835 research outputs found

    Strongly Secure Authenticated Key Exchange from Ideal Lattices

    Get PDF
    In this paper, we propose an efficient and practical authenticated key exchange (AKE) protocol from ideal lattices, which is well-designed and has some similarity to the HMQV protocol. Using the hardness of the graded discrete logarithm (GDL) problem and graded decisional Diffie-Hellman (GCDH) problem, the proposed protocol is provably secure in the extended Canetti-Krawczyk model

    Provably Secure Three-party Password-based Authenticated Key Exchange from RLWE (Full Version)

    Get PDF
    Three-party key exchange, where two clients aim to agree a session key with the help of a trusted server, is prevalent in present-day systems. In this paper, we present a practical and secure three-party password-based authenticated key exchange protocol over ideal lattices. Aside from hash functions our protocol does not rely on external primitives in the construction and the security of our protocol is directly relied on the Ring Learning with Errors (RLWE) assumption. Our protocol attains provable security. A proof-of-concept implementation shows our protocol is indeed practical

    Two-party authenticated key exchange protocol using lattice-based cryptography

    Get PDF
    Authenticated key exchange (AKE) protocol is an important cryptographic primitive that assists communicating entities, who are communicating over an insecure network, to establish a shared session key to be used for protecting their subsequent communication. Lattice-based cryptographic primitives are believed to provide resilience against attacks from quantum computers. An efficient AKE protocol with smaller module over ideal lattices is constructed in this paper, which nicely inherits the design idea of the excellent high performance secure Diffie-Hellman protocol. Under the hard assumption of ring learning with errors (RLWE) hard assumption, the security of the proposed protocol is proved in the Bellare-Rogaway model

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of post-quantum security

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digitalsignature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of postquantum security

    Key Exchange and Authenticated Key Exchange with Reusable Keys Based on RLWE Assumption

    Get PDF
    Key Exchange (KE) is, undoubtedly, one of the most used cryptographic primitives in practice. Its authenticated version, Authenticated Key Exchange (AKE), avoids man-in-the-middle-based attacks by providing authentication for both parties involved. It is widely used on the Internet, in protocols such as TLS or SSH. In this work, we provide new constructions for KE and AKE based on ideal lattices in the Random Oracle Model (ROM). The contributions of this work can be summarized as follows: 1) It is well-known that RLWE-based KE protocols are not robust for key reuses since the signal function leaks information about the secret key. We modify the design of previous RLWE-based KE schemes to allow key reuse in the ROM. Our construction makes use of a new technique called pasteurization which enforces a supposedly RLWE sample sent by the other party to be indeed indistinguishable from a uniform sample and, therefore, ensures no information leakage in the whole KE process. 2) We build a new AKE scheme based on the construction above. The scheme provides implicit authentication (that is, it does not require the use of any other authentication mechanism, like a signature scheme) and it is proven secure in the Bellare-Rogaway model with weak Perfect Forward Secrecy in the ROM. It improves previous designs for AKE schemes based on lattices in several aspects. Our construction just requires sampling from only one discrete Gaussian distribution and avoids rejection sampling and noise flooding techniques, unlike previous proposals (Zhang et al., EUROCRYPT 2015). Thus, the scheme is much more efficient than previous constructions in terms of computational and communication complexity. Since our constructions are provably secure assuming the hardness of the RLWE problem, they are considered to be robust against quantum adversaries and, thus, suitable for post-quantum applications

    Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE

    Get PDF
    Lattice-based cryptography offers some of the most attractive primitives believed to be resistant to quantum computers. Following increasing interest from both companies and government agencies in building quantum computers, a number of works have proposed instantiations of practical post-quantum key exchange protocols based on hard problems in ideal lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. While ideal lattices facilitate major efficiency and storage benefits over their nonideal counterparts, the additional ring structure that enables these advantages also raises concerns about the assumed difficulty of the underlying problems. Thus, a question of significant interest to cryptographers, and especially to those currently placing bets on primitives that will withstand quantum adversaries, is how much of an advantage the additional ring structure actually gives in practice. Despite conventional wisdom that generic lattices might be too slow and unwieldy, we demonstrate that LWE-based key exchange is quite practical: our constant time implementation requires around 1.3ms computation time for each party; compared to the recent NewHope R-LWE scheme, communication sizes increase by a factor of 4.7Ă—, but remain under 12 KiB in each direction. Our protocol is competitive when used for serving web pages over TLS; when partnered with ECDSA signatures, latencies increase by less than a factor of 1.6Ă—, and (even under heavy load) server throughput only decreases by factors of 1.5Ă— and 1.2Ă— when serving typical 1 KiB and 100 KiB pages, respectively. To achieve these practical results, our protocol takes advantage of several innovations. These include techniques to optimize communication bandwidth, dynamic generation of public parameters (which also offers additional security against backdoors), carefully chosen error distributions, and tight security parameters

    Analysis of BCNS and Newhope Key-exchange Protocols

    Get PDF
    Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. Following increasing interest from both companies and government agencies in building quantum computers, a number of works have proposed instantiations of practical post-quantum key-exchange protocols based on hard problems in lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. In this work we present an analysis of Ring-LWE based key-exchange mechanisms and compare two implementations of Ring-LWE based key-exchange protocol: BCNS and NewHope. This is important as NewHope protocol implementation outperforms state-of-the art elliptic curve based Diffie-Hellman key-exchange X25519, thus showing that using quantum safe key-exchange is not only a viable option but also a faster one. Specifically, this thesis compares different reconciliation methods, parameter choices, noise sampling algorithms and performance

    08491 Abstracts Collection -- Theoretical Foundations of Practical Information Security

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore