7,554 research outputs found

    Multi-source parameter estimation and tracking using antenna arrays

    Get PDF
    This thesis is concerned with multi-source parameter estimation and tracking using antenna arrays in wireless communications. Various multi-source parameter estimation and tracking algorithms are presented and evaluated. Firstly, a novel multiple-input multiple-output (MIMO) communication system is proposed for multi-parameter channel estimation. A manifold extender is presented for increasing the degrees of freedom (DoF). The proposed approach utilises the extended manifold vectors together with superresolution subspace type algorithms, to achieve the estimation of delay, direction of departure (DOD) and direction of arrival (DOA) of all the paths of the desired user in the presence of multiple access interference (MAI). Secondly, the MIMO system is extended to a virtual-spatiotemporal system by incorporating the temporal domain of the system towards the objective of further increasing the degrees of freedom. In this system, a multi-parameter es- timation of delay, Doppler frequency, DOD and DOA of the desired user, and a beamformer that suppresses the MAI are presented, by utilising the proposed virtual-spatiotemporal manifold extender and the superresolution subspace type algorithms. Finally, for multi-source tracking, two tracking approaches are proposed based on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and flexible array. If the array is rigid, the proposed approaches employ a spatiotemporal state-space model and a manifold extender to track the source parameters, while if it is flexible the array locations are also tracked simultaneously. Throughout the thesis, computer simulation studies are presented to investigate and evaluate the performance of all the proposed algorithms.Open Acces

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Decomposition techniques for large scale stochastic linear programs

    Get PDF
    Stochastic linear programming is an effective and often used technique for incorporating uncertainties about future events into decision making processes. Stochastic linear programs tend to be significantly larger than other types of linear programs and generally require sophisticated decomposition solution procedures. Detailed algorithms based uponDantzig-Wolfe and L-Shaped decomposition are developed and implemented. These algorithms allow for solutions to within an arbitrary tolerance on the gap between the lower and upper bounds on a problem\u27s objective function value. Special procedures and implementation strategies are presented that enable many multi-period stochastic linear programs to be solved with two-stage, instead of nested, decomposition techniques. Consequently, abroad class of large scale problems, with tens of millions of constraints and variables, can be solved on a personal computer. Myopic decomposition algorithms based upon a shortsighted view of the future are also developed. Although unable to guarantee an arbitrary solution tolerance, myopic decomposition algorithms may yield very good solutions in a fraction of the time required by Dantzig-Wolfe/L-Shaped decomposition based algorithms.In addition, derivations are given for statistics, based upon Mahalanobis squared distances,that can be used to provide measures for a random sample\u27s effectiveness in approximating a parent distribution. Results and analyses are provided for the applications of the decomposition procedures and sample effectiveness measures to a multi-period market investment model

    Decision tree learning for intelligent mobile robot navigation

    Get PDF
    The replication of human intelligence, learning and reasoning by means of computer algorithms is termed Artificial Intelligence (Al) and the interaction of such algorithms with the physical world can be achieved using robotics. The work described in this thesis investigates the applications of concept learning (an approach which takes its inspiration from biological motivations and from survival instincts in particular) to robot control and path planning. The methodology of concept learning has been applied using learning decision trees (DTs) which induce domain knowledge from a finite set of training vectors which in turn describe systematically a physical entity and are used to train a robot to learn new concepts and to adapt its behaviour. To achieve behaviour learning, this work introduces the novel approach of hierarchical learning and knowledge decomposition to the frame of the reactive robot architecture. Following the analogy with survival instincts, the robot is first taught how to survive in very simple and homogeneous environments, namely a world without any disturbances or any kind of "hostility". Once this simple behaviour, named a primitive, has been established, the robot is trained to adapt new knowledge to cope with increasingly complex environments by adding further worlds to its existing knowledge. The repertoire of the robot behaviours in the form of symbolic knowledge is retained in a hierarchy of clustered decision trees (DTs) accommodating a number of primitives. To classify robot perceptions, control rules are synthesised using symbolic knowledge derived from searching the hierarchy of DTs. A second novel concept is introduced, namely that of multi-dimensional fuzzy associative memories (MDFAMs). These are clustered fuzzy decision trees (FDTs) which are trained locally and accommodate specific perceptual knowledge. Fuzzy logic is incorporated to deal with inherent noise in sensory data and to merge conflicting behaviours of the DTs. In this thesis, the feasibility of the developed techniques is illustrated in the robot applications, their benefits and drawbacks are discussed

    Activities of the Research Institute for Advanced Computer Science

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report

    Complex Adaptive Systems & Urban Morphogenesis:

    Get PDF
    This thesis looks at how cities operate as Complex Adaptive Systems (CAS). It focuses on how certain characteristics of urban form can support an urban environment's capacity to self-organize, enabling emergent features to appear that, while unplanned, remain highly functional. The research is predicated on the notion that CAS processes operate across diverse domains: that they are ‘generalized' or ‘universal'. The goal of the dissertation is then to determine how such generalized principles might ‘play out' within the urban fabric. The main thrust of the work is to unpack how elements of the urban fabric might be considered as elements of a complex system and then identify how one might design these elements in a more deliberate manner, such that they hold a greater embedded capacity to respond to changing urban forces. The research is further predicated on the notion that, while such responses are both imbricated with, and stewarded by human actors, the specificities of the material characteristics themselves matter. Some forms of material environments hold greater intrinsic physical capacities (or affordances) to enact the kinds of dynamic processes observed in complex systems than others (and can, therefore, be designed with these affordances in mind). The primary research question is thus:   What physical and morphological conditions need to be in place within an urban environment in order for Complex Adaptive Systems dynamics arise - such that the physical components (or ‘building blocks') of the urban environment have an enhanced capacity to discover functional configurations in space and time as a response to unfolding contextual conditions?   To answer this question, the dissertation unfolds in a series of parts. It begins by attempting to distill the fundamental dynamics of a Complex Adaptive System. It does so by means of an extensive literature review that examines a variety of highly cited ‘defining principles' or ‘key attributes' of CAS. These are cross-referenced so as to extract common features and distilled down into six major principles that are considered as the generalized features of any complex system, regardless of domain. In addition, this section considers previous urban research that engages complexity principles in order to better position the distinctive perspective of this thesis. This rests primarily on the dissertation's focus on complex urban processes that occur by means of materially enabled in situ processes. Such processes have, it is argued, remained largely under-theorized. The opening section presents introductory examples of what might be meant by a ‘materially enabling' environment.   The core section of the research then undertakes a more detailed unpacking of how complex processes can be understood as having a morphological dimension. This section begins by discussing, in broad terms, the potential ‘phase space' of a physical environment and how this can be expanded or limited according to a variety of factors. Drawing insights from related inquiries in the field of Evolutionary Economic Geography, the research argues that, while emergent capacity is often explored in social, economic, or political terms, it is under-theorized in terms of the concrete physical sub-strata that can also act to ‘carry' or ‘moor' CAS dynamics. This theme is advanced in the next article, where a general framework for speaking about CAS within urban environments is introduced. This framework borrows from the terms for ‘imageability' that were popularized by Kevin Lynch: paths, edges, districts, landmarks, and nodes. These terms are typically associated with physical or ‘object-like features' of the urban environment – that is to say, their image. The terminology is then co-opted such that it makes reference not simply to physical attributes, but rather to the complex processes these attributes enable. To advance this argument, the article contrasts the static and ‘imageable' qualities of New Urbanism projects with the ‘unfolding' and dynamic qualities of complex systems - critiquing NU proponents as failing to appreciate the underlying forces that generate the environments they wish to emulate. Following this, the efficacy of the re-purposed ‘Lynchian' framework is tested using the case study of Istanbul's Grand Bazaar. Here, specific elements of the Bazaar's urban fabric are positioned as holding material agency that enables particular emergent spatial phenomena to manifest. In addition, comparisons are drawn between physical dynamics unfolding within the Bazaar's morphological setting (leading to emergent merchant districts) and parallel dynamics explored within Evolutionary Economic Geography).   The last section of the research extends this research to consider digitally augmented urban elements that hold an enhanced ability to receive and convey information. A series of speculative thought-experiments highlight how augmented urban entities could employ CAS dynamics to ‘solve for' different kinds of urban optimization scenarios, leading these material entities to self-organize (with their users) and discover fit regimes. The final paper flips the perspective, considering how, not only material agency, but also human agency is being augmented by new information processing technologies (smartphones), and how this can lead to new dances of agency that in turn generate novel emergent outcomes.   The dissertation is based on a compilation of articles that have, for the most part, been published in academic journals and all the research has been presented at peer-reviewed academic conferences. An introduction, conclusion, and explanatory transitions between sections are provided in order to clarify the narrative thread between the sections and the articles. Finally, a brief ‘coda' on the spatial dynamics afforded by Turkish Tea Gardens is offered

    Flow disruption by an animal-tube mimic affects sediment bacterial colonization

    Get PDF
    Simple flume experiments demonstrate that local flow perturbations by a protruding animal-tube mimic can cause a significant increase in bacterial colonization at the sediment-seawater interface. The occurrence and extent of this increase depend on properties of the viscous sublayer adjoining the bed—specifically, its spatial and temporal continuity, and its thickness relative to tube height. In the field homologous tube effects on bacterial colonization and abundances are likely to be common. These effects are postulated to be important to larval recruitment, community composition, the nutrition of deposit feeders, and sediment dynamics
    corecore