
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2017

Analysis of BCNS and Newhope Key-exchange
Protocols
Seyedamirhossein Hesamian
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Hesamian, Seyedamirhossein, "Analysis of BCNS and Newhope Key-exchange Protocols" (2017). Theses and Dissertations. 1485.
https://dc.uwm.edu/etd/1485

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217192485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1485?utm_source=dc.uwm.edu%2Fetd%2F1485&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

ANALYSIS OF BCNS AND NEWHOPE

KEY-EXCHANGE PROTOCOLS

by

Seyedamirhossein Hesamian

A Thesis Submitted in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in Computer Science

at
University of Wisconsin–Milwaukee

May 2017

ABSTRACT

ANALYSIS OF BCNS AND NEWHOPE
KEY-EXCHANGE PROTOCOLS

by

Seyedamirhossein Hesamian

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Dr. Guangwu Xu

Lattice-based cryptographic primitives are believed to offer resilience against attacks by

quantum computers. Following increasing interest from both companies and government

agencies in building quantum computers, a number of works have proposed instantiations of

practical post-quantum key-exchange protocols based on hard problems in lattices, mainly

based on the Ring Learning With Errors (R-LWE) problem.

In this work we present an analysis of Ring-LWE based key-exchange mechanisms and

compare two implementations of Ring-LWE based key-exchange protocol: BCNS and NewHope.

This is important as NewHope protocol implementation outperforms state-of-the art ellip-

tic curve based Diffie-Hellman key-exchange X25519, thus showing that using quantum safe

key-exchange is not only a viable option but also a faster one. Specifically, this thesis com-

pares different reconciliation methods, parameter choices, noise sampling algorithms and

performance.

ii

c○ Copyright by Seyedamirhossein Hesamian, 2017

All Rights Reserved

iii

TABLE OF CONTENTS

1 Introduction 1

2 Preliminaries 6

2.1 Key-exchange problem overview . 6

2.2 Diffie-Hellman problem and protocol . 8

2.3 Quotient ring . 14

3 Lattice cryptography 16

3.1 Lattice, definition and properties . 16

3.2 Lattice reduction . 29

3.3 Short integer solution problem (SIS) . 35

3.4 LWE and lattice cryptography . 38

4 Key-exchange basics and reconciliations 45

4.1 Key-exchange using LWE and Ring-LWE . 45

4.2 Reconciliation methods . 49

4.3 BCNS and NewHope diagram comparison 62

4.4 Parameter choices for Ring-LWE key-exchange 64

4.5 Lattice based authenticated key-exchange . 66

5 Implementation specifications 68

5.1 Error sampling algorithm . 68

5.2 Protocol specifications and speed comparisons 78

6 Summary, conclusion and future work 84

Appendix A Merkle–Hellman knapsack cryptosystem 86

Appendix B Basic implementations of all Ring-LWE key-exchange reconciliations 93

iv

LIST OF FIGURES

2.1 Diagram of Diffie-Hellman key-exchange protocol 12

3.1 Two fundamental parallelepiped of the same lattice 18

3.2 Visualization of first and second lattice minima 20

3.3 Lattice Zn with basis vectors (0, 1)t and (1, 0)t 20

3.4 Lattice Z2 with a different basis consisting of vectors (1, 2)t and (2, 3)t 20

3.5 A full-rank lattice generated by the basis vectors (1, 1)t and (2, 0)t 21

3.6 A non full-rank lattice with basis vector (1, 1)t 21

3.7 Visualization of CVP problem along with fundamental parallelepiped of lattice 26

3.8 Visualization of two different lattice basis . 26

3.9 Visualization bad lattice basis in solving CVP problem 26

3.10 Average-case problem (e.g. factorization) . 28

3.11 Worst-case problem (e.g. lattice problems) 28

3.12 Lattice generated by vectors: v1 = (1, 2) and v2 = (3, 4) 30

3.13 Gram-Schmidt Orthogonalization. 31

3.14 Length-reduced lattice basis . 32

3.15 LLL-reduced lattice basis . 33

3.16 Visualization of Ajtai’s one-way function . 35

3.17 Visualization of SIS problem introduces by Ajtai 36

3.18 Visualization of SIS reduced to GapSVPβ
√
n, SIVPβ

√
n 38

3.19 Visualization of LWE reduced to Average-case BDD problem 40

3.20 Plot of Gaussian distribution centered at 20, σ = 8√
2π

. 44

4.1 Visualization of LWE sample . 45

4.2 Visualization of LWE based key-exchange . 46

4.3 Toy example Z4×4
13 vs. real-world example Z1024×1024

4093 of random shared matrix 46

4.4 Demonstration of simple wrapping rule to create cyclic matrix in Ring-LWE 48

4.5 Basic Ring-LWE-DH key agreement . 48

4.6 Diagram of basic Diffie-Hellman like key-exchange protocol in Ring-LWE . . 50

4.7 Demonstration of Regev’s rounding approach 50

4.8 Demonstration of using even error values in basic Ring-LWE-DH key agreement 51

v

4.9 Demonstration of only multiplying errors by 2 will not help the reconciliation 51

4.10 Demonstration of signal function in DXL protocol 53

4.11 Demonstration of Peikert’s rounding approach 55

4.12 Exact Ring-LWE-DH key agreement as suggested by Peikert. 55

4.13 Voronoi cell in 2-dimension . 58

4.14 Voronoi cell in 3-dimension . 58

4.15 Voronoi cell in 4-dimension, (diamond inside a cube) 58

4.16 2-dimension Voronoi cell centered at (1
2
, 1

2
) 59

4.17 Finding distance between vector and center of closest Voronoi cell 60

4.18 2-dimension Voronoi cell centered at (1
2
, 1

2
) split into 16 sub-cells 61

4.19 Effect of generalized form of randomized doubling function on vectors 62

4.20 Diagram of BCNS protocol . 63

4.21 Diagram of NewHope protocol . 64

5.1 Plot (or histogram) of Gaussian samples using the naive method 73

5.2 Plot (or histogram) Gaussian sampler using bisection search and Taylor series 75

5.3 Plot of precomputed CDF table as implemented in BCNS protocol 76

5.4 Plot (or histogram) of BCNS Gaussian sampler 77

5.5 Plot of Binomial distribution Ψ8, shifted for visualization purposes 77

5.6 Plot of number of non-zero coefficients after creating 1000 shared polynomials 80

5.7 TLS handshake latency (KEX protocols in conjunction with RSA and ECDSA) 81

vi

LIST OF NOTATIONS

Notation Definition

N Set of natural numbers

Z Set of integers

Q Set of rational numbers

R Set of real numbers

C Set of complex numbers

Z∗p The following set: {x ∈ Zp| gcd(x, p) = 1}
Z/nZ The quotient ring of integers modulo n

||x|| The l2-norm, also denoted by ||x||2
DZn,σ,v Probability function of the discrete spherical Gaussian distribution over Zn

λ1 The length of shortest vector in lattice

R Z[X]/(f) where f ∈ Z[X] of degree n

Rq R/qR

r ← χ Element r is drawn according to the probability distribution χ

vii

LIST OF ABBREVIATIONS

Abbreviation Meaning

SVP Shortest vector problem

γ-SVP γ-approximate SVP

GapSVPγ Decisional γ-approximate SVP

BDDα α-bounded distance decoding problem

SIS Short integer solution problem

LWE Search learning with errors problem

DLWE Decisional learning with errors problem

RLWE Search ring learning with errors problem

R-DLWE Decisional ring learning with errors problem

R-SIS Ring short integer solution problem

KEM Key encapsulation mechanism

PKE Public key encryption scheme

IND-CPA Indistinguishability under chosen-plaintext attacks

IND-CCA Indistinguishability under chosen-ciphertext attacks

KEX Key-exchange protocol

viii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor, Prof. Guangwu Xu, for

the patient guidance, encouragement and invaluable advice he has provided throughout my

time as his student. I have been extremely lucky to have a supervisor who cared so much

about my work, and who responded to my questions and queries so promptly. I can not

forget the valuable conversation with and suggestion of Dr. Xu. This thesis would not have

been possible without the inspiration and support of Dr. Xu and his guidance into the world

of cryptography has been a valuable input for this thesis.

ix

Chapter 1

Introduction

Cryptography is involved in many parts of our daily life, e.g. credit cards, Internet

banking, electronic voting etc. The Oxford Dictionary of English proposes a simple, yet

incomplete, definition of cryptology as “the study of codes, or the art of writing and solving

them”. The roots of this definition are to be found in History: the invention of cryptology

comes from the problem of secret communications of diplomatic and military information.

The basic idea is to apply a “complicated” transformation to the information to be protected.

On one side of cryptology, users utilize secret codes, while on the other side, adversaries

attempt to break through the secrecy of the messages to recover the hidden information.

One of the oldest and simplest cryptologic technique, Caesar’s Cipher, consists of replacing

each letter of message by the letter three positions down the alphabet (looping back at the

end).

Until the XIXth century, the study of secret codes lacked a precise and consistent the-

ory, and designing or breaking such codes was considered as an art. The construction of

“good codes” or deciphering relied on time, patience and ingenuity. With the introduction

of mathematical formalism, the study of secret codes became a science that is commonly

known as cryptology. This science contains two aspects: cryptography and cryptanalysis.

Cryptography aims at designing new methods to ensure the secrecy of communications, and

1

cryptanalysis aims at discovering flaws in these methods. And even though it was typical

back then to keep these methods secret to make cryptanalysis more complicated, such a

secrecy “by obscurity” is recognized to be delusive.

In this age of digital information and telecommunications, cryptography is now far from

being restricted to the military and diplomatic fields. It has became a cornerstone in our daily

life. Cryptography is present in our cellphones, our banking cards, our biometric passports,

our Internet browsers, and many (often unsuspected) other products, which all require to

guarantee security properties on their communications and on their data. Moreover, beyond

the confidentiality of the secret information, one should also ensure that these contacts

are secure against eavesdropping or injection of illegitimate messages. Thus, the scope of

cryptography now includes among other things data integrity that is the fact that the data

has not been modified, and data authenticity that is the fact that the sender is legitimate.

Therefore, the cryptographer aims at designing systems that ensure these security properties,

while the cryptanalyst looks at possible flaws that would reveal that these properties are

actually not verified.

In their groundbreaking paper New directions in Cryptography [11] published in 1976,

W. Diffie and M. Hellman introduced the concept of public-key cryptography and bridged

cryptography to complexity theory. Until then, all the cryptographic systems were relying

on a common secret shared between the sender and the receiver, or were using a symmetric

secret key (symmetric because it was the same for both parties). Typical example of a

symmetric encryption scheme is a block cipher. Such a cryptosystem is a pair of families

{Ek}k∈K and {Dk}k∈K of algorithms representing invertible transformations over blocks of

fixed length (e.g. 128 bits), inverse of each other, indexed by a symmetric key k ∈ K.

When the sender conventionally named Alice, who is sharing a common secret key k with

the receiver also conventionally named Bob, wants to confidentially send a message m to

Bob, she can send the ciphertext c = Ek(m) from which Bob can recover m by decrypting

c, m = Dk(c). Block ciphers remain fundamental and very useful ingredient of today’s

2

cryptography; they are extensively used in nearly all systems that are using cryptography.

All symmetric key cryptography (also called secret key cryptography) assumes that the

two parties exchanging secret messages share a common secret key. Unfortunately, the

secure distribution of such a key is a major issue. The methods of exchanging a secret

key through a possibly eavesdropped conversation without sharing any secret beforehand

is the fundamental of key-exchange protocols. In details, the key-exchange problem is how

to exchange whatever keys or other information are needed so that no one else can obtain

a copy. Historically, this required trusted couriers, diplomatic bags, or some other secure

channel. So if the attacker is able to passively capture data and later gets an access to the

private key, then the attacker could decode all previously captured data. In [11], W. Diffie

and M. Hellman proposed an algorithm which revolutionized the concept of key-exchange, in

which eliminates the need for a secure key distribution channel by constructing a procedure

that enables two parties to derive a shared key over unsecured channel without actually

transmitting the shared key itself. Indeed, sending the key in advance over a secure channel

would be unrealistic for today’s applications. The key-exchange mechanism is an efficient

solution to the problem of creating a common secret between two participants, which it can

subsequently be used to encrypt all the communications thanks to the symmetric cipher.

Moreover, it is one-round which implies that each participant is allowed to talk once and

broadcast some data to the other participant. The two main approaches for Diffie-Helman

protocol uses either finite field or elliptic curve but they both are not safe under quantum

computers due to Shor’s quantum algorithm [32].

In recent years, lattice-based cryptography has been recognized for its many attractive

properties, such as strong provable security guarantees and apparent resistance to quantum

attacks, flexibility for realizing powerful tools like fully homomorphic encryption and high

asymptotic efficiency. Indeed, several works have demonstrated that for basic tasks like

encryption and authentication, lattice-based primitives can have performance competitive

with or even surpassing those based on classical mechanisms like RSA or Diffie-Hellman.

3

However, there still has been relatively little work done on developing lattice based key-

exchange for deployment in real-world cryptosystems and protocols.

Many lattice based cryptography algorithm are based on the Learning With Errors prob-

lem (LWE) which is a variant of lattice problems that is as hard to solve as several worst-case

lattice problems. The basics of Ring-LWE (ring variant of LWE) based key-exchange proto-

col was introduced for the first time by Regev in [29] and later the key-agreement algorithm

improved by Ding in [12]. Ding’s reconciliation or key-agreement method was original as it

introduced the concept of sending extra information to improve the success probability of

key-agreement. Thereafter, Peikert in [28] addressed the shortcomings of Ding’s method and

provided a relatively simpler reconciliation algorithm.

BCNS protocol [7], which is sponsored by Microsoft Research, does not introduce a

new key-agreement algorithm but it provides parameters. It uses Peikert’s key-agreement

algorithm which is a derivative of Ding’s method and also it is the first optimized C im-

plementation of Ring-LWE based key-exchange. Most importantly, this protocol provided a

drop-in replacement (or patch) for the Transport Layer Security (TLS) protocol. In further

revisions of Open-SSL, the BCNS protocol is included by default in Open-SSL. This enables

users to seamlessly switch to quantum-safe protocol. BCNS protocol goes further and proves

that cost of switching from non-quantum-safe key-exchange to quantum-safe is not too high.

Thus, post-quantum key-exchange can already be considered practical.

NewHope protocol [4], which is implemented in collaboration with Google, does introduce

a new key-agreement algorithm which is a derivative of Peikert’s method and also provides

improved parameters. The new key-agreement algorithm is a generalization of Peikert’s algo-

rithm in 4-dimension instead of 1-dimension that Peikert suggested. NewHope protocol pro-

vides a more practical approach in addition to a more optimized C reference code. NewHope

protocol later was added to Google’s fork of Open-SSL also known as Boring-SSL and ad-

justed to use it’s built-in functions and subsequently it is currently being used by Google

and included in Google Chrome web browser. Further, the AVX2 assembly language im-

4

plementation of this protocol outperforms state-of-the art elliptic curve cryptography based

Diffie-Hellman key-exchange, X25519, thus showing that using quantum safe key-exchange

is not only a viable option but also a faster one.

In this work we do a detailed analysis of Ring-LWE based key-exchange reconciliation (or

key agreement) methods, protocols, parameter choices, noise sampling algorithms, perfor-

mance and compare two implementation of Ring-LWE based key-exchange protocols: BCNS

and NewHope. Throughout this thesis, we study the relation between lattices and lattice

based key-exchange and how lattice based cryptography evolved overtime starting from Aj-

tai’s result up-to highly optimized NewHope key-exchange protocol.

This paper is organized as follows: chapter 2 discusses preliminary subjects needed to

understand importance of lattices and how Ring-LWE based key-exchange tries to replace

existing key-exchange protocols. More specifically, this chapter discusses Diffie-Hellman,

Shor’s algorithms and how it breaks Diffie-Hellman by solving discrete logarithm problem

efficiently. Thereafter, chapter 3 overviews definition of lattice, lattice properties, lattice

reduction and most importantly lattice problems. Chapter 4 is the main part of this thesis

that overviews basics of Ring-LWE key-exchange, the need for reconciliation and analysis

of different key-agreement (or reconciliation) methods and describes BCNS and NewHope

protocols in details. Chapter 5 describes implementation specifics of BCNS and NewHope

protocols. For example, error sampling algorithm and performance analysis. Chapter 6

discusses future works and conclusion or the main take away from this thesis.

In appendix chapter, we overview early lattice based public-key cryptosystem that was

broken using lattice reduction. Further, it discusses basic implementation of all Ring-

LWE based key-exchange protocols using SageMath (extension of Python programming lan-

guage).

5

Chapter 2

Preliminaries

In this chapter we overview the need for key-exchange, basics of existing key-exchange

protocols, how quantum computers will affect existing protocols and the need to replace

them before introduction of quantum computers. Lastly, we overview basics of quotient

polynomial ring as it is a prerequisite to understand ideal lattices that will be discussed in

the next chapter.

2.1 Key-exchange problem overview

For symmetric key cryptography to work for online communications, the secret key must

be securely shared with authorized communicating parties and protected from discovery as

well as use by unauthorized parties. Key-exchange protocol does nothing about authentica-

tion and without authentication, impersonation is feasible, and that includes simultaneous

double impersonation, better known as Man-in-the-Middle attack. In Transport Layer Secu-

rity (TLS) protocol, public key cryptography is used in Cryptographic Signatures to provide

authenticity, in conjunction with key-exchange mechanism to provide forward secrecy by

signing ephemeral key using server’s private key. In details, in DHE RSA cipher suite, server

dynamically generates a Diffie-Hellman public key and sends it to the client; the server also

signs what it sends. Then client responds with his/her Diffie-Hellman public key encrypted

6

using server’s public key and then connection from this point on is encrypted using the

Diffie-Hellman calculated shared key.

2.1.1 Importance of key-exchange

Key-exchange is any method in cryptography by which cryptographic keys are exchanged

between two parties, allowing use of a cryptographic algorithm. To clarify, key-exchange is

a way of generating a shared secret between two people in such a way that the secret cannot

be seen by observing the communication. That is an important distinction: two parties are

not sharing information during the key-exchange, they create a shared key together. This

is particularly useful because we can use this technique to create a symmetric encryption

key with someone, and then start encrypting traffic with that key which is also known as

session key. And even if the traffic is recorded and later analyzed, there is absolutely no way

to figure out what the key was, even though the exchanges that created it may have been

visible. This is where perfect forward secrecy comes from. Nobody analyzing the traffic at a

later date can break in because the key was never saved, never transmitted, and never made

visible anywhere.

Definition 1. Session key is a single-use symmetric key used for encrypting all messages in

one communication session.

Like all cryptographic keys, session keys must be chosen so that they cannot be predicted

by an attacker, usually requiring them to be chosen randomly. Failure to choose session keys

(or any key) properly is a major (and too common in actual practice) design flaw in any

cryptosystem.

Definition 2. Forward secrecy (or perfect forward secrecy, PFS) is a property in which com-

promise of long-term keys does not compromise past session keys. Forward secrecy protects

past sessions against future compromises of secret keys or passwords. If forward secrecy is

7

used, encrypted communications and sessions recorded in the past cannot be retrieved and

decrypted.

To achieve forward secrecy, if one uses long term secret keys for authentication only

and uses short term ephemeral keys for encryption then compromise of long term key does

not compromise confidentiality of past massages. To clarify, when server’s private key gets

leaked then if we simply encrypted the session key using the server’s public key, all past

communication with that server can be decrypted. This is an unintended consequence.

But if an ephemeral Diffie-Hellman key-exchange was used, a private key leak would not

compromise past communications, since the keys used for the key exchange are long gone,

and the leaked long term key was only used for authentication and not for confidentiality.

It is always an option to use public-key cryptography (e.g. RSA) as a key-exchange pro-

tocol (i.e. client encrypts a random key using server’s public-key and then server decrypts

it using it’s private-key). However, public-key algorithms are generally far more complex

than key-exchange protocols. There are two primary reasons to use session keys. First,

several cryptanalytic attacks become easier as more material encrypted with a specific key is

available. By limiting the amount of data processed using a particular key, those attacks are

made more difficult. Second, asymmetric encryption is too slow for key-exchange purposes,

and all symmetric encryption algorithms require that the key is securely distributed. For

example, advantage of using Diffie-Hellman over RSA for generating ephemeral keys is pro-

ducing a new Diffie-Hellman key pair can be extremely fast; in case of Diffie-Hellman based

on elliptic curve, provided finite cyclic group into which shared key is computed is reused or

reusing shared polynomial in Ring-LWE variant, both do not entail extra risks.

2.2 Diffie-Hellman problem and protocol

The Diffie–Hellman problem (DHP) is a mathematical problem first proposed by W.

Diffie and M. Hellman in the context of cryptography. The motivation for this problem is

8

that many security systems use mathematical operations that are fast to compute, but hard

to reverse. The following is the definition of discrete logarithm problem which is closely

related to Diffie-Hellman problem.

Definition 3. Consider a cyclic group G with generator g, given an element h ∈ G, discrete

logarithm problem is to find the smallest positive integer x such that h = gx

Formally, g is a generator of a cyclic group (typically the multiplicative group of a finite

field or an elliptic curve group) and x and y are randomly chosen integers. Note that when

g is a generator of the multiplicative group of integers modulo p, then g is called primitive

root. Primitive root is an integer whose powers modulo p generates uniformly all integer in

range [1, φ(p) = p− 1] inclusive.

The following is an example of discrete logarithm problem if group is a multiplicative

group of a finite field. Given Z∗5 and generator 2, then the discrete logarithm of 1 is 4 because

24 ≡ 1 mod 5. In general, Fermat’s theorem tells us that if gx ≡ h mod p, then x+ (p− 1)k

is also a solution for any integer k. Therefore, the discrete logarithm can be regarded as a

number modulo p− 1.

The following is the formal definition of Decisional Diffie–Hellman.

Definition 4. Consider a (multiplicative) cyclic group G of order q, and with generator g.

Given ga and gb for uniformly and independently chosen a, b ∈ Zq, Decisional Diffie–Hellman

(DDH) is to distinguish between gab and a random element in G.

This intuitive notion is that the following two probability distributions are computation-

ally indistinguishable:

• (ga, gb, gab), where a and b are randomly and independently chosen from Zq

• (ga, gb, gc), where a, b, c are randomly and independently chosen from Zq

Triples of the first kind are often called DDH triples or DDH tuples.

The following is the formal definition of Computational Diffie–Hellman.

9

Definition 5. Consider a cyclic group G of order q. The Computational Diffie–Hellman

(CDH) assumption states that, given (g, ga, gb), for a randomly chosen generator g and

random a, b ∈ {0, . . . , q − 1}, it is computationally intractable to compute the value gab.

The CDH assumption is related to the discrete logarithm assumption, which holds that

computing the discrete logarithm of a value given generator g as a base of logarithm is hard.

If taking discrete logarithms in G were easy, then the CDH assumption would be false: given

(g, ga, gb), one could efficiently compute gab in the following way:

• Compute a by taking the discrete logarithm of ga to base g

• Compute gab by exponentiation: gab = (gb)a

The DDH and CDH assumptions are related to each other. If computing gab from (g,

ga, gb) were easy, it would also be easy to detect DDH tuples. It is believed that DDH

is a stronger assumption than CDH, because there are groups for which detecting DDH

tuples is easy [15], but solving the CDH problem is believed to be hard. The most efficient

means known to solve the DHP is to solve the discrete logarithm problem (DLP) and DHP

is considered difficult for groups whose order is large enough.

2.2.1 Diffie-Hellman protocol

The Diffie-Hellman protocol is a method for two parties to generate a shared private key

with which they can then exchange information across an insecure channel. The following

is a description of the protocol when we use the multiplicative group of integers modulo p,

but it can be generalized to finite cyclic groups (e.g. elliptic curve group). Let the users be

named Alice and Bob. First, they agree on two numbers g and prime p, where p is large

(typically at least 1024 bits) and g is a primitive root modulo p (in practice, it is a good idea

to choose p such that p−1
2

is also prime). The numbers g and p need not be kept secret from

others. Then Alice chooses a large random number a as her private key and Bob similarly

10

chooses a large number b. Note that only a, b are kept secret. All the other values p, g,

ga mod p, and gb mod p are sent in the clear-text. Alice then computes A = ga mod p, which

she sends to Bob, and Bob computes B = gb mod p, which he sends to Alice.

Then both Alice and Bob compute their shared key, which Alice computes as K =

Ba mod p = (gb)a mod p and Bob computes as K = Ab mod p = (ga)b mod p. More specifi-

cally,

(ga mod p)b mod p = (gb mod p)a mod p (2.1)

Alice and Bob can now use their shared key K to exchange information without worrying

about other users obtaining this information.

In practice, we choose prime p such that p = 2k + 1 where k is also a prime, this known

as safe prime or Sophie-Germain prime. It is relatively fast to find such p. Then any number

in Z∗p = {x ∈ Zp| gcd(x, p) = 1} will have an order m such that m | φ(p) hence is one

of 1, 2, k, 2k. We pick a random number x and check if x, x2, xk 6≡ 1 mod p. If so, then

x is a primitive root of p, otherwise, we start over. If we pick random numbers, we will

soon find one. The number of primitive roots is φ(φ(p)), so the probability of hitting a

primitive root is about 1
2

in each try. Since number of primitive roots modulo p equals to

φ(φ(p)) = φ(p − 1) = φ(2k) = φ(2)φ(k) = k − 1, and potential primitive root x is in range

[2, p− 2]; hence, success probability would be k−1
p−3

= k−1
2k−2

= 1
2
.

In order for a potential eavesdropper (Eve) to attack, she would first need to obtain

K = g(ab) mod p knowing only g, p, A = ga mod p and B = gb mod p. This can be done

by computing a from A = ga mod p and b from B = gb mod p. This is a discrete logarithm

problem which is computationally infeasible for large p. Computing the discrete logarithm

of a number modulo p takes roughly the same amount of time as factoring the product of

two primes the same size as p, which is what the security of the RSA cryptosystem relies on.

11

Alice Bob

a
$←− Zp b

$←− Zp
ga mod p−−−−−→
gb mod p←−−−−−

KAB = (gb)a ≡ gab mod p KAB = (ga)b ≡ gab mod p

Figure 2.1: Diagram of Diffie-Hellman key-exchange protocol

Note that g is a primitive root modp and
$←− means chosen uniformly random

2.2.2 Discrete logarithm in polynomial time using quantum computing

Shor’s algorithm [32], named after mathematician Peter Shor, is a quantum algorithm

(an algorithm that runs on a quantum computer) for integer factorization formulated in

1994. Informally it solves the following problem: given an integer N , find its prime factors.

On a quantum computer, to factor an integer N , Shor’s algorithm runs in polynomial time

≈ O(n2) where n is number of bits of input. This is substantially faster than the most efficient

known classical factoring algorithm, the general number field sieve, that factors large integers

(e.g. more than 140 digits) which works in sub-exponential time e(1.923+O(1))(lnn)
1
3 (ln lnn)

2
3 . If a

quantum computer with a sufficient number of qubits (quantum bits) could operate, Shor’s

algorithm could be used to break public-key cryptography schemes such as RSA scheme.

Security of RSA is based on the assumption that factoring large numbers is computationally

intractable. To break RSA, it is essentially factoring the modulus N to primes p, q.

To break Diffie-Hellman, we have to get gxy from gx, gy and g. The best known way to do

this would be to get x from gx or y from gy, the discrete logarithm problem. Shor’s algorithm

was initially designed to factor integers but later it was shown that it can be modified to

solve discrete logarithm problem in polynomial time [6]. In details, both factorization and

discrete logarithm are special cases of the hidden subgroup problem over an abelian group

(elliptic curve cryptography also falls in the same category). We do have an efficient quantum

algorithms with polynomial time complexity for solving the hidden subgroup problem over

any abelian group (e.g. Shor’s algorithm). As for examples of non-abelian hidden subgroup

12

problems such as graph isomorphism and certain lattice problems (e.g. SVP), we do not

know how to solve these efficiently on a quantum computer.

To summarize, there is no known classical algorithm that can solve discrete logarithm

problem in polynomial time. However, Shor’s algorithm shows that solving discrete logarithm

problem is efficient on an ideal quantum computer, so it is feasible to defeat RSA and Diffie-

Hellman protocols by constructing a large quantum computer.

2.2.3 Quantum safe replacement Diffie-Hellman like key-exchange

Lattice-based cryptography is the generic term for asymmetric cryptographic primitives

based on lattices. While lattice-based cryptography has been studied for several decades,

there has been renewed interest in lattice-based cryptography as prospects for a real quantum

computer improve. Unlike more widely used and known public key cryptography such as

the RSA or Diffie-Hellman cryptosystems which are attacked by a quantum computer, some

lattice-based cryptosystems appear to be resistant to attack by both classical and quantum

computers. Further the Learning With Errors (LWE) variants of lattice-based cryptography

comes with security proofs which demonstrate that breaking the cryptography is equivalent

to solving known hard problems in lattices. Later, Ring-LWE variant of LWE was created

to address inefficiency of LWE based cryptosystems.

The Ring-LWE key-exchange is designed to be a quantum safe replacement for the widely

used Diffie-Hellman key-exchanges as well as it’s elliptic curve variant that are used to

secure the establishment of secret keys over untrusted communications channels. Like Diffie-

Hellman and it’s elliptic curve variant, the Ring-LWE key-exchange provides a cryptographic

property called forward secrecy; the aim of which is to ensure that there are no long term

secret keys that can be compromised would enable bulk decryption.

Ring-LWE key-exchange is similar in nature to Diffie-Hellman (i.e. having a public and

private components to derive a shared key) therefore existing authenticated, multiparty or

authenticated-multiparty key-exchange protocols can also be used as an abstract layer. The

13

underlying mathematics behind Diffie-Hellman and Ring-LWE have no connection with each

other, only intention is to create an alternative Diffie-Hellman like key-exchange protocol.

2.3 Quotient ring

In mathematics, especially in the field of abstract algebra, a polynomial ring or poly-

nomial algebra is a ring formed from the set of polynomials in one or more indeterminate

variable (traditionally also called variables) with coefficients in another ring, often a field.

Definition 6. The polynomial ring, K[x], in x over a field K is defined as the set of expres-

sions, called polynomials in x, of the form p(x) = p0 + p1x+ p2x
2 + · · ·+ pm−1x

m−1 + pmx
m,

where p0, p1, . . . , pm, the coefficients of p, are elements of K. The symbol x is called an

indeterminate or variable and degree of a polynomial p, written as deg(p), is the largest k

such that the coefficient of xk is not zero.

The polynomial ring in x over K is equipped with an addition, a multiplication and

a scalar multiplication that make it a commutative algebra. These operations are defined

according to the ordinary rules for manipulating algebraic expressions. Specifically, if p =

p0 + p1x+ p2x
2 + · · ·+ pmx

m, and q = q0 + q1x+ q2x
2 + · · ·+ qnx

n, then p+ q = r0 + r1x+

r2x
2 + · · · + rkx

k, and pq = s0 + s1x + s2x
2 + · · · + slx

l, where k = max(m,n), l = m + n,

ri = pi + qi and si = p0qi + p1qi−1 + · · ·+ piq0.

Definition 7. Let R be a ring. An ideal I is a nonempty subset of R such that (i) if a, b ∈ I,

then a+ b ∈ I, and (ii) if a ∈ I and r ∈ R, then ar ∈ I and ra ∈ I.

This definition says that an ideal is a subset of R closed under addition that satisfies a

strengthened form of closure under multiplication. Not only is the product of two elements

of I also in I, but the product of an element of I and any element of r is an element of I.

Therefore we can define addition in the set R/I = {a+I|a ∈ R} by (a+I)+(b+I) = (a+b)+I

and multiplication by (a + I)(b + I) = ab + I. Hence, R/I is called the quotient ring or

14

factor ring of R by I. Let L = K[x]/(p(x)) be the quotient ring of the polynomial ring K[x]

by the ideal generated by p (i.e. p is a univariate polynomial over a field K), then L is a

field if and only if p is irreducible polynomial over K.

15

Chapter 3

Lattice cryptography

In 1996, Ajtai discovered that there are mathematical problems in the area of lattices

that have some desirable properties with respect to cryptography. Since then, lattices have

been used to construct several cryptosystems and other cryptographic applications. In this

chapter, lattices are introduced and their connection with cryptography is examined.

3.1 Lattice, definition and properties

Lattice is a set of points in n-dimensional space with a periodic structure. More formally,

given n-linearly independent vectors b1, . . . ,bn ∈ Rn, the lattice generated by them is the

set of vectors:

L(b1, . . . ,bn) =

{ n∑
i=1

xibi : xi ∈ Z
}

Linear independence means that no vector can be written as linear combination of the

other vectors. The set of vectors {b1, . . . ,bn} are known as a basis of the lattice. Below are

fundamental properties of lattices:

Rank of lattice: The rank of a lattice is defined as the number of linearly independent

vectors in any basis for that lattice. Full-rank lattice is defined as a lattice where the number

16

of linearly independent vectors in any basis for this lattice is exactly equal to the number of

dimensions in which the lattice is embedded. In such an instance, it is clear that any basis

for such a lattice can be described by a set of n vectors, each of n dimensions. We can thus

describe the basis as a square integer matrix.

Determinant of lattice: Lattice determinants measures properties about the lattice.

Specifically, det(LB) is the n-dimensional volume of the fundamental parallelepiped defined

by the lattice basis B. Since we will only be operating with full-rank lattices, we can simplify

the definition of this lattice determinant as being the absolute value of the determinant of

some basis of the lattice.

det(LB) = | det(B)|,B ∈ Zn×n

Definition 8. The unimodular matrix is defined as an integer matrix, whose inverse is also

integral. This implies the following properties: U must be integral matrix, must be square

matrix and det(U) must be exactly +1 or −1.

Any multiplication of a lattice basis with a unimodular matrix will produce a new basis

that would generate the same lattice. This is due to the determinant of a unimodular matrix

being +1 or −1. In fact, lattice equality is only achieved if there exists such a unimodular

transform between bases. The determinant of a lattice is inverse proportional to its density:

the smaller determinant, the denser the lattice would be.

17

Figure 3.1: Two fundamental parallelepiped of the same lattice
The determinant of lattice is equal to the volume (i.e. area in 2-dimensions) of fundamental

parallelepiped.

Hermite normal form: Various authors may prefer to talk about Hermite Normal Form

in either row-style or column-style. They are essentially the same up to transposition.

(Row-style) Hermite Normal Form: m by n matrix A with integer entries has a (row)

Hermite normal form (HNF) H if there is a square unimodular matrix U where H = U×A

and H has the following restrictions:

1. Hij = 0 for j > i,

2. Hii > 0 for all i, and

3. Hij ≤ 0 and |Hij| < Hii for j < i

Note that the row-style definition has a unimodular matrix U multiplying A on the left

(meaning U is acting on the rows of A), while the column-style definition has the unimodular

matrix action on the columns of A. The two definitions of Hermite normal forms are simply

transposes of each other.

For every matrix, there exist a Hermite normal form and it is unique. In details, for

every m by n matrix A with integer entries has a unique m by n matrix H (HNF), such that

H = U×A for some square unimodular matrix U.

18

Typical lattice in Rn has the form L = {
∑n

i=1 αiai | αi ∈ Z} where the ai are in Rn. If

the columns of a matrix A are the ai, the lattice can be associated with the columns of a

matrix, and A is said to be a basis of L. Because the Hermite normal form is unique, it

can be used to answer many questions about two lattice descriptions. For what follows, LA

denotes the lattice generated by the columns of A. Because the basis is in the columns of

the matrix A, the column-style Hermite normal form must be used. Given two basis for a

lattice, A and A′, the equivalence problem is to decide if LA = LA′ . This can be done by

checking if the column-style Hermite normal form of A and A′ are the same.

Euclidean norm: Many problems in lattice theory involve distance minimization. The

most intuitive way to measure distance in a multi-dimensional space is by using the Euclidean

norm (l2). This norm comes from Pythagoras’ theorem, stating that the distance between

two points is the square root of the sum of the axial distances squared. This can be extended

to an arbitrary, finite-dimensioned vector space by squaring each of the axial dimensions and

taking the square root of the sum. Let w be a vector of Rn. The Euclidean norm is the

function ||.||2 defined by: ||w||2 =
√∑n

i=1 |wi|2

Successive minima: One basic parameter of a lattice is the length of the shortest nonzero

vector in the lattice (we have to ask for a nonzero vector since the zero vector is always

contained in a lattice and its norm is zero). This parameter is denoted by λ1. An equivalent

way to define λ1 is the following: it is the smallest r such that the lattice points inside a

ball of radius r span a space of dimension 1. This definition leads to the generalization of

λ1, known as successive minima or λi; that is the smallest r such that lattice points inside a

ball of radius r span a space of dimension i.

19

Figure 3.2: Visualization of first and second lattice minima
λ1(L) = 1, λ2(L) = 2.3

3.1.1 Examples of lattices

1. Below shows the lattice in 2 dimensions generated by the vectors (1, 0)t and (0, 1)t. This

lattice is the set of all points in R2 with integer coordinates. This can be generalized

to n dimensions, where the lattice Zn is called the integer lattice.

Figure 3.3: Lattice Zn with basis vectors (0, 1)t and (1, 0)t

2. Below shows a different basis for the same lattice, namely the basis consisting of the

vectors (1, 2)t and (2, 3)t.

Figure 3.4: Lattice Z2 with a different basis consisting of vectors (1, 2)t and (2, 3)t

In fact, any lattice has infinitely many bases

20

3. Below is a different lattice in 2 dimensions, generated by the basis vectors (2, 0)t and

(1, 1)t. Note that this is a sub-lattice of Z2, namely a subset of Z2 which is also a

lattice.

Figure 3.5: A full-rank lattice generated by the basis vectors (1, 1)t and (2, 0)t

This is a sub-lattice of Z2

4. All the examples we saw so far are full-rank lattices. Below shows a lattice in 2

dimensions generated by the vector (1, 1)t, this lattice has a rank of 1. The set of

points generated by 1 and
√

2 in one dimension is not a lattice. First, this example

does not conform to definition of lattice, since 1 and
√

2 are linearly dependent over

R. Secondly, any n-dimensional lattice is a discrete subset of Zn. However, the set

generated by 1 and
√

2 is not a discrete subset of Z since one can generate arbitrarily

small numbers as linear combinations of 1 and
√

2.

Figure 3.6: A non full-rank lattice with basis vector (1, 1)t

Notice basis of lattice is not a square matrix (or full-rank)

If a basis B can be transformed by a multiplication with a transformation matrix U such

that the new basis B′ yields the same lattice as the original basis B (i.e. B′ = U× B,LB =

LB′), we refer to this transformation U as a unimodular transformation. As such, any basis of

21

a lattice can be transformed to any other basis for the same lattice through a multiplication

with a single unimodular transformation matrix.

3.1.2 Ideal lattices

Research in lattice-based cryptography started with the publication of the public key

encryption scheme by Ajtai and Dwork [3], followed by schemes based on cyclic lattices, e.g.

Micciancio introduced [26]. Later in [26] ideal lattices, a generalization of cyclic lattices,

were introduced.

Lattices via polynomial rings: Lattices cannot only be defined over Rn and Zn, but

can also be defined via the ring R = Zq[x]/(f(x)) where R contains all polynomials in x

with integer coefficients modulo prime q and polynomial f(x). Note that if f(x) is a monic

polynomial, i.e. a polynomial with leading coefficient equal to 1, then R = Zq[x]/(f(x))

contains polynomials of degree at most deg(f(x)) − 1. We will focus on the case that f(x)

is a monic polynomial of degree n.

There is a map between elements from R = Z[x]/(f(x)), i.e. polynomials of bounded

degree, and elements of a lattice L, i.e. vectors, which is given as follows:

φ : a1 + a2x
1 + a3x

2 + · · ·+ anx
n−1 7→ (a1, a2, a3 . . . , an) (3.1)

Here we will define ideal lattices and is based on Micciancio [26] and Lyubashevsky and

Micciancio [24]. First, recall that an ideal I, I ⊆ R such that I 6= ∅, and for all a, b ∈ I and

r ∈ R, it holds that −a ∈ I, a+ b ∈ I and ar ∈ I.

A cyclic lattice is a lattice L ⊆ Zn with the property that if (a1, a2, . . . , an) ∈ L then also

(ai+1, . . . , an, a1, . . . , ai) ∈ L for all i ∈ [1, n], the letter that all rotations of a vector are

contained in the lattice. Recall that vectors can also be expressed as polynomials, if L is a

cyclic lattice isomorphic to Z[x]/(xn − 1) and a is a lattice vector, then also xa mod xn − 1

is a lattice vector. This can be seen in following equation:

22

xa = x

n∑
i=1

aix
i−1 =

n∑
i=1

aix
i ≡ an +

n−1∑
i=1

aix
i mod xn − 1 (3.2)

Note that xa corresponds to the cyclic shift (an, a1, . . . , an−1). Inductively we have that

also xia ∈ L, for integer i. Only few lattices are cyclic lattices, thus needing a cyclic

lattice is in practice very restrictive. Therefore the interest of researchers shifted to lattices

isomorphic to Z[x]/(f(x)) for various monic f(x), which has lead to a more general class of

lattices, named ideal lattices. To clarify, Ideal lattices are generalization of cyclic lattices.

Definition 9. Let I be an ideal of Z[x]/(f(x)) where deg(f) = n and LI = {(a0, a1, . . . , an−1)|a0+

a1x+ · · ·+ an−1x
n−1 ∈ I}. We call LI an ideal lattice.

This shows that the elements of an ideal lattice can be interpreted as polynomials from

an ideal over Z[x]/(f(x)).

Theorem 3.1.1. Let L be a lattice that corresponds to an ideal in the ring Z[x]/(xn + 1)

and let u ∈ L be a vector in lattice. Then the vectors: u, xu, x2u, . . . , xn−1u are linearly

independent.

Note that xn + 1 is an irreducible polynomial when n is a power of 2. In case of cyclic

lattices or lattices of the form Z[x]/(xn− 1), is not ideal lattice because xn− 1 is a reducible

polynomial.

3.1.3 Lattice problems

The way lattices can be used in cryptography is by no means obvious, and was discovered

in a breakthrough paper by Ajtai. His result has by now developed into a whole area of

research whose main focus is on expanding the scope of lattice-based cryptography and on

creating more practical lattice-based cryptosystems. Before discussing this area of research

in more detail, let us first describe the the computational problems involving lattices, whose

presumed hardness lies at the heart of lattice-based cryptography. Let L be a lattice of

dimension n. The two fundamental computational problems in lattices are:

23

• Shortest Vector Problem (SVP): find a shortest non-zero vector in L

• Closest Vector Problem (CVP): given a vector t ∈ Rn not in L, find a vector in L that

is closest to t

Definition 10. Shortest Independent Vector Problem (SIVP): given a basis of a lattice L

and a parameter q ∈ Z, find the shortest q linearly independent lattice vectors (i.e. the set

of lattice vectors b1, . . . ,bq contained within the minima λq)

Definition 11. Closest Vector Problem (CVP): let t be some vector. The Closest Vector Prob-

lem is to find a vector v ∈ L, such that ||v−t|| = dist(t,L) where dist(t,L) = minu∈L ||u−t||

Definition 12. An instance of GapSVPγ (or decision SVPγ) is given by an n-dimensional

lattice L and a number d > 0. In YES instances, λ1(L) ≤ d whereas in NO instances

λ1(L) > γ(n)× d

The problem GapSVPγ consists of differentiating between the instances of SVP in which

the answer is at most 1 or larger than γ, where γ can be a fixed function of n, the number

of vectors. Given a basis for the lattice, the algorithm must decide whether λ(L) ≤ 1 or

λ(L) > γ. Like other promise problems, the algorithm is allowed to error on all other cases.

Definition 13. An instance of SIVPγ is given by an n-dimensional lattice L. The goal is to

output a set of n-linearly independent lattice vectors of length at most γ(n)× λn(L)

Definition 14. Approximate Shortest Vector Problem (SVPγ): given a lattice L, the Approx-

imate Shortest Vector Problem is to find a non-zero vector v ∈ L, such that ||v|| ≤ γλ1(L)

Definition 15. Approximate Closest Vector Problem (CVPγ): let t be some vector. The

Approximate Closest Vector Problem is to find a vector v ∈ L such that ||v−t|| ≤ γ dist(t,L)

where dist(t,L) = minu∈L||u− t||

Notice if γ = 1, then SVPγ and CVPγ would be the same as SVP and CVP

24

Definition 16. Bounded Distance Decoding Problem (BDDγ): given L and a target point

t ∈ Rn such that dist(t,L) ≤ γλ1(L), output a vector v ∈ L such that ||v− t|| ≤ γλ1(L)

In SVP, a basis of a vector space V and a l2 norm are given for a lattice L and one must

find the shortest non-zero vector in V , in L. In other words, the algorithm should output a

non-zero vector v such that ||v|| = λ(L). The closest vector problem is a generalization of

the shortest vector problem. It is would be trivial to show that given an oracle for CVPγ,

one can solve SVPγ by making some queries to the oracle. However, the naive method to

find the shortest vector by calling the CVPγ oracle to find the closest vector to 0 does not

work because 0 is itself a lattice vector and the algorithm could potentially output 0. The

correct reduction is explained in [17].

Theorem 3.1.2. (Minkowski): Let L be lattice of Rn with rank n, the length of shortest

lattice vector of L, λ1 ≤
√
n× det(L)

1
n

The above theorem gives an upper bound of the length of shortest lattice vectors. Even

though it is only a theorem of existence, the upper bound has significant practical interest.

In the γ-approximation version SVPγ, one must find a non-zero lattice vector of length at

most γλ1(L) (note that vector 0 is also in lattice). The exact version of the problem is only

known to be NP-hard for randomized reductions [2] [20]. Approach techniques: LLL lattice

basis reduction algorithm which runs in polynomial time produces a relatively short vector

in polynomial time, but does not solve the problem. HKZ basis reduction algorithm solves

the problem in O(n2n) time where n is the dimension.

25

Figure 3.7: Visualization of CVP problem along with fundamental parallelepiped of lattice
The vertex v of the fundamental domain that is closest to t will be a close lattice point if the

basis is good, meaning if the basis consists of short vectors that are reasonably orthogonal to one
another.

Figure 3.8: Visualization of two different lattice basis
A good basis that is short (in red) and a bad basis that is relatively longer (in green)

Figure 3.9: Visualization bad lattice basis in solving CVP problem
Here is the parallelogram spanned by a bad basis and a CVP target point. It is easy to find the
vertex of the parallelogram that is closest to the target point. However, the lattice point that

actually solves CVP is much closer to the target than the closest vertex found using bad basis.
Therefore, having an access to short lattice vectors would make CVP problem straightforward to

solve.

26

3.1.4 Worst-case hardness of lattice problems

Let us describe Ajtai’s result more precisely. The cryptographic construction given in [1]

is known as a family of one-way functions. Ajtai proved that the security of this family can

be based on the worst-case hardness of the nc-approximate SVP for some constant c. In other

words, the ability to invert a function chosen from this family with non-negligible probability

implies an ability to solve any instance of nc-approximate SVP. In his seminal papers, Ajtai

showed that the SVP problem is NP-hard and discovered some connections between the

worst-case complexity and average-case complexity of some lattice problems. Building on

these results, Ajtai and Dwork created a public-key cryptosystem whose security could be

proven using only the worst-case hardness of a certain version of SVP, thus making it the

first attempt to use worst-case hardness to create secure systems [3].

Strong security guarantees from worst-case hardness. Cryptography inherently requires

average-case intractability, i.e., problems for which random instances drawn from a specified

probability distribution are hard to solve. This is qualitatively different from the worst-

case notion of hardness usually considered in the theory of algorithms and NP-completeness,

where a problem is considered hard if there merely exist some intractable instances. Problems

that appear hard in the worst-case often turn out to be easier on the average.

Remark 1. To solve SIVP, an algorithm must work for any given input basis B. One can

also formulate an average-case variant of SIVP, where the input basis is generated at random

according to some probability distribution.

Ajtai in [1] gave connection between the worst-case and the average-case for lattices: he

proved that certain problems are hard on the average (for cryptographically useful distri-

butions), as long as some related lattice problems are hard in the worst-case. In details,

Ajtai proved that, when A in fA : x 7→ Ax mod q is chosen uniformly at random, a suitable

restriction of function fA is at least as hard to invert on the average as the worst-case com-

plexity of approximating certain lattice problems within a polynomial factor. Using results

27

of this kind, one can design cryptographic constructions and prove that they are infeasible

to break, unless all instances of certain lattice problems are easy to solve (worst implies any

and average implies random). In essence, in lattice-based cryptosystem, for a fixed security

parameter n, what the reduction shows is the existence of a solver for the lattice problem

on input any n-dimensional lattice using the adversary breaking a lattice-based cryptosys-

tem with the security parameter n on the average-case. Therefore, since we can solve any

instance, we can solve the hardest one of dimension n.

Figure 3.10: Average-case problem (e.g. factorization)

Figure 3.11: Worst-case problem (e.g. lattice problems)

In average-case hardness, the cryptographic function is hard provided almost all N are hard to
factor; but in worst-case hardness the cryptographic function is hard provided the lattice problem
is hard in the worst-case, this is a much stronger security guarantee and assures us that our
distribution is correct. If we solve 1% of lattice based cryptographic function, then we can solve all
instances of lattice problems.

Following Ajtai’s worst-case to average-case reduction many different improvements on

estimating SIS hardness have been done. This series of results is summed up in this theorem:

Theorem 3.1.3. ([27], Theorem 5.16) For any m = poly(n), any β > 0, and any sufficiently

large q ≥ β · poly(n), solving SISn,q,β,m is at least as hard as solving the decisional approxi-

mate shortest vector problem GapSVPγ and the approximate shortest independent vectors

problem SIVPγ on arbitrary n-dimensional lattices, for some γ = β · poly(n).

28

The importance of the worst-case security guarantee is assurance that there are no fun-

damental flaws in the design of our cryptographic construction.

3.2 Lattice reduction

The goal of lattice basis reduction is given an integer lattice basis as input, to find a basis

with short, nearly orthogonal vectors. One measure of nearly orthogonal is the orthogonality

defect. This compares the product of the lengths of the basis vectors with the volume of the

parallelepiped they define. For perfectly orthogonal basis vectors, these quantities would be

the same.

Any particular basis of n vectors may be represented by a matrix B, whose columns are

the basis vectors bi, for i = 1, . . . , n. In the fully dimensional case where the number of basis

vectors is equal to the dimension of the space they occupy, this matrix is square, and the

volume of the fundamental parallelepiped is simply the absolute value of the determinant of

this matrix det(B). If the number of vectors is less than the dimension of the underlying

space, then volume is
√

det(BTB). For a given lattice L, this volume is the same (up to

sign) for any basis, and hence is referred to as the determinant of the lattice denoted by

det(L) or lattice constant d(L).

The orthogonality defect is the product of the basis vector lengths divided by the paral-

lelepiped volume:

δ(B) =
Πn
i=1||bi||√

det(BTB)
=

Πn
i=1||bi||
d(L)

(3.3)

From the geometric definition it may be appreciated that δ(B) ≥ 1 with equality if and

only if the basis is orthogonal. If the lattice reduction problem is defined as finding the basis

with the smallest possible defect, then the problem is NP-complete. However, there exist

polynomial time algorithms to find a basis with defect δ(B) ≤ cδ(B) ≤ c where c is some

constant depending only on dimension of the underlying space.

Although determining the shortest basis is an NP-complete problem, algorithms such

29

as LLL algorithm can find a short, not necessarily shortest, basis in polynomial time with

guaranteed worst-case performance. The following example demonstrates the computation

of lattice reduction algorithm by which we can reduce original basic matrix from: B =

(1 2
3 4)→ B′ = (1 0

0 2) and matrix of U =
(−2 1

3 −1

)
is a unimodular matrix with determinant of

-1. Also, L(B) = L(B′) because: B′ = B×U.

Figure 3.12: Lattice generated by vectors: v1 = (1, 2) and v2 = (3, 4)
Reduced basis consisting of vectors: v′1 = (1, 0) and v′2 = (0, 2) generates the same lattice

3.2.1 LLL algorithm

The Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm is a polynomial time

lattice reduction algorithm invented by A. Lenstra, H. Lenstra and L. Lovász in 1982 [21].

Given a basis B = {b1,b2, . . . ,bd} with n-dimensional integer coordinates, for a lattice L

with d ≤ n, LLL algorithm calculates an LLL-reduced (short, nearly orthogonal) lattice

basis in time O(d5n log3B), where B is the largest length of bi under the Euclidean norm

and d is referring to number of basis vectors in B (we should use d because the dimension of

the lattice might be smaller than the dimension of the Rn that the lattice is embedded in).

LLL can be used as a cryptanalysis tool (i.e., to break cryptography):

1. Knapsack-based cryptosystem [14] (appendix A describes in details how LLL breaks

early knapsack cryptosystem)

2. RSA when the public exponent e is small or when partial knowledge of the secret key

is available [36] [10]. LLL is used to find a polynomial that has the same zeroes as the

target polynomial but smaller coefficients.

30

In order to achieve an orthogonal basis, an iterative process can be taken whereby each

vector is projected onto a hyperplane perpendicular to the previous vectors. The Gram-

Schmidt Orthogonalization algorithm is an iterative approach to orthogonalizing the vectors

of a basis. The first vector b1 of a given basis B is taken as a reference and the second

vector b2 is projected on to an (n − 1)-hyperplane perpendicular to b1. The third vector

b3 is projected onto a (n − 2)-hyperplane perpendicular to the plane described by b1 and

b2. This process continues in an iterative fashion until all degrees of freedom are exhausted.

The new orthogonal vectors are denoted b∗i and the new basis as B∗.

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

µi,j =
〈bi,b∗j〉
〈b∗j , b∗j〉

(3.4)

Figure 3.13: Gram-Schmidt Orthogonalization.
The vectors b∗1, . . . ,b

∗
n do not form a lattice basis. In fact, the Gram-Schmidt vectors are not

necessarily in the lattice.

The precise definition of LLL-reduced basis is as follows: Given a basis B = {b0,b1, . . . ,bn},

31

define its Gram–Schmidt process orthogonal basis: B∗ = {b∗0,b∗1, . . . ,b∗n}, and the Gram-

Schmidt coefficients µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, for any 1 ≤ j < i ≤ n.

Then the basis B is LLL-reduced if there exists a parameter δ ∈ (0.25, 1] such that the

following holds:

1. (size-reduced) For 1 ≤ j < i ≤ n : |µi,j| ≤ 0.5. By definition, this property guarantees

the length reduction of the ordered basis.

2. (Lovász condition) For k = 1, 2, . . . , n : δ‖b∗k−1‖2 ≤ ‖b∗k‖2 + µ2
k,k−1‖b∗k−1‖2. Here,

estimating the value of the δ parameter, we can conclude how well the basis is reduced.

Greater values of δ lead to stronger reductions of the basis.

Remark 2. The first condition assures the resulting basis is nearly orthogonal. But length

reduction alone does not guarantee near orthogonality.

The issue with the length-reduction criterion alone (and the reason the Lovász condition

is included in the LLL algorithm) is that the following basis satisfies it:

Figure 3.14: Length-reduced lattice basis
The grey arrow is the projection of b2 to the orthogonal complement of b1

Clearly, this basis is not very short, nor is it close to being orthogonal (i.e., note that

length reduction alone does not necessary imply almost-orthogonality). The Lovász condition

is suited to detect such a situation: If the order of the vectors is swapped, another length

reduction can easily be performed, yielding the following LLL-reduced basis:

32

Figure 3.15: LLL-reduced lattice basis

A. Lenstra, H. Lenstra and L. Lovász have noticed that a situation in which length

reduction alone is stuck with a very bad basis - as depicted in the first image - always has

vectors which are in the “wrong” order comparing their lengths and which are far from being

orthogonal, and that it helps in this case to exchange them and continue length-reducing.

That is really the core idea of the LLL algorithm.

In summary, the Lovász condition is fulfilled if the vectors are close enough to being

orthogonal, or if they are roughly ordered by length. Both of these properties lead to length

reduction being quite effective. Initially, A. Lenstra, H. Lenstra and L. Lovász demonstrated

the LLL-reduction algorithm for δ = 3
4
. Note that although LLL-reduction is well-defined

for δ = 1, the polynomial-time complexity is guaranteed only for δ ∈ (0.25, 1).

The following description of LLL algorithm is based on (Hoffstein, Pipher & Silverman

2008 [18], Theorem 6.68), Input:

1. a lattice basis b0,b1, . . . ,bn ∈ Zm

2. parameter δ with 1
4
< δ < 1, most commonly δ = 3

4

33

Algorithm 1 LLL lattice reduction Algorithm

procedure LLL(b, δ) . Basis and delta
ortho := gramSchmidt({b0, . . . ,bn}) = {b∗0, . . . ,b∗n}

. b← Perform Gram-Schmidt, but do not normalize

Define µi,j :=
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, which must always use the most current values of bi,b
∗
j .

k ← 1
while k ≤ n do

for j form k − 1 to 0 do
if |µk,j| > 1

2
then bk = bk − bµk,jebj

. Update ortho entries and related µi,j’s as needed
. Naive method is to recompute ortho := gramSchmidt({b0, . . . ,bn}) = {b∗0, . . . ,b∗n}

when a bi changes)

if 〈b∗k,b∗k〉 ≥ (δ − (µk,k−1)2)〈b∗k−1,b
∗
k−1〉 then

k = k + 1
else

swap bk and bk−1 . Update ortho entries and related µi,j’s as needed
k = max(k − 1, 1)

return: LLL reduced basis b0,b1, . . . ,bn

3.2.2 The BKZ reduction algorithm

Blockwise Korkine-Zolotarev (or BKZ) reduction is a reduction algorithm for lattices. It

has been introduced by Schnorr and Euchner [30]. The BKZ algorithm uses so called local

blocks to achieve reduction, hence the name. The quality of the reduction that is achieved by

BKZ reduction depends on this block size. Increasing block sizes also mean an improvement

in the reduction. The BKZ algorithm starts by LLL-reducing a given basis of a lattice. The

quality of the reduction is then iteratively improved. This improvement is achieved using

the local blocks determined by the input basis and the block size.

Running BKZ algorithm with large block size results in shorter and more orthogonal

basis in compassion with LLL, hence it can be used to attack underlying lattice of LWE.

34

3.3 Short integer solution problem (SIS)

SIS is an average case problem that is used in lattice-based cryptography constructions.

Lattice-based cryptography began in 1996 from a seminal work by Ajtai who presented a

family of one-way functions based on SIS problem. He showed that it is secure in average-case

if SVPγ (where γ = nc for some constant c > 0) is hard in worse-case scenario.

A trapdoor function is a function that is easy to perform one way, but has a secret that

is required to perform the inverse calculation efficiently. That is, if f is a trapdoor function,

then y = f(x) is easy to compute, but x = f−1(y) is hard to compute without some special

knowledge k. Given k, then it is easy to compute y = f−1(x, k). The analogy to a “trapdoor”

is something like this: It is easy to fall through a trapdoor, but it is very hard to climb back

out and get to where we started unless we have a ladder.

Hash-function is not a trapdoor function because it is not reversible. Instead, it is called

a one-way function. One-way function is similar to a trapdoor function in that it’s easy to

compute and it’s very hard to reverse, but there is no special key that allows to reverse the

one-way function. For example: RSA is a trapdoor function because it’s inverse which is a

factorization is hard, but SHA-3 is just a one-way hash function as it’s output can be hash

of more that one inputs since hash functions are not a one-to-one function.

Definition 17. Given parameters m,n, q ∈ Z, key A ∈ Zn×mq and input x ∈ {0, 1}m, Ajtai’s

one-way hash function is a function that outputs fA(x) = Ax mod q

Figure 3.16: Visualization of Ajtai’s one-way function

Theorem 3.3.1. For m > n log q, if lattice problems (i.e. SIVP) are hard to approximate in

the worst-case, then fA(x) = Ax mod q is a one-way function.

35

Definition 18. SISn,m,q,β: let A ∈ Zn×mq be an n×m matrix with entries in Zq that consists

of m uniformly random vectors ai ∈ Znq : A = (a1, · · · , am). Find a nonzero vector x ∈ Zm

such that:

• ‖x‖ ≤ β

• fA(x) : Ax = 0 ∈ Znq

Figure 3.17: Visualization of SIS problem introduces by Ajtai

It should be noted that a solution to SIS without the required constrain on the length of

the solution is easy to compute by using Gaussian elimination technique. We also require

β < q, otherwise x = (q, 0, . . . , 0) ∈ Zm is a trivial solution.

In order to guarantee fA(x) has non-trivial, short solution, we require:

• β ≥
√
n log q, and

• m ≥ n log q (to get compression)

Remark 3. SIS problem can also form a collision-Resistant Hash function:

Given: A = (a1, . . . , am) ∈ Zn×mq , define HashA : {0, 1}m 7→ Znq where HashA(z1, . . . , zm) =

a1z1 + · · · + amzm. Domain of h = {0, 1}m (size = 2m). Range of h = Znq (size = qn). Set

m > n log q to get compression. Collision would occur when:

a1z1 + · · ·+ amzm = a1y1 + · · ·+ amym (3.5)

By adjusting the above we get: a1(z1 − y1) + · · · + am(zm − ym) = 0 and zi − yi are in

{−1, 0, 1}. Nothing happens as trivial solution is not a valid solution to SIS problem, further

because the only way we could find a collision is when zi−yi = 0 mod q. So SIS is a collision

resistant hash function.

36

Regrading the efficiency of Ajtai’s trapdoor function, matrix multiplication of 1 × m

matrix with m× n matrix would yield O(mn) time complexity. Hence, it is efficient in run-

time but has very high space needs. The space needs can be reduced by number of ways.

One idea could be use a structured matrix i.e. take the first row and the second row would

be one bit left/ right circular of the first row and so on allowing just the first row of the

matrix to be stored as the public key. Hermite Normal form (i.e. upper triangular matrix)

could also be used for the public key to reduce half of the size of the matrix.

In 1996, Ajtai showed that, for good parameters, if there exists an inverter of his hash

functions, then there exists an algorithm finding a short vector from any n-dimensional

lattice. Goldreich, Goldwasser, and Halevi pointed out if there exists an algorithm that

finds a collision in the Ajtai hash function, then there exist an algorithm that finds a short

vector from any n-dimensional lattice. The reductions are based on the fact that the sum of

short vectors is (relatively) short.

3.3.1 Interpreting SIS problem in lattice words and lattice reduction

Define a lattice related to a matrix A ∈ Rn×m as

Λ = Λ⊥q (A) = {e ∈ Zm | Ae ≡ 0 mod q}

This Λ is an m-dimensional q-ary lattice that corresponds to the linear code with parity

check matrix equal to A mod q (we can check this is a lattice by verifying that for any two

vectors e, e′ ∈ Λ, the sum of them lies in Λ again. We can check this is m-dimensional by

verifying that any qui is in Λ, where ui is a unit vector).

This lattice defines a map from Zm to a quotient group Zm/Λ. The map is a hash

function. Conversely, a collision e 6= e′ for fA implies a short non-zero vector e−e′ in Λ⊥q (A).

Solving SIS (or breaking Ajtai’s trapdoor function) comes down to finding a short vector

in the underlying lattice (or Λ⊥q). Lattice basis reduction methods like LLL help in the sense

37

that they can reduce a basis with long lattice vectors to a basis with shorter, more orthogonal

lattice vectors. If the reduction is strong enough (e.g. BKZ with large enough block size)

then we can expect that the first basis vector of the reduced basis is a solution to SIS (how

strong the basis reduction should be to find a solution depends on n,m, q). To summarize,

LLL can solve the easiest SIS instances, and can assist in solving harder SIS instances by

finding a shorter basis, which makes finding even shorter lattice vectors a bit easier.

Finding a short nonzero z ∈ Λ⊥q (A) for uniformly random A ∈ Zn×mq , where m ≈ n log q

(SIS problem) can be reduced to solving GapSVPβ
√
n, SIVPβ

√
n on any n-dimensional lattice.

In essence, let S be the set of all integer z = (z1, . . . zn) such that z1 × a1, . . . , zn × an =

0 mod q, then S is a lattice and SIS problem asks to find a short vector in S. SIS problem is

a an average-case hard problem but SVP problem is a worst-case hard problem.

Figure 3.18: Visualization of SIS reduced to GapSVPβ
√
n, SIVPβ

√
n

Notice that we are looking for smallest radius to contain enough lattice points to reconstruct the
lattice itself.

3.4 LWE and lattice cryptography

The learning with errors (LWE) problem is to efficiently distinguish between vectors

created from a “noisy” set of linear equations versus uniformly random vectors. Given a

matrix A ∈ Zm×nq and a vector v ∈ Zmq , the goal is to determine whether v has been sampled

uniformly at random from Zmq or whether v = As + e for some random s ∈ Zmq and e ∈ χm,

where χ is a small “noise” distribution over Zq.

LWE problem is very closely related to coding theory. If we choose the parameter q = 2,

38

this becomes the well-studied learning parity with noise (LPN) problem, which is believed

to be hard. Recovering the key from the more general LWE problem is essentially equivalent

to decoding a noisy linear code, also a long established difficult problem in coding theory.

However, for modern cryptographic purposes it is more important to ensure indistinguisha-

bility of encryption rather than just security against key recovery. For this purpose it helps

to look at the problem from a lattice-based perspective. The vector v = As + e can be seen

as an element of the q-ary lattice Λ⊥q with a small perturbation vector added. The task here

is to distinguish this from a uniformly random vector. In 2005, Regev [29] formalised this

relationship by giving a reduction from worst-case lattice problems to LWE. The informal

description of the reduction is as follows: if there exists an efficient algorithm that solves

LWE then there exists an efficient algorithm that approximates the decision version of the

shortest vector problem (or GapSVP).

Simple properties of LWE :

1. Check a candidate solution s′ ∈ Znq , we test if b − 〈s′, a〉 is small. If s′ 6= s, then

b− 〈s′, a〉 = 〈s− s′, a〉+ e is well spread in Zq

2. Shift the secret by any t ∈ Znq given (a,b = 〈s, a〉+ e) output:

(a,b′ = b + 〈t, a〉 = 〈s + t, a〉+ e) (3.6)

This property allows us to amplify the success probability for random t.

Difference / relation between SIS and LWE:

1. SIS problem has many valid solutions but LWE has a unique solution

2. If we have a SIS oracle, then we can ask the oracle to find short vector z such that

Az = 0 mod q and as bt = stA + et, then btz = (As + e) · z = 0 + etz = ez. Note that

ez is small because z is short but btz is well spread. Therefore, we just solved LWE.

39

One can find a short vector in the LWE-lattice using a lattice basis reduction method,

e.g. LLL reduction. This distinguishing attack on LWE is described in details in [22].

Figure 3.19: Visualization of LWE reduced to Average-case BDD problem
bt (in red) = stA + et vs. b← Zmq

3.4.1 LWE problem

Given samples (x, y = f(x) + e) where x ∈ Znq , y ∈ Zq and a linear function f such that

f : Znq → Zq, the idea is to find f or close approximation or it knowing that e (error) comes

from a some known noise model.

Definition 19. Learning with errors instance LWEn,q,χ is parametrized by:

• n ∈ N

• q ∈ Primes

• χ, a probability distribution over Z/qZ

χ is known as the noise distribution and we would like it to generate short elements, i.e.

||e|| ≤ B with high probability for some bound B � q, when e← χ. In practice, χ is usually

a discrete Gaussian over Z.

Theorem 3.4.1. ([29], Theorem 1.1) Let n, p be integers and α ∈ (0, 1) be such that αp >

2
√
n. If there exists an efficient algorithm that solves LWEq,Ψα then there exists an efficient

40

quantum algorithm that approximates the decision version of the shortest vector problem

(GapSVP) and the shortest independent vectors problem (SIVP) in the worst-case.

For the above theorem to work, it is necessary that χ is chosen to be a discrete Gaussian

distribution. This means that sampling from LWE involves taking a lattice point and per-

turbing it by a small, normally distributed quantity, the idea being that this will look close

enough to a uniform distribution if the standard deviation is large enough. Sampling from

this discrete Gaussian is simply accomplished by sampling each component from a normal

distribution and rounding to the nearest integer.

3.4.2 Search LWE

Suppose we are given an oracle Ons which outputs samples of the form (a, 〈a, s〉+ e),

• a← Znq is chosen freshly at random for each sample.

• s ∈ Znq is the secret (and it is the same for every sample).

• e← χ is chosen freshly according to χ for each sample.

The search-LWE problem is to find the secret s given access to Ons . The LWEn,q,χ

assumption is the assumption that the search-LWE problem is computationally hard.

The LWE problem described above is the search version of the problem. In the decision

version (DLWE), the goal is to distinguish between noisy inner products and uniformly

random samples (practically, some discretized version of it). Regev [29] showed that the

decision and search versions are equivalent when q is a prime bounded by some polynomial

in n.

41

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 mod 17

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 mod 17

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 mod 17

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 mod 17

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 mod 17

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 mod 17

. . .

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 mod 17

(3.7)

The LWE problem asks to recover a secret ∈ Znq given a sequence of approximate random

linear equations on s. For instance, the input might be above where each equation is correct

up to some small additive error (say, {1,−1}), and our goal is to recover s (answer in this

case is s = (0, 13, 9, 11)).

In definition of LWE, error e should be “short”. Short just means small (in terms of some

metric, usually Euclidean norm). We can see that if e is the zero vector, s becomes trivial to

recover using Gaussian elimination. If e is uniformly random, then you can imagine that it

is impossible to recover any information on s, since it is hidden against a uniformly random

backdrop. It might be helpful to picture the following instead. Consider LWE as a lattice,

if the vector e is small enough, b is close to only one of the points in this lattice. In other

words, the LWE problem becomes a bounded-distance decoding problem on this lattice. If

e is too large, b might be closer to another vector in this lattice. Since we are typically

interested in recovering s and not a set of possible secrets, we must be given a guarantee

that e is sufficiently short (hence bounded distance decoding).

So “short” just means that s is recoverable. Usually, e is sampled from a discrete distri-

bution approximating a Gaussian centered around 0, with small width relative to q. This

42

allows one to ensure that s is recoverable with an arbitrarily high probability, while still

making the problem as difficult as possible.

3.4.3 Ring-LWE Problem

Adding more structure by considering ideal lattices instead of random ones, we obtain

the Ring-LWE problem, also called the RLWE problem.

Let n ∈ N be a power of two, Rq the ring Zq[x]/(xn + 1) for a positive integer q and

χσ the corresponding (n-dimensional) error distribution on Rq. Given Rq, s, a ∈ Rq and

e← χσ, we define As,χσ to be the distribution of the resulting pairs (a, as+ e) ∈ Rq ×Rq.

The RLWEq,σ Assumption: the assumption states that it is hard for any polynomial

time algorithm with only polynomially many samples to distinguish As,χσ from the uniform

distribution on Rq ×Rq.

Regev in [25] proved that there exists a probabilistic polynomial-time quantum algorithm

that reduces approximate S(I)VP in the worst-case to average-case decision-RLWE. This

reduction proves the hardness of RLWE.

The RLWE problem can be stated in two different ways: a “search” version and a “de-

cision” version. Both begin with the same construction. Let:

• ai(x) be a random element but known polynomials from Zq[x]/(Φ(x)) with coefficients

from all of Zq

• ei(x) be small random element and unknown polynomials relative to a bound b in the

ring Zq[x]/(Φ(x))

• s(x) be a small unknown polynomial relative to a bound b in the ring Zq[x]/(Φ(x)).

• bi(x) = (ai(x) · s(x)) + ei(x)

The Search version entails finding the unknown polynomial s(x) given the list of polyno-

mial pairs (ai(x), bi(x)).

43

The Decision version of the problem can be stated as follows. Given a list of polynomial

pairs (ai(x), bi(x)), determine whether the bi(x) polynomials were constructed as bi(x) =

(ai(x) · s(x)) + ei(x) or were generated randomly from Zq[x]/(Φ(x)) with coefficients from

all of Zq.

The difficulty of this problem is parametrized by the choice of the quotient polynomial

(Φ(x)), its degree (n), the field (Zq), and the smallness bound (b). In many R-LWE based

public key algorithms the private key will be a pair of small polynomials s(x) and e(x).

The corresponding public key will be a pair of polynomials a(x), selected randomly from

Zq[x]/(Φ(x)), and the polynomial t(x) = (a(x) · s(x)) + e(x). Given a(x) and t(x), it should

be computationally infeasible to recover the polynomial s(x).

Figure 3.20: Plot of Gaussian distribution centered at 20, σ = 8√
2π

44

Chapter 4

Key-exchange basics and reconciliations

In this chapter, we outline basics of Ring-LWE based key-exchange, the idea of recon-

ciliation or key-agreement, basics of existing reconciliation methods and parameter choices

to achieve a reasonable security. The goal of this chapter is to examine Ring-LWE based

key-exchange in details and how it aims to be a Diffie-Hellman like replacement candidate.

4.1 Key-exchange using LWE and Ring-LWE

Basic idea of using LWE as a key-exchange mechanism is the following: we multiply a

randomly generated matrix with a secret, add a noise to it (also known as LWE sample) and

then send the randomly generated matrix and LWE sample to other party.

1024 Random

1024

×

16

Secret +

16

Noise =

16

Sample

Figure 4.1: Visualization of LWE sample
Payload: random Z1024×1024

4093 and sample Z1024×16
4093

Thereafter, other party multiples LWE sample with his/her secret and result is the shared

45

key. However, matrix multiplication is not commutative, we need to shuffle and transpose

key and noise to achieve commutative property. In the following we see the procedure to

achieve 16× 16 shared key (i.e. matrix).

1024 A

1024

×

16

s +

16

e =

16

B B
∈ Z1024×16

q

16 s′
1024

×

1024

A +
e′

1024

=
16 B′

1024

B′

∈ Z16×1024
q

16
1024

B′

×

16

s =

16

16 K 16 s′
1024

×s

16

B =

16

16 K

Figure 4.2: Visualization of LWE based key-exchange
Resulting shared key is a 16× 16 matrix

The first issue that emerges is matrix inversion, multiplication are both costly in terms

of both space and time. Another important issue is sharing a matrix A is costly with regards

to the bandwidth needed for key-exchange. Moreover, to achieve a reasonable security we

need at least 1024× 1024 matrix to be shared.

4 1 11 10
5 5 9 5
3 9 8 10
1 3 3 2

 vs.

2738 3842 3345 2979 . . .
2896 595 3607 . . .
377 1575 . . .
2760 . . .
. . .

︸ ︷︷ ︸

1024 rows

1024 columns

Figure 4.3: Toy example Z4×4
13 vs. real-world example Z1024×1024

4093 of random shared matrix
The example on the right is modulo 4093 so each matrix element in the field of Z1024×1024

4093

would require at most 12 bits. Therefore,
12× 1024× 1024 = 4291821568 bits ≈ 1.5 Megabyte.

Hence, to overcome above issues we can use cyclic matrices to give matrix some structure

and ultimately reduce the size.

Remark 4. Circulant matrices (cyclic matrix) form a commutative ring, since for any two

46

given circulant matrices A and B, the sum A+B is circulant, the product A×B is circulant,

and A× B = B×A

Remark 5. A polynomial in a ring Z[x]/(xn − 1) can be represented as a n × n circulant

matrix. That is:

a0 + a1x+ · · ·+ an−1x
n−1 7→

a0 a1 . . . an−1

an−1 a0 . . . an−2

.

a1 a2 . . . a0

To solve bandwidth problem, by using cyclic matrix instead then matrix calculation

would get a cumulative property for free, so no need to shuffle and transpose matrices

as demonstrated previously. As a result, we do not need to send the complete matrix to

other party, we can just send the first row and the other party can re-create the matrix.

Using polynomials instead of matrix would address the high cost of matrix multiplication

and inversion. As noted above, polynomial in Z[x]/(xn − 1) can be represented as a cyclic

matrix. But as noted before, conjecture is SVPpoly(n) for ideals in Z[x]/(f) takes time 2Ω(n)

when f is irreducible polynomial (if f is not irreducible then multiplication operation would

not be invertible in general, and hence we would not get a field and subsequently lattice

would not be ideal).

Simple irreducible polynomial can be: xn + 1. We can use a wrapping rule to repre-

sent a polynomial in Z[x]/(xn + 1) when n is a power of 2. This would remove any pat-

tern in cyclic matrix and subsequently makes it more complex. The wrapping rule can be:

x 7→ −x mod 13 applied to the shifted value. In other words, do a circular right shift to

every row and apply above map to the value of first column of shifted row.

Below shows that by treating the first row of cyclic matrix as a polynomial in quotient

polynomial ring over finite field of Z13[x]/(x4 + 1), polynomial can be represented as a

wrapping rule described above (i.e. Z4×4
13). In details, we can construct the same matrix

47

using the first row of matrix as a polynomial in quotient ring over finite field and then

multiplying it by xi for 0 ≤ i < n to re-create original matrix.
4 1 11 10
3 4 1 11
2 3 4 1
12 2 3 4

↔
x0 × (4x0 + 1x1 + 11x2 + 10x3) = 4x0 + 1x1 + 11x2 + 10x3 → [4, 1, 11, 10]
x1 × (4x0 + 1x1 + 11x2 + 10x3) = 3x0 + 4x1 + 1x2 + 11x3 → [3, 4, 1, 11]
x2 × (4x0 + 1x1 + 11x2 + 10x3) = 2x0 + 3x1 + 4x2 + 1x3 → [2, 3, 4, 1]
x3 × (4x0 + 1x1 + 11x2 + 10x3) = 12x0 + 2x1 + 3x2 + 4x3 → [12, 2, 3, 4]

Figure 4.4: Demonstration of simple wrapping rule to create cyclic matrix in Ring-LWE
It is essentially multiplying the first row with xi for i ∈ [0, n− 1] and extract coefficients.

The above wrapping rules helps to visualize Ring variant of LWE where irreducible

polynomial is xn + 1, in terms of a matrix. But polynomial multiplication is substantially

more efficient in terms of both space and time. So by using Ring variant of LWE (i.e. treating

A, s, e as polynomials instead of matrices), we can make key-exchange process substantially

more efficient.

4.1.1 Reason to use a reconciliation method

Below is a Diffie-Hellman like key-exchange in Ring-LWE. Note that A is a shared

polynomial, s is a secret polynomial and e is a noise polynomial. Only polynomials A and b

are shared between two parties and s, e are both kept secret.

Alice chooses small s, e in Zq, both sampled from a noise distribution
Bob chooses small s′, e′ in Zq, both sampled from a noise distribution

Alice → Bob: b = A× s+ e
Bob → Alice: b′ = A× s′ + e′

Shared secret Alice calculates: s× b′ = s× (A× s′ + e′) = A× s× s′ + s× e′

Shared secret Bob calculates: s′ × b = s′ × (A× s+ e) = A× s× s′ + s′ × e

Figure 4.5: Basic Ring-LWE-DH key agreement
A is similar to generator (g) and q (prime) is similar to modulo prime in Diffie-Hellman key

exchange

Notice that shared keys do not match because s×e′ 6= s′×e. Although errors are supposed

48

be relatively small compared to shared polynomial A and their product with secret would

be small as a result (i.e. ||s × e′||, ||s′ × e|| � ||A||), but still resulting shared key do not

match and it is a problem if one wants to construct a cryptographic key-exchange protocol.

To overcome this issue we use rounding methods to extract a bit from every coefficient

and as added error is relatively small, hence, the coefficients would not differ significantly.

Therefore, rounding method eliminates the error and extracts the same shared key for both

parties. There are two types of rounding methods (or reconciliation techniques):

1. reconciliation without any rounding information (e.g. Regev’s basic rounding method)

2. reconciliation with rounding information to substantially increase the probability of

extracting the same key.

The idea of sending extra bits was initially introduced by Ding and later improved by

Peikert and Alkim et al.

Lemma 4.1.1. ([5], Lemma 2) LWE is no easier if the secret is drawn from the error distri-

bution χn

The advantage to sample s and e from normal distribution (Gaussian) is the guarantee

that 〈s, e〉 is small. Hence, during decryption, terms that look like 〈s, e〉 (inner product of

the secret vector s and error vector e) appears in the decryption. In Ring variant of key-

exchange, we receive as shared key s× (As′ + e′) = Ass′ + se′ ↔ s′ × (As+ e) = Ass′ + s′e.

So if both parties choose small s and s′ (hence their inner product with error terms would

be small) and then chance of reconciliation failing to extract the same key would be reduced

substantially.

4.2 Reconciliation methods

Below is a description of different reconciliation methods in Ring-LWE. These meth-

ods apply to every coefficient of resulting shared key which is a polynomial in Ring-LWE.

49

These methods can also be applied to LWE based key-exchange as well by applying them to

respective matrix elements.

4.2.1 Rounding method in Ring-LWE suggested by Regev

As each coefficient of polynomial is an integer modulo q, then we can round each coeffi-

cient to either to 0 or 1. Regev’s suggested to round every coefficient if it in (−q
2
, −q

4
]∪ (q

4
, q

2
]

to 1, and round if it is in (−q
4
, q

4
] to 0. This basic method works most of the time and prob-

ability of failure is 1
210

which is not good enough considering that we have 1024 coefficients

in our shared polynomial to achieve a reasonable security.

Alice Bob
s, e← χ, A← uniformly random s′, e′ ← χ

A,b=As+e−−−−−−→
b′=As′+e′←−−−−−−

K = reconcile(s× b′) K = reconcile(s′ × b)

Figure 4.6: Diagram of basic Diffie-Hellman like key-exchange protocol in Ring-LWE
Note that s, e and s′, e′ are all sampled from a noise distribution but A is generated uniformly at
random. Also, reconcile function applies Regev’s basic rounding method to every coefficient of

resulting polynomial.

0

q
4

q
2

3q
4

7→ 07→ 1

Alice’s calculated shared key:
4079331x0 + 1894732x1 + · · ·+ 472608x1022 + 516748x1023 = 01 . . . 00

Bob’s calculated shared key:
4079332x0 + 1894733x1 + · · ·+ 472607x1022 + 516748x1023 = 01 . . . 00

Figure 4.7: Demonstration of Regev’s rounding approach
Notice coefficients of both parties are close but not equal. In Regev’s rounding approach, we

round each efficient to either 0 or 1 based on the region coefficient is located at.

50

4.2.2 Improved rounding method as suggested by Ding

Regev’s method can be modified slightly by multiplying error terms by 2. The goal is to

make sure difference between error terms would be even. Thereafter, we would follow the

naive approach of mod 2 to eliminate the terms 2×s×e′ and 2×s′×e, hence, resulting shared

key would match. However this would not result in any improvement because difference

between calculated key of both parties would not always be even, since we are working in

Zq as oppose to Z and q is an odd prime. Therefore, further adjustments are needed.

Alice chooses small s, e in Zq, both sampled from a noise distribution
Bob chooses small s′, e′ in Zq, both sampled from a noise distribution

Alice → Bob: b = A× s+ 2× e
Bob → Alice: b′ = A× s′ + 2× e′

Shared secret Alice calculates: s× b′ = s× (A× s′ + 2× e′) = A× s× s′ + 2× s× e′
Shared secret Bob calculates: s′ × b = s′ × (A× s+ 2× e) = A× s× s′ + 2× s′ × e

A×s×s′+2×s×e′−A×s×s′+2×s′×e = 2×(s×e′−s′×e)← not necessarily even difference

Figure 4.8: Demonstration of using even error values in basic Ring-LWE-DH key agreement
For example, in Z, 2× 7 = 14 which is an even number but in Z13, it would be 1 which is an odd

number.

0

q
4

q
2

3q
4

7→ 07→ 1

x

Z

-2 -1 0 1 2 3 4 5

x

Zq (e.g. Z5 ∈ {−2,−1, 0, 1, 2})

-2 -1 0 1 2 3 4 5

Figure 4.9: Demonstration of only multiplying errors by 2 will not help the reconciliation
In Z difference between two points is even but in Z5 difference is odd, hence no benefit in just

multiplying error terms by 2. More than just multiplying error terms by 2 is needed.

51

Ding in [12] proposed a reconciliation method based on Ring-LWE. This protocol is

the first to introduce the idea of sending extra information to improve success rate of rec-

onciliation. Peikert improved Ding’s method in [28] and presented a KEM (key-exchange

mechanism). Later on Peikert’s KEM was used in the construction of the BCNS protocol [7]

which itself was recently improved, resulting in the NewHope protocol by Alkim et al. [4].

The basic idea of Ding’s method can be seen as Diffie-Hellman like key exchange protocol

based on the Ring-LWE problem. The key-exchange protocol is secure against passive ad-

versaries if Ring-LWE is hard. For a proof and an exact definition of this security model we

refer to [12]. The key exchange protocol is only proven to be secure in the two-user setting.

A multi-user variant is proposed in the same paper, but its security is not yet proven. To

describe Ding’s reconciliation method, we define the following functions: δ : Zq 7→ {0, 1},

Signal : Zq 7→ {0, 1}, and Encode : Zq × {0, 1} 7→ {0, 1} via:

Signal(x) = δ(x) 7→

0 if x ∈ [−b q

4
c, b q

4
e]

1 otherwise

(4.1)

Encode(x, δ) = (x+ δ × (
q − 1

2
) mod q)(mod2) (4.2)

The basis idea is that if coefficient is in inner region (δ = 0) , then we just mod 2 because

the difference between 2 × s × e′ and 2 × s′ × e is even with high probability, hence in

inner region the probability of achieving the same mod2 of coefficient is much higher than

outer region. What we want to avoid while mod 2 is coefficient of two parties are in different

regions. So, if signal bit is in outer region (δ = 1), then we add q−1
2

to respective coefficient.

Therefore, coefficient will now be in inner region and then mod2.

52

0

q
4

q
2

3q
4

or −q
4

7→ 07→ 1

x

Zq

−(q−1)
2

−q
4 0

q
4

(q−1)
2

outer: δ = 1
inner: δ = 0

outer: δ = 1

add (q−1)
2

add (q−1)
2

Figure 4.10: Demonstration of signal function in DXL protocol

If δ = 1 or we are in outer region, then we add q−1
2 to respective coefficient, hence we will be in

inner region and then mod2; if δ = 0 then we just mod2.

Ding in the same paper introduced DXL key-exchange protocol. However, this protocol

never got implemented in an efficient manner but it had an impact on future key-exchange

protocols. For example, adding secondary noise to the calculated polynomial key to prevent

secret leakage and increase entropy (additive noise).

The key exchange in this protocol will take place between two parties. There will be an

initiator for the key exchange designated as (I) and a respondent designated as (R). Both I

and R know q, n, a(x), and have the ability to generate small polynomials according to the

distribution χσ with parameter σ. The distribution χσ is a discrete Gaussian distribution.

The key-exchange begins with the initiator (I) doing the following:

Initiation

1. Generate two polynomials sI and eI with small coefficients by sampling from the dis-

tribution χσ.

2. Compute pI = asI + 2eI .

53

3. The initiator sends the polynomial pI to the Responder.

Response

1. Generate two polynomials sR and eR with small coefficients by sampling from the

distribution χσ

2. Compute pR = asR + 2eR

3. Generate a small e′R from χσ. Compute kR = pIsR+2e′R. Then kR = asIsR+2eIsR+2e′R

4. Use the signal function Signal to find w = Signal(kR). This is computed by applying

Signal function on each coefficient of kR

5. Respondent side’s key stream skR = Encode(kR, w) is calculated, based on the recon-

ciliation information w and the polynomial kR

6. The Respondent sends pR and w to the Initiator

Finish

1. Receive pR and w from the Responder

2. Sample e′I from χσ and Compute kI = pRsI + 2e′I = asIsR + 2eRsI + 2e′I

1. Initiator side’s key stream is produced as skI = Encode(kI , w) from the reconciliation

information w and polynomial kI

4.2.3 Rounding method as utilized in BCNS protocol

In 2014, Peikert in [28] presented a key transport scheme following the same basic idea of

Ding’s, where the idea of sending additional 1 bit signal for every coefficient is also utilized.

In this improved approach, Bob sends Alice a reconciliation information ∈ {0, 1}n (similar

to output of signal function in Ding’s method) such that 0 7→ region #1, 1 7→ region #2.

In other words, as a reconciliation information one party sends a region number that his

54

or her coefficient is located in. Then based on the region, a particular key extraction rule

applies. If v, u are respective coefficients of Alice and Bob, and also |u − v| ≤ q
8
, then this

method always works. Due to the clever design of rounding regions and key extractions

rules, revealing the region leaks no information and does not compromises security.

We should note that BCNS protocol is an implementation of Peikert’s reconciliation

method and this protocol does not introduce a new reconciliation method.

0

q
4

q
2

3q
4

#1

#2

#2

#1

(a) 4 rounding regions

0

q
4

q
2

3q
4

7→ 07→ 1

(b) Case #1

0

q
4

q
2

3q
4

7→ 07→ 1

(c) Case #2

Figure 4.11: Demonstration of Peikert’s rounding approach
(a) demonstrates the 4 regions and (b) is a rounding rule when rounding information bit indicates

regions #1 and (c) if it indicates region #2. Notice if difference of coefficients is ≤ q
8 then this

method always works.

Alice chooses small s, e in Zq, both sampled from a noise distribution
Bob chooses small s′, e′ in Zq, both sampled from a noise distribution

Alice → Bob: b = A× s+ e
Bob → Alice: b′ = A× s′ + e′ and rounding region ∈ {0, 1}n

Shared secret Alice calculates: s× b′ = s× (A× s′ + e′) = s× A× s′ + s× e′
Shared secret Bob calculates: s′ × b = s′ × (A× s+ e) = s′ × A× s+ s′ × e

Figure 4.12: Exact Ring-LWE-DH key agreement as suggested by Peikert.
Notice Bob also sends his rounding regions to Alice which is similar to Ding’s rounding method

The following is the concrete description of Peikert’s reconciliation method. We define

the reconciliation mechanism where the modulus q ≥ 2 is even, then define disjoint intervals

I0 = {0, 1, . . . , b q
4
e−1}, I1 = {b3q

4
e, . . . , q−1} mod q. Now define the cross-rounding function

〈·〉2 : Zq → Z2 as:

55

〈v〉q,2 =

0 v ∈ I0 ∪ (I0 + q

2
)

1 v ∈ I1 ∪ (I1 + q
2
)

To compute the shared key the following reconciliation function rec : Zq × Z2 → Z2 is

used:

rec(v, b) =

0 if v ∈ Ib + ([− q

8
, q

8
) ∩ Z) mod q

1 otherwise

All of the above applies when q is even, but in applications of Ring-LWE this is not the

case. For instance, it is often desirable to let q be a sufficiently large prime, for efficiency

and security reasons. When q is odd, while it is possible to use the above methods to agree

on a bit derived by rounding a uniform v ∈ Zq, the bit will be biased, and hence not suitable

as key material. Here we show how to avoid such bias by temporarily scaling up to work

modulo 2q, and introducing a small amount of extra randomness.

Define the randomized function dbl : Zq → Z2q that, given a v ∈ Zq, outputs v̄ = 2v− ē ∈

Z2q for some random ē ∈ Z that is uniformly random modulo two and independent of v, and

small in magnitude (e.g., bounded by one).

dbl : Zq → Z2q, x 7→ 2x− ē, where ē =

−1 with probability 1

4

0 with probability 1
2

1 with probability 1
4

Moreover, if w, v ∈ Zq are close, then so are 2w, dbl(v) ∈ Z2q, i.e., if w = v + e(modq)

for some (small) e, thus 2e would be small too, then 2w = v̄ + (2e+ ē)(mod2q). Therefore,

to (cross-) round from Zq to Z2, we simply apply dbl to the argument and then apply the

appropriate rounding function from Z2q to Z2. Similarly, to reconcile some w ∈ Zq we apply

rec to 2w ∈ Z2q; note that this process is still deterministic.

56

To summarize, The usual definition of (passive) security for key-exchange requires the

agreed-upon key to be indistinguishable from uniformly random. That is not the case for

DXL because the bits of the key are biased, not uniform. It is simply because any deter-

ministic map from Zq to 0, 1 must be biased when q is odd. To address this issue, Peikert

suggested if the modulus q is odd, it requires to work in Z2q instead of Zq to avoid bias in

the derived bits.

Since q is odd in practice, we need use randomized doubling function (dbl). The following

lemma shows that the rounding of dbl(v) ∈ Z2q for a uniform random element v ∈ Zq is

uniform random in Z2q given its cross-rounding.

Lemma 4.2.1. ([28], Claim 3.3) For odd q, if v ∈ Zq is uniformly random and v̄ ← dbl(v) ∈

Z2q, then rec(v̄) is uniformly random given 〈v̄〉2q,2

4.2.4 Rounding method as utilized in NewHope protocol

In November 2015, Alkim, Ducas, Popplemann, and Schwabe in [4] built a reconciliation

scheme based on the work of Peikert and further improved Peikert’s randomized doubling

function. In addition, Alkim et al. implemented their new reconciliation method as a

protocol and named it NewHope. Unlike BCNS protocol, NewHope protocol provides a new

reconciliation methods and it is as follows: the sender and the receiver have two almost

identical vectors vS ≈ vR ∈ Znq . They want to obtain one shared secret key SK ∈ {0, 1}n4

from those two vectors, i.e., the sender and the receiver want to obtain one bit of the key

from each four coordinates. Deciding the value of this key bit is done geometrically. In

the following, by Voronoi cell we are referring to Polyhedron generated by Diamond cutting

algorithm as described in [35] given full rank lattice with basis of

(
1 0 0 0
0 1 0 0
0 0 1 0

0.5 0.5 0.5 0.5

)
, that is

identity matrix such that last row is set to 1
2
.

57

Figure 4.13: Voronoi cell in 2-dimension

Figure 4.14: Voronoi cell in 3-dimension
This is not being used in NewHope, only for the purpose of visualization

Figure 4.15: Voronoi cell in 4-dimension, (diamond inside a cube)

58

The essence of this new reconciliation can be summarized as the following:

1. Divide every coefficient of calculated key, that is: s′ × (As+ e) or s× (As′ + e′) by q.

Therefore we a get a list of numbers that are between [0, 1) inclusive

2. Pairwise select every 4 coefficient (ci, ci+1, ci+2, ci+3) and run the pi = CVP4(ci, ci+1, ci+2, ci+3)

to get the closest center of Voronoi cell, then store the result into array [p1, . . . , pn
4
]

3. For all pi in the array, calculate the distance between (ci, ci+1, ci+2, ci+3) and pi and

store the result into another array [di, . . . , dn
4
]

4. Send the array [di, . . . , dn
4
] to other party. Note that similar to Ding and Peikert’s

method, only one party sends the reconciliation information

5. For all di in the array, both parties will then add the di to their (ci, ci+1, ci+2, ci+3), so

vectors constructed by coefficients of both parties will gets closer to center of closest

Voronoi cell. As a result, we will achieve exact key agreement

6. If an adjusted vector generated by 4 coefficients is in center Voronoi cell then bit is 1;

else bit is 0

x

y

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1

2
)

Figure 4.16: 2-dimension Voronoi cell centered at (1
2
, 1

2
)

Remark 6. The valid Voronoi cell (or Polyhedron generated by Diamond cutting algorithm)

should have a volume (or area in 2-dimensions) of 1
2

[35].

59

Above implies that probability of 0, 1 bits are both equal to 1
2

in reconciled shared key.

Since probability of vector to be inside or outside main Voronoi cell are equal, hence, there

is no bias in generated key and it is uniformly distributed.

Below is a simple yet efficient procedure to check if vector generated by coefficients is

in main Voronoi cell or otherwise. Subsequently, procedure finds the distance between co-

efficient vector and center of closest Voronoi cell. The procedure below is for 2-dimensions,

however, for 4-dimensions it would be similar but 24 inequalities to check instead of 4 in-

equalities. To extract a key from a vector generated by coefficients, it would be similar but

returning 1 if vector is in main Voronoi cell and 0 otherwise.

Algorithm 2 get distance voronoi cell

1: procedure get distance voronoi cell(v)
2: if (2.0, 2.0) · v− 1.0 ≥ 0
3: and (2.0,−2.0) · v + 1.0 ≥ 0
4: and (−1.0,−1.0) · v + 1.5 ≥ 0
5: and (−2.0, 2.0) · v + 1.0 ≥ 0
6: return (0.5, 0.5)− v
7: else
8: return round(v) - v

Figure 4.17: Finding distance between vector and center of closest Voronoi cell
Note that above multiplications with vector v are dot product or scalar product. Also, round

function, rounds x, y components of vector v to nearest integer. As x, y are in range 0 ≤ x, y < 1
then result of round function would be ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

The idea that one party as a reconciliation information has to send array of (double

precision) floating point numbers is not efficient. To resolve the issue Alkim at al. introduced

the idea of splitting each Voronoi cells into 16 sub-cells. Then instead of calculating the

distance between vector generated by coefficients and center of closest Voronoi cell, we can

find the closest center of Voronoi sub-cell (i.e. sub-cell number that coefficient is located

at) and send the sub-cell number to other party as a reconciliation information. Then

both parties will add the distance between lattice point and center of sub-cell to the vector

generated by their coefficients; hence they shift the vector generated by their coefficients

60

toward center of their Voronoi cell. Therefore, instead of sending array of distances which

are (double precision) floating point numbers, we can send the sub-cell numbers instead

which are in integers. Note that we send the sub-cell number and not the outer Voronoi cell

number to other party. As a result, eavesdropper does not learn anything from reconciliation

information.

x

y

(1
2
, 1

2
)

Figure 4.18: 2-dimension Voronoi cell centered at (1
2
, 1

2
) split into 16 sub-cells

For details on how NewHope reconciliation methods splits Voronoi cell into sub-cells and

efficiently finds the sub-cells number in which vector generated by coefficients is located at,

translating sub-cell number into Voronoi cell and subsequently extracting a bit form every

4 coefficients refer to NewHope paper [4].

Furthermore, NewHope protocol generates the shared polynomial pseudo-randomly on

every run of the KEM to assure safety against backdoors. Next chapter discusses the method

as suggest in NewHope protocol to efficiently share the shared polynomial with other party.

In essence, to generate a pseudo-random polynomial A, NewHope uses a 256-bit seed and

a type of hash-function that outputs arbitrary length, e.g., SHAKE-128. This can be done

similarly for all the other protocols.

4.2.4.1 Generalized form of randomized doubling function suggested by Alkim et al.

The probability of x being in a center Voronoi cell is the same as for x being in other

Voronoi cells. This would be the case if x actually followed a continuous uniform distribution.

However, the coefficients of x are discrete values in {0, 1
q
, . . . , q−1

q
} and with the protocol

61

described so far, the bits of v would have a small bias. The solution is to add to x with

probability 1
2

the vector (1
2q
, . . . , 1

2q
) before running the error reconciliation. This has close

to no effect for most values of x, but, with probability 1
2

moves x to another Voronoi cell if

it is very close to one side of a border.

In the example below we see that 72 dots (36 red and 36 black ones) remain in their

Voronoi cell; the other 9 dots (4 red and 5 black ones) change Voronoi cell with probability

1
2

which precisely eliminates the bias in the key.

Figure 4.19: Effect of generalized form of randomized doubling function on vectors

4.3 BCNS and NewHope diagram comparison

The basic sketch of both BCNS and NewHope protocols are very similar to Ding’s key-

exchange protocol (DXL). They all share the basics, initiator sends a polynomial b to

responder and responder replies by sending b′, c where c is a reconciliation information or a

bit string to improve success probability of key-agreement. For every coefficient of respon-

der’s calculated key, there is one reconciliation bit and there are at most 1024 coefficients.

Therefore, responder is sending at most 1024 bits as a reconciliation information.

62

a← Uniformly random
Alice Bob

s, e
$←− χ s′, e′

$←− χ

b← as+ e
b−→ b′ ← as′ + e′

e′′
$←− χ

v ← bs′ + e′′

b′,c←−− v̄
$←− dbl(v)

c← 〈v̄〉2q,2 ∈ {0, 1}n
kA ← rec(2b′s, c) ∈ {0, 1}n kB ← rec(2bs′, c) ∈ {0, 1}n

Figure 4.20: Diagram of BCNS protocol

In NewHope protocol however, initiator also sends a seed derived from a uniformly ran-

dom distribution that enables the other party to deterministically create a shared polyno-

mial by themselves without actually sending it. This is results in an efficiency in bandwidth

needed for key-exchange. Also, to make sure the resulting shared key is uniformly random or

number of 0’s and 1’s are uniformly distributed, NewHope uses SHA-3. Note that if number

of 0’s and 1’s are always exactly equal then we can deterministically find the shared key.

Using a hash function will not have any impact on hardness of Ring-LWE, it is just matter of

making bits of resulting shared key uniformly distributed and making a sure it is irreversible

(i.e. eavesdropper needs to break SHA-3 first and then would be able to break Ring-LWE).

Another important observation is reconciliation information of NewHope is slightly dif-

ferent from BCNS protocol. In NewHope, one party sends a sub-cell number calculated

from coordinate tuple generated by every 4 coefficients to other party. Further, NewHope

protocol divides each Voronoi cell to 16 sub-cells so for every 4 coefficient it requires up-to

4 bits. Considering that there are total of up-to 1024 coefficients in responder’s key then

responder is in fact sending 256× 4 = 1024 bits as a reconciliation information, which is the

same number of bits as in BCNS protocol.

63

q = 12289 < 214, n = 1024,Ψ16

Alice Bob

seed
$←− {0, 1}256

a← parse(SHAKE-128(seed))

s, e
$←− Ψn

16 s′, e′, e′′
$←− Ψn

16

b← as+ e
(b,seed)−−−−→ a← parse(SHAKE-128(seed))

u← as′ + e′

v ← bs′ + e′′

v′ ← us
(u,r)←−− r

$←− HelpRec(v)
v ← Rec(v′, r) v ← Rec(v, r)
µ← SHA3-256(v) µ← SHA3-256(v)

Figure 4.21: Diagram of NewHope protocol

With regards to e′′ added to Bob’s calculated key and the reason for it, notice if e′′ is not

there, then v = bs′ in both protocols, which means it would be easy to recover s′ given v and

b. Since b is sent in the clear over the channel, and a (randomized) function of v appears in

the clear as c (or r), without using e′′ to hide s′, information about s′ would likely be leaked

both to Alice and to any eavesdropper of the channel. Even if it would not immediately leak

all of s′, any leakage is clearly bad. As a result, e′′ is used to make sure that v = bs′ + e′′

is indistinguishable from random, i.e. the distribution of v is independent of s′, assuming

Ring-LWE is hard. See also the security proof in the BCNS paper [7], where Game 1 and

Game 2 are assumed to be indistinguishable under the Ring-LWE assumption. The reason

Alice does not add some e′′ as well is because Alice uses e to hide her own secret s, just like

Bob uses e′ to hide his secret s′. To agree on the key (both parties have different noise on the

shared key, which they do not wish to disclose). Bob has to send this extra key reconciliation

message, for which he again hides his secret s′ with fresh random noise e′′.

4.4 Parameter choices for Ring-LWE key-exchange

The Ring-LWE key-exchange presented above worked in the Ring of polynomials of degree

n − 1 or less mod a polynomial Φ(x). Note that n is a power of 2 and q is a prime which

64

is congruent to 1 mod 2n. Following the guidance given in Peikert’s paper [28], V. Singh in

[33] suggested two sets of parameters for the RLWE-KEX and in both coefficient of error

polynomial is sampled from normal distribution with standard deviation σ = 8√
2π

. Suggested

parameters are as follows:

1. For 128 bits of security, n = 512, q = 25601, and Φ(x) = x512 + 1

2. For 256 bits of security, n = 1024, q = 40961, and Φ(x) = x1024 + 1

Because RLWE based key exchange uses random sampling and fixed bounds, there is a

small probability that the key-exchange will fail to produce the same key for the initiator and

responder. Given Gaussian parameter σ equals to 8√
2π

= 3.192, Singh in [33] calculated that

probability of key agreement failure to be less than 2−71 for the 128-bit secure parameters

and less than 2−91 for the 256-bit secure parameters. BCNS protocol kept the σ and Φ as

suggested by Singh for 256 bits of security, but changed the prime modulus of finite field to

232 − 1. This resulted in failure probability of 2−131072.

Originally (in early versions of protocol), NewHope kept the Φ as suggested by Singh,

but used 12-bit binomial distribution instead with σ =
√

12
2

= 2.449 and changed the prime

modulus of finite field to 12289. This represents a 70% reduction in public key size over the

parameters of Singh. Hence, reducing the prime modulus size resulted in failure probability

of 2−105. But in later version (and after discussion with A. Langley from Google), Alkim et al.

used 16-bit binomial distribution with σ =
√

16
2

= 2.828 which resulted in failure probability

of 2−60. In fact, this later parameter was implemented in Google’s Chrome Canary project

as well as Boring-SSL which is a fork of Open-SSL that is designed to meet Google’s needs

[8].

Remark 7. Notice the smaller q results in faster key-exchange by reducing over-head size

and increase in security, and most importantly increasing impact of error terms, but this

yields higher failure probability.

65

n q Distribution Parameter Security Claim Rec. Algorithm Citation

512 1051649 Gaussian 3.19/
√

2π 2128 DXL [16]

820 49261 Gaussian 8/
√

2π 2256 Peikert [34]

1024 12289 Binomial
√

16/2 2128 NewHope [4]

1024 40961 Gaussian 8/
√

2π 2256 Peikert [34]

1024 232 − 1 Gaussian 8/
√

2π 2128 Peikert [7]

Table 4.1: Listing of a number of different parameter choices for KEXs using the Ring
Learning with Errors problem

4.5 Lattice based authenticated key-exchange

Key-exchange protocol (KEX) is a cryptographic primitive to derive a common secret

key via a public network communication between a number of parties. The parties do not

share any secret information beforehand. KEX that also authenticates the identities of the

involved parties is called authenticated key-exchange protocol (AKE). More formally, in an

AKE protocol each party has a static public-secret key pair. The static public key is certified

with the party’s identity. When running the protocol, each party generates an ephemeral

secret key and, depending on that, a corresponding ephemeral public key. The public key is

sent to the other party. Each party computes a shared session key by using the ephemeral

key and the static key (e.g. password).

An authenticated key-exchange protocol is said to have perfect forward secrecy (PFS) if

a compromise of its static keys does not lead to a compromise of previously established and

deleted session keys. There are many existing authenticated key-exchange approaches built

for Diffie-Hellman, however they all can be used with Ring-LWE instead because of simi-

larities in design. Authenticated key-exchange aims to overcome man-in-the-middle attack,

which is an attack where the attacker secretly relays and possibly alters the communication

between two parties who believe they are directly communicating with each other. The

following are basic authenticated Diffie-Hellman approaches that can be applied to RLWE-

KEX:

66

1. Use key-exchange in conjunction with a signing certificate (use either RSA or DSA as

a public key). The server sends its certificate which client validates and ephemeral key

signed (or encrypted) using server’s private key. Client validates the ephemeral key

using certificate and encrypts the session using ephemeral key.

2. Concatenate (or pad) ephemeral key (or result of unauthenticated key-exchange) with

a password and use the hash of that as a session key to achieve a secure communication

3. Encrypt b = As + e (in Ring-LWE) or K = ga mod p (in Diffie-Hellman) using a

password as an encryption key before sending it to other party.

67

Chapter 5

Implementation specifications

In this chapter, we overview specifics of Ring-LWE based protocols which includes: meth-

ods of error sampling, methods to generate shared polynomial between two parties and

performance analysis. The goal of this chapter is to explain in details how key-exchange

reconciliations that was discussed in previous chapter was implemented as a protocol.

5.1 Error sampling algorithm

Lattice based cryptography began with the seminal work of Ajtai, who built a one-way

function based on the worst-case hardness based on certain lattice problems [1]. These lattice

problems are believed to be hard even in the presence of large quantum computers and such

a promising post-quantum replacement for standard cryptography. The most general public

key primitives like encryption schemes [25] and digital signatures [23] already have practical

lattice based instantiations.

Many recent lattice based schemes require sampling from discrete Gaussian. The param-

eters of discrete Gaussian are governed by the security proofs of the particular schemes. A

finite machine cannot sample from a discrete Gaussian distribution, hence one has to sample

from a distribution close to it. It is a common practice to require that the statistical distance

of the sampled distribution from the desired discrete Gaussian be less than 2−100.

68

Computing the probabilities requires floating point operations of at least 100 bit precision

if one wants to achieve a statistical distance less than 2−100 [19]. Whereas any precomputation

means storing a variable amount of values of the same precision. This can highly affect the

sampling performance on personal computers and even make the implementation completely

impractical on constrained devices. Weiden et al. [37] report that the Gaussian sampling

takes up 50% of the running time of Lyubashevsky’s signature scheme (also known as BLISS)

[23]. Thus efficient sampling from discrete Gaussians plays a crucial role in the performance

of these primitives.

S. Galbraith in [13] discussed different discrete Gaussian sampling algorithms suitable

for constrained devices. By a constrained device we can think of an embedded or portable

device with a small amount of memory (measured in kilobytes instead of gigabytes) and a

modest processor that has to be economical with respect to power usage. Also these kind of

devices do not necessarily come with floating point arithmetic capability. Even if a platform

provides floating point arithmetic, the required precision is usually not supported natively.

This means that software libraries have to be used for this functionality, and these can

significantly worsen performance and take up additional space in the already tight memory.

A particular discrete Gaussian samplers may apply different techniques to increase the

performance and reduce or even avoid the floating point operations, which usually utilize

precomputed tables, hence not requiring floating point arithmetic. Many factors can affect

the performance and memory consumption (i.e., the size and number of the potential pre-

computed tables). Such factors are the size of the Gaussian parameter, whether the center

is zero or not, and whether the parameters are fixed or changing (or more precisely, the

number of the needed parameter combinations). To evaluate the practicality of the discrete

Gaussian samplers in lattice based cryptography one needs to assess the parameters of the

distributions required by the different cryptographic schemes.

The techniques utilized by different samplers require various amount of memory and

floating point operations, which results in different overall performance on the particular

69

platforms. Thus for the evaluation of their practical performance one needs to collect the

characteristics of the discrete Gaussian samplers too.

In the following by PDF and CDF we are referring to Probability Density Function and

Cumulative Distribution Function. Note that the relation between the probability density

function f and the cumulative distribution function F is F (k) =
∑

i≤k f(i) if f is discrete

and F (x) =
∫
y≤x f(y) dy if f is continuous.

Definition 20. The probability density of the normal distribution is: f(x | µ, σ2) = 1√
2σ2π

e−
(x−µ)2

2σ2

Where:

• µ is mean or expectation of the distribution (center of PDF)

• σ is standard deviation

• σ2 is variance

Remark 8. Coefficients of polynomials in Ring-LWE are ∈ Z. Therefore, error sampling

methods should sample from Discrete Distributions as oppose to Continuous Distributions.

5.1.1 Inversion sampling

Inverse transform sampling (also known as Smirnov transform) is a basic method for

pseudo-random number sampling, i.e. for generating sample numbers at random from any

probability distribution given its cumulative distribution function.

Inverse transformation sampling takes uniform samples of a number u between 0 and 1,

interpreted as a probability, and then returns the largest number x from the domain of the

distribution P (X) such that P (−∞ < X < x) ≤ u.

In this method, we are randomly choosing a proportion of the area under the curve and

returning the number in the domain such that exactly this proportion of the area occurs to

the left of that number. Intuitively, we are unlikely to choose a number in the far end of

tails because there is very little area in them which would require choosing a number very

close to zero or one.

70

Computationally, this method involves computing the quantile function of the distribu-

tion; in other words, computing the cumulative distribution function (CDF) of the distri-

bution (which maps a number in the domain to a probability between 0 and 1) and then

inverting that function. This is the source of the term “inverse” or “inversion” in most of

the names for this method. Note that for a discrete distribution, computing the CDF is

not in general too difficult: we simply add up the individual probabilities for the various

points of the distribution. For a continuous distribution, however, we need to integrate the

probability density function (PDF) of the distribution, which is impossible to do analytically

for most distributions including the normal distribution. As a result, this method may be

computationally inefficient for many distributions and other methods are preferred.

For the normal distribution, the lack of an analytical expression for the corresponding

quantile function means that other methods may be preferred computationally. It is often

the case that, even for simple distributions, the inverse transform sampling method can be

improved on, for example, the ziggurat algorithm and rejection sampling [19].

5.1.1.1 Naive sampling approach using PDF function

One simple approach which generates only positive integer samples is calculating prob-

abilities using PDF(x) ∀x ∈ [0, variance] and putting them in an array. Note that, sum of

probability array would not be equal to one because we ignored the probabilities of negative

values. Thereafter, we need to normalize the probability array such that sum would equal

to 1. Then, create a new array with the same size as probability array but setting first

element of new array as first element of probability array. Thereafter, we set new array at

any index to sum of probability array until that index. We can call the probability array,

vector of PDF values and also call second array, vector of CDF values. Note that value of

last element of CDF vector should equal to 1 because we normalized the probability list and

sum of probability list should equal to 1.

To sample integers in range [0, variance] using this method, simply generate a random

71

number between [0, 1) uniformly at random, lets call it u. Then find a index such that

u < CDF[index]. The value of index is a sample from the distribution.

Below is an implementation of the naive Gaussian sampler that we described above;

centered at 0 with σ = 8√
2π

as suggested in early draft of BCNS protocol.

Algorithm 3 naive Gaussian sampler by estimating cdf values

1: sigma ← 8/
√

2π
2: variance ← sigma2

3: mu ← 0
4: domain ← dvariancee

. probability density of the normal distribution
5: function pdf(x)

6: return: (1/
√

2π × variance)× e−(x−mu)2/(2×variance)

. note that sum of probabilities that this function generates is equal to 1/2
. because we are ignoring probabilities of negative numbers

7: function create pdf vector
8: pdf vector ← empty array of size = domain
9: for x← 0 to domain do

10: pdf vector[x] ← pdf(x)

11: return: pdf vector

. normalize probability list such that sum of probability would equal to 1
12: function normalize pdf vector(pdf vector)
13: s← sum(pdf vector)
14: for i← 0 to domain do
15: pdf vector[i] = pdf vector[i] /sum
16: i← i+ 1

17: return: pdf vector

. create cdf vector from pdf vector
18: function create cdf vector(pdf vector)
19: cdf vector ← empty array of size = domain
20: total ← 0
21: for i← 0 to domain do
22: total ← total + pdf vector[i]
23: cdf vector[i] ← total

24: return: cdf vector

72

. sample from cdf vector
25: function sample
26: rand ← select a number in range [0, 1) uniformly random
27: index ← 0
28: while rand > cdf vector[index] do
29: index ← index +1

30: return: index
. initialize the sampler

31: pdf vector ← create pdf vector()
32: pdf vector ← normalize pdf vector(pdf vector)
33: cdf vector ← create cdf vector(pdf vector)
34: s ← sample(cdf vector)

Figure 5.1: Plot (or histogram) of Gaussian samples using the naive method
Above is centered at 0 and σ = 8√

2π

5.1.1.2 Inversion sampling using PDF function and bisection search

Above method can be improved using Taylor approximation to estimate the CDF and

bisection search to estimate the inverse of CDF. It is important to note that CDF function

of normal distribution is not invertible so to calculate the inverse of CDF function we need

to use Taylor series to find the integral (or area under the graph) of PDF function.

The bisection search method is a root-finding method that repeatedly bisects an interval

and then selects a sub-interval in which a root must lie for further processing. It is a very

simple and robust method, but it is also relatively slow. Because of this, it is often used

to obtain a rough approximation to a solution which is then used as a starting point for

more rapidly converging methods. This method is also called the interval halving method.

73

Bisection search method does not really takes the advantage of the fact that coefficients of

error polynomial are integers, so we need to round the sample to nearest integer which is

not the most efficient approach. Also, to calculate the inverse of CDF we are constantly

calculating CDF and also so we are not storing the CDF values (memorizing concept) of

particular probability. As a result, this approach is very slow.

Algorithm 4 Gaussian sampler using Taylor series and bisection search

1: sigma ← 8/
√

2π, variance ← sigma2

. probability density of the normal distribution
2: function pdf(x) return (1/

√
2π × variance)× e−(x−mu)2/(2×variance)

. calculates cumulative distribution using Taylor approximation
3: function cdf(x)
4: if x < -1 × variance then return 0.0
5: else if x > variance then return 1.0
6: sum ← 0.0
7: term ← x
8: i← 3
9: while sum + term 6= sum do

10: sum ← sum + term
11: term ← term ×x2/i
12: i← i+ 2

return 0.5+ sum × pdf(x)

. bisection search to find a value y such that it’s CDF equals to x
13: function inverse cdf(x, delta, lo, hi)
14: mid ← lo + (hi − lo) /2
15: if hi − lo < delta then return mid
16: else if cdf(mid) > x then
17: return inverse cdf(x, delta, lo, mid)
18: else
19: return inverse cdf(x, delta, mid, hi)

. initialize the bisection search
20: function inverse cdf init(x)
21: mid ← lo + (hi − lo) /2
22: return inverse cdf(x, 0.00000001, -variance, variance)

74

. sample from Gaussian by generating a random number and find it’s inverse of CDF
23: function sample
24: x← generate a number between [0, 1) uniformly random
25: return inverse cdf(x, variance)

. initialize the sampler
26: pdf vector ← create pdf vector()
27: pdf vector ← normalize pdf vector(pdf vector)
28: cdf vector ← create cdf vector(pdf vector)
29: s ← sample(cdf vector)

Figure 5.2: Plot (or histogram) Gaussian sampler using bisection search and Taylor series
Above is centered at variance2, σ = 8√

2π

5.1.1.3 Inversion sampling using pre-calculated CDF table

BCNS protocol uses inversion sampling with pre-computed look-up table of CDF. If

look-up table was not available, then we had to calculate the CDF. The specification of

CDF look-up table is the following:

table[0] = 2189

table[51] = 2192

table[i] < table[i+ 1] : ∀i ∈ 0 ≤ i ≤ 50

(5.1)

To samples form this look-up table, we independently generate a 192-bit integer vj

uniformly at random, and compute the unique smallest integer index indj ∈ [0, 50] such

that vj < table[indj]. We then generate one additional random bit to decide the sign

signj ∈ {−1, 1}, and return the j-th coefficient as sj ← signj × indj. BCNS uses little

75

Endian memory storing format (i.e. 192 bits stored as struct of 3×64 = 192 bits) to store

the array. Little endians in essence means storing the least significant byte in the smallest

address.

Algorithm 5 gaussian sampler given CDF table as written in BCNS protocol

1: rlwe table ← 52× 3 matrix of 64 bit little endians
2: big integers ← empty array with size equals to number of rows in rlwe table (i.e. 52)

. convert little-endian as stored above to Big-endian
3: function little to big endian
4: for i← 0 to height of rlwe table do
5: big ← 0
6: for j ← 0 to width of rlwe table do
7: big ← big OR (rlwe table[i][j] LSHIFT (j × 64))

8: big integers[i] ← big

9: return big integers

. this function uses bits that are sampled uniformly at random to sample Gaussian
10: function sample
11: n← get a 192 bits uniformly random
12: i← 0
13: for i← 0 to length(big integers) do
14: if n < big integers[i] then
15: return i

Figure 5.3: Plot of precomputed CDF table as implemented in BCNS protocol
Notice the last column is just 1s.

76

Figure 5.4: Plot (or histogram) of BCNS Gaussian sampler
Close to a perfect discrete Gaussian sampler (statistical difference < 2−128)

5.1.2 Binomial distribution

NewHope protocol uses binomial distribution (Ψ16) as oppose to Gaussian distribution for

efficiency reasons. Interestingly, difference of two independently uniformly sampled random

variables is a binomial distribution sample when bits are uniformly sampled. The method

they use is to sample b, b′ each 16 bits, then their difference forms a binomial distribution

sample centered at zero. This distribution has standard deviation σ =
√

k
2
, where k is

number of bits. In the paper [4], Alkim et al. provides a proof that such a binomial

distribution is a good approximation of Gaussian distribution.

Figure 5.5: Plot of Binomial distribution Ψ8, shifted for visualization purposes

This binomial distribution would have a standard deviation of σ =
√

8
2

77

Algorithm 6 Binomial distribution sampler with Ψ16 as written in NewHope protocol

. generate two 16 bit uniformly random number return their difference
1: function sample(big integers)
2: x← generate a 16 bits number uniformly random
3: y ← generate a 16 bits number uniformly random
4: return: x− y

5.2 Protocol specifications and speed comparisons

In this section we compare the specifics of implementations of BCNS and NewHope. In

particular, generation of shared polynomial and polynomial multiplication algorithm. They

are both important as they directly impact the bandwidth and speed of key-exchange.

5.2.1 Sending shared polynomial, two fundamentally different approaches

Shared polynomial is specially important as it needs to be shared with other party to

enable key-exchange. Typically, the file size of this polynomial is relatively large as it should

be generated from a uniform distribution (i.e. unlike error or noise polynomial, no upper-

bound should be applies to it’s coefficients). The following table shows the size of shared

polynomial in Kilobytes for BCNS and NewHope protocols:

Protocol Number of coefficients Modulus Size of shared polynomial Payload
BCNS 1024 232 − 1 1024× 32bits ≈ 4KB ≈ 4KB
NewHope 1024 12289 1024× 14bits ≈ 1.8KB 256-bit seed

Table 5.1: Maximum size of shared polynomial and payload

BCNS during install (or build) of Open-SSL will generate a uniformly random shared

polynomial and will use it for all the key-exchanges. Reusing shared polynomial more than

once is completely fine under Ring-LWE hardness assumption. But the downside is key-

exchange initiator also needs to send the shared polynomial to other party and sending 4KB

of data is not an ideal solution. NewHope protocol addresses the issue by sending a seed

so that other party can recreate the shared polynomial by themselves instead. In details,

78

NewHope uses 256-bit seed through SHAKE-128 which is a hash function with arbitrary

length output. Then slicing the resulting 16384 bits into 1024 × 16 bit numbers. Each of

those integers is reduced to modulo 214 (i.e. the two most-significant bits are set to zero) and

then used as a coefficient of shared polynomial if it is smaller than q and rejected otherwise

(or 0 is used instead).

The advantage that can be observed here is that some of the coefficients of shared poly-

nomial would be set to 0 hence shared polynomial would not be too large and not too small.

Therefore, in polynomial multiplication, we would not be dealing with a polynomial with

relatively large coefficients, this results in a increased speed in key-exchange.

The following is a demonstration of creating a uniformly random polynomial from a

random seed and extracting polynomial coefficients from it:

Algorithm 7 Extracting coefficients of shared polynomial as described in NewHope

1: modulus ← 12289
2: number of coefficients ← 1024

3: function create coefficient array(seed)
4: . set the seed and length of output in bits
5: raw ← SHAKE-128(seed, number of coefficients ×16)
6: chunks ← convert hex digest of ‘raw’ to chunks (or sub-strings) of bit length = 16
7: for i← 0 to length(chunks) do
8: . reduce chunk to modulo 214 by setting 2 significant bits to zero
9: chunks[i] ← chunk[i] XOR 0xC000

10: . if coefficient is greater than modulus then set to 0
11: chunks[i] ← 0 if chunk[i] ≥ modulus else chunks[i]

return chunks
. set the seed and then extract coefficients

12: seed ← 256 bit sampled uniformly random
13: coefficients ← create coefficient array(seed)

In the following bar chart plot we can see that number of non-zero coefficients of shared

polynomial is on-average 200 out of all 1024 coefficients. This is good as it makes the shared

polynomial sufficiently large, not too small, but still uniformly at random.

79

Figure 5.6: Plot of number of non-zero coefficients after creating 1000 shared polynomials

5.2.2 Performance analysis

The following is table comparison of clock cycles of BCNS and NewHope protocols (both

C and AVX2 ref. codes). Clearly NewHope dominates the BCNS protocol in terms of speed

and it’s assembly language implementation is ≈ 4× faster than C ref. code. Note that BCNS

protocol generates the shared polynomial during the install (or build) of Open-SSL so the

numbers below for BCNS does not include the clock cycles of that. However, the numbers

for NewHope includes a ≈ 37000 clock cycles for generation of shared polynomial. But we

always have an option to cache the shared polynomial indefinitely so we do not count it in

clock cycles analysis but it would directly impact the required bandwidth for key-exchange.

Note that Advanced Vector Extensions (AVX) are extensions to the x86 instruction set

architecture for microprocessors from Intel and AMD.

The reason for speed increase of NewHope is due to smaller modulus and choice of

Binomial noise sampler which is more efficient to sample as oppose to Gaussian sampler.

Protocol BCNS NewHope’s C ref. NewHope’s AVX2 ref. X25519
Key generation (server) 2477958 258246 88920 52169
Key generation (client) 3995977 384994 110986 52169
Shared key computation 481937 86280 19422 159128
Sum of clock cyles ≈ 6955K ≈ 729K ≈ 219K ≈ 263K

Table 5.2: Clock cycle comparisons of BCNS, NewHope and fastest X25519 implementation

80

Clearly NewHope is faster with regards to sum of clock cycles in comparison with state-of-

the art elliptic curve cryptography based Diffie-Hellman key-exchange (ECC). Total clock

cycles of 219K vs. 263K. More specifically X25519; the fastest implementation is called

Sandy2x written in 2015 by T. Chou (student of D. Bernstein) which is also written in

AVX2 assembly language [9]. This means that lattice based key-exchange is not only a

quantum safe option but it also faster than today’s key-exchange protocols.

Alkim et al. went further and provided ARM Cortex implementation which can be used

for portable devices, because these devices usually use ARM architecture in contrast with

AVX2 which is primarily used in Desktop computers. The ARM reference implementation

runs in ≈ 1.5M cycles in contrast with ≈ 3.6M cycles of fastest X25519 implementation in

ARM.

NewHope’s AVX2 reference implementation (not the C implementation to make compar-

ison fair) out performs the fastest elliptic curve based Diffie-Hellman in conjunction with

either RSA or ECDSA (elliptic curve Digital Signature Algorithm), hence, it would make

it easy pick to replace existing key-exchange protocol. Also, NewHope outperforms post-

quantum competitors by factor of two. Below shows the speed comparison of NTRUEncrypt

(or NTRU), Frodo (which is identical to BCNS but uses LWE as oppose to Ring-LWE

variant), BCNS and NewHope.

Figure 5.7: TLS handshake latency (KEX protocols in conjunction with RSA and ECDSA)
The shorter the bar chart, the faster TLS handshake would be.

To summarize, NewHope is a key-exchange protocol that is believed to be resistant

81

to attacks by quantum computers but RSA and ECDSA are vulnerable. However, quan-

tum computers are still being development and they are not available yet, so switching to

NewHope would not result in any overhead, but it would also make key-exchange resistant

to quantum computers and faster.

5.2.3 Hybrid approach with X25519

Authors of both BCNS and NewHope note that the Ring-LWE problem is hypothesised

to be resistant to quantum attack, but we do not know that. In fact, we also do not know

that it is resistant to attacks by classical computers. It is possible that someone will develop

a classical algorithm tomorrow that breaks the scheme above. Thus Ring-LWE key-exchange

should be used concurrently with a standard Diffie-Hellman (e.g. X25519) and their shared

key should concatenated (padded with) with each other to combine security of both future

and past. Both BCNS and NewHope implementations in Open-SSL and Boring-SSL have

options for hybrid key-exchange but they are set to false by default.

5.2.4 Addition to popular cryptographic libraries

Ring-LWE-based ciphersuite described in the previous subsection are both implemented

into Open-SSL and Boring-SSL. Specifically, two new ciphersuites, all designed to achieve

a 128-bit security level. The two ciphersuites are: RLWE-ECDSA-AES128-GCM-SHA256

and RLWE-RSA-AES128-GCM-SHA256, and they consist of:

• Key-exchange based on Ring-LWE key exchange

• Authentication based on ECDSA (elliptic curve Digital Signature Algorithm) or RSA

digital signatures

• Authenticated encryption based on AES-128 in GCM (Galois Counter Mode)

• Key derivation and hashing based on SHA-256

82

All these ciphersuite require TLSv1.2 because of the use of AES-GCM (provides both

privacy or encryption and integrity), but TLSv1.0 ciphersuites using AES in CBC mode are

possible.

83

Chapter 6

Summary, conclusion and future work

LWE and Ring-LWE promise a quantum safe passive key-exchange and recent implemen-

tations not only offer a drop-in replacement for cryptography software libraries but they also

outperform the existing key-exchange algorithm as well. Understanding the concept behind

Ring-LWE problem and how it relates to lattices and lattice problems (e.g SVP problem) is

an essential precursor to understand the Ring-LWE based key-exchange protocols. Recon-

ciliation algorithms plays a key role that enables the key-exchange protocols to extract the

same bits with very small probability of failure.

This thesis provides a brief survey on lattice based cryptography how it relates to LWE

problem. Thereafter, it discusses the reason behind creation of Ring-LWE which provides a

structure to LWE matrix of module finite field by introducing concept of quotient polyno-

mials modulo finite field. Then discussion of the basics of Ring-LWE key-exchange and the

need for reconciliation. Next, it reviewed parameter choices and compared the specifics of

different reconciliation algorithms. Further, it reviews the two real-world and highly opti-

mized implementations of Ring-LWE key-exchange protocols; in details, noise sampler, ways

to generate shared polynomial and polynomial multiplication algorithm. In the end, it dis-

cusses the performance analysis and possibility of using Hybrid (ECC+Ring-LWE) approach

as opposed to only Ring-LWE.

84

In the future work, Ring-LWE based key-exchange might benefit from improved reconcil-

iation algorithms that are simpler to implement yet yield higher success probability. Current

key-exchange protocol such as elliptic curve Diffie Hellman and RSA have been studied ex-

tensively and their shortcoming have been identified and addressed. For example, Wiener’s

attack (small private key d) and Coppersmith’s attack (small public exponent e) for RSA.

However, lattice based algorithm are relatively new and the claim of security against quan-

tum computers and even classical computers needs to be studied further as field of quantum

computing grows.

Lastly, more work needs to be done to standardize key-exchange protocols and their

efficient implementations in various applications, frameworks and programming languages

(e.g. Ring-LWE key-exchange as a session-key in context of client–server model inside web

frameworks). Exploring other candidates for post-quantum cryptography can also be done

as future works. For example, McEliece cryptosystem, NTRU encryption, Supersingular

isogeny key-exchange and LWE based key-exchange (without a ring) and attempts to make

them more efficient in terms of both space and time complexity.

85

Appendix A

Merkle–Hellman knapsack cryptosystem

The Merkle–Hellman knapsack cryptosystem was one of the earliest public key cryptosys-

tems invented by Ralph Merkle and Martin Hellman in 1978 and it has been broken.

Merkle-Hellman is an asymmetric-key cryptosystem, meaning that two keys are required

for communication: a public key and a private key. Furthermore, unlike RSA, it is one-way:

the public key is used only for encryption, and the private key is used only for decryption.

The Merkle-Hellman system is based on the subset sum problem (a special case of the

knapsack problem). The problem is as follows: given a set of numbers A and a number b,

find a subset of A which sums to b. In general, this problem is known to be NP-complete.

However, if the set of numbers (called the knapsack) is super-increasing, meaning that each

element of the set is greater than the sum of all the numbers in the set lesser than it, the

problem is “easy” and solvable in polynomial time with a simple greedy algorithm.

Key generation: In Merkle-Hellman, the keys are two knapsacks. The public key is a

hard knapsack A, and the private key is an easy, or superincreasing, knapsack B, combined

with two additional numbers, a multiplier and a modulus. The multiplier and modulus

can be used to convert the superincreasing knapsack into the hard knapsack. These same

numbers are used to transform the sum of the subset of the hard knapsack into the sum of

the subset of the easy knapsack, which is a problem that is solvable in polynomial time.

86

To encrypt n-bit messages, choose a superincreasing sequence w = (w1, w2, . . . , wn) of n

nonzero natural numbers. Pick a random integer q, such that q >
∑n

i=1 wi, and a random

integer r, such that gcd(r, q) = 1 (i.e. r and q are coprime). q is chosen this way to ensure

the uniqueness of the ciphertext. If it is any smaller, more than one plaintext may encrypt

to the same ciphertext. Since q is larger than the sum of every subset of w, no sums are

congruent modulo q and therefore none of the private keys sums will be equal. r must be

coprime to q or else it will not have an inverse modulo q. The existence of the inverse of r

is necessary so that decryption is possible. Now calculate the sequence: β = (β1, β2, . . . , βn)

where βi = rwi mod q. The public key is β, while the private key is: (w, q, r).

Encryption: To encrypt a message, a subset of the hard knapsack A is chosen by com-

paring it with a set of bits (the plaintext) equal in length to the key. Each term in the

public key that corresponds to a 1 in the plaintext is an element of the subset Am, while

terms that corresponding to 0 in the plaintext are ignored when constructing Am they are

not elements of the key. The elements of this subset are added together and the resulting

sum is the ciphertext.

To encrypt an n-bit message α = (α1, α2, . . . , αn), where αi is the i-th bit of the message

and αi ∈ {0, 1}, calculate c =
∑n

i=1 αiβi. The ciphertext then is c.

Decryption: Decryption is possible because the multiplier and modulus used to transform

the easy knapsack into the public key can also be used to transform the number representing

the ciphertext into the sum of the corresponding elements of the superincreasing knapsack.

Then, using a simple greedy algorithm, the easy knapsack can be solved using O(n) arith-

metic operations, which decrypts the message.

In order to decrypt a ciphertext c a receiver has to find the message bits αi such that they

satisfy c =
∑n

i=1 αiβi. This would be a hard problem if the βi were random values because

the receiver would have to solve an instance of the subset sum problem, which is known to

be NP-hard. However, the values βi were chosen such that decryption is easy if the private

key (w, q, r) is known.

87

The key to decryption is to find an integer s that is the modular inverse of r modulo q.

That means s satisfies the equation s× r mod q = 1 or equivalently there exist an integer k

such that s× r = kq + 1. Since r was chosen such that gcd(r, q) = 1 it is possible to find s

and k by using the Extended Euclidean algorithm.

Next the receiver of the ciphertext c computes c′ ≡ cs (mod q). Hence c′ ≡ cs ≡∑n
i=1 αiβis (mod q). Because of r × s mod q = 1 and βi = r × wi mod q follows βis ≡

wirs ≡ wi (mod q).

Hence c′ ≡
∑n

i=1 αiwi (mod q). The sum of all values wi is smaller than q and hence∑n
i=1 αiwi is also in the interval [0, q − 1]. Thus the receiver has to solve the subset sum

problem c′ =
∑n

i=1 αiwi.

This problem is easy because w is a superincreasing sequence. Take the largest element

in w, say wk. If w × k > c′ , then αk = 0, if wk ≤ c′ , then αk = 1. Then, subtract wk × αk

from c′, and repeat these steps until we have figured out α.

Example of Merkle–Hellman knapsack cryptosystem

First, a w is created: w = {2, 7, 11, 21, 42, 89, 180, 354}. This is the basis for a private

key. From this, calculate the sum.
∑
w = 706, then, choose a number q that is greater than

the sum, say, q = 881.

Also, choose a number r that is in the range [1, q) and is coprime to q, say, r = 588. The

private key consists of q, w and r. To calculate a public key, generate the sequence β by

multiplying each element in w by r mod q. Then, β = {295, 592, 301, 14, 28, 353, 120, 236}

because:

88

(2× 588) mod 881 = 295

(7× 588) mod 881 = 592

(11× 588) mod 881 = 301

(21× 588) mod 881 = 14

(42× 588) mod 881 = 28

(89× 588) mod 881 = 353

(180× 588) mod 881 = 120

(354× 588) mod 881 = 236

The sequence β makes up the public key. Say Alice wishes to encrypt ’a’. First, she must

translate ’a’ to binary (in this case, using ASCII) 01100001. She multiplies each respective

bit by the corresponding number in β:

a = 01100001

→ 0× 295 + 1× 592 + 1× 301 + 0× 14 + 0× 28 + 0× 353 + 0× 120 + 1× 236 = 1129

She sends this to the recipient. To decrypt, Bob multiplies 1129 by r−1 mod q, 1129 ×

442 mod 881 = 372. Now Bob decomposes 372 by selecting the largest element in w which

is less than or equal to 372. Then selecting the next largest element less than or equal to

the difference, until the difference is 0:

89

372− 354 = 18

18− 11 = 7

7− 7 = 0

The elements we selected from our private key correspond to the 1 bits in the message:

01100001. When translated back from binary, this ‘a’ is the final decrypted message.

Breaking Merkle–Hellman knapsack cryptosystem using LLL

This system was very popular for a while since it is very fast to implement. However, in

the early 1980’s, Shamir in [31] was able to peel away this disguise and obtain superincreasing

sequence (or one that was equivalent to it). Consider a knapsack problem to be solved:

t = x1× a1 + x2× a2 + · · ·+ xn× an such that t is a ciphertext and ∀i : ai ∈ β. Then define

a lattice La using the

La =

1 0 . . . 0 a1

0 1 . . . 0 a2

...
...

. . .
...

0 0 . . . 1 an

0 0 . . . 0 −t

(A.1)

If x = (x1, . . . , xn) ∈ {0, 1}n solves above, then v = (x1, . . . , xn, 0) ∈ La. Note that v is a

short vector. If it is the shortest vector in La, then LLL finds v. The larger MESSAGE LEN,

the probability of success will be lowered because the reduced basis of lattice (although

small) would not always yield shortest lattice vectors (i.e. solution of knapsack problem).

90

The reason lies in the facts that for any vector x of reduced lattice basis La that is reduced

using LLL, ||b1|| ≤ 2
n−1
2 ||x|| holds and as n (i.e. MESSAGE LENGTH or dimension) gets larger,

then vectors would be far from shortest vector of lattice. The LLL algorithm will not always

produce the desired vector and therefore, the attack is not always successful. However, in

practice, the lattice reduction attack is highly effective against the original Merkle-Hellman

knapsack.

Algorithm 8 Breaking Merkle–Hellman knapsack cryptosystem using LLL

1: message length ← 24 . larger this variable harder to break the cryptosystem
. this function creates superincreasing sequence

2: function create superincreasing sequence
3: sequence ← create empty list of size equal to length
4: s← 10
5: val ← s
6: index ← index +1
7: for index ← 0 to message length −1 do
8: sequence[index] ← val
9: val ← s + random integer ∈ [1, 10]

10: s ← s + val

11: return sequence

12: function create public key(w, r, q)
13: beta ← create empty list of size equal to message length
14: for index ← 0 to message length - 1 do
15: beta[index] ← (r × w[index]) mod q

16: return beta

17: function encrypt(beta,message)
18: index ← 0
19: ciphertext ← create empty list of size equal to message length
20: for index ← 0 to message length do
21: ciphertext[index] ← beta[index] × message[index]

22: return sum(ciphertext)

23: function decrypt(ciphertext, r, q)
24: return (inverse mod(r, q) × ciphertext) mod q

91

. breaks the cryptosystem if LLL produces shortest vector (not just shorter)
25: function break(ciphertext)
26: L ← identity matrix with size equal to length of ciphertext +1
27: L[last column] ← beta ∪ [−1× ciphertext]
28: L ← LLL(L)
29: return the first row of L that contains only 0s and 1s

30: w ← create superincreasing sequence(10, message length)
31: q ← random prime greater than sum(w) +1
32: r ← random number ∈ (1, q)
33: beta ← create public key(w, r, q)
34: message ← create a dummy binary message of size equal to message length
35: ciphertext ← encrypt(beta, message)

36: break(ciphertext)
?
= message

92

Appendix B

Basic implementations of all Ring-LWE

key-exchange reconciliations

One of the goals of this thesis was to implement a simple to understand, easy to modify

and straightforward implementation of all four reconciliation mechanisms (i.e. Regev, Ding,

Peikert and NewHope). However, after struggling with a well known number theory libraries

such as NTL and FLINT which are indeed great packages written in C but mainly for ones

who have studied and used number theory for a long time and speed is their primary concern,

we selected Python language. Python has a syntax similar to pseudo-code but setting up an

environment in Python to use all the libraries needed for the reconciliation implementation

and achieve three criteria above would not be possible (i.e. setting up polynomial library,

then configure quotient ring and etc.). Also, Python’s popular mathematical libraries such

as numpy do not offer a quotient Polynomial ring modulo finite field without using a work

around like calling NTL library which is written in C. After searching further we came

upon SageMath which uses a Python-like syntax, supporting procedural, functional and

object-oriented constructs.

W. Stein, creator of SageMath who is a mathematician at the University of Washington,

realized when designing Sage that there were many open-source mathematics software pack-

93

ages already written in different languages, namely C, C++, Common Lisp, Fortran and

Python. Rather than reinventing the wheel, Sage which is written mostly in Python inte-

grates many specialized mathematics software packages into a common interface, for which

a user needs to know only Python. However, Sage contains hundreds of thousands of unique

lines of code adding new functions and creating the interface between its components.

SageMath is an open-source project and it truly a powerful tool but it does not receive

enough attention as it deserves specially for it’s powerful polynomial package. We moved

away from java after trying to implement a univariate polynomial ring using java (i.e. rein-

venting the wheel) and seeing how difficult it is to implement a proper polynomial parser

to works with edge cases, although it was a rewarding experience, it was time consuming.

We should also give Sage credit for providing comprehensive Matrix library which includes

LLL (by calling NTL’s LLL implementation) and many other implementations of lattice

algorithms (e.g. BKZ, SVP, CVP and more).

Sage uses many open source libraries and links them all together using Python. It is a

simple idea but it requires clever implementation which Sage truly delivers. It is fascinating

to see a smart type system that can handle the linkage between all those open-source libraries.

The following are demonstration of Peikert and Alkim et al. reconciliation algorithms

using SageMath. Note that these are not efficient implementations and they only serve

as a platform to modify and experiment with the reconciliation algorithms. In all imple-

mentations below we used Sage’s built in function: DiscreteGaussianDistribution-

PolynomialSampler which realizes oracles which returns polynomials in Z[x] where each

coefficient is sampled independently with a probability proportional to e(−(x−c)2/(2σ2)). There-

after, we modified the ring of returned polynomial to quotient polynomial ring over finite

field of integers using Y(f)

For the complete code and all four reconciliation methods please refer to:

https://github.com/amir734jj/LWE-KEX

The following are implementations of reconciliation algorithms not protocols. For ex-

94

https://github.com/amir734jj/LWE-KEX

ample, with regards to the NewHope implementation, we used the Gaussian distribution

sampler as oppose to Binomial distribution that NewHope protocol uses.

1 from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
2

3 dimension = 1024 # degree of polynomials
4 modulus = 40961 # modulus
5 sigma = 8/sqrt(2*pi) # sigma
6

7 # Quotient polynomial ring
8 R.<X> = PolynomialRing(GF(modulus)) # Gaussian field of integers
9 Y.<x> = R.quotient(Xˆ(dimension) + 1) # Cyclotomic field

10

11 def generate_error():
12 # dimension = 5 (enough for error polynomial) ; variance = sigma
13 f = DiscreteGaussianDistributionPolynomialSampler(ZZ[’x’], 5, sigma)()
14 return Y(f)
15

16 def generate_polynomial():
17 # uniformly sampled from Quotient Polynomial Ring in x over finite field
18 return Y.random_element()

Listing B.1: Configuration of quotient polynomial ring over finite field using SageMath

Below is a tester to check if reconciliation algorithm works correctly. This can be used

in conjunction with any reconciliation algorithm.

1 shared = generate_polynomial() # Shared matrix (A)
2

3 # Alice values
4 alice_secret = generate_error() # secret generated from error distribution
5 alice_error = generate_error()
6 alice_value = shared * alice_secret + alice_error # create R-LWE sample
7

8 # Bob values
9 bob_secret = generate_error() # secret generated from error distribution

10 bob_error = generate_error()
11 bob_value = shared * bob_secret + bob_error # create R-LWE sample
12

13 # Bob key
14 temp_error = generate_error() # create secondary error and add it to calculated key to increase entropy
15 bob_key = alice_value * bob_secret + temp_error
16 w = generate_signal(bob_key) # generate signal (or reconciliation bits) from Bob’s key
17 bob_key_binary = reconcile(bob_key, w)
18

19 # Alice key
20 alice_key = bob_value * alice_secret # no need to add secondary error
21 alice_key_binary = reconcile(alice_key, w) # reconcile using Bob’s reconciliation bits
22

23 if (alice_key_binary == bob_key_binary):
24 print "Keys match!", hex(int(alice_key_binary, 2)) # print hex value of shared key if they match
25 else:

95

26 print "Keys do not match!"

Listing B.2: Tester for reconciliations using SageMath

Below is the implementation of Peikert’s reconciliation algorithm. Notice the randomized

doubling function that multiplies every coefficient of polynomial by two and then adds a

secondary noise. BCNS protocol samples two bits and use it as an index to uniformly

sample from: {−1, 0, 0, 1}.
1 temp_modulus = (2 * modulus) if is_odd(modulus) else modulus # if modulus is odd then multiply it by 2
2 temp = temp_modulus / 8 # q/8
3 value_1 = temp + (temp_modulus / 4) # q/8 + q/4
4 value_2 = temp + (3 * temp_modulus / 4) # q/8 + 3q/4
5 value_3 = temp # q/8
6 value_4 = temp + (temp_modulus / 2) # q/8 + q/2
7

8 # randomized double function, notice probability of 0 => 0.5
9 def dbl(coefficient):

10 return (2 * int(coefficient) - numpy.random.choice([-1, 0, 1], p=[0.25, 0.5, 0.25])) % temp_modulus
11

12 def generate_signal(poly):
13 coefficients = map(dbl, poly.list()) # apply dbl function to all coefficient
14 signal = []
15 for coefficient in coefficients:
16 # if coefficient [0, q/4] OR [q/2, 3q/4] then signal bit = 1 else 0
17 if (coefficient) <= (temp_modulus / 4) or \
18 ((coefficient) <= (3 * temp_modulus / 4) and (coefficient) >= (temp_modulus / 2)):
19 signal.append(1)
20 else:
21 signal.append(0)
22 return signal
23

24 def reconcile(poly, w):
25 coefficients = map(dbl, poly.list()) # apply dbl function to all coefficient
26 key = []
27 # use signal bit to reconcile
28 for coefficient, bit in zip(coefficients, w):
29 if bit == 1:
30 key.append(1 if coefficient >= value_1 and coefficient <= value_2 else 0)
31 else:
32 key.append(1 if coefficient >= value_3 and coefficient <= value_4 else 0)
33 return "".join(map(str, key))

Listing B.3: Peikert reconciliation implementation using SageMath

Below is the implementation of NewHope reconciliation algorithm. We did not implement

the concept of splitting Voronoi cell into sub-cells as it is part of NewHope protocol not

the reconciliation. Notice the structure is basically the same as Peikert’s reconciliation (i.e.

96

dbl, generate signal, reconcile). The initialize function will return an integer

lattice created using identity matrix of dimension = sub dimension. It also returns a

polyhedron (or voronoi cell) centered at (1/2, . . . , 1/2) inside a lattice with the following

basis (when sub dimension = 4):

(
1 0 0 0
0 1 0 0
0 0 1 0

0.5 0.5 0.5 0.5

)
1 sub_dimension = 4 # reconciliation sub dimension
2

3 # helper function to convert from [c_0, c_1, ..., c_1023] to [(c_0, c_1, c_2, c_3), ..., (..., c_1023)]
4 def grouped(iterable, n):
5 return zip(*[iter(iterable)]*n)
6

7 def initialize():
8 identity_matrix = Matrix.identity(RR, sub_dimension) # create identity matrix
9 integer_lattice = IntegerLattice(identity_matrix) # construct integer lattice from identity matrix

10

11 half_vector = [1/2 for i in range(sub_dimension)] # construct 1/2 vector
12 identity_matrix[sub_dimension - 1] = half_vector # modify last row of identity matrix
13

14 main_polyhedron = calculate_voronoi_cell(identity_matrix).translation(half_vector) # create voronoi cell
15 # from modified matrix
16 return (integer_lattice, main_polyhedron) # return integer lattice and polyhedron centered at
17

18 def dbl(coefficient_vector): # add 1(2q) to all coefficients with probability 1/2
19 return coefficient_vector + \
20 vector(numpy.random.choice([0, 1], p=[0.5, 0.5]) * vector([1/(2*modulus) for _ in range(sub_dimension)]))
21

22 def generate_signal(poly): # signal generation function
23 coefficients = map(lambda x: RR(x) / modulus, poly.list()) # divide coefficient by modulus
24 distances = []
25 for v in grouped(coefficients, sub_dimension):
26 v = dbl(vector(v)) # apply randomized double function
27 # if point (or vector) is in main polyhedron then use center of main polyhedron else use lattice CVP
28 if main_polyhedron.contains(vector(v)):
29 distance = main_polyhedron.center() - v
30 else:
31 distance = integer_lattice.closest_vector(v) - v
32 distances.append(distance)
33 return distances
34

35 def reconcile(poly, w): # reconcile using reconciliation information
36 coefficients = map(lambda x: RR(x) / modulus, poly.list()) # divide coefficient by modulus
37 key = []
38 for difference, v in zip(w, grouped(coefficients, sub_dimension)):
39 v = dbl(vector(v)) # apply randomized double function
40 coordinate = vector([round(point, 1) for point in (v + difference)]) # round point to 1 decimal point
41 key.append(1 if coordinate == main_polyhedron.center() else 0)
42 return "".join(map(str, key))
43

44 (integer_lattice, main_polyhedron) = initialize()

Listing B.4: NewHope reconciliation implementation using SageMath

97

Bibliography

[1] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pages 99–108. ACM,

1996.

[2] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized reductions

(extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on Theory

of Computing, STOC ’98, pages 10–19, New York, NY, USA, 1998. ACM.

[3] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-

case equivalence. In Proceedings of the Twenty-ninth Annual ACM Symposium on The-

ory of Computing, STOC ’97, pages 284–293, New York, NY, USA, 1997. ACM.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum

key exchange – a new hope. In Proceedings of the 25th USENIX Security Symposium.

USENIX Association, 2016.

[5] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic

primitives and circular-secure encryption based on hard learning problems. In Proceed-

ings of the 29th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO ’09, pages 595–618, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] Dan Boneh and Richard J. Lipton. Quantum Cryptanalysis of Hidden Linear Functions,

pages 424–437. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[7] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key

exchange for the tls protocol from the ring learning with errors problem. In 2015 IEEE

Symposium on Security and Privacy, pages 553–570. IEEE, 2015.

[8] Matt Braithwaite. Experimenting with post-quantum cryptography, Jul 2016.

[9] Tung Chou. Sandy2x: New curve25519 speed records. Cryptology ePrint Archive,

Report 2015/943, 2015. http://eprint.iacr.org/2015/943.

98

http://eprint.iacr.org/2015/943

[10] Don Coppersmith. Finding small solutions to small degree polynomials. In Revised

Papers from the International Conference on Cryptography and Lattices, CaLC ’01,

pages 20–31, London, UK, UK, 2001. Springer-Verlag.

[11] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, Nov 1976.

[12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange

scheme based on the learning with errors problem. IACR Cryptology ePrint Archive,

2012:688, 2012.

[13] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete gaussians

for lattice-based cryptography on a constrained device. Appl. Algebra Eng., Commun.

Comput., 25(3):159–180, June 2014.

[14] A. M. Frieze. On the lagarias-odlyzko algorithm for the subset sum problem. SIAM

Journal on Computing, 15(2):536–539, 1986.

[15] Steven D Galbraith and Victor Rotger. Easy decision-diffie-hellman groups. Cryptology

ePrint Archive, Report 2004/070, 2004. http://eprint.iacr.org/2004/070.

[16] Satrajit Ghosh and Aniket Kate. Post-quantum forward-secure onion routing (future

anonymity in today’s budget). Cryptology ePrint Archive, Report 2015/008, 2015.

http://eprint.iacr.org/2015/008.

[17] O. Goldreich, D. Micciancio, S. Safra, and J. P. Seifert. Approximating shortest lattice

vectors is not harder than approximating closet lattice vectors. Inf. Process. Lett.,

71(2):55–61, July 1999.

[18] Jeffrey Hoffstein, Jill Pipher, and J.H. Silverman. An Introduction to Mathematical

Cryptography. Springer Publishing Company, Incorporated, 1 edition, 2008.

[19] Folláth János. tmmp, volume 60, chapter Gaussian Sampling in Lattice Based Cryptog-

raphy. Tatra Mountains Mathematical Publications, 2017 2014.

[20] S. Khot. Hardness of approximating the shortest vector problem in lattices. In 45th

Annual IEEE Symposium on Foundations of Computer Science, pages 126–135, Oct

2004.

[21] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261(4):515–534, 1982.

99

http://eprint.iacr.org/2004/070
http://eprint.iacr.org/2015/008

[22] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based en-

cryption. In Proceedings of the 11th International Conference on Topics in Cryptology:

CT-RSA 2011, CT-RSA’11, pages 319–339, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] Vadim Lyubashevsky. Lattice signatures without trapdoors. Cryptology ePrint Archive,

Report 2011/537, 2011. http://eprint.iacr.org/2011/537.

[24] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are col-

lision resistant. In Ingo Wegener, Vladimiro Sassone, and Bart Preneel, editors, Pro-

ceedings of the 33rd international colloquium on automata, languages and programming

- ICALP 2006, volume 4052 of Lecture Notes in Computer Science, pages 144–155,

Venice, Italy, July 2006. Springer-Verlag.

[25] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning

with errors over rings. Cryptology ePrint Archive, Report 2012/230, 2012. http:
//eprint.iacr.org/2012/230.

[26] Daniele Micciancio. Generalized compact knapsaks, cyclic lattices, and efficient one-way

functions. Computational Complexity, 16(4):365–411, December 2007. Prelim. in FOCS

2002.

[27] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on

gaussian measures. SIAM J. Comput., 37(1):267–302, April 2007.

[28] Chris Peikert. Lattice cryptography for the internet. In International Workshop on

Post-Quantum Cryptography, pages 197–219. Springer, 2014.

[29] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.

In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,

STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

[30] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. In Math. Programming, pages 181–191, 1993.

[31] Adi Shamir. A polynomial time algorithm for breaking the basic merkle-hellman cryp-

tosystem. In Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, SFCS ’82, pages 145–152, Washington, DC, USA, 1982. IEEE Computer Soci-

ety.

[32] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.

In Proceedings of the 35th Annual Symposium on Foundations of Computer Science,

SFCS ’94, pages 124–134, Washington, DC, USA, 1994. IEEE Computer Society.

100

http://eprint.iacr.org/2011/537
http://eprint.iacr.org/2012/230
http://eprint.iacr.org/2012/230

[33] Vikram Singh. A practical key exchange for the internet using lattice cryptography.

Cryptology ePrint Archive, Report 2015/138, 2015.

[34] Vikram Singh and Arjun Chopra. Even more practical key exchanges for the internet

using lattice cryptography. Cryptology ePrint Archive, Report 2015/1120, 2015. http:
//eprint.iacr.org/2015/1120.

[35] E. Viterbo and E. Biglieri. Computing the voronoi cell of a lattice: the diamond-cutting

algorithm. IEEE Transactions on Information Theory, 42(1):161–171, Jan 1996.

[36] Xiaoyun Wang, Guangwu Xu, Mingqiang Wang, and Xianmeng Meng. Mathematical

Foundations of Public Key Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 2015.

[37] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buchmann. Instan-

tiating treeless signature schemes. Cryptology ePrint Archive, Report 2013/065, 2013.

http://eprint.iacr.org/2013/065.

101

http://eprint.iacr.org/2015/1120
http://eprint.iacr.org/2015/1120
http://eprint.iacr.org/2013/065

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2017

	Analysis of BCNS and Newhope Key-exchange Protocols
	Seyedamirhossein Hesamian
	Recommended Citation

	Introduction
	Preliminaries
	Key-exchange problem overview
	Diffie-Hellman problem and protocol
	Quotient ring

	Lattice cryptography
	Lattice, definition and properties
	Lattice reduction
	Short integer solution problem (SIS)
	LWE and lattice cryptography

	Key-exchange basics and reconciliations
	Key-exchange using LWE and Ring-Ring-LWE
	Reconciliation methods
	BCNS and NewHope diagram comparison
	Parameter choices for Ring-LWE key-exchange
	Lattice based authenticated key-exchange

	Implementation specifications
	Error sampling algorithm
	Protocol specifications and speed comparisons

	Summary, conclusion and future work
	Appendix Merkle–Hellman knapsack cryptosystem
	Appendix Basic implementations of all Ring-LWE key-exchange reconciliations

