68 research outputs found

    Factors Influencing the Performance of a CPU-RFU Hybrid Architecture

    Get PDF
    Em face da acentuada revalorização da textualidade nas poéticas da década de 1960 em Portugal – perspectiva que, com algumas especificidades, também se verifica no contexto francês e espanhol –, a demarcação dos poetas emergentes na década seguinte é, por vezes, fortemente reactiva. Mas haverá uma diferença essencial entre estas duas inflexões, corporizadas em poéticas aparentemente distintas? E haverá algum momento, na segunda metade do século XX, em que efectivamente se concretize uma ruptura? No presente estudo, procura-se mostrar que, mais do que produzir uma ruptura, as poéticas emergentes nos anos sessenta do século XX consolidam uma tradição de modernidade escolhendo a sua vertente mais radical, enquanto as poéticas subsequentes preferem reatar a tradição mais remota da modernidade, em sentido baudelairiano. Apesar de estarmos perante dois diálogos diferentes com a tradição, é possível observar que, em ambos os casos, esta é retomada a um ponto que nos impede de falarmos de ruptura

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Synthesis Techniques for Semi-Custom Dynamically Reconfigurable Superscalar Processors

    Get PDF
    The accelerated adoption of reconfigurable computing foreshadows a computational paradigm shift, aimed at fulfilling the need of customizable yet high-performance flexible hardware. Reconfigurable computing fulfills this need by allowing the physical resources of a chip to be adapted to the computational requirements of a specific program, thus achieving higher levels of computing performance. This dissertation evaluates the area requirements for reconfigurable processing, an important yet often disregarded assessment for partial reconfiguration. Common reconfigurable computing approaches today attempt to create custom circuitry in static co-processor accelerators. We instead focused on a new approach that synthesized semi-custom general-purpose processor cores. Each superscalar processor core's execution units can be customized for a particular application, yet the processor retains its standard microprocessor interface. We analyzed the area consumption for these computational components by studying the synthesis requirements of different processor configurations. This area/performance assessment aids designers when constraining processing elements in a fixed-size area slot, a requirement for modern partial reconfiguration approaches. Our results provide a more deterministic evaluation of performance density, hence making the area cost analysis less ambiguous when optimizing dynamic systems for coarse-grained parallelism. The results obtained showed that even though performance density decreases with processor complexity, the additional area still provides a positive contribution to the aggregate parallel processing performance. This evaluation of parallel execution density contributes to ongoing efforts in the field of reconfigurable computing by providing a baseline for area/performance trade-offs for partial reconfiguration and multi-processor systems

    Automatic synthesis of reconfigurable instruction set accelerators

    Get PDF

    Automated design of domain-specific custom instructions

    Get PDF

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Timing model derivation : static analysis of hardware description languages

    Get PDF
    Safety-critical hard real-time systems are subject to strict timing constraints. In order to derive guarantees on the timing behavior, the worst-case execution time (WCET) of each task comprising the system has to be known. The aiT tool has been developed for computing safe upper bounds on the WCET of a task. Its computation is mainly based on abstract interpretation of timing models of the processor and its periphery. These models are currently hand-crafted by human experts, which is a time-consuming and error-prone process. Modern processors are automatically synthesized from formal hardware specifications. Besides the processor’s functional behavior, also timing aspects are included in these descriptions. A methodology to derive sound timing models using hardware specifications is described within this thesis. To ease the process of timing model derivation, the methodology is embedded into a sound framework. A key part of this framework are static analyses on hardware specifications. This thesis presents an analysis framework that is build on the theory of abstract interpretation allowing use of classical program analyses on hardware description languages. Its suitability to automate parts of the derivation methodology is shown by different analyses. Practical experiments demonstrate the applicability of the approach to derive timing models. Also the soundness of the analyses and the analyses’ results is proved.Sicherheitskritische Echtzeitsysteme unterliegen strikten Zeitanforderungen. Um ihr Zeitverhalten zu garantieren müssen die Ausführungszeiten der einzelnen Programme, die das System bilden, bekannt sein. Um sichere obere Schranken für die Ausführungszeit von Programmen zu berechnen wurde aiT entwickelt. Die Berechnung basiert auf abstrakter Interpretation von Zeitmodellen des Prozessors und seiner Peripherie. Diese Modelle werden händisch in einem zeitaufwendigen und fehleranfälligen Prozess von Experten entwickelt. Moderne Prozessoren werden automatisch aus formalen Spezifikationen erzeugt. Neben dem funktionalen Verhalten beschreiben diese auch das Zeitverhalten des Prozessors. In dieser Arbeit wird eine Methodik zur sicheren Ableitung von Zeitmodellen aus der Hardwarespezifikation beschrieben. Um den Ableitungsprozess zu vereinfachen ist diese Methodik in eine automatisierte Umgebung eingebettet. Ein Hauptbestandteil dieses Systems sind statische Analysen auf Hardwarebeschreibungen. Diese Arbeit stellt eine Analyse-Umgebung vor, die auf der Theorie der abstrakten Interpretation aufbaut und den Einsatz von klassischen Programmanalysen auf Hardwarebeschreibungssprachen erlaubt. Die Eignung des Systems, Teile der Ableitungsmethodik zu automatisieren, wird anhand einiger Analysen gezeigt. Experimentelle Ergebnisse zeigen die Anwendbarkeit der Methodik zur Ableitung von Zeitmodellen. Die Korrektheit der Analysen und der Analyse-Ergebnisse wird ebenfalls bewiesen
    corecore