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Two-party authenticated key exchange protocol

using lattice-based cryptography

Xiaopeng Yang and Wenping Ma

Abstract

Authenticated key exchange (AKE) protocol is an important cryptographic primitive that assists communicating

entities, who are communicating over an insecure network, to establish a shared session key to be used for protecting

their subsequent communication. Lattice-based cryptographic primitives are believed to provide resilience against

attacks from quantum computers. An efficient AKE protocol with smaller module over ideal lattices is constructed

in this paper, which nicely inherits the design idea of the excellent high performance secure Diffie-Hellman

protocol. Under the hard assumption of ring learning with errors (RLWE) hard assumption, the security of the

proposed protocol is proved in the Bellare-Rogaway model, which achieves weak Perfect Forward Secrecy (wPFS)

additionally.

Index Terms

Lattice-based Cryptography, Authenticated Key Exchange

I. INTRODUCTION

Key exchange (KE) is an elementary cryptographic original that permits any two parties to negotiate a

session key over an open network. The key exchange protocols fall into two categories: The fist one is key

exchange protocol without authentication; the other one is authenticated key exchange (AKE) protocol. For

AKE, each party owns certain public information (e.g., a static public key), which is issued by a trusted
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third party, such as public key infrastructure (PKI), or certification authority, and the homologous secret

information (e.g., a static secret key). During the execution of the agreement, each party firstly generates

his ephemeral secret key and concomitant ephemeral public key, and exchanges the ephemeral public key.

Then, each participant computes certain session state. Finally, each party derives a common session key

by using a robust extractor. How to evaluate the security of a cryptographic protocol is an important study

of cryptography. Bellare and Rogaway firstly proposed a security model of AKE called Bellare-Rogaway

model [1], which is based on the indistinguishability between the real session key and any random key

uniformly chosen from the same distribution. This model is the most widely used security model, which

is robust enough for many practical applications. Constructing efficient AKE protocols is among the core

content of research for cryptography. Especially, with the development of quantum computing technology,

it is inspiring to design new alternatives which are recognized to have resistance to quantum attacks.

With the present development of quantum technologies, the computing power grows more powerful and

brings new challenges for the traditional cryptosystem. To meet these challenges, lattices have emerged

in recent years as a rich treasurehouse from which to construct varieties of cryptographic primitives.

Especially, building efficient and practical AKE protocols from lattices is of great importance. Moreover,

lattice-based cryptography has several fascinating features. From a security perspective, the best attacks for

quantum adversaries on the potential problems require exponential time in the primary security parameter.

In addition, strong average-case/worst-case security reductions support security proofs in lattice-based

cryptography. Lattice-based cryptography computations should be greatly simple, fast and parallelizable

in the name of efficiency. Most of lattice-based cryptographic constructions are based directly upon one of

the two average-case problems that have been shown to enjoy worst-case hardness guarantees: the small

integer solution (SIS) problem and learning with errors (LWE) problem.

A. Related work

To our best knowledge, there are six main papers which concentrate on building KE protocol from

RLWE [2]–[7]. In 15th IACR international conference, Fujioka et al. proposed a universal construction of
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AKE from key encapsulation mechanism (KEM), which is proven to be secure in the Canetti-Krawczyk

plus secure model [2]. Ding et al. proposed a simple provably secure KE from LWE [3]. In order to

eliminate the noises from RLWE, they use a signal function. Meanwhile, they give an multiparty KE

protocol. Fujioka et al. constructed a post-quantum AKE from lattices [4]. Their design ideas derived

from the construction of secrete sharing from KEMs. Zhang et al. proposed an AKE from ideal lattices

[5]. After deeply digging into the properties of modular rounding function and the cross rounding function,

Peikert proposed a simple reconciliation mechanism, and then constructed a passively secure KEM [6].

Using this KEM, he further constructed a provably secure AKE which may be an improvement on the

current AKE from signatures. Bos proposed a KE protocol, and then extended it to the Transport Layer

Security (TLS) protocol [7].

B. Theoretic thereunder and idealistic base

The HMQV protocol uses the commutativity of cyclic group (i.e., (ga)b = gab = (gb)a) successfully

[8]. But the cryptographic algorithms based on LWE problem supports the ”approximate” commutativity,

which is different from the cryptographic algorithms based on the discrete logarithm. More specifically,

let Rq be a polynomial ring, and let χ be a certain distribution over Rq. For a public parameter a←R Rq

that is chosen from Rq at random, party i and party j chooses si, ei ←R χ and sj, ej ←R χ, secretly

and respectively. Then, party i and party j computes bi = a · si + ei and bj = a · sj + ej , respectively.

Utilizing the secret vector si and sj which respectively grasps, party i and party j computes si · bj and

sj · bi respectively, an approximate formula si · bj = si · a · sj + si · ej ≈ sj · a · si + sj · ei = sj · bi

holds with an overwhelming probability. Thus, we obtain si · bj − sj · bi = si · ej − sj · ei. If the error

size ∥si · ej − sj · ei∥ is within limits, then party i and party j can eliminate this noise to compute the

shared secret vector si · a · sj . Since this shared secret vector only involves the secret vectors si and sj

mastered by party i and party j respectively, only party i and party j can obtain the shared secret vector.

The above mentioned property offers the possibility of building key exchange protocols from lattices.
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C. Cryptanalysis of AKE of Zhang et al

We review the characteristic function and the modular function constructed in [5] as follows.

Definition 1. For v ∈ Zq = {− q−1
2
, . . . , q−1

2
}, where q is odd prime number, define the characteristic

function Cha(v) : Zq → Z2 as follows:

Cha(v) = {
0 if v ∈ E = {−⌊ q

4
⌋, . . . , ⌊ q

4
⌉};

1 v ∈ {− q−1
2
, . . . , q−1

2
} − E.

(1)

Definition 2. For v ∈ Zq and b ∈ Z2, define the modular function as follows:

Mod2(v, b) = (v + b · q
2
)( mod q mod 2) (2)

As mentioned above, we have explained the theoretic thereunder and idealistic base for constructing

a two-party key exchange protocol. But for key exchange protocol, that is far from enough. We need to

consider how to eliminate the noise (si ·ej−sj ·ei), such that two party can recover si ·a ·sj correctly. For

negotiating si · a · sj , two party in [5] obtain bit-by-bit via computing Mod2(v, b). Take a bit for example

as follows: Let q be a odd prime, given b = Cha(v) ∈ Z2, for w = v + 2e, where e is an error vector

which satisfies |e| < q
2
, then Mod2(v, Cha(v)) =Mod2(w,Cha(v)). That is, when the distance between

w and v is within certain limits (i.e., w = v+2e), then party i and party j can compute a shared bit b by

using the modular function Mod2(v, b) based on w and v respectively, given a common semaphore (i.e.,

the characteristic function Cha(v)): Mod2(v, Cha(v)) = b = Mod2(w,Cha(v)). We will list three main

defects of [5] as follows.

An important requirement needs to be satisfied: each bit of the shared secret key should be uniformly

distributed to prevent any adversary can guess correctly each secret shared bit with an non-negligible prob-

ability. Although we have explained that party i and party j can compute a shared bit Mod2(v, Cha(v)) = b

by using the modular function Mod2(v, b) based on w and v respectively, we are not sure whether

Pr[b = 0] = Pr[b = 1] = 1
2

holds or not? The answer to this question is no. Specifically, when q is odd

prime, given w, v ∈R Zq, if Cha(v) = 0, then the deviation that Mod2(w,Cha(v)) outputs 0 or 1 is 1
2|E| .
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If Cha(v) = 1, then the deviation that Mod2(w,Cha(v)) outputs 0 or 1 is 1
|E|−1

. In [5], although the

uniformly distributed key material is hashed by using certain hash function to obtain an almost uniformly

distributed key, NIST [13] pointed that if the length of the cryptographic hash function is κ, then the

source string has at least 2κ min-entropy. The min-entropy of source string in [5] is 0.97n. The AKE

scheme [5] only can generate 0.485n bits secret key via using the standard cryptographic hash function

SHA-2.

For the same reason as above, the output distribution of modular function is not statistically indistin-

guishable with the uniform distribution, given characteristic function. Because of this, it is insecure that

the adversary may obtain some relevant information of session key by querying session state. Only when

modulus q is a value of sub-exponential magnitude (i.e., q = 2ω(log2 n)), the output distribution of modular

function is statistically indistinguishable with the uniform distribution, given characteristic function. But

in this case, the computational costs and communication costs will go up.

Zhang et al. [5] adopt the power basis to represent each element over the residue ring Rq = Zq[x]/(x
n+

1), where n = 2κ. Since the size of the power basis is large over the residue ring Rq, the size of each

element under the representation of the power basis is also large, so bringing more traffic and larger

computing cost.

The hash function H1 : {0, 1}∗ → χr = DZn,r used in [5] maps any bit string to a discrete sampling

result over an integer lattice. Zhang et al. [5] use a hash function such as SHA-2 to get a uniformly random

string, but unfortunately, they have not given any explicit method to sample a noise from the Gaussian

distribution by using this uniformly random string. In addition, this operation does not exist in any current

literature or public invention. The crucial difference between our H1 and H1 used in [5] is that we give

a concrete method to sample a noise from the Gaussian distribution by using hash function SHA-2 while

they have not do. Actually, Zhang et al. [5] have not explicitly explained which hash function is used as

H2. They just have mentioned that H2 is modeled as random oracle. In addition, H2 is not the focus of

their attention. We use hash function SHA-2 to serve as H2.
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D. Our results and approaches

Fig. 1. Our AKE protocol

Table 1 shows our AKE protocol. We combine the reconciliation mechanism and representation method

for elements over Rq under the decoding basis to realize a secure two-party AKE protocol. The core

innovations of this paper is threefold:

First, we use the reconciliation mechanism as our robust extractor, thus remedying the above-mentioned

deficiency.

Second, we adopt the decoding basis to represent elements over Rq to obtain smaller-sized element

representation and lower computing costs. Specifically, modulus q that is used in our construction is only

taken a value of polynomial magnitude (i.e., q = Õ(n2)), which vastly decreases computational costs and

communication costs.

Let K be the m order cyclotomic field with n = φ(m), By using the canonical imbedding, we construct

a new method that maps any bit string to certain element, which follows the discrete gaussian distribution

χ = ⌊Ψ⌉ over R = Z[ζm]. Our specific method is described as follows:

Let n dimensional continuous Gaussian distribution to be generated, and let 2m be fixed parameter.

Let h : {0, 1}k → {0, 1}2mn be a hash function such as SHA-2.

Divide the range of the hash function h into n groups, each of which contains 2m bits. We might as
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well let the i-th group (a0, a1, . . . , am−1, am, . . . , a2m−1). Then, convert into two integers: Ai,1 = a0 + 2 ·

a1 +22 · a2 + · · ·+2m−1 · am−1, Ai,2 = am +2 · am+1 +22 · am+2 + · · ·+2m−1 · a2m−1. Let ui,1 = 1
Ai,1

and

ui,2 =
1

Ai,2
, compute Xi =

√
−2 lnui,1 · cos(2π · ui,1) and Yi =

√
−2 ln ui,2 · cos(2π · ui,2). Thus, (Xi, Yi)

is a bidimensional joint Gaussian random variable with mean 0 and variance 1.

For generating a Gaussian random variable with variance s√
2
, just need to compute ( s√

2
·Xi,

s√
2
· Yi).

Set ai = s√
2
·Xi, bi = s√

2
· Yi, where 1 ≤ i ≤ n

2
.

Construct complex random variable ai +
√
−1 · bi for 1 ≤ i ≤ n

2
. Set xi = ai + bi, for 1 ≤ i ≤ n

2
, and

set xi = ai − bi, for n
2
≤ i ≤ n. Then, vector (x1, x2, . . . , xn) is a vector over the conjugate symmetric

hyperplane H = {x ∈ CZ∗
m|xi = xm−i,∀i ∈ Z∗

m}.

Let σ be the canonical imbedding. x = σ−1(x1, x2, . . . , xn) ∈ Qn is a random variable that follows the

continuous Gaussian distribution over K. Round each component of x to the nearest integer, such that

we obtain a vector x with integer coefficient.

Let
−→
b represent the power basis of R = Z[ζm]. Output x = ⟨

−→
b ,x⟩ ∈ R = Z[ζm], which follows the

discrete gaussian distribution χ = ⌊Ψ⌉ over R = Z[ζm].

E. Organization

The rest of this paper is organized as follows. Section 2 presents the preliminaries. The improved two-

party AKE protocol is described in section 3. We analyze the security of the improved protocol in section

3. Finally, section 4 concludes this paper.

II. PRELIMINARIES

A. Abbreviations and notations

In this paper, C,R,Z,Q denote the set of complex numbers, the set of real numbers, the set of integers

and the set of rational numbers, respectively. For x ∈ R, define ⌊x⌉ = ⌊x + 1
2
⌋ ∈ Z. For q ≥ 1, define

Zq = Z/qZ. Let λ be the security parameter, if a polynomial time algorithm (PT) A runs in PT of λ, then

it is efficient. If a function f(λ) = o(λ−c), where c > 0, then it is negligible. We make use of the Landau
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notations. For the algorithm A, if |Pr[A(X)] − Pr[A(Y )]| ≤ negl(λ), then these two distributions are

computationally indistinguishable. We say X and Y are statistically indistinguishable over the distribution

D, if 1
2

∑
d∈D |X(d) − Y (d)| ≤ negl(λ). Let rad(m) denote the product of all distinct primes dividing

m.

B. Security model

We use N to represent the maximum number of honest users participating in AKE protocol. Each users

is denoted by a unique i ∈ {1, · · · , N}, and has a pair of static public key and static secret key, where

static public key is issued by the identity authentication center. An execution of the protocol is called

a session. A session is activated by an incoming message in the form of (Π, I, i, j) or (Π, R, j, i,Xi),

where Π is protocol identifier, I or R are role identifiers, and i or j are user identifiers. If user i receives

a message in the form of ((Π, I, i, j)), then user i is called the session initiator. User i outputs Xi and

sends it to user j. If user j receives a message in the form of (Π, R, j, i,Xi), then user j is called

the session responsor. User j outputs Yj and sends it to user i. After exchanging two-way messages,

two parties compute a session key. If the session is activated at i, and i is the initiator, then we use

sid = (Π, I, i, j,Xi) or sid = (Π, I, i, j,Xi,Yj) to represent this session. Similarly, if the session is

activated at j, and j is the responsor, then we use sid = (Π, R, j, i,Xi,Yj) to represent this session.

For session identifier sid = (Π, ∗, i, j, ∗, ∗), the third symbol represents session owner, and the fourth

represents session peer. When the session owner has computed its session key, then this session is called

completed. The matched session of sid = (Π, I, i, j,Xi,Yj) is sid = (Π, R, j, i,Xi,Yj).

The adversary A is modeled as a probabilistic polynomial time (PPT) Turing machine, which can

control the whole communication network. The endowed abilities of A is summarized as follows:

Send0(Π, I, i, j) : A activates party i as the initiator. The oracle returns Xi to A.

Send1(Π, R, j, i,Xi) : Using Xi, A activates party j as the responsor. The oracle returns Yj to A.

Send2(Π, R, i, j,Xi,Yj) : A sends Yj to party i to finish the session, which has been activated by

Send0(Π, I, i, j).
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SessionKeyReveal(sid) : The oracle returns the session key, if it is finished.

Corrupt(i) : The oracle returns the static secret key of party i to A. Once the static secret key of

party i is revealed, this party is called dishonest. Otherwise, this party is called honest.

Test(sid∗) : The oracle chooses b ∈R {0, 1} at random. If b = 0, then oracle chooses a session key

uniformly at random. If b = 1, then it returns the session key of sid∗. We allow A makes only one query

for a fresh session sid∗.

Definition 3. (Freshness) Let sid∗ = (Π, I, i∗, j∗,Xi,Yj) or ((Π, R, j∗, i∗,Xi,Yj) be a completed session.

Assume its matched session exists, then sid∗ is called a fresh session, if the following conditions hold:

A does not make a SessionKeyReveal(sid∗).

A does not make a SessionKeyReveal(sid
∗
).

i∗ and j∗ are honest. That is, A does not make a Corrupt(i∗) or Corrupt(j∗).

A can make the above-mentioned queries to the oracle in any order. When A outputs a guess b′ for b,

this game ends. If b′ = b, then we say A wins this game. Define the advantage of A as follows:

AdvΠ,A = Pr[b′ = b]− 1

2
(3)

Definition 4. (Security) We say an AKE protocol is secure, if the following conditions hold: If two honest

parties has finished matched session, then they has computed a same session key with an overwhelming

probability. For any PPT adversary, AdvΠ,A is negligible.

Definition 5. (weak forward secrecy, wPFS) A can make SessionKeyReveal and Corrupt queries,

but cannot make State query. In addition, if A has sent Corrupt(i) query, then there exists an instance

Πk′
j , which matches instance Πk

i .

C. Cyclotomic number field and its codifferent

For a positive integer m, let ζm represent the primitive m-th root of unity. The minimal polynomial of

ζm is called the m-th cyclotomic polynomial, which has complex roots ωj
m, where ωm = exp(2πi

m
). Let

K = Q(ζm) and R = Z[ζm] represent the m-th cyclotomic field and the m-th cyclotomic ring, respectively.
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The power basis of R = Z[ζm] is defined as
−→
b = {ζjm|0 ≤ j ≤ φ(m)}. The powerful basis −→p of

K = Q(ζm) and R = Z[ζm] is defined as follows: For a prime power m, the powerful basis is the power

basis
−→
b = {ζjm|0 ≤ j ≤ φ(m)}; For m =

∏
ℓmℓ, define −→p =

⊗
ℓ
−→p ℓ, that is, −→p is the tensor product

of −→p ℓ of each Q(ζmℓ
).

1) Canonical embedding: Let s1 + 2s2 = n, there exists a hyperplane H = {(x1, x2, . . . , xn) ∈

Rs1 ×C2s2 |xs1+s2+j = xs1+j,∀j ∈ [s2]} ⊂ Cn. Let us have a look at the characteristic of each element in

H: (x1, x2, · · · , xs1) are real numbers, and xs1+s2+j = xs1+j . We mainly consider the following space. Two

coordinates of (a+b·
√
−1, a−b·

√
−1) are conjugate complex numbers, where a, b ∈ R. {(a+b·

√
−1, a−

b ·
√
−1)|a, b ∈ R} is a two-dimensional vector space. Take a set of basis ( 1√

2
, 1√

2
), ( 1√

2
·
√
−1, −1√

2
·
√
−1).

Obviously, (a+ b ·
√
−1, a− b ·

√
−1) =

√
2 · a · ( 1√

2
, 1√

2
) +
√
2 · b · ( 1√

2
·
√
−1, −1√

2
·
√
−1). Thus, a set of

basis of H can be expressed as {e1, e2, · · · , es1 , 1√
2
(es1+j + es1+s2+j),

1√
2
(es1+j − es1+s2+j)|1 ≤ j ≤ s2}.

If we consider the canonical embedding of cyclotomic number field, then s1 = 0, s2 = φ(m)
2

. If the i-th

root and the (s2 + i)-th root are conjugate, then we have

T =
1√
2

 Iφ(m)
2

√
−1 · Iφ(m)

2

Iφ(m)
2

−
√
−1 · Iφ(m)

2


, where each column is a basis. If the (s1 + i)-th root and the (s1 + 2s2 − i)-th root are conjugate, then

we have

B =
1√
2

 I
√
−1 · J

J −
√
−1 · I


, where I is a s2 × s2 order unit matrix, J is a s2 × s2 order inverse unit matrix, that is, the first column

of J is the last column of I, while the last column of I is the first column of J. Certainly, matrices I and

J may be considered as a unitary transformation from n dimensional real space to the hyperplane H . If

there exist s1 real roots during embedding process, then under these two embedded modes, the generator
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Q(ζm)
coefficients embedding−−−−−−−−−−−−→

−→
b=(ζjm)0≤j≤φ(m)��

Qn : a = (a1, a2, · · · , an−1)

σ(a)=CRTm·a
��⊗

ℓKℓ
canonical embedding−−−−−−−−−−−−→

−→p={
⊗

ℓ
−→p ℓ}

OO

σ(a) ∈ H

a=CRT−1
m ·σ(a)

OO

Fig. 2. The coefficients embedding and the canonical embedding connect algebraic elements, rational subspace, and complex subspace.

matrix of H is  Is1 0

0 T

 or

 Is1 0

0 B


Let σi|Q : K → C via ζm 7→ ωi

m be the ring homomorphism, the canonical embedding is defined

as σ(a) = (σi(a))i∈Z∗
m

, for each a ∈ K. The norm is defined as ∥a∥2 = (
∑

i∈Z∗
m
|σi(a)|2)1/2, ∥a∥∞ =

maxi∈Z∗
m
|σi(a)|. For m-th cyclotomic number field, where n = φ(m), let a represent the coefficient

embedding of K = Q(ζm), that is, a = ⟨
−→
b , a⟩ =

−→
b T · a. According the definition of the canonical

embedding above mentioned, the relation between the coefficient embedding (a ∈ K represented by

the power basis
−→
b ) and the canonical embedding (a ∈ K represented by the powerful basis −→p ) is

σ(a) = (σj(a))j∈Z∗
m
= CRTm · a, where CRTm is the n = φ(m) dimensional Vandermonde matrix:

CRTm =



1 ζj1m ζ2j1m · · · ζ
(n−1)j1
m

... . . . ...

1 ζjim ζ2jim · · · ζ
(n−1)ji
m

... . . . ...

1 ζ
jφ(m)
m ζ

2jφ(m)
m · · · ζ

(n−1)jφ(m)
m


(4)

Figure 1. describes that how the coefficients embedding and the canonical embedding connect algebraic

elements, rational subspace, and complex subspace.

2) Codifferent: For m-th cyclotomic algebraic integral ring R = Z[ζm], if m is even, then let m̂ = m/2.

If m is odd, then let m̂ = m. Define g =
∏

p(1 − ζp), where p runs all odd primes dividing m. Let

t = m̂/g, R∨ = ⟨g/m̂⟩ = ⟨t−1⟩, where ⟨g/m̂⟩ represents the codifferent finitely generated by g/m̂, whose

coefficients are taken from the cyclotomic algebraic integral ring R = Z[ζm]. t = m̂/g is an algebraic

integral element in the cyclotomic field K = Q(ζm), that is, t = m̂/g ∈ R = Z[ζm]. More specifically, m̂
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is divisible by g =
∏

p(1−ζp). Since t = m̂/g ∈ K, but t = m̂/g /∈ R, then R∨ = t−1R = ⟨t−1⟩ = ⟨g/m̂⟩

is not a subset of R. The codifferent is interpreted as a fractional ideal of algebraic integral ringR. Since

R∨ = t−1R, then it is also a principal fractional ideal. The relationship between it and R are as follows:

R∨ = t−1R, m̂R∨ ⊆ R, (R∨)∨ = R.

The significance of the codifferent lies in that it depicts the relationship between the dual ideal of a

fractional ideal I(⊆ K) and inverse of I(⊆ K) in algebraic integral ring. Specifically, for any fractional

ideal I(⊆ K), its dual ideal is I∨ = I−1 · R, where R∨ is the codifferent above defined, I−1 = {d ∈

K|d · I ⊂ K}.

Definition 6. The decoding basis of the codifferent of R∨ is defined as
−→
d = τ(−→p )∨, i.e., the dual of the

conjugate of the powerful basis of R, where τ is the conjugate map of K, τ(ζm) = ζ−1
m = ζm−1

m .

In the applications of cryptographic protocols, we should clarify the relationship between the basis of the

algebraic integral ring R = Z[ζm] = Z[x]/(Φ(x)) under the algebraic field and the basis of the codifferent

R∨ under canonical embedding. Specially, between the powerful basis −→p of R = Z[ζm] = Z[x]/(Φ(x)), the

integral basis of the codifferent R∨, and the decoding basis
−→
d of the codifferent R∨, these transformational

relationships can guarantee the property of integral basis, which is the basic of efficient computing power

on the computer. Fortunately, there exist these transformational relationships as follows: If a powerful

basis of R is −→p , let R∨ = t−1 · R = ⟨t−1⟩ = ⟨g/m̂⟩ be the codifferent of K = Q(ζm), then t−1 · −→p and

the decoding basis
−→
d = τ(−→p )∨ are integral basis of the codifferent R∨, respectively. That is, when each

element in R∨ is represented by this basis, its coefficient is integral. Figure 2. shows these transformational

relationships between the basis of the algebraic integral ring R = Z[ζm] = Z[x]/(Φ(x)) under the algebraic

field and the basis of the codifferent R∨ under canonical embedding.

D. Continuous/discrete RLWE distribution

Definition 7. Denote continuous Gaussian distribution on R∨
q by Ψ = Ds = s−n ·ρs(x). For each a ∈R Rq,

s ∈R R∨
q chosen uniformly ar random, error vector e chosen from the continuous Gaussian distribution
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Fig. 3. Transformational relationships

ψ over R∨
q , output (a,b = a · s + e ∈ R∨

q ), we denote the RLWE Distribution over Rq × (KR/R
∨
q ) by

As,Ψ. For any PPT adversary, it cannot differentiate the distribution As,Ψ from the uniform distribution

over Rq×(KR/R
∨
q ) with non-negligible probability. We call it RLWEq,Ψ hard problem, or RLWEq,Ψ hard

assumption.

Since the coefficients of the error vectors, which are chosen from the continuous Gaussian distribution,

are rational numbers, and since the rational numbers are represented with floating-point numbers in

computer, this involves precision problem (i.e., according to the security parameter, those digits after the

decimal point of those coefficients should be round to several bits. [17]) Therefore, in the constructions of

cryptographic schemes, the error vectors are chosen from the discrete distribution χ = ⌊Ψ⌉, where χ = ⌊·⌉

is a discretization method. One of the simplest discretization method is ”rounding to the nearest integer”.

On the other hand, the secret vector s ∈ R∨
q is random, which is chosen form the RLWE distribution

As,Ψ. [11] and [22] respectively point out that when s ∈ R∨
q is chosen from the same distribution Ψ as

the error vector e ∈ R∨
q , RLWEq,Ψ still keeps its hardness. Moreover, when the secret vector s ∈ R∨

q is

chosen from the distribution Ψ, we can make its size shorter. Obviously, it is very useful to cryptographic

applications. Combining the above-mentioned two aspects, we can obtain the general RLWEq,χ hard

problem as follows:

Definition 8. We denote the discrete Gaussian distribution over R∨
q by χ = ⌊Ψ⌉ = ⌊Ds = s−n · ρs(x)⌉.

For a ∈R Rq randomly chosen from the distribution χ, the secret vector s ∈ R∨
q chosen from χ, and

the error vector e ∈ R∨
q chosen from the distribution χ, i.e., s, e ← χ = ⌊Ψ⌉, output (a,b = a · s + e

mod R∨
q ), it is called the distribution As,χ over Rq×(KR/R

∨
q ). Similarly, for any PPT adversary, it cannot

differentiate the distribution As,χ from the uniform distribution over Rq × (KR/R
∨
q ) with non-negligible
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probability. We call it RLWEq,χ hard problem, or RLWEq,χ hard assumption.

For the relationship between RLWEq,Ψ and RLWEq,χ, [11] points out that if RLWEq,Ψ problem is

hard, then RLWEq,χ problem is hard, given the same number of samples (ai,bi), for i ∈ Z+. Thus, we

can adopt RLWEq,χ hard problem to design and construct varies of cryptographic schemes, actively and

steadily. The following theorem elaborates the reduction from the average-case problem RLWEq,χ to the

worst-case problem Ideal-SIVP.

Theorem II.1. Let R be the mth cyclotomic ring of dimension n = φ(m). Let γ = γ(n) <
√

logn
n

. Let

q = q(n) be a polynomial-bounded prime that satisfies q ≡ 1 mod m, γ · q ≥ ω(
√
log n). There exists

a polynomial time (PT) quantum reduction from solving Õ(
√
n/γ)-approximating SIVP on ideal lattice

over R to solving Ring-DLWEq,χ, given λ − 1 samples from χ, where χ = ⌊Ψ⌉, Ψ = (m̂/g) · Dξ·q, and

ξ = γ · (nλ/ log(nλ))1/4.

E. Gaussian distribution, subgaussian variables, and discrete gaussian sampling

Randomness is the base of the security of cryptographic algorithms, lattice-based public key cryptog-

raphy is no exception. Being different from the traditional public key algorithms based on number theory,

the introduction of randomness on lattice mainly is achieved by Gaussian sampling algorithm [19], [20].

Integer lattice (i.e., lattice basis consists of integer vectors) is the simplest lattice, and is the first lattice

used in the designs of cryptographic algorithms [21], [22]. On the n dimensional integer lattice, the

Gaussian function is defined on the real vector subspace Rn. Now we research the ideal lattices over the

cyclotomic field. Accordingly, the Gaussian function is defined on the real vector subspace Cn.

1) Gaussian distribution: Since each root of m order cyclotomic polynomial Φm(x), which is defined

over the cyclotomic number field K = Q[x]/(Φm(x)), is in the form of complex root ωj
m, where ωm =

exp(2πi
m
), i ∈ Z∗

m, and the complex roots appear in pairs and mutually dual, the Gaussian function over

the cyclotomic number field is not only defined over n dimensional complex vector subspace Cn, but also

is more accurately defined over a conjugate symmetric hyperplane H = {x ∈ CZ∗
m|xi = xm−i,∀i ∈ Z∗

m}.
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It can be proved that n dimensional real vector space Rn is isomorphic to the hyperplane H via a linear

transformation defined by a unitary matrix

B =
1√
2

 Iφ(m)
2

√
−1Jφ(m)

2

Jφ(m)
2

−
√
−1Iφ(m)

2

 ∈ Z∗
m × [φ(m)] (5)

I represents unit matrix. J is the reverse permutation matrix of I. Meanwhile, this unitary matrix B is

the generator matrix of the hyperplane H .

Definition 9. The Gaussian function ρs : H → (0, 1] is defined as follows

ρs(x) = exp(−π⟨x,x⟩/s2) = exp(−π∥x∥2/s2) (6)

where H = {x ∈ CZ∗
m|xi = xm−i,∀i ∈ Z∗

m}. Accordingly, we give the definition of continuous Gaussian

distribution Ψ = Ds and that of discrete Gaussian distribution χ = ⌊Ψ⌉ as follows.

Definition 10. For real s > 0, the probability density function of continuous Gaussian distribution Ψ = Ds

is defined as s−n · ρs(x), where s is the standard variance of Gaussian distribution.

Definition 11. For a coset Λ+ c of a lattice Λ, let s > 0 be the standard variance, the discrete Gaussian

distribution χ = ⌊Ψ⌉ of lattice Λ + c is defined as

DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
, ∀x ∈ Λ + c. (7)

From the definition of As,Ψ and that of As,χ, it is known that major operations are executed on the

codifferent R∨ = (m̂/g)−1 · R. Since the codifferent R∨ is an fractional ideal, although the decoding

basis
−→
d = τ(−→p )∨ is integral basis, but the representation under the decoding basis will involve rational

numbers, so use of integral ideal is more convenient in applications. For this purpose, an effective method

is given as follows: Map R∨ to R: e∨ ∈ R∨ (m̂/g)·e∨−−−−−→ e = (m̂/g) · e∨ ∈ R. Meanwhile, in order to

maintain the advantage of e∨ ∈ R∨ represented under the decoding basis
−→
d of the codifferent R∨ that

has small coefficients (i.e., maintaining small coefficients invariant), we transform the decoding basis
−→
d to

(m̂/g) ·
−→
d . According to linearity, the integral coefficients of e represented under (m̂/g) ·

−→
d are identical

with the coefficients of e∨ represented under
−→
d .
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From the above analysis, by acting the expanded factor m̂/g on the codifferent e∨ ∈ R∨, we have

mapped e ∈ R∨ to R. Thus, we have the following Hermite Normal Form of Learning with Errors

(NHF-LWE) hard problem, which is more convenient in applications [22].

Definition 12. For cyclotomic integral ring R, we denote the discrete Gaussian distribution over R by

χ = ⌊Ψ⌉ = ⌊(m̂/g) · Ds⌉, For a ∈R Rq, the secret vector s←R χ, and the error vector e←R χ, output

(a,b = a · s + e mod Rq). We denote the NHF-LWE distribution over Rq × Rq by As,χ. Similarly,

for any probabilistic polynomial time (PPT) adversary, it cannot differentiate the distribution As,χ from

the uniform distribution over Rq × Rq with non-negligible probability. We call it NHF− LWEq,χ hard

problem, or NHF− LWEq,χ hard assumption.

After 1/g imbeds canonically, since the size of σi(1/g) changes sharply, then the size ratio of ∥e∨∥2/∥e∥2

depends on e∨, and this size ration varys along with e∨. Besides, there exists a positive correlation between

this size ratio and the standard derivation s. We should multiply e by g to eliminate this influence mentioned

above. g ·e is a subgaussian random variable. Now we review the definition and properties of subgaussian

random variables [11] as follows.

Definition 13. For any δ > 0, if for each t ∈ R, the moment generating function of random variable X

satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2) (8)

, then we say the random variable X is a δ-subgaussian random variable over R with parameter r.

Property 1. Let X be a δ-subgaussian random variable over R with parameter r. By Markov’s inequality,

for any t ≥ 0, we have

Pr[|X| ≥ t] ≤ 2 exp(δ − πt2/r2) (9)

Property 2. Let X1 be a δ1-subgaussian random variable over R with parameter r1, and let X2 be a

δ2-subgaussian random variable over R with parameter r2. X1 and X2 are mutually independent, then

X1 +X2 is a (δ1 + δ2)-subgaussian random variable over R with parameter
√
r21 + r22.
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2) Discrete gaussian sampling: In the applications of NHF− LWEq,χ, the secrete vector s ∈ Rq and the

error vector e ∈ Rq are sampled from the discrete Gaussian distribution ⌊Ψ⌉ over the cyclotomic number

field K, which need to be sampled from the continuous Gaussian distribution Ψ over the cyclotomic

number field K, and then obtain the discrete Gaussian distribution ⌊Ψ⌉.

The canonical embedding maps each element over the cyclotomic field K to the hyperplane H . Our goal

is to obtain a discrete gaussian distribution with parameter s > ω(
√
log n). The basic idea of achieving

the discrete Gaussian distribution ⌊Ψ⌉ over the cyclotomic field K is as follows: First, sample σ(e) ∈ H

from the continuous gaussian distribution Ψ = (m̂/g) ·D√
2·s with parameter

√
2 ·s over H: For 1 ≤ i ≤ n

2
,

generate n
2

pairs of Gaussian random variables (ai, bi) with standard variance
√
2 · s independently; For

1 ≤ i ≤ n
2
, let xi = ai+ bi. For n

2
≤ i ≤ n, let xn

2
+i = ai− bi. Then, σ(e) = (x1, . . . , xn) is an element of

H , which follows the continuous Gaussian distribution Ψ = D√
2·s with standard variance

√
2 · s. Second,

make inverse transformation from hyperplane H to R = Z[ζm]. Let CRTm be the corresponding matrix

of canonical embedding σ, and compute e = ( m̂
g
) ·CRT−1

m · σ(e) ∈ Qn. Finally, discretize e. Round each

rational component of e to the nearest integer, so that we obtain vector ⌊e⌉ with integral coefficients.

Let −→p be the powerful basis of R = Z[ζm], and output e = ⟨−→p , e⟩, which is chosen from the discrete

gaussian distribution (m̂/g) · Ds over R = Z[ζm].

So far, we have realized the discrete gaussian distribution over the cyclotomic field. However, in the

computations, we also need to know the coefficient representation e of e ∈ K represented under the

decoding basis
−→
d . So we give a computing method of e from e ∈ K as follows: Let

−→
d represent the

decoding basis of R∨, then the representation of e ∈ K under the decoding basis (m̂/g) ·
−→
d of R = Z[ζm]

is given: e = (m̂/g) · ⟨
−→
d , e⟩, e = CRT∗

m · σ(e) = (CRTm)
T · σ(e).

For e = ⟨−→p , e⟩ that follows the discrete gaussian distribution (m̂/g) ·Ds over R = Z[ζm], the following

two lemmas further consider the distribution regularities of subgaussian random variable g · e represented

under the decoding basis of R∨.

Lemma II.2. For g =
∏

p(1 − ζp), where p runs all odd primes dividing m. Let e ∈ Q(ζm), such that
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g · e is a δ-subgaussian random variable with parameter m̂ · r. Then for each e′ ∈ Q(ζm), each coefficient

of e′ · e ∈ Q(ζm), which is represented by the decoding basis of R∨, is a δ-subgaussian random variable

with parameter r · ∥e′∥2.

Lemma II.3. Let e←R ⌊Ψ⌉ be a error vector, where Ψ = (m̂/g) · Ds = (m̂/g) · s−n · ρs(x), then g · e is

a δ-subgaussian random variable with parameter m̂ ·
√
s2 + 2π · rad(m)/m.

F. Rejecting sampling

We review the rejection sampling algorithm [12].

There exists a subset V ⊆ Zm, in which norm of each element is less than T . Let α = ω(T
√
logm)

be a real number. Let D : V → R be a probability distribution. Therefore, there is a constant number

M = O(1), which makes the distribution of the following algorithm A1 is within statistical distance

2−ω(logm)

M
of the distribution of the following algorithm A2. The probability that A1 outputs something

is at least 1−2−ω(logm)

M
. If α = βT with β > 0, then M = e12/β+1/(2β2), the output of algorithm A1 is

within statistical distance 2−100

M
of the output of A2, and the probability that A1 outputs something is

at least 1−2−100

M
. The algorithm A1 is expressed as follows: First, sample v ←R D randomly. Second,

sample z←R Dm
v,α randomly. Finally, output (z,v) with probability min{1, Dm

α (z)
MDm

v,α(z)
}. The algorithm A2

is expressed as follows: First, sample v ←R D. Second, sample z ←R Dm
α . Finally, output (z,v) with

probability 1
M

.

G. Reconciliation mechanism

Here we review the reconciliation mechanism [6].

Definition 14. Define modular 2 rounding function ⌊·⌉2 : Zq → Z2 via

⌊x⌉2 = ⌊
2

q
· x⌉ (10)

Definition 15. Define cross-rounding function ⟨·⟩2 : Zq → Z2 via

x 7→ ⌊q
4
· x⌋ mod 2 (11)
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Lemma II.4. For even module q, if x ∈ Zq is chosen uniformly at random, then the distribution of ⌊x⌉2

is uniform over Zq, given ⟨x⟩2.

Definition 16. For even module q, e ∈ E = [− q
8
, q
8
)
∩

Z, let w ∈ Zq and b ∈ Z2, define the reconciliation

function rec : Zq × Z2 → Z2 via

rec(w, b) = {
0 if w ∈ Ib + E;

1 otherwise.

(12)

Lemma II.5. For even module q, e ∈ E = [− q
8
, q
8
)
∩
Z, if w = x + e mod q, given w ∈ Zq and ⟨x⟩2,

then

rec(w, ⟨x⟩2) = ⌊x⌉2 = rec(x, ⟨x⟩2) (13)

For even module q, if x ∈ Zq is uniform at random, modular 2 rounding function ⌊x⌉2 is uniform

over Z2, and the distance between x ∈ Zq and w ∈ Zq is within certain realms under module q, then we

can recover ⌊x⌉2 based on the reconciliation function with the cross-rounding function ⟨x⟩2 and w ∈ Zq.

However, in the applications of ring learning with errors problems, we demand module q is odd. This

bring a problem: If q is odd, then the output distribution of modular 2 rounding function ⌊x⌉2 is not only

biased, but also incurs a deviation. We have known that for odd module q, although x ∈ Zq is uniform,

⌊x⌉2 = 0 and ⌊x⌉2 = 1 are biased. For constructing cryptographic schemes, we demand that each bit of

the secret key is uniform. So we expand module q via q 7→ 2q to guarantee that x ∈ Z2q is uniform, such

that we can resolve this contradiction.

Definition 17. Define randomized function dbl : Zq → Z2q via

x 7→ x = 2x− e( mod 2q) (14)

Note Pr[e = 0] = 1
2
, Pr[e = −1] = Pr[e = 1] = 1

4
, e←R Z2.

Lemma II.6. For odd module q, If x ∈ Zq is uniform, then ⌊x⌉2 is uniform with x← dbl(x), given ⟨x⟩2.



20

III. THE PROPOSED PROTOCOL

All the specific parameters are described as follows:

• A positive integer m: It depicts the algebraic specification of m order cyclotomic algebraic number

field R = Z[ζm] = Z[x]/(Φm(x)), where Φm(x) is of degree n = φ(m) cyclotomic polynomial.

• An odd prime module q: gcd(q,m) = 1.

• a←R U(Rq): global public parameter.

• g =
∏

p(1− ζp), where p runs all odd primes dividing m. Specially, we have g = 2, if m is a power

of 2.

• Discrete gaussian distribution χs = ⌊Ψ⌉ over R = Z[ζm]: Ψ = ( m̂
g
) · Ds = ( m̂

g
) · s−n · ρs(x).

• H1 : {0, 1}∗ → R: Apply this string as randomness to sample from Ds1 to obtain an element that

is ⌊Ψ⌉ distributed over R = Z[ζm].

• H2 : {0, 1}∗ → {0, 1}κ is the key derivation function, which is a random oracle actually.

A. Protocol description

Party i samples si, ei ←R χs1 randomly, where ei is an error vector. Party i uses si as its static secret

key, and computes Pi = a · si + ei ∈ Rq, and uses Pi as its static public key. Similarly, party j samples

sj, ej ←R χs1 randomly, where ej is an error vector. Party j uses sj as its static secret key, and computes

Pj = a · sj + ej ∈ Rq, and uses Pj as its static public key.

Initiation. Party i executes the following steps:

1) Sample ri, fi ←R χs1 , compute Xi = a · ri + fi, and send Xi to party j;

2) Compute d = H1(Xi, j, i), ri = ri + d · si, and f i = fi + d · ei;

3) Let c ∈ Z2n represent the concatenation between the coefficient vector of ri and the coefficient

vector of f i. Let c1 ∈ Z2n represent the concatenation between the coefficient vector of d · si and

the coefficient vector of d · ei. Repeat step 1-3 with a probability of 1 − min(1,DZ2n,s1(c)/M ·

DZ2n,s1,c1(c)).
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Response. After receiving Xi, party j executes the following steps:

1) Sample rj, fj ←R χs1 , compute Yj = a · rj + fj;

2) Compute e = H1(Xi,Yj, j, i), rj = rj + e · sj , and f j = fj + e · ej;

3) Let c ∈ Z2n represent the concatenation between the coefficient vector of rj and the coefficient

vector of f j . Let c1 ∈ Z2n represent the concatenation between the coefficient vector of e · sj and

the coefficient vector of e · ej . Repeat steps 1-3 with a probability of 1 − min(1,DZ2n,s1(c)/M ·

DZ2n,s1,c1(c));

4) Compute σj = g · (Xi + d ·Pi) · (rj + e · sj);

5) Compute vj ← dbl(σj) and vj = ⟨vj⟩2, and send (Yj,vj) to party i;

6) Compute τj = ⌊vj⌉2 and SKj = H2(sid, τj).

Completion. After receiving (Yj,vj), party j executes the following steps:

1) Compute e = H1(Xi,Yj, j, i) and σi = g · (Yj + e ·Pj) · (ri + d · si);

2) Compute τi = rec(σi,vj) and SKi = H2(sid, τi).

B. Correctness

The following two lemmas analyze the requirement that party i and party j can negotiate a shared key.

Lemma III.1. Suppose ∥g · si∥2 ≤ ℓ, ∥g · ri∥2 ≤ ℓ, ∥g · sj∥2 ≤ ℓ, ∥g · rj∥2 ≤ ℓ, where (si, ei) are secret

vectors chosen by party i, and (si, ei) are secret vectors chosen by party j. Let e1 = σi − σj , e1 ∈ R is

a random element that is chosen in vj ← dbl(σj), then vj = 2σj − e1 ∈ R2q. Let w = t/s. in order to

realize

rec(σi,vj) = τi = τj = ⌊vj⌉2 (15)

, module q is required to satisfy

(
q

8
)2 ≥ [ℓ2 · s′2 · (3s2 + n) + 1 +

π

4
] · w2 (16)

, where t = q
8
, s′ =

√
s2 + 2π · rad(m)/m, s is the variance of distribution Ds.
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Proof For (σi − σj), we obtain σj = 2σj − e1 ∈ R2q. Since ∥g · si∥2 ≤ ℓ, then each encoding basis

coefficient of g · si · fj is δ-subgaussian with parameter s′ · ℓ by property 1. By property 2, each encoding

basis coefficient of g ·d is δ-subgaussian with parameter m̂·r′. Since ∥g ·si ·fj∥2 ≤ ∥g ·si∥2 ·∥fj∥∞ ≤ ℓ·s
√
n.

By property 1, each encoding basis coefficient of g · d · si · fj is δ-subgaussian with parameter ℓ · s′ · s
√
n.

Similarly, we obtain that each encoding basis coefficient of g · d · ej · ri, g · d · ei · rj and g · d · fi · sj is

δ-subgaussian with parameter ℓ · s′ · s
√
n, respectively.

We have known that each encoding basis coefficient of g · d is δ-subgaussian with parameter m̂ · s′ and

∥g · e · si · ej∥2 ≤ ∥g · si · ej∥2 · ∥e∥∞ ≤ ℓ · s
√
n · s
√
n = ℓ · s2 · n. Each encoding basis coefficient of

g · d · e · si · ej is δ-subgaussian with parameter s′ · ℓ · s2 · n. By property 2, each coefficient of g · fj is

δ-subgaussian with parameter m̂ · s′. Since ∥g · ri∥2 ≤ ℓ, each encoding basis coefficient of g · fj · ri is

δ-subgaussian with parameter s′ · ℓ. Similarly, each coefficient of g · fj · ri is δ-subgaussian with parameter

s′ · ℓ.

By assumption, we obtain that each coefficient of e1 is 0-subgaussian with parameter
√
2π. Finally, we

obtain that 2e1 + e1 is 8δ-subgaussian with parameter 2
√
2 ·

√
[ℓ2 · s′2 · (3s2 + n) + 1 + π

4
]. By Markov’s

inequality and the union bound over all n coefficients, it naturally proves this lemma.

Lemma III.2. When ( q
8
)2 ≥ [ℓ2 · s′2 · (3s2 + n) + 1 + π

4
] · w2, party i computes

rec(σi,vj) = τi = τj = ⌊vj⌉2 (17)

, and succeeds in recovering τi except with probability at most 2n · exp(8δ − πw2), where δ ≤ 2−n.

Proof According to lemma 3.1, combining with Pr[|X| ≥ t] ≤ 2 exp(δ − πt2

s2
), we know when ( q

8
)2 ≥

[ℓ2 · s′2 · (3s2 + n) + 1 + π
4
] · w2, each coefficient of 2e1 + e1 represented by decoding basis does not fall

into [− q
4
, q
4
) with probability of 2 exp(8δ−πw2). By lemma 2.5, party i recovers correctly τi = τj except

with probability at most 2n · exp(8δ − πw2).

Note If an adversary Eve got Yj , let us suppose that Eve can fake Party i’s ephemeral secret key (r′i, f
′
i)

and ephemeral public key X′
i = a · r′i + r′i. More seriously, we assume that Eve can fake Party i’s static
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secret key (s′i, e
′
i) and static public key P′

i = a · s′i + f ′i such that P′
i = Pi. Assume Eve can break the

one-wayness of hash function H1 such that d′ = H1(Xi, j, i
′) = d and e′ = H1(Xi,Yi, j, i

′) = e. In this

case, Eve computes σ = g ·(Yj+e
′ ·Pj) ·(r′i+d′ ·s′i) = g ·(Yj ·r′i+Yj ·d ·s′i+e ·Pj ·r′i+e ·d ·Pj ·s′i). At the

same time, Party j computes σj = g ·(Xi+d·Pi)·(rj+e·sj) = g ·(Xi ·rj+Pi ·d·rj+e·sj ·Xi+e·sj ·d·Pi).

After calculation, we can obtain an important inequation of two absolute distances: ∥σ−σj∥ ≫ ∥σi−σj∥.

It is impossible that the forge σ is close to σj , because of (σ− σj) > g · e · d · a · (s′i− si) · sj , which is a

large vector. Therefore, the adversary Eve cannot compute the session key with the forge σ.

C. Performance

A general methodology for LWE security evaluation is to adopt distinguishing attack proposed by

Lindner and Peikert [24], which is just applied to the general LWE problems. Because there dose

not exist an effective attack method for RLWE problems, we are still using distinguishing attack for

RLWE. The distinguishing attack is built on the BKZ algorithm for shortest vector problem (SVP) in

lattices. Subsequently, Chen and Nguyen proposed BKZ 2.0 algorithm [25]. Let n be the dimension of

the underlying lattice, for the module q and the variance s of errors of decisional LWE problem (i.e., the

error distribution is DZn,s), we require

n ≥
(k + 110) · log2( qs)

7.2
(18)

Note that k is secure bits that is trying to achieve (i.e., the time/advantage ration is of at least 2k) [25].

From the generation procedure of distribution χ, we can compute the number of bits needed to represent

secret key. Since ai is a random variable with derivation s√
2

over Gaussian distribution, and Pr[|ai| ≥

4 · s√
2
] ≤ 2 · exp(−16π) ≤ 2−70 (i.e., lemma 8.2, [11]), then we can use log2(8 · s√

2
) bits to represent ai

with a great probability (i.e., 1− 2−70). Thus, we require log2(8 · s√
2
) bits to represent Ψ = ( m̂

g
) · Ds. In

other words, we require n · log2(8 · s√
2
) bits to represent χ, where s is the deviation of error distribution.

Let ε represent successful advantage of distinguishing attack initiated by adversary. We set w =

√
ln( 2n

ε
)

π
.

Let m = pe11 · pe22 · · · · p
ek
k be the complete prime factor factorization of m, then rad(m) = p1 · p2 · · · · pk.
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Therefore, rad(m)/m ≤ 1. We can obtain ∥g · si∥2 ≤ (r+1) · m̂ ·
√
n and ∥g ·ri∥2 ≤ (r+1) · m̂ ·

√
n hold

with a probability of (1 − 2−n) at least, respectively. Similarly, we have r′2 ≤ r2 + 2π. Thus, according

to lemma 3.1, we can set

q ≥ 8 ·
√

(s+ 1)2 · m̂ · n · (s2 + 2π) · (3s2 + 1) + π
4
· w = O(m̂ · s2 ·

√
n) · w.

By Euler’s phi function, we can get n = φ(m) =
∏k

j=1 p
ej−1
j · (pj − 1) = m ·

∏k
j=1(1−

1
pj
). Since each

pj ≥ 2, then m = n ·
∏k

j=1(1 −
1
pj
)−1 = O(n). When m̂ is odd, then m̂ = m; when m̂ is even, then

m̂ = m/2. In short, we obtain m̂ = O(n). So we only need to set q = O(m̂·s2 ·
√
n)·w = Õ(n2). Combing

with theorem 2.1, when λ = 2, the number of samples is λ − 1 = 1. We let the standard deviation r of

Gaussian distribution Ds be s = ξ · q, and let ξ = γ · (2n/ log2(2n))1/4. To guarantee γ · q ≥ ω(
√

log2 n),

we set s = (2n/ log2(2n))
1/4 · ω(

√
log2 n). There exists a polynomial time (PT) quantum reduction from

solving Õ(n2.5)-approximating shortest vector problem on ideal lattice over R to solving Ring-DLWEq,χ,

given one sample from χ, where χ = ⌊Ψ⌉, Ψ = ( m̂
g
) ·Dξ·q, and ξ = γ · (2n/ log2(2n))1/4.

D. Security

Theorem III.3. Let n be a power of 2, and let q be a prime satisfying q ≡ 1 mod 2n. Then under the

hard assumption RLWEq,χs , our AKE protocol is secure in the Bellare-Rogaway model.

IV. CONCLUSIONS

In this paper, we combine the reconciliation mechanism and representation method under the decoding

basis to design a secure AKE protocol from lattices. Compared with the AKE protocol of Zhang et al. [5],

each bit of the shared key negotiated in our improved AKE protocol is uniformly distributed. In addition,

our modulus q is only taken a value of polynomial magnitude, rather than a sub-exponential modulus.

Specially, we provide a new method that maps any bit string to certain element, which follows the discrete

gaussian distribution over the cyclotomic number ring.
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