentication. Results of security analysis of SLRV, and comparison with existing protocols, are presented
    corecore