1,632 research outputs found

    Low Cost and Compact Quantum Cryptography

    Full text link
    We present the design of a novel free-space quantum cryptography system, complete with purpose-built software, that can operate in daylight conditions. The transmitter and receiver modules are built using inexpensive off-the-shelf components. Both modules are compact allowing the generation of renewed shared secrets on demand over a short range of a few metres. An analysis of the software is shown as well as results of error rates and therefore shared secret yields at varying background light levels. As the system is designed to eventually work in short-range consumer applications, we also present a use scenario where the consumer can regularly 'top up' a store of secrets for use in a variety of one-time-pad and authentication protocols.Comment: 18 pages, 9 figures, to be published in New Journal of Physic

    Deep Random based Key Exchange protocol resisting unlimited MITM

    Full text link
    We present a protocol enabling two legitimate partners sharing an initial secret to mutually authenticate and to exchange an encryption session key. The opponent is an active Man In The Middle (MITM) with unlimited computation and storage capacities. The resistance to unlimited MITM is obtained through the combined use of Deep Random secrecy, formerly introduced and proved as unconditionally secure against passive opponent for key exchange, and universal hashing techniques. We prove the resistance to MITM interception attacks, and show that (i) upon successful completion, the protocol leaks no residual information about the current value of the shared secret to the opponent, and (ii) that any unsuccessful completion is detectable by the legitimate partners. We also discuss implementation techniques.Comment: 14 pages. V2: Updated reminder in the formalism of Deep Random assumption. arXiv admin note: text overlap with arXiv:1611.01683, arXiv:1507.0825

    Quantum Key Distribution

    Get PDF
    This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduction to QKD assuming the reader has no or very little knowledge about cryptography, and briefly present the state-of-the-art of QKD. In the second half of the chapter we describe, as an example of a real-world QKD system, the system deployed between the University of Calgary and SAIT Polytechnic. We conclude the chapter with a brief discussion of quantum networks and future steps.Comment: 20 pages, 12 figure

    The security of NTP's datagram protocol

    Get PDF
    For decades, the Network Time Protocol (NTP) has been used to synchronize computer clocks over untrusted network paths. This work takes a new look at the security of NTP’s datagram protocol. We argue that NTP’s datagram protocol in RFC5905 is both underspecified and flawed. The NTP specifications do not sufficiently respect (1) the conflicting security requirements of different NTP modes, and (2) the mechanism NTP uses to prevent off-path attacks. A further problem is that (3) NTP’s control-query interface reveals sensitive information that can be exploited in off-path attacks. We exploit these problems in several attacks that remote attackers can use to maliciously alter a target’s time. We use network scans to find millions of IPs that are vulnerable to our attacks. Finally, we move beyond identifying attacks by developing a cryptographic model and using it to prove the security of a new backwards-compatible client/server protocol for NTP.https://eprint.iacr.org/2016/1006.pdfhttps://eprint.iacr.org/2016/1006.pdfPublished versio

    Practical quantum key distribution over a 48-km optical fiber network

    Full text link
    The secure distribution of the secret random bit sequences known as "key" material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. Here we report the most recent results of our optical fiber experiment in which we have performed quantum key distribution over a 48-km optical fiber network at Los Alamos using photon interference states with the B92 and BB84 quantum key distribution protocols.Comment: 13 pages, 7 figures, .pdf format submitted to Journal of Modern Optic

    Field test of a practical secure communication network with decoy-state quantum cryptography

    Full text link
    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.Comment: 10 pages, 2 figures, 2 tables, typos correcte

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page
    • 

    corecore