
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2001

Decomposition techniques for large scale stochastic linear Decomposition techniques for large scale stochastic linear

programs programs

Earl Ike Patterson

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Patterson, Earl Ike, "Decomposition techniques for large scale stochastic linear programs. " PhD diss.,
University of Tennessee, 2001.
https://trace.tennessee.edu/utk_graddiss/8566

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8566&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Earl Ike Patterson entitled "Decomposition

techniques for large scale stochastic linear programs." I have examined the final electronic copy

of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Management Science.

Chanaka Edirisinghe, Major Professor

We have read this dissertation and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Earl 1. Patterson entitled "Decompo
sition Techniques for Large Scale Stochastic Linear Programs". I have examined the final
copy of this dissertation for form and content and recommend that it be accepted in par
tial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Management Science.

i

Chanaka Edirisinghe, Major Professor

We have read this dissertation

and recommend its acceptance:

Accepted for the Council:

Interim Vice Provost afid

Dean of the Graduate School

Decomposition Techniques for Large Scale
Stochastic Linear Programs

A Dissertation

Presented for the

Doctor of Philosophy
Degree

The University Of Tennessee, Knoxville

Earl I. Patterson

May 2001

Copyright © Earl I. Patterson, 2001
All rights reserved

11

DEDICATION

This dissertation is dedicated to my parents

Earl H. (deceased) and Euretha M. Patterson

for a lifetime of love, devotion, and support!

Ill

ACKNOWLEDGMENTS

My gratitude is owed to a great many people who have made my time at the Univer

sity of Tennessee so personally rewarding. I am deeply indebted to Dr. Chanaka Ediris-

inghe for his contributions to the work culminating in this dissertation. Dr. Edirisinghe's

guidance and encouragement have been invaluable to me in all phases of my graduate stud

ies at the University of Tennessee. I have come to value his opinions on both a professional

and personal level.

Special recognition is also owed to the other members of my Dissertation Committee,

Dr. Melissa Bowers, Dr. Hamparsum Bozdogan, and Dr. Charles Noon. I am extremely

grateful for the time and effort each expended in reviewing and suggesting improvements

to this manuscript. I also want to thank Dr. Bozdogan for his assistance in my research into

Mahalanobis squared distances.

IV

ABSTRACT

Stochastic linear programming is an effective and often used technique for incorpo

rating uncertainties about future events into decision making processes. Stochastic linear

programs tend to be significantly larger than other types of linear programs and generally

require sophisticated decomposition solution procedures. Detailed algorithms based upon

Dantzig-Wolfe and L-Shaped decomposition are developed and implemented. These algo

rithms allow for solutions to within an arbitrary tolerance on the gap between the lower and

upper bounds on a problem's objective function value. Special procedures and implemen

tation strategies are presented that enable many multi-period stochastic linear programs to

be solved with two-stage, instead of nested, decomposition techniques. Consequently, a

broad class of large scale problems, with tens of millions of constraints and variables, can

be solved on a personal computer. Myopic decomposition algorithms based upon a short

sighted view of the future are also developed. Although unable to guarantee an arbitrary

solution tolerance, myopic decomposition algorithms may yield very good solutions in a

fraction of the time required by Dantzig-Wolfe/L-Shaped decomposition based algorithms.

In addition, derivations are given for statistics, based upon Mahalanobis squared distances,

that can be used to provide measures for a random sample's effectiveness in approximating

a parent distribution. Results and analyses are provided for the applications of the decom

position procedures and sample effectiveness measures to a multi-period market investment

model.

TABLE OF CONTENTS

1 Introduction 1

1.1 Historical Background 2

1.1.1 Early History 3

1.1.2 Eighties 5

1.1.3 Nineties 6

1.2 Applications 8

1.2.1 Investment Planning 8

1.2.2 Electric Power Generation 9

1.2.3 Process Control 9

1.2.4 Production Management 12

1.3 Scope ; 15

1.4 Notation 16

1.5 Organization 17

2 Stochastic Linear Programs With Recourse 18

2.1 Two-Period Stochastic Programs 18

2.1.1 General Probability Measure 19

2.1.2 Finitely Denumerable Probability Measures 21

2.2 Decision Trees and Multi-period Notation 23

VI

TABLE OF CONTENTS

2.2.1 Multi-Period Decision Trees 24

2.2.2 Multi-period Notation 31

2.3 Multi-Period Stochastic Linear Programs 34

2.3.1 Primal Formulation 34

2.3.2 Dual Formulation 39

2.3.3 Comparing Formulations 40

2.4 Block-Separable Recourse 42

3 Decomposition of Linear Programs 46

3.1 L-Shaped Decomposition 46

3.1.1 LSD for Multiple Sets of Linked Variables 48

3.1.2 Properties of the LSD Relaxation Function 50

3.1.3 LSD Relaxed Formulation 53

3.1.4 Algorithm LSD(multicut) 59

3.1.5 Finite Termination of Algorithm LSD(multicut) 65

3.2 Dantzig-Wolfe Decomposition 76

3.2.1 DWD for Multiple Sets of Linked Constraints 78

3.2.2 Modifying DWD RMP With Additional Activities 86

3.2.3 Algorithm DWD(multiactivities) 92

3.2.4 Finite Termination of Algorithm DWD(multiactivities) 104

3.3 Implementation Issues 107

3.3.1 Grand LP Versus Decomposition 108

3.3.2 Dantzig-Wolfe Versus L-Shaped Decomposition 109

3.3.3 Algorithm Initialization Ill

vii

TABLE OF CONTENTS

3.3.4 Number of Subproblems 112

3.3.5 Removing Inactive Additions 114

3.3.6 Greedy Algorithms 114

3.3.7 Solution Accuracy 115

4 Decomposition of Stochastic Linear Programs 116

4.1 Two-Period Problems 116

4.2 Multi-Period Problems - Nested Decomposition 117

4.2.1 RMP/SUB Formulations 119

4.2.2 Optimality Cuts - Extreme Point Activities 126

4.2.3 Feasibility Cuts - Extreme Direction Activities 129

4.2.4 Nested Decomposition Algorithms 135

4.3 Block-Separable Problems 138

4.4 DWD-LSD Implementation Strategies 142

4.4.1 Terminology Issues 142

4.4.2 Nested Decomposition Strategies 143

4.4.3 Block-Separable Strategies 146

4.4.4 Nested Decomposition of Block-Separable Problems 149

4.5 Myopic Decomposition 152

4.5.1 Myopic Subproblems 154

4.5.2 Algorithm MDPCA 155

4.5.3 Heuristic Modifications 158

4.6 Stochastic Data Storage and Retrieval 161

Vlll

TABLE OF CONTENTS

5 Market Investment Model 163

5.1 Model Development 163

5.1.1 Expected Return 165

5.1.2 Risk Aversion 173

5.1.3 Single-Period Planning Horizon 177

5.1.4 General Planning Horizon 178

5.2 Model Problems in Array Notation 189

5.2.1 Problem Vectors 190

5.2.2 Problem Matrices 192

5.2.3 Array Formulations 196

5.3 Properties and Sizes of Model Problems 197

5.3.1 Observation-Terminated Process 197

5.3.2 Complete Recourse 198

5.3.3 Block-Separable Recourse 199

5.3.4 Sizes of Problems 203

5.4 Decomposition of Model Problems 203

5.5 Implementation 205

5.6 Scenario Generation 207

5.6.1 Returns for a Period 209

5.6.2 Conditional Distributions 211

5.6.3 Sampling 213

5.6.4 Sample Effectiveness , 216

IX

TABLE OF CONTENTS

6 Model MIMPSLP Results and Analyses 225

6.1 Constant Data and Problem Instances 226

6.1.1 Constant Data 226

6.1.2 Problem Instances 229

6.2 DWD and LSD Implementation Strategies 232

6.2.1 Major Strategies 1 and 2 233

6.2.2 Major Strategies 3 and 4 233

6.2.3 Major Strategies 5 and 6 235

6.2.4 Major Strategy 7 235

6.2.5 Preliminary Decomposition Results 240

6.3 DWD and LSD Results - Single Period Problems 244

6.4 DWD and LSD Results - Multiple Period Problems 250

6.4.1 Overview 252

6.4.2 Two-Stage Decomposition 254

6.4.3 Nested Decomposition 261

6.4.4 General Comments 265

6.5 Myopic Decomposition Results 266

6.6 Sample Effectiveness Measures ... ̂ 270

6.7 Model Application Results 275

7 Summary and Conclusions 280

References 283

TABLE OF CONTENTS

Appendices 303

A Equivalence of Node Labeling Schemes 304

A. 1 Path Vector to Period-Index 304

A.2 Period-Index to Path Vector 307

A.3 Practical Implementation 312

A.3.1 Recursive Tree Traversal 314

A.3.2 Iterative Tree Traversal 316

B Algorithm MDPCA Listings 319

B.l Algorithm MDPCA 320

B.2 Initialization Procedures 321

B.3 Solution Procedures 322

B .4 Algorithm Modifications 325

C Piece-Wise Linear Approximations 331

C. 1 General Conditions 331

C.2 Maximum Relative Error Procedure 335

C.3 Minimum Average Absolute Error Procedure 342

C.4 Application Under General Conditions 349

C.5 Application Under Special Conditions 351

C.6 PWL Parameters for Quadratic Downside Deviation 353

D Sizes of Model MIMPSLP Problems 354

XI

TABLE OF CONTENTS

D.l Number of Nodes in the Decision Tree 354

D.2 Primal Constraints - Dual Variables 355

D.3 Primal Variables - Dual Constraints 357

D.4 Non-Zero Technology Matrix Coefficients ! 358

D.5 Comments 360

E Decomposition of Model MIMPSLP Problems 362

E. 1 Decomposition Procedures 362

E. 1.1 DWD/LSD Master Problems 363

E. 1.2 DWD/LSD Subproblems 368

E. 1.3 Single-Period DWD/LSD 378

E. 1.4 Two-Stage DWD/LSD 379

E. 1.5 Multi-Stage DWD/LSD 381

E. 1.6 Myopic Decomposition 383

E.2 Solving Slippage Component Subproblems 387

E.3 Solving Deviation Component Subproblems 392

E.4 Bounding Nodal Component Subproblems 397

F Expected Mahalanobis Squared Distances 400

F. 1 Notation and Preliminary Results 400

F.2 Proof of Proposition 13 403

F.3 Proof of Proposition 14 408

F.4 Proof of Proposition 15 412

Xll

TABLE OF CONTENTS

G Two-Stage Decomposition Graphics 417

H Acronyms 430

Vita 431

Xlll

LIST OF TABLES

1.1 Investment Planning Applications 10

1.2 Electrical Power Generation Applications 11

1.3 Process Control Applications 13

1.4 Production Management Applications 14

5.1 Model MIMPSLP Notation 180

5.2 Model MIMPSLP Simplifying Notation 185

5.3 Sizes of Model MIMPSLP Problems 204

5.4 Model MIMPSLP Run-Time Libraries 206

6.1 Period Lengths and Dependent Data 228

6.2 Scenario Generation Data for Multiple Period Problems 230

6.3 Sizes of Multiple Period Problems (Primal Formulation) 231

6.4 Minor Strategies and Tactics for Major Strategies 1 and 2 234

6.5 Minor Strategies and Tactics for Major Strategies 3 and 4 236

6.6 Minor Strategies and Tactics for Major Strategies 5 and 6 237

6.7 Subproblem Formulation-Simplex Solver Combinations 240

6.8 Single Period Grand LP Solution CPU Times 245

XIV

LIST OF TABLES

6.9 Single Period DWD/LSD Solution CPU Times 248

6.10 Single Period Solution CPU Time Ratios 249

6.11 Multiple Period Problems' Fastest Solution CPU Times 253

6.12 Two-Stage Decomposition Solution CPU Times 255

6.13 Two-Stage Decomposition Cuts/Activities Statistics 258

6.14 Two-Stage Decomposition Average Iteration CPU Times 260

6.15 Time Percentages for Stages of Two-Stage Decomposition 262

6.16 Nested Dantzig-Wolfe Decomposition Solution CPU Times 264

6.17 Myopic Decomposition Solution CPU Times 268

6.18 Myopic Objective Value Comparisons 269

6.19 Mahalanobis Squared Distances for Single Period Problems 272

6.20 Sample Effectiveness Measures for Single Period Problems 273

6.21 Net Returns for Single Period Problems 274

H.1 Acronyms 430

XV

LIST OF FIGURES

2.1 Two-Period Decision Tree 23

2.2 Four-Period Decision Tree With Binary Outcomes 25

2.3 Multi-Period Decision Tree 27

2.4 Three-Period Decision Tree Ending in an Observation 30

2.5 Staircase Structure of Problem PMPGLP [2.8] 37

2.6 Staircase Structure of Problem DMPGLP [2.12] 41

3.1 Lower Block-Angular Structure 49

3.2 Algorithm LSD(multicut) Flowchart 66

3.3 Procedure LSD(multicut)-Initialize Flowchart 67

3.4 Procedure LSD(multicut)-Optiniize Flowchart 68

3.5 Upper Block-Angular Structure 79

3.6 Algorithm DWD(multiactivities) Flowchart 100

3.7 Procedure DWD(multiactivities)-Initialize Flowchart 101

3.8 Procedure DWD(multiactivities)-Optiniize Flowchart 103

4.1 Nested Two-Period Problems 118

4.2 Nested Decomposition Work Flow 121

xvi

LIST OF FIGURES

4.3 Four Period Block-Separable Problem 148

4.4 Nested Decomposition of a Block-Separable Problem 151

5.1 Slippage Per Position and Total Slippage 169

5.2 Sample Piece-Wise Linear Slippage Approximation 171

5.3 Recourse Submatrix 194

5.4 Recourse Submatrix 195

5.5 Schematic of Market Investment Model Libraries 208

6.1 Major Strategy 7 Schemetic and Description 239

6.2 Fastest Grand LP Single Period Solution Times 246

6.3 Solution Time Ratios for Single Period Problems 251

6.4 Extreme Two-Stage Decomposition Times 256

6.5 Efficient Frontier and the Sharpe Ratio 275

6.6 Problem P3-Small First Period Efficient Frontier 277

6.7 Problem P3-Small First Period Sharpe Ratios 279

A.l Equivalence of Node Labels 306

A.2 Decision Tree Node Indices In A Recursive Order 315

A.3 Decision Tree Node Indices In An Iterative Order 317

B.l Algorithm MDPCA Flowchart 326

B.2 Initialize(Duals Lead) and Initialize(Primals Lead) Flowcharts. 327

xvii

LIST OF FIGURES

B.3 Procedure Solve(Duals Lead) Flowchart 328

B.4 Procedure SoIve(PrimaIs Lead) Flowchart 329

C.l Hessian Matrix for the Average Absolute Error Function 347

C.2 PWL Slopes at the Region Boundary 350

E.l Example Nested Decomposition of a Three-Period Problem 382

F.l Double Summation Expansion 405

G.l Two-Stage Decomposition Times for Problem P2-Small 419

G.2 Two-Stage Decomposition Times for Problem P2-Medium 420

G.3 Two-Stage Decomposition Times for Problem P2-Large 421

G.4 Two-Stage Decomposition Times for Problem P3-Small 422

G.5 Two-Stage Decomposition Times for Problem P3-Medium 423

G.6 Two-Stage Decomposition Times for Problem P3-Large 424

G.7 Two-Stage Decomposition Times for Problem P4-Small 425

G.8 Two-Stage Decomposition Times for Problem P4-Medium 426

G.9 Two-Stage Decomposition Times for Problem P4-Large 427

G.IO Two-Stage Decomposition Times for Problem P5-Small 428

G.ll Two-Stage Decomposition Times for Problem P5-Medium 429

XVlll

Chapter 1
Introduction

Managers at most levels of business, government, and industry must make present-

day decisions with imperfect knowledge of future events. Consider, for example, a property

insurance provider that returns a maturity refund to the client in addition to the protection

against damage and/or loss normally provided. Insurance policies must be structured and

assets/liabilities allocated based upon uncertainties in how the future unfolds. Decisions

must be made here-and-now before uncertainties in future interest rates, the economy, and

liabilities are resolved. Sufficient information may be, however, available to make proba

bilistic statements concerning future uncertainties. Such information might include histor

ical data and expert judgment. The insurance company, therefore, desires to develop and

implement an asset/liability management model that would allow the company to make

asset allocation decisions that hedge against uncertainties in future events.

One method for guiding here-and-now decisions while considering the future uncer

tainty explicitly is the stochastic programming field of mathematical programming. Models

based upon stochastic programming generally prescribe plans that involve a trade-off be

tween costs associated with long-term anticipatory or decisions and the costs associated

with short-term recourse or adaptive decisions (see Edirisinghe [62]). The above insur

ance company example is a real-world case study and it is described in further detail below

(Section 1.2.1).

Chapter 1 Introduction

Relatively few applications using stochastic programming techniques have been re

ported in published material until recently although this discipline has existed since 1955.

A major drawback to stochastic programming modeling is that the resulting problem size

for many practical applications is very large. Consequently, solution complexity of such

models often hinders implementations of stochastic programming decision models. The

focus of this thesis is the development and implementation of solution procedures for sto

chastic programming models.

The remainder of this chapter is organized into five sections. The first two sections

summarize the historical background of stochastic programming and provide example ap

plications from the literature. Papers cited in those two sections are from a representative,

but small, subset of available documentation. A far more comprehensive stochastic pro

gramming bibliography (over 3700 entries) is given by M. van der Vlerk [199]. Thesis

scope and general notational conventions are described in the third and fourth sections.

Organization of the thesis is the topic of the fifth and final section.

1.1 Historical Background

This section summarizes the evolution of stochastic programming theory and solution pro

cedures over the last five decades of the twentieth century. Three periods are used to doc

ument the historical information - early history covering the fifties through the seventies,

developments in the eighties, and the recent history of the nineties.

Chapter 1 Introduction

1.1.1 Early History

The birth of stochastic programming as a field of mathematical programming followed

shortly after the introduction of linear programming. According to Dantzig [44, page 4],

the articles published in 1949 by Wood and Dantzig [209] and Dantzig [40] were the first

two formal papers about linear programming (introduced in 1947 - see Dantzig [44, page

4] and Dantzig and Thapa [48, page xxii]). Techniques for incorporating uncertainty into

linear programs were introduced independently six years later by Beale [8] and Dantzig

[41]. The procedures and problem formulations presented by Beale and Dantzig have since

become known as stochastic programming with recourse and form one of the two major

subfields of stochastic programming. Chames, Cooper, and Symonds [30] in 1958 and

Chames and Cooper [29] in 1960 introduced the second subfield which they named chance-

constrained programming. The remainder of this thesis is concerned only with stochastic

programming with recourse and the interested reader can consult Kail [117, Chapter 4],

Kail and Wallace [118, Chapter 4], and Prekopa [169, Chapter 8] for more information on

chance-constrained programming.

The first procedure for solving large-scale linear programs in a reasonable amount of

time uses the decomposition principle presented by Dantzig and Wolfe, [49] and [50], in

1960 and 1961. Inspiration for the decomposition principle was provided by the work of

Ford and Fulkerson [79] in 1958 on multi-commodity network flow problems (see Dantzig

and Wolfe [49, page 102]). Procedures based upon the decomposition principal have since

become known as Dantzig-Wolfe decomposition (DWD). Dantzig and Madansky [47] in

Chapter 1 Introduction

1961 and Madansky [138] in 1963 were the first to use DWD specifically for a stochastic

programming problem. A second decomposition procedure, generally referred to as the

L-Shaped decomposition (LSD) method, was introduced in 1969 by Van Slyke and Wets

[196] based upon work by Kelly [120] (1960) on cutting planes and Benders decomposition

[9] (1962) of mixed integer programs. Van Slyke and Wets also contributed to stochastic

programming theory with four papers published in 1966 - Van Slyke and Wets [195] and

Wets [202], [203], and [204].

Papers published in the seventies served primarily to consolidate and expand upon

the theory and solution procedures developed during the previous two decades. Geoffrion,

[87] and [88], gave a synthesis in 1970 of existing theory and algorithms. Solution algo

rithms for convex stochastic programs with recourse were presented in 1970 by Ziemba

[215]. Eaves and Zangwill [61] (1971), Geoffrion [89] (1972), and Hogan [104] (1973)

provided additional pioneering work on cutting plane theory and Benders decomposition.

Algorithms for applying DWD to a problem involving multiple (more than two) periods or

stages were given in 1973 by Glassey [90] and in 1974 by Ho and Manne [102]. These al

gorithms are usually referred to as nested decomposition algorithms (since the procedures

for one period or group of periods is nested within the procedures for a previous period

or group of periods) and are based upon concepts first introduced by Dantzig and Wolfe

in their original decomposition paper [49, pages 109 - 110]. Dupacova [57] (1974) pro

vided a theoretical basis for stochastic programs with non-convex, non-separable penalty

functions. Additional theory for problems spanning multiple stages was presented in 1974

Chapter 1 Introduction

by Wets [205] and in 1976 by Olsen, [160] and [161]. Kail [117] wrote one of the first

books, published in 1976, devoted to stochastic linear programming. Huang, Ziemba, and

Ben-Tal [106] provided refinements in 1977 to bounds-based approximations to stochastic

programs based upon the classic bounds of Jensen and Edmondson-Madansky (see Birge

[17, page 288] and Ediiisinghe [62, pages 21 and 25]).

1.1.2 Eighties

The eighties ushered in a two-decade period of explosive growth in stochastic programming

theory, algorithms, and applications. This growth, not surprisingly, parallels the advances

made in the personal computer and distributed computing industries.

Advances in nested decomposition based upon DWD were made in the early eighties

by Abrahamson [1], Ament, et al. [3], Birge [12], and Ho and Loute [100] and [101].

Nested decomposition based upon LSD was introduced in 1980 by Louveaux [133] and

expanded upon in the last half of the decade by Birge [11], Birge and Louveaux [16],

Gassmann [82], [83], and [84], Louveaux [134], and Wittrock [207].

Bounds-based approximation schemes were enhanced by Wets [206] (1983) and

Birge and Wets [19] (1986) and [20] (1987). Dupacova [58] (1987) presented methods

for analyzing stochastic programs when there is incomplete knowledge of the underlying

probability distribution. Ruszczynski [179] introduced regularized decomposition in 1986

as a method to possibly improve decomposition efficiency by adding a quadratic regulariz

ing term to the objective function of a stochastic problem. Glynn and Iglehart [92] (1989)

Chapter 1 Introduction

proposed methods for incorporating the classical variance reduction technique of impor

tance sampling into stochastic programming problems.

Birge, et al. [13] made a significant contribution in 1987 with a proposal for a stan

dard input format for stochastic programs. The proposed standard provides extensions to

the mathematical programming system (MPS) input file system for linear programs (see

reference manuals [107, Chapter 9] and [109, Appendix E] for details on the MPS stan

dard).

1.1.3 Nineties

Many advances in existing solution procedures for stochastic programs were made in this

decade. Ruszczynski [182] and [183] and Ruszczynski and Swietanowski [184] expanded

on Ruszcznski's regularized decomposition method. Infanger and Morton [113] proposed

procedures for sharing cuts in the L-Shaped decomposition of stochastic linear programs

with interstage dependency. Enhancements were made to bounds-based approximations

by Edirisinghe [62], [63], and [65], Edirisinghe, Atkins, and lyogun [67], Edirisinghe and

You [68], Edirisinghe and Ziemba [69], [70], [71], and [72], Morton and Wood [149],

and Rosa and Takriti [177]. Rosa and Ruszczynski [176] and Ruszczynski [181] pro

posed improved solution procedures based upon augmented Lagrangian decomposition.

Additional importance sampling techniques were suggested by Dantzig and Glynn [45],

Dempster and Thompson [53], Infanger [111] and [112], and Morton [148]. Gassman and

Ireland [85] considered extensions to algebraic modelling languages for stochastic linear

Chapter 1 Introduction

programs. Gassmann and Schweitzer [86] proposed improvements to the standard input

format for stochastic programs.

Several additional concepts were also introduced and/or developed during the nineties.

Application of parallel computing techniques to stochastic programs was covered by Birge,

et al. [14], Dantzig and Glynn [45], Dempster and Thompson [53], Electric Power Re

search Institute Report EL-6769 [75], Korycki [129], Mulvey and Ruszczynski [152] and

[153], Nielsen and Zenios [158], Ruszczynski [180], Vladimirou [197], and Vladimirou

and Zenios [198]. Interior point solution procedures were documented by Bahn, et al. [5],

Birge and Holmes [15], Kim and Nazareth [122], Lustig, Mulvey, and Carpenter [137],

Messina and Mitra [144], Meszaros [145], andZakeri, Philpott, and Ryan [213]. Higle and

Sen [97] and [98] introduced the stochastic decomposition algorithm for solving stochastic

programs. Extensions to the stochastic decomposition algorithm were subsequently given

by Chen and Powell [31], Higle, Lowe, and Odio [96], Morton [148], and Yakowitz [211]

and [212]. Rockafellar and Wets [174] introduced the progressive hedging algorithm solu

tion procedure based upon scenario and policy aggregation. Subsequent techniques using

scenario aggregation were proposed by Chun and Robinson [32] and Kiwiel, Rosa, and

Ruszczynski [125].

Chapter 1 Introduction

1.2 Applications

Stochastic programming techniques have been applied to the decision making processes of

a broad range of organizations in business, govemment, and industry. Such applications

have increased significantly in the past two decades due in large measure to advances in

computing technology. This section will summarize a representative sample of stochastic

programming application articles published within the past twenty years. Four application

categories are used: investment planning, electric power generation, process control, and

production management. Note that these categories are not intended to be definitive classi

fication groups, but are defined for descriptive purposes only. Most articles, in fact, could

be placed in two or more of the categories and several could be placed in all four categories.

One paper in each category will be summarized in some detail while the remaining articles

in that group will be listed in a table.

1.2.1 Investment Planning

The introductory example is actually a synopsis of a multiple period stochastic linear pro

gramming model developed by the Frank Russell Company for the Yasuda Fire and Marine

Insurance Company, Ltd. (see Carino, et al. [26], Carino, Myers, and Ziemba [27], and

Carino and Ziemba [28]). The Russell-Yasuda Kasai (kasai means fire in Japanese) model

was developed to replace an existing static mean-variance asset allocation model. Discrete

probability distributions are used in the Russell-Yasuda Kasai (RY) model to account for

uncertainties in retums, interest rates, liabilities, and other stochastic variables. Extra in-

, 8

Chapter 1 Introduction

come of 79 million dollars (US) was realized during the first two years (fiscal 1991 and

1992) that the RY model was employed.

Summary descriptions of the RY model and other investment planning application

papers are provided in Table 1.1.

1.2.2 Electric Power Generation

Jacobs, et al. [114] describe a multiple period stochastic linear programming model devel

oped at Pacific Gas and Electric Company (PG&E) to optimize monthly hydrogeneration

scheduling over a 24 month planning horizon. Hydrogeneration at PG&E was scheduled

with a deterministic network optimization model prior to development of the stochastic

programming model. Discrete probability distributions are used to model uncertainties, es

pecially the uncertainties in streamflows, in the stochastic model. The authors report that

expert users were satisfied with the results of the stochastic programming model during the

initial testing and implementation phases (1992 -1994).

Table 1.2 contains short descriptions of the above and other papers from this applica

tion category.

1.2.3 Process Control

Paules and Floudas [162] develop a stochastic mixed integer programming model to opti

mize the synthesis strategy of heat integrated distillation sequences with a single multicom-

ponent feed stream. The stochastic model uses discrete probability distributions to account

Chapter 1 Introduction

Table 1.1: Investment, Planning Applications

Authors Cite Year Description

Anandalingam [4] 1987 Investment decisions in iron/steel industry in India
Birge, Rosa [18] 1995 Multi-period model of investment uncertainty in the costs of

global CO2 emission policy
Carino, et al." [26] 1994 Japanese insurance company multi-period asset/liability model
Carino, et al." L27J 1998 Formulation details for the above model

Carino, Ziemba m\ 1998 Concepts and technical issues for the above model
Consigli, Dempster L38J 1998 Portfolio management for a pension fund
Dantzig, Infanger L46J 1993 Multi-period portfolio management
Dupacova, et al.'^ m 1997 Bond portfolio management model
Frauendorfer [81] 1996 Optimal funding by borrowing bonds of different maturities
Golub, et al.*^ mi 1995 Two-period portfolio management
Henaff mi 1998 Two-period exotic derivatives investments
Killer, Eckstein im 1993 Asset/liability management with interest rate contingent claims
Kira, Kusy [124] 1990 Optimal project selection for capital expenditures
Klaassen 1126] 1998 Synthesis of asset/liability management models/pricing theory
Kusy, Ziemba [131] 1986 Multi-period bank asset/liability management model
Mulvey, et al.^ [161] 1997 Procedures and example cases for financial risk management
Mulvey, Vladimirou [164] 1992 Financial planning using networks with stochastic parameters
Pieptea [166] 1987 Optimize holdings in bonds/funds with stochastic interest rates
Prisman, et al.-^ [170] 1986 Two-period bank asset/liability management model
Wagner, et al.® [200] 1994 Two-period model for optimal placement and operation of

pumping wells to contain groundwater contamination
Watanabe, Ellis [201] 1993 Two-period model to minimize costs of acid rain control
Zenios, et al." [214] 1998 Fixed-income portfolio management with uncertain interest rates

Carino, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe, Ziemba

Carino, Myers, Ziemba

Dupacova, Bertocchi, Moriggia

Golub, Holmer, McKendall, Pohlman, Zenios

Mulvey, Rosenbaum, Shetty

Prisman, Slovin, Sushka

Wagner, Shamir, Marks

Zenios, Holmer, McKendall, Vassiadou-Zeniou

10

Chapter 1 Introduction

Table 1.2: Electrical Power Generation Applications

Authors Cite Year Description

Bloom [22] 1983 Least-cost generation capacity expansion model
Bloom, et al." [23] 1984 Implementation and experience with above model
Borison, et al." [25] 1984 Least-cost generation capacity expansion model
EPRI"^ [74] 1989 Resource expansion plan for large-scale multi-area electrical

power generation and transmission system
Hobbs, Ji [1U3J 1999 Minimize operation costs for a multi-area electrical power

generation and transmission system
Jaco, et al.'' [114] 1995 Optimal scheduling of hydrogeneration for a large utility company
Morton [147] 1996 Multi-period hydroelectric scheduling
Pereira, Pinto [164] 1985 Minimize expected operation costs for a Brazilian multiple

reservoir hydrothermal system
Pereira, Pinto [165] 1991 Expansion of the above model with application case study
Qiu, Girgis [172] 1993 Maximize reliability of electric power generation system
Romi, Schultz [175] 1996 Optimize electrical power generation in a system of thermal

power and pumped storage plants
Rotting, Gjelsvik [178] 1992 Optimal seasonal scheduling for power generation in the

Norwegian power system
Sanghvi, Shavel

00

1986 Hydroelectric generation capacity expansion with uncertain
hydro energy availability and uncertain load growth

Silva, et al.^ [189] 1995 Minimum cost maintenance schedule for generating units in a
multi-area hydroelectric system

Takriti, et al.^ [192] 2000 Minimize electricity generation costs of electric utilities with
uncertain load demand and uncertain spot prices

Bloom, Caramanis, Chamy

Borison, Morris, Oren

Electric Power Research Institute, Palo Alto, CA

Jacobs, Freeman, Grygier, Morton, Schultz, Staschus, Stedinger

Silva, Morozowski, Fonseca, Oliveira, Melo, Mello

Takriti, Krasenbrink, Wu

11

Chapter 1 Introduction

for uncertainty in feed stream flowrate and component composition changes over a finite

number of periods of operation within a chemical plant. Paules and Floudas developed

the stochastic model to improve upon synthesis strategies determined with a single period

model with fixed flowrate and component composition.

Short descriptions of the above and other process control articles are provided in

Table 1.3.

1.2.4 Production Management

Eppen, Martin, and Schrage [73] describe a stochastic mixed integer programming capacity

planning model developed for General Motors (GM) to use in making decisions concerning

four of their automobile lines. The model has a planning horizon of five one-year periods

with three possible outcomes representing iincertain demand during each period. This ap

proach agreed with traditional GM forecasting of demand as either pessimistic, standard,

or optimistic. The authors indicate that results of the stochastic programming model were

instrumental in motivating GM to conduct further cost and forecasting analyses of the four

automobile lines.

Table 1.4 provides summary descriptions of the above GM model paper as well as

other papers in the production management application category.

12

Chapter 1 Introduction

Table 1.3: Process Control Applications

Authors Cite Year Description
Alonso, et al." m 2000 Optimize air traffic flow management
Dror L55J 1993 Multi-period model of the vehicle routing problem with

uncertain demands

Duffuaa, Al-Sultan L56J 1999 Multi-period model for scheduling maintenance personnel
Dupacova, et al." L60J 1991 Multi-period model for upgrading and expanding a water

resources management system in Czechoslovakia
Fernandez, et al.*^ L76J 1998 Multi-period model for project scheduling with stochastic

task durations

Glockner, Nemhauser 191] 2000 Multi-period model for a network flow problem with
stochastic arc capacities

Hsu, Bassok 1105] 1999 Multiple product inventory problem with downward
substitution

lerapetritou, et al."^ 1108] 1996 Optimal design for process models involving stochastic
parameters

Martel, et al.^ 1143] 1990 Two-period model to determine the distribution of shell
fragments

Paules, Floudas 1162] 1992 Optimize a chemical process heat integration scheme with
stochastic feed composition and flowrate

Pistikopoulos, lerapetritou 1167] 1995 Two-period model for the optimal design of a chemical
processing plant

Pistikopoulos, et al.^ 1168] 1996 Optimal design, schedule, and maintenance plan for a
chemical batch plant

Qi 1171] 1985 Two-period model for a transportation problem with
stochastic demands

Sapountzis 1186] 1989 Optimize the allocation of units of blood from a regional
blood transfusion center to area hospitals

Wollmer 1208] 1985 Two-period model for critical path planning with uncertain
job completion times

Alonso, Escudero, Ortuno

Dupacova, Gaivoronski, Kos, Szantai

Fernandez, Armacost, Per-Edwards

lerapetritou, Acevedo, Pistikopoulos

Martel, Nadeau, Price

Pistikopoulos, Thomaidis, Melin, lerapetritou

13

Chapter 1 Introduction

Table 1.4: Production Management Applications

Authors Cite Year Description
Bienstock, Shapiro [10] 1988 Two-period model to optimize resource acquisition policies
Bitran, Dasu L21J 1992 Optimize ordering policies for a production process with

stochastic yields and hierarchy of grades of output
Clay, Grossmann 135J 1997 Two-period model to optimize production planning in a

chemical processing plant
Couillard L36J 1993 Trucking company decision support system incorporating the

model below

Couillard, Mattel L37J 1990 Two-period model to optimize the size and composition of a
vehicle fleet

Darby-Dowman, et al." [51] 2000 Two-period model to optimize planting plans for a vegetable
crop

Eppen, et al." [73] 1989 Multi-period model to optimize capacity planning for four
automobile models

Fine, Freund [77] 1990 Two-period model to optimize the investment in flexible
manufacturing capacity

Jonsson, Silver [116] 1989 Two-period model to optimize the inventory of components
common to several products

Jonsson, et al.*^ [115] 1993 Extensions to the above inventory model
King, et al.'' [123] 1988 Two-period model for management of eutrophication of

Lake Balaton in Hungary
Louveaux, Peeters [135] 1992 Two-period model for the uncapacitated facilities location

problem with uncertainty on demand, selling prices,
production, and transportation

Sinha, Wei [190] 1992 Two-period model to optimize production capacity/levels in
discrete part manufacturing

Somlyody, Wets [lyi] 1988 Detailed model description and analysis for the Lake
Balaton eutrophication model (see IGng, et al. above)

" Darby-Dowman, Barker, Audsley, Parsons

^ Eppen, Martin, Schrage
Jonsson, Jomsten, Silver

King, Rockafellar, Somlyody, Wets

14

Chapter 1 Introduction

1.3 Scope

Stochastic programming techniques can be applied to both linear and nonlinear prob

lem formulations. This thesis is concemed only with stochastic linear programs with re

course. Solution procedures for these types of problems were classified by Edirisinghe

[65] as belonging to one of three categories: sampling-based approximation techniques,

bounds-based approximations, or mathematical decomposition of the grand linear pro

gram. Sampling-based methods such as the stochastic decomposition algorithm of Higle

and Sen (see [97] and [98]) use iteratively drawn random samples from the underlying

probability distribution for a decomposition algorithm or to compute stochastic quasi-

gradients. Bounds-based approximation algorithms (e.g., see Birge and Wets [19] and

Huang, Ziemba, and Ben-Tal [106] for general details) use a successive approximation pro

cedure based upon computable bounds on the objective function value. The focus of this

thesis is the third technique - using mathematical decomposition procedures to solve the

grand linear formulation of the stochastic programming problem. Specifically, innovations

to improve the efficiency of mathematical decomposition methods, particularly L-Shaped

and Dantzig-Wolfe decomposition, are described herein. A decomposition algorithm in

corporating a myopic view of the future and a sampling effectiveness measurement scheme

based upon Mahalanobis distances, are also developed.

15

Chapter 1 Introduction

1.4 Notation

General notational conventions that are used throughout the remainder of this thesis are

defined below. Specific notational constructs are defined when introduced.

Scalars will be represented by italicized text with small letters generally used for in

dices and large letters for fixed quantities or limits, e.g. j = 1, • • • , J. Arrays will be

shown in bold upright text with small letters representing vectors and large letters repre

senting matrices, e.g. vector x and matrix A. Array transposition will be indicated by a
\

prime symbol placed prior to any identifying superscripts, e.g. Array di

mensions will generally not be explicitly stated except where deemed necessary for clarity.

All arrays in any expression involving multiple arrays are assumed to be compatible. The

identity matrix is represented by I which is assumed appropriately dimensioned for each

use. When appropriate, the dimension of the identity matrix will be denoted by a subscript,

e.g. 1m € Vectors of all zeros and all ones are represented by 0 and 1 respectively

where dimensions are to be compatible for the expression in which they are used. A spe

cific column or row of a matrix is denoted using the notation of Dantzig and Thapa [48] -

column j of matrix A is denoted by A,j while row i of matrix A is Ai,.

Functions are represented by upper case letters in Fractur font, £J (x), or Calligraphic

font, Q (x). Sets are shown by upper case letters in Sans Serif font, e.g. X = {x|x > 0}

and J = {1,..., J}. The phrase/or all is indicated by the symbol V and the operation |«|

represents the absolute value of the operand.

16

Chapter 1 Introduction

1.5 Organization

The remainder of this thesis consists of six additional chapters and eight appendices. Chap

ters 2 and 3 develop the foundations for stochastic linear programs and decomposition,

of general linear programs respectively. Mathematical decomposition procedures for sto

chastic linear programs are then derived in Chapter 4. Formulation of a multiple period

market investment model, software to solve the model, and procedures to measure sample

effectiveness are described in Chapter 5. Chapter 6 contains results obtained by apply

ing decomposition techniques to the market investment model. Conclusions and summary

information are presented in the seventh and final chapter.

Material supplemental to one of the chapters is given in each of the first seven appen

dices. Supplemental information is provided for decision tree node mapping (supplemen

tal to Chapter 2), myopic decomposition (Chapter 4), piece-wise linear approximations to

fixed costs in the market investment model (Chapter 5), sizes of model problems (Chapter

5), solution procedures for decomposition subproblems (Chapter 5), measures of sample

effectiveness (Chapter 5), and decomposition results graphs (Chapter 6). A descriptive list

ing of all acronyms used in this thesis is at Table H.1 in the eighth and final appendix.

17

Chapter 2
Stochastic Linear Programs With Recourse

Stochastic linear programs with recourse are probably the most widely applied sto

chastic optimization models. The notation and formulations for problems of this type are

defined in the four sections of this chapter. Generally accepted notational conventions and

formulations for two-period models are discussed in the first section. Decision trees and

the notation used for stochastic programs over an arbitrary but finite number of periods are

described in the second section. Results from the first two sections are coupled in the third

section to define formulations for stochastic linear programs with recourse over multiple

periods. The final section provides details on stochastic programs that exhibit a special

structural characteristic referred to as block-separable recourse.

2.1 Two-Period Stochastic Programs

A two-period stochastic program is used to model a decision-observation-decision process.

The first decision must be made prior to the occurrence of some influential event while the

second decision provides recourse after observation of the event. Knowledge of the data

associated with the event is encompassed by the probability space 5", V). The universal

set contains all possible values or outcomes for the uncertain event. Field 5^ is a family

of measurable subsets of Vt and P is a probability measure defined on Greater detail

on probability spaces is available in Birge and Louveaux [17, Section 2.1], Chung [33,

18

Chapter 2 Stochastic Linear Programs With Recourse

Appendix 1 to Chapter 4], Degroot [52, Section 2.3], Kali and Wallace [118, Section 1.3],

Lindgren [132, Sections 1.4 and 2.1], and Taylor and Karlin [194, Section 1.2.8].

Stochastic programming formulations for the cases of a general probability measure

and a finitely denumerable probability measure are discussed below.

2.1.1 General Probability Measure

Let S^{ui) (•) denote the expectation operator of the enclosed operand with respect to the

random vector ̂ (a;), a; e fi. Then the general formulation for a two-period stochastic

program with recourse is:

z* = max -f (w) (w)]
s.t. Ax^^^ <

B(a;)x(^^ -f W (u;) x^^^ (w) < (a;), a; € fi, a.s. [2.1]
x(i) > 0,

x^^) (a;) > 0, (jj e Q, a.s.

where one or more of the arrays b^^) (w), (u), B (w), and W (a;) may be stochas

tic (one or more elements of these arrays may be stochastic) and the constraints involv

ing uj hold almost surely (a.s.). Decision vector x^^^ (w) may assume different values for

each a; e fi. Arrays b^^^ and A are known fixed arrays (not stochastic) and x^^),

c(i) G b(i) G and A G For each u; e Q, x(2) (u), c(2) (u) G

b(^) (ci;) G B ^ -yy ^]^M2x;\f2 where random vector $ {lj) =

[b'(2) (a;), c'(2) (a;) ,Bu{u),..., Bm^. H , Wi. (cu),..., Wm^. (a;)]'.

Matrix A is referred to as the first period technology matrix. Matrices B (a;) are

called transition matrices, matrices W (w) are known as recourse matrices, and the vectors

x^^) (a;) are termed the recourse decision vectors. The problem is said to have fixed

19

Chapter 2 Stochastic Linear Programs With Recourse

recourse when W {oS) is not stochastic, i.e. W (a;) = W for fixed W. Simple recourse is a

special case of fixed recourse with W = [I, —I]. The problem has complete recourse when

for air a; € 0, and for all G there exists (u) > 0 such that W (w) x^^^ (u) <

b(2)(w) — B (cj) A ,special case of complete recourse is relatively complete recourse:

for all a; G f2 and for all x^^^ G {x gM^^ | Ax < x > 0 }, there exists x^^^ (a;) > 0

such that W (w) x^^^ (w) < (w)—B (a;) x(^\ Note that a problem with simple recourse

also has complete recourse.

Problem [2.1] can also be formulated as the so-called deterministic equivalent prob

lem (DEP). Define the second period value Junction O. [x^^^ ̂ (a;)] for given x^^^ and ̂ (ci;)

as:

0 ̂ (w)] = max {u) x^^^ (u)
s.t. W (a;) x^^^ (a;) < b^^^ (u) — B (a;) x^^^,

x(^) (w) > 0,
and the second period expected value function:

Q (x^^)) = (0 [x(^), ̂ (tj)]).

Then the DEP for a two-period stochastic linear program is:

z* = max + Q

s.t. Ax(^) < bW, [2.2]
x(i) > 0.

Problem [2.1] is generally difficult to solve. Frauendorfer [80] discusses some of

the more common solution procedures for two-period stochastic programs with a general

probability measure. Stochastic programs with finitely denumerable probability measures

are the most often encountered type of stochastic programs and these are the focus of the

remainder of this thesis.

20

Chapter 2 Stochastic Linear Programs With Recourse

2.1.2 Finitely Denumerable Probability Measures

Problem [2.1] is a linear program (LP) when the universal set contains a finite number

of events. The probability measure V is then a probability mass function over the finite

number of subsets in the field 5^. A common practice when Q, contains an infinitely denu

merable number of events or when the events in Q are represented by continuous variables

is to represent Q, with a finite universal set, say f2. The probability measure, V, on the

resulting family of subsets, 5", is a probability mass function that approximates the prob

ability measure V. This practice dates back to at least 1961 with a paper by Dantzig and

Madansky (reference [47]). Importance sampling is a recently implemented procedure (see

Dempster and Thompson [53], Dantzig and Glynn [45], Dantzig and Infanger [46], Glynn

[92], and Infanger [111] and [112]) for variance reduction when 0 is created by sampling

from Q. The stochastic decomposition procedure of Higle and Sen [97] and [98] (also see

Higle, Lowe, and Odio [96]) is a iterative sampling algorithm to obtain an approximate so

lution to a stochastic program by sequentially taking relatively small discrete samples from

n.

Let L represent the number of discrete events in Q, and let pi be the probability that

event cui E Cl occurs for I = 1,..., L. Further, let the notation denote a stochastic

array given the occurrence of event i e L for indexing set L = {1,..., L}, i.e., Wt'l =

21

Chapter 2 Stochastic Linear Programs With Recourse

W (Si). Then the stochastic linear program with recourse (SLP) over two periods is:

L

= max

1=1

s.t. Ax^^^
Bt'lxW + . . W['lx(2)['l < b(2)['l, / = l,...,L,

x(i) > 0,
x(2)['l > 0, l = l,...,L.

Problem [2.3] is a linear program and is generally very large in size. The formulation

depicted by problem [2.3] is often called the extensive or grand LP form of the two-period

stochastic linear program - the term grand LP (GLP) will be used hereinafter to describe

this formulation. Most solution procedures work with the DEP [2.2] where the discrete

second period expected value function is:

2
1=1

[2.4]

with the discrete second period value function:

n = max c'(2)[z]j^(2)[/]

s.t. ^r[']x(2)['l < i)(2)['] — [2-5]
x(2)['] > 0.

The two-period SLP forms the foundation for multi-period models. A multi-period

SLP can be viewed as a sequence of two-period problems which becomes evident below in

the development of the multi-period formulation. A useful design tool for any stochastic

linear program is the decision tree and this tool is discussed next.

22

Chapter 2 Stochastic Linear Programs With Recourse

2.2 Decision Trees and Multi-period Notation

Decision trees, often referred to as event or scenario trees, are extremely useful in devel

oping stochastic linear programs. Figure 2.1 is the decision tree for problem [2.3]. The

node (circle) under period 1 is called the root node and it denotes the decisions that must

be made prior to observing some uncertain event, referred to as an outcome. The nodes un

der period 2 represent the recourse decisions made in the second period after observing a

particular outcome represented by the labeled arcs connecting the first and second period

nodes.

Decision trees for multi-period stochastic linear programs and the notational conven

tions used to navigate through these trees and to describe the corresponding problems are

described below.

Period 1 Period 2

o

Figure 2.1: Two-Period Decision Tree

23

Chapter 2 Stochastic Linear Programs With Recourse

2.2.1 Multi-Period Decision Trees

Multi-period stochastic programs extend the observation-decision process depicted by the

two-period tree shown in Figure 2.1. A set of arcs representing outcomes branches from

each node in some period, say t, and each of these arcs terminates in a period t -t-1 node

representing the recourse decisions to be made in period t -I-1 given the path of outcomes

to that node. The tree extends in this manner through the number of periods, say T, in

the planning horizon. Only finite horizon, T < oo, models are examined in this thesis.

The terminal nodes in period T are termed leaf nodes since no arcs to a following period

branch from these nodes. Multi-period decision trees are developed below for two possible

stochastic processes - those that terminate with a decision and those that terminate with an

observation.

Decision-Terminated Processes

Figure 2.2 illustrates a decision tree for a planning horizon of four periods. Two

outcomes of the uncertain event are possible in each period and the stochastic process

terminates with a decision represented by a fourth period node. Arcs in the tree are labeled

to indicate the index of the outcome represented by the corresponding arc. Nodes are

labeled in two ways - a period-index format and a path vector format. The period-index

format is represented by the doublet (t, hf) of the period number, t (number in the upper

half of each node), and the sequential breadth-first (i.e., starting at the top of the tree within

each period) index, hu of the node (lower half of each node). Path vectors are shown by

24

Chapter 2 Stochastic Linear Programs With Recourse

[1.1.1]

[1.1]

[1.1.2]

©
[1

1.2,1

1.2]

1.2,2

[2.1.1]

2,1

2,1.2

[2

[2,2,1]

[2,2]

2.2,2

Figure 2.2: Four-Period Decision Tree With Binary Outcomes

25

Chapter 2 Stochastic Linear Programs With Recourse

the row vectors above each node. The path vector, say [Zi, ̂2) • • •, k-i], to a node in period

Z is a row vector of (t — 1) elements where element j, 1 < j < t, is the index, Ij, of the

outcome in period j along the path of outcomes to the applicable node. A null (empty)

vector, [], is used to label the single first period root node. The path to a node in period t is

called a t-period scenario and each T-period scenario is usually simply called a scenario

of the planning model. There are four 3-period scenarios and eight scenarios in the model

depicted by Figure 2.2. Decision trees demonstrate the nonanticipative requirement of

stochastic programs - decisions in a given period must be made without anticipating future

outcomes. For instance, the decisions represented by node (1,1), or equivalently node [],

are the same regardless of which of the two outcomes is realized in that period or in any

following period.

A generic multi-period decision tree is illustrated in Figure 2.3. Only the nodes and

arcs in the first and second periods and those along the horizontal path through the root

node are labeled. Each node in period t,t<T, anchors Lt outcomes so that there are a

total of Ht = rijli ̂ 3 nodes in period t,l<t<T, where Hi = n°=i = 1- There are

H^^^ = Hj cumulative nodes in periods 1 through t <T. Note that the convention

that all nodes in a given period anchor the same number of outcomes is not a requirement for

a stochastic linear program. This convention is adopted because it simplifies notation and

involves no loss of generality since each node in a given period may be assigned the same

number of outcomes as the node in that period with the maximum number of outcomes

26

Chapter 2 Stochastic Linear Programs With Recourse

1

o

[Ui

© ©

o

1

r

j=\

[Path Vector]

I Period Index \

Parent Node Node Index/
Outcome Index j/

Figure 2.3: Multi-Period Decision Tree

27

Chapter 2 Stochastic Linear Programs With Recourse

where all excess outcomes are assigned zero probability of occurrence. It is also assumed

that Lt> 1 for t = 1,..., T — 1.

The period-index and path vector node labeling schemes are equivalent (given the

above convention) in the sense that either label can be determined if the other is known.

Given the path vector [luh,...,k-i] to a node in period t with I < k < Lk for k =

1,..., i — 1, the period-index label for that node is {t, ht) where

1,
ht = t-2

ifi = 1,

k-i + E ih - 1) Lj+iL^+2 ■ • • Lt-i, if2<t<T.
i=i

[2.6]

Determining the path vector for a period t node given the period-index label {t, ht), with

^ ̂ ht < Ht, for that node is more involved than the reverse procedure above. The

corresponding path vector is generated by solving equation

ik — 1+

/it — 1 — E ih ~ ̂)Lj+\Ljj^2 • • • Lt-i
t-i

n
j=k+l

k—1

ht — ̂ {Ij — l)Lj+iLj+2 • • * Lt-i
j=i

t-i

n ̂ 3
j=k+l

[2.7]

in sequential order for A: = 1,..., t - 1. The operations L/J' and f/] used in equation [2.7]

above are respectively the floor of / (largest integer less than or equal to /) and the ceiling

of / (smallest integer greater than or equal to /). Either right-hand-side term in equation

[2.7] may be used to determine for A: = 1,..., i — 1. Derivations for equations [2.6] and

[2.7] are given in Appendix A.

28

Chapter 2 Stochastic Linear Programs With Recourse

Observation-Terminated Processes

Each decision-observation-decision-... -observation-decision planning process de

scribed so far ends in a decision. Some problems may be better represented by a process

that terminates with an observation. Prekopa [169, Section 13.1] discusses both the decision-

terminated and the observation-terminated processes. Figure 2.4 illustrates a three-period

decision tree representing a planning process that terminates with an observation. The

arcs emanating from the third period nodes are termed leafless outcomes since each repre

sents a possible terminal observation for the process. Each node in the final period of an

observation-terminated process must be associated with stochastic decision variables that:

1. are dependent upon the random outcome at that node,

2. are applicable to that node only, and

3. represent an automatic reaction of the process after the outcome has been observed as

opposed to an interactive (human) decision made prior to the observation.

These node, or equivalently period, localized stochastic variables are termed reactive

recourse variables. Variables representing decisions that must be made prior to observing

a random outcome are called discretionary recourse variables. The three properties of

reactive recourse variables are implied by the structure of the decision tree, e.g.. Figure

2.4. Reactive recourse variables must exist in the final period since, otherwise, there is

no reason to consider the random outcome during that period. They must be applicable

only to the final period node in question since there is no future period. Finally, reactive

29

Chapter 2 Stochastic Linear Programs With Recourse

[1.1]

1

[2.1]

2

[2.2]

Figure 2.4: Three-Period Decision Tree Ending in an Observation

30

Chapter 2 Stochastic Linear Programs With Recourse

recourse variables cannot represent a pre-observation decision since this would violate the

nonanticipative requirement of the stochastic program.

Reactive recourse variables are not restricted to the final period - they may be present

in all periods, including the first. Observation-terminated processes require some modifi

cations to the definitions of the problem arrays and to the notational conventions developed

for decision-terminated processes. These modifications are minor and are discussed in de

tail in Chapter 5 with the development of an observation-terminated market investment

model.

Additional notational conventions used for multi-period trees and stochastic linear

programs are introduced and defined in the next subsection.

2.2.2 Multi-period Notation

Nodes in adjacent periods of a decision tree are said to have a parent-child relationship.

Each node in period t,t < T, of Figure 2.3 is the parent of Lt child nodes in period i -f-1

and each node in period is the child of a parent node in period f — 1. Nodes in

period t with the same parent node are termed siblings and nodes in period t with different

parents are termed cousins. Nodes to the left of (i.e., in an earlier period) or above a given

node are said to be older than that node.

Let the row vector h,..., It-i be the path vector to a node in period t. The set

Hj-i ̂ h,---, it-i ^ containing the corresponding unique parent node in period f - 1 is

31

Chapter 2 Stochastic Linear Programs With Recourse

then defined as:

HLi(ll, ... ,1,) =
f if t = 1,

where ^ ^ = | [q | = {[]}, i-e., the parent node of a second period node is the
single first period node. Similarly, the set

child nodes of node

(^ containing the period f+ 1h,..., k-i

/i,..., lt_ij is defined as:

I , Tt-i, it if = 1,... ,Lt|, ifl<t<T,

0, ifi = T.

The two definitions above demonstrate a major advantage that the path vector node la

beling scheme has over the period-index scheme - parent-child relationships are obvious in

the path vector scheme while such relationships are not easily discernible with the period-

index scheme. For instance, calculations involving the number of outcomes in periods 1

through t would be required to determine if node (£, ht) is the parent of node {t -I-1, ht+i).

A disadvantage of the path vector scheme is that the size of the vector grows with the depth

of the node in the tree. Identifying problem arrays that correspond to a particular node by

labeling the arrays with the path vector for that node can therefore be cumbersome and im

practical. This disadvantage can be alleviated by adopting the shorthand notation that [•jj

represents the path vector for a period t node. Path vector then has (£ — 1) elements

where [•jj = [] is the single first period root node. Then, by convention,

Wf+i ̂ H^+1 (Wt) Wt ̂ HP (Hf+i), and

[•]. e ([.],_,) ^ [.]t_i e HI, ([.] J ,

32

Chapter 2 Stochastic Linear Programs With Recourse

when [•](and or are used in the same expression. Further, an expression like

for operator O (•) and operands and where [•jj = , k-i implies the

operation:

Lt

= O + ... + 0 _
it=i

The shorthand [•Jj notation is also used to implicitly indicate the dependence of a

stochastic array in period t on the occurrence of the outcomes implied by in periods 1

through f — 1. Let u>j^^ represent the period t outcome with index k, I < k < Lt, and let

[•].= h,..., k-i represent a node in period f, 1 < t < T. Then, for example.

\ k-1

(t-2)

t-2
,0;

(2)
'""fi J'

represents the conditional recourse matrix at node [•]j.

The conditional probability that the outcome with index h, 1 ̂ ^ Lt, 1 < f <

T — 1, is observed at the f-peiiod node [•jj given the indicated outcomes h,..., k-i in

periods 1 through i — 1 is i.e..

Pi =V (4" (t-l) , (t-2)
(jJr ,UJi

(2)
. . U>- . Ulf)-

where ̂ (•) is the probability operator and ^ ~ ̂ ~

The compound (or, joint) probability, pt'lt, that the process enters the period t node [•jj =

h,..., k-i , 1 < f < T, is the product of the conditional probabilities of the outcomes

33

Chapter 2 Stochastic Linear Programs With Recourse

along the indicated path to that node:

^[.]t = p[hk,.4t-2,k-x] ̂ ^
''J

j=l

where pt'li = ptl = 1, i.e., the single first period node is always entered.

Either labeling scheme may be used to label problem arrays, e.g., =

The path vector scheme, especially with the shorthand notation, is used most

often. A combination of the two schemes will sometimes be used to improve clarity and

explanations for such cases are always provided. The notational conventions established

above are used below to develop the formulation for a multi-period stochastic linear pro

gram.

2.3 Multi-Period Stochastic Linear Programs

Formulations for a stochastic linear program with recourse over a planning horizon divided

into multiple periods can now be defined. The first formulation below is referred to as the

primal formulation of the multi-period problem and the second formulation is the dual to

the primal formulation. Formulation development is followed by a discussion comparing

the two formulations.

2.3.1 Primal Formulation

The primal formulation of the multi-period stochastic linear program is an extension to the

two-period problem [2.3]. The following grand LP formulation is referred to as problem

34

Chapter 2 Stochastic Linear Programs With Recourse

PMPGLP:

= max [c''*'2xt*l2 _j- + ... +
h=l l2=l

. Ax" < b",s.t.

BWtxWt-i + wWtxWt < b^s ht = l,...,Ht, t^2,.

x" > 0,
xWt > 0, ht = l,...,Ht, t-2,.

T

T

[2.8]

where equation [2.7] is used to determine given {t, ht) in the second and fourth sets of

constraints. The coefficient matrices in the first two sets of constraints above form a special

staircase stmcture that is difficult to demonstrate for the general problem due to the sheer

size of the problem. Composite matrices formed by separately combining all transition

matrices and then all recourse matrices for a period into two matrices for that period will

be used for the demonstration. Let xj, i = 2,..., T, be the vector formed by stacking the

recourse decision vectors for each node in period t in breadth-first node order, i.e.,

- " • xll'l I'll

Xf = =

■^L\,L2,--,Lt-2,Lt-i\

and let xi = x". Define Bt as the matrix obtained by stacking the transition matrices for

each node in period t in breadth-first node order, in columnar blocks to conform with Xt_i,

35

Chapter 2 Stochastic Linear Programs With Recourse

and with empty blocks filled with zeros. Then, for example, B3X2 will be

B3X2 =

x[il
X[2]

where the empty blocks in B3 above are appropriately sized zero-matrices. Similarly, let

Wt be the block-diagonal matrix formed by combining the recourse matrices in period t so

that W3X3 will be

W3X3 =

■V\r[ii.i2]

x[i.il

X[il.l]

r[il,i2]

Figure 2.5 then illustrates the staircase structure formed by the composite coefficient ma

trices of the first two sets of constraints in problem [2.8].

The multi-period deterministic equivalent problem for the primal formulation is cre

ated by defining value functions and expected value functions for each period after the

first in the planning horizon. Define the period t expected value function, Qt (x'*l«-i), for

36

Chapter 2 Stochastic Linear Programs With Recourse

B. W.

B, W,

B, W.

B, W,

Figure 2.5: Staircase Structure of Problem PMPGLP [2.8]

37

Chapter 2 Stochastic Linear Programs With Recourse

t = 2,..., T as

where the period T value function, 0.x , is defined as

Ox j = max c'W^xWr
s.t. ,

x'Wt' > 0,

and the period t value function, Ot ̂x'*l«-i, , for t = 2,..., T — 1 is

Qt =inax c'WtxWt + Q^+i (xW')
s.t. wW'xWt < bWt-BW'xWt-i,

xW' > 0.

Then the multi-period DEP is

= max c'tlxtl -I- Q2 (x^')
s.t. Ax^' < btl,

xtl > 0.

The DEP then resembles a sequence of two-period problems due to the recursive nature of

the period t value function for f = 2,..., T — 1.

The deterministic equivalent problem may be reformulated by redefining the value

functions to remove the functional dependence on the expected value functions. A value

function, referred to as a nodal value junction, can be defined for each node in periods after

the first in the decision tree. The nodal value function for a period T node is

0[*lr (xWr-i) =p|*'^^"^max c'WtxWt
s.t. 'VV^WtxWt < b^*'^ — , [2*9]

xHt > 0,

38

Chapter 2 Stochastic Linear Programs With Recourse

and the function for a node in period t,2 <t <T — l,\s

£}[•]« max c'WtxWt +. ̂
' it=i

s.t. wWtxWt < bW'-BWtxW'-i,
xt'lt > 0.

[2.10]

Note that no random component argument, is required since the stochastic data are

treated as being assigned to the nodes of the decision tree. The multi-period DEP, referred

to as problem PMPDEP, is then

Li

= maxc'^'x'' + (x^')
h=i

s.t. Ax^' < bfl,
x" > 0.

[2.11]

2.3.2 Dual Formulation

The dual formulation to problem PMPGLP [2.8] is called problem DMPGLP:

ii

= minb'f b'W27rW2 -f
L2

h

Lt-1

It-1

S.t. A'tf'! -I- ^ B'W27r[*^2 > c^l,
Zi=l

W'Wt-rrWt + |]B'Hm7rWt+i > pWtcHt, .
lt=l t — 2,... ,1 — 1,

W'W^Trt'lT

[2.12]
> pHrcWr, hT = l,...,HT,

TI-lJ

TrWt

> 0,

> 0,
ht — 1,..., Ht,
t = 2,...,r,

39

Chapter 2 Stochastic Linear Programs With Recourse

where equation [2.7] is used to determine [•jj given {t,ht) in the applicable constraints.

The constraints of problem DMPGLP, like those of problem PMPGLP [2.8], also exhibit

a staircase structure. Figure 2.6 shows the staircase structure of problem DMPGLP using

the composite matrix notation defined above.

A deterministic equivalent problem for the dual formulation is not defined since one

is not used in any of the solution procedures to be developed in Chapter 4. These procedures

will directly exploit the staircase structure of problem DMPGLP [2.12].

2.3.3 Comparing Formulations

Figures 2.5 on page 37 and 2.6 on page 41 demonstrate both the major similarity between

the primal and dual formulations and the major difference between the formulations. Both

formulations exhibit staircase structures but the two structures differ significantly. The

primal staircase structure for problem PMPGLP [2.8], Figure 2.5, is transition-supported

since the steps, the composite recourse (W) matrices, are supported by the transition (B)

matrices. On the other hand, the dual staircase structure for problem DMPGLP [2.12] is

recourse-supported since the recourse matrices provide support for the transition matrices.

This structural difference results in diametrical routes for passing information in the two

structures. Problem PMPGLP sends information (the primal x variables) forward from

a period to the next period, whereas problem DMPGLP sends information (the dual tt

variables) backward from a period to the preceding period. These concepts will be applied

40

Chapter 2 Stochastic Linear Programs With Recourse

B'

W B',

W B'.

W B'

W
r-i

B'

wv

Figure 2.6: Staircase Structure of Problem DMPGLP [2.12]

41

Chapter 2 Stochastic Linear Programs With Recourse

in Chapter 4 to develop decomposition procedures to obtain solutions to a stochastic linear

program.

2.4 Block-Separable Recourse

Block-separable recourse is a property of some stochastic programs that permits the prob

lem structure to be manipulated in many ways. This property was first described by Lou-

veaux [134] and is also discussed in Birge and Louveaux [16, Section 3.5]. Let [0] represent

an appropriately sized zero-matrix, then a stochastic linear program is said to have block-

separable recourse when the first period technology matrix and all transition and recourse

matrices can be partitioned as follows:

A =

=

[0]
^(2,1) ^(2,2)

[0]
B(24)['lt [0] andWWt =

W(^4)Wt [0]
for

f ht — l,..., Ht,
I t = 2,...,T,

Equation [2.7] is used to determine [•jj given (t, ht) in the lower sets of partitions above

and where appropriate in the discussion that follows. Note that these partitions differ from

those defined in the two references above since those authors stipulate that = 0

for i = 2,..., T. The partitioning of W'*!* defined above is more general while still

allowing block-separability as shown below.

Problem vectors are then partitioned accordingly:

bl'l' =
n n [a]

n " , [a1 n x(i)Wt "
b(2)Wt c(2)Wt , and = x(2)[-lt for

r ht = L...,Ht,

42

^ Chapter 2 Stochastic Linear Programs With Recourse

Louveaux calls the variables aggregate level decision variables and the vari

ables detailed level decision variables.

Constraints in the primal problem PMPGLP [2.8] may then be written as:

Axtl < b" « / ^ bWHAX ^ D «. I 1)^(1)11^ AP'2)x<2>II < bWli '

and

BWtxWt-i + wW'xWt < bWt 44>

j B(2.i)Htx(i)[*h-i + w(2,i)[.].x(i)Ht+ w(2.2)Wtx(2)Wt < b(2)Ht | t = 2,'.'.' .' \t. '

Note that the detailed level decision variables at a node in period t — 1 have no effect on

the constraints in period f for i = 2,..., T due to the partitioning of the transition matri

ces. This characteristic of block-separable programs allows the constraints to be arranged

in many different ways that may prove beneficial in finding a solution. For instance, all

constraints at nodes in periods after the first that incorporate only aggregate level decision

variables, i.e.,

can be moved to directly follow the first period constraints Then, since

the objective function can be separated accordingly, the rearranged problem structure will

look exactly like a two-period problem. All aggregate level decision variables appear in the

'first' period and the detailed level decision variables appear only in the 'second' period.

Similar rearrangements can be performed with the dual formulation. This and other con-

43

Chapter 2 Stochastic Linear Programs With Recourse

straint groupings are discussed in detail in Chapter 5 with the application of decomposition

to a multi-period market investment model.

Block-separable recourse is fairly common in stochastic programming. Most multi-

period stochastic programs are inherently block-separable or can be induced to be block-

separable according to Louveaux [134, page 48]. An example of the latter case is observation-

terminated processes with reactive recourse variables in all periods - see the last subsection

of Section 2.2.1 above. Reactive recourse variables correspond.to the detailed level decision

variables while discretionary recourse variables correspond to the aggregate level decision

variables. Transition matrices in this type of problem are clearly partitioned as above since

no reactive recourse variables are passed from one period to the next. Recourse matrices

and the first period technology matrix can be induced to have the above partitions when

necessary by adcfing artificial constraints. Assume, for example, that the matrix at

some node [•Jj cannot be partitioned as shown above. An artificial bounding constraint on

the discretionary (aggregate level) variables can then be added to the problem at that node

thereby giving the desired partitioning scheme, e.g.,

1. if are bounded, say < x"p where all elements of x"'' are finite, then add

the constraint < 1'x"p, otherwise

2. are unbounded, add a constraint similar to that in item 1 except replace 1'x"p

with some arbitrarily large number, say M.

44

Chapter 2 Stochastic Linear Programs With Recourse

If any constraint of the type in item 2 above is tight when the solution is obtained, then the

procedure should be repeated with continually increasing values for M until a solution is

obtained such that all such constraints have slack.

Birge and Louveaux [17, page 132] indicate that block-separable recourse should be

exploited in computational procedures whenever possible since "it may reduce work by

orders of magnitude". Results presented in Chapter 6 support this claim. It is therefore

surprising that very few, if any, computational studies on block-separable recourse have

been performed to date - none were found in an extensive literature search.

45

Chapter 3
Decomposition of Linear Programs

Mathematical decomposition is usually the most efficient method, and often the only

reasonable method, for obtaining solutions to large scale linear programs. Two of the most

widely applied procedures, L-Shaped and Dantzig-Wolfe decomposition, are the focus of

this chapter. Detailed derivations and application algorithms for these two methods are

given in the first two sections below. Decomposition implementation issues are discussed

in the third and final section of this chapter.

3.1 L-Shaped Decomposition

Van Slyke and Wets [196] developed L-Shaped decomposition (LSD) to solve linear pro

grams with the following structure:

z* = max -1- (3.1a)
s.t. (3.1b)

A(i.o)xW + A(^'i)x« < b(i), (3.1c)
x(^) > 0, j = 0,l, (3.1d)

[3.1]

where x(°) and x^^) are termed linking and linked variables respectively. The LSD algo

rithm is an iterative two-phase procedure that determines if problem [3.1] is infeasible or

unbounded; otherwise, it obtains either an exact solution to problem [3.1] or an e-optimal

solution with lower and upper bounds on 2* to within a specified tolerance e. The algo

rithm derives its name from the shape formed by the left-hand-sides of constraints (3.1b-c).

Phase one of the algorithm obtains at each iteration G a solution to the LSD relaxed master

46

Chapter 3 Decomposition of Linear Programs

problem (RMP), LSD RMP:

SG)_
'UB — max + e (3.2a)

s.t. < b(o). (3.2b)

+ e < b'^^^TTfc, = 0, . ..,KP, (3.2c)

<5;A(1'0)x(0) < b'W<5fc, k = Q,....Kf\ (3.2d)
x(0) > 0, (3.2e)
e free. (3.2f)

[3.2]

where constraint sets (3.2c) and (3.2d) are termed optimality cuts and feasibility cuts re

spectively. Variable 6 is referred to as a relaxation variable. Problem [3.1] is infeasible if

problem [3.2] is infeasible, otherwise problem [3.2] is feasible and phase two of the algo

rithm obtains a solution to the LSD subproblem (SUB), LSD SUB:

il(x(°)) = max
s.t. [3.3]

x(i) > 0,

where x(°) is replaced with the optimal solution to the LSD RMP, say Function

£(x(°^) defined by problem [3.3] is known as the relaxation function. The results of LSD

RMP and LSD SUB are analyzed during each iteration to determine if an e-optimal solu

tion to problem [3.1] has been obtained at the conclusion of the second phase. The algo

rithm is terminated if an e-optimal solution is available, otherwise either an optimality cut

or a feasibility cut is added to LSD RMP based upon the solution to LSD SUB and the

next iteration is executed. Details of the procedure are presented in the subsections below.

Van Slyke and Wets [196] give a detailed derivation for the LSD algorithm for the

case of a single set of linked variables (x^^) above). That version of the algorithm is referred

to as the LSD(single-cut) algorithm since a single constraint, either an optimality cut or a

feasibility cut, is added to the LSD RMP at each iteration. Birge and Louveaux [16] and

47

Chapter 3 Decomposition of Linear Programs

[17, Section 5.3] present a multicut version for the case of multiple sets of linked variables

when the problem is known to be bounded. A multicut version, LSD(multicut), is derived

below with no restriction on the finiteness of the problem.

3.1.1 LSD for Multiple Sets of Linked Variables

Algorithm LSD(miilticut) is developed for linear programs with multiple sets of linked

variables. These linear programs have the special structure illustrated by problem LBALP;

j

z* = max (3.4a)
3=1

s.t. < bW, ' (3.4b) [3.4]
AO'.o)x(o) + a(^'4)x(j) < bW, j = (3.4c)

x(^) > 0, j = Q,...,J. (3.4d)

The matrices of coefficients in constraints (3.4b-c) form the lower block-angular structure

depicted in Figure 3.1.

Problem [3.4] can be represented by an equivalent master-subproblem formulation,

LSD Master-Sub, consisting of the phase one master problem, LSD Master:

z* = max Oj (3.5a)
j=i

s.t. a(°'°)x(°) < bW, . (3.5b)
-£^(x(0)) + Oj < 0, j = l,...,J, (3.5c)

x(°) > 0, (3.5d)
Oj free, j = (3.5e)

[3.5]

and the phase two subproblems, LSD P-SUB(j),

£^(x(°^) = max c'(ji)x(''^
s.t. < b(^') - A(J'°^xW, [3.6]

x(^') > 0.

48

Chapter 3 Decomposition of Linear Programs

A(0,0)

A(1.0) A(i.i)

A(/.o)

MJ.O) AWJ)

Figure 3.1: Lower Block-Angular Structure

49

Chapter 3 Decomposition of Linear Programs

The LSD(multicut) algorithm is based upon iteratively solving a relaxed formula

tion, LSD Relaxed, of the LSD Master-Sub formulation. Formulation LSD Relaxed re

places constraint sets (3.5c) with sets of optimality and feasibility cuts. The dual problems,

LSD D-SUB(j-), j = 1,..., J:

£?(x(°))= min (b(^) - A(J'°)xW)'7r(^) (3.7a)
s.t. > c(i)^ (3.7b) [3.7]

> 0, (3.7c)

to LSD P-SUBO), j = 1,..., J, will be referenced frequently during algorithm develop

ment. Properties of the LSD P-SUBO) relaxation function (x^®)) for j € J for indexing

set J = {1,..., J} are described in the next subsection. The LSD Relaxed formulation,

LSD(multicut) algorithm development, and algorithm properties are described in subse

quent subsections.

3.1.2 Properties of the LSD Relaxation Function

Define the feasibility sets, (x^®^), for the linked variables as:

XW (x^°^) = x^^^ > O} , J = 1,..., J,

where, by definition, (x(°)) assumes the value of negative infinity if X^^^ (x^^^) is empty

for a given x(°\ i.e., (x(°^) = —oo if X^^^ (x(°)) = 0. Define the feasibility sets, Xf\

for the linking variables as:

{xW|£?(x(°)) >-oo}, . ifjGJ,
Xf' =(0) _ ̂

{x(o)|A(o.o)x(o)<bW, x(o)>0}, ifj=0.

50

Chapter 3 Decomposition of Linear Programs

The following three propositions establish important properties for the LSD P-SUB(j)

functions, ,j = 1,... ,J, and they are analogous to Propositions 2-4 of Van Slyke

and Wets [196, pages 644-645].

Proposition 1 For j E J and for all is either a finite concave

function or (x^°)) is identically positive infinity.

Proof Since problem LSD P-SUB(j) [3.6] is feasible for all x^°) G xf\ it follows from

LP duality theory that problem LSD P-SUB(j) is unbounded if and only if the dual prob

lem LSD D-SUBO) [3.7] is infeasible. Therefore, (x(°^) is either finite or identically

positive infinity for all x(°) G since problem LSD D-SUBO") is infeasible if and only

if constraints (3.7b), are inconsistent. Assume (x^°)) is finite and let

Xi°\ X2°^ G Xf\ Then x^°^ = Axf^ + (1 — A) X2°^ G Xj°\ for 0 < A < 1, since is a

convex set. Let and x^ be optimal solutions to problem LSD P-SUBCj) when

x(°) equals xf\ xP, and x^°^ respectively. Then

A£; (xf^) + (1 - A) 4 (xf) = Ac'(^')x?^ + (1 - A)

= AxP -f (1 — A) x^''^

< = 4 (xf) .

Where the inequality above is justified by [Ax^''^ -1- (1 — A) Xj^^j G X^-'^

sible to LSD P-SUB(j) since ^ convex set, but [Axp^ -I- (1 — A) x^''^] is not

necessarily an optimal solution to problem LSD P-SUBO). n

51

Chapter 3 Decomposition of Linear Programs

Proposition 2 For j e J, let e and assume isfinite and let be a

corresponding optimal solution to problem LSD D-SUB(j) [3.7]. Then the affine function

[3.8]

is a support of £j (x(°)). .

Proof By strong duality, (x(°^) = (x(°)). By assump

tion and Proposition 1, (x^°)) is finite for all x(°) e Since is feasible but not

necessarily optimal to problem LSD D-SUBO) for all x(°) G xf\ weak duality guarantees

that

(bO-) - > 4 (x(°)) Vx(°) G Xf .■

Proposition 3 Forj G J, assume 4 (x(°)) isfinite on Xf\ Then 4 (x(°)) is a concave
polyhedral function.

Proof There are only a finite number of supports of type [3.8] since there are only a finite

number of that are solutions to problem LSD D-SUB(j) [3.7] since each such

corresponds to a basis of -I], where -I is the negative identity matrix of

coefficients for a vector of slack variables added to constraints (3.7b), and A'^^d) has only

a finite number of square non-singular submatrices. By Proposition 2, there is a support

of type [3.8] for all x(°) G xf\ Furthermore, there is a support of type [3.8] that meets

52

Chapter 3 Decomposition of Linear Programs

at for all x(°) G ySp. Therefore, the lower envelope of this finite number of

affine supports coincides with (x^®^). n

3.1.3 LSD Relaxed Formulation

The iterative LSD(multicut) algorithm is based upon solving a relaxed formulation of the

LSD Master-Sub formulation, problems [3.5] and [3.6]. Formulation LSD Relaxed con

sists of the phase one relaxed master problem, LSD RMP:

= max UjOj (3.9a)
j=i

s.t. < bW, (3.9b)
(x(o),0,) € g, j = (3.9c)

x(°) > 0, (3.9d)
Oj free, j = l,...,J, (3.9e)

[3.9]

and the phase two subproblems LSD P-SUB(j), j = 1,... ,J, problems [3.6]. The sets of

cuts, Cj, j = 1,..., J, in constraints (3.9c) contain optimality and feasibility cuts defined

such that if j = 0, J, are feasible to the LSD Master-Sub formulation and thus to

the original problem LBALP [3.4], then there exist 6j,j = 1,..., J, such that x^^^ and 6j

are feasible to the LSD Relaxed formulation with z* < zub = -f 9j. Each Cj,

j G J, is initially empty and may be augmented with an additional cut during each iteration

of the algorithm. Coefficient Uj, j G J, in objective function (3.9a) is 0 if the corresponding

cut set Cj contains no optimality cuts or 1 otherwise.

Let 2^ub (x(°)) = represent the contribution of x(°) to the LSD RMP ob

jective function value. Then each primary type of cut, optimality and feasibility, consists

of two subtypes depending upon the finiteness of (x^®^). The four types of cuts are

53

Chapter 3 Decomposition of Linear Programs

termed feasibility (unbounded), optimality (unbounded), feasibility (finite), and optimality

(finite). The applicability and derivation of each cut is discussed below.

1. ZuB = oo: the simplex algorithm returns an extreme point, and direction,

which determine a ray, x^°^ = x^®^ + Ax^^^ A > 0, along which

increases monotonically with A. (Note that one of the finite subtypes of cuts discussed

in item 2 below is made if LSD RMP is unbounded due solely to 6j = oo for one or

more j G J.) Then for some j G J and with x(°) = solve the modified phase two

subproblem LSD PM-SUB(j):

£PA(x(0)) _ c'io)y^{3) _(_ (c'(°)Xd°^)A
s.t. + (A(^''°)xi°^)A < - A(^'°)x(°), rg

xW >0,
A > 0,

which corresponds to the modified dual phase two subproblem LSD DM-SUB(j):

£dA(x(o)) _ (3.11a)
s.t. A!{j.3)T^{3) > (3.11b)

(A(AO)x(o))';r(j) > c'(°)xj°\ (3.11c)
7r(j) > 0. (3.lid)

Note that if x^^^ is feasible to problem LSD P-SUB(j) [3.6] for some x(°\ then it is

feasible to LSD PM-SUB(j) and ii^(x(°^) < £^^(x(°)) since x^°^ is an ascent direction

for LSD RMP [3.9] implying that (c'(°)xd°^)A > 0 for A > 0. The type of cut to be

added to Cj depends upon the solution to problem LSD PM-SUBO) as follows:

(a) LSD PM-SUBO) is infeasible feasibility (unbounded) cut: with x(°) = x(°\

solve the following simplex phase one type problem based upon problem LSD

54

Chapter 3 Decomposition of Linear Programs

PM-SUBO'):

W/(x(0))= min I'v
s.t. Iv - > A(^''°)x(o) -

xW > 0,
A > 0,
V > 0,

[3.12]

which is always feasible and bounded and corresponds to the dual problem:

yy^^(x(o)) = max (3.13a)
s.t. A;{hi)5i3) > 0, (3.13b)

(Aao)x(o))'^0) > 0, (3.13c) [3.13]
< 1, (3.13d)

6^^ > 0.

Let the optimal solutions be Vu, yi^\ Au, and and note that

W/ (xW) = I'vu = (A(^'°)xW - > 0

since problem LSD PM-SUB(j) [3.10] is infeasible. The above inequality and

constraints (3.13c) imply that for A > 0,

(A(AO)x(o) _ },U)ys^) + A(A(^''°)xS°>)'(jW = - b(^))'<5?

= (A(^'°)xf -

> 0,

so that the feasibility (unbounded) cut

(jf ̂A(-''°))x(°) < b'(^')<5{f'^ [3.14]

55

Chapter 3 Decomposition of Linear Programs

will not admit the ray + Axj°\ A > 0, but will not exclude any

x(°) € since = 0 > (A^AOl^CO) _ because <5^/^ is feasible

but not necessarily optimum to problem [3.13] for all x(°) G

(b) LSD PM-SUB(j) is feasible and bounded => optimality (unbounded)

cut; let the optimal solutions to problems LSD PM-SUB(j) [3.10] and

LSD DM-SlJB(j) [3.11] be Xu\ Au, and Strong duality implies that

iif (x(°)) = (x(°)) = (b^J) - A(^'°)x(o))'7ri/l Then, by weak duality,

4^(x^°)) < - A(A0)x(0))'7rg)

for all x^°) € X^°^ since is feasible but not necessarily optimal to problem LSD

DM-SUB(j) for all x(°^. Furthermore, constraints (3.5c) of problem LSD Master

[3.5] indicate that 9j < £^(x(°)) for any (x^°), 9j) feasible to LSD Master implying

that

9j< (b(^'^-A(^'V))'7ri/')

for any (x(°\ feasible to LSD Master. Therefore, the optimality (unbounded)

cut

(7rf'^A(^'°^)x(°) + 9j < [3.15]

will not admit x^°^ = x(°) + AXd°\ A > 0, for arbitrarily large A since constraints

(3.11c) imply that A(A(A0)x^°^)'7ru^ > Ac'^°)x^°^ which increases monotonically

with A since x^^^ is an ascent direction for problem LSD RMP [3.9]. Moreover,

cut [3.15] will not exclude any point, say (x^°\9j^, that is a part of the optimal

56

Chapter 3 Decomposition of Linear Programs

solution to problem LSD Master since 6 and 6j < implying that:

Oj < 4(5c(°)) < £f (5^°)) = (x(°)) < - A(^''°)x(°))'7ri/'\

by strong duality and ttu^ feasible but not necessarily optimum to LSD DM-SUB(j)

forallx(°^

(c) LSD PM-SUB(j) is feasible and unbounded: no cuts are added to Cj.

2. £xjb (x(°)) < oo: let the optimal solutions to problem LSD RMP [3.9] be x(°) and 6j,

j = 1,... ,J. For some j e J, solve problem LSD P-SUBO) [3.6] and the type of cut

to add to Cj depends upon the solution as follows:

(a) LSD P-SUB(j) is infeasible feasibility (finite) cut: with x^®^ = solve the

following simplex phase one type problem based upon problem LSD P-SUB(y):

Wj (xW) = min I'v
s.t. Iv —

x(^') > 0,
[3.16]

V > 0,

[3.17]

which is always feasible and bounded and corresponds to the dual problem:

VVj (x(°l) = max (3.17a)
s.t. > 0, (3.17b)

6^^ < 1, (3.17c)
6'^^ > 0. (3.17d)

Let the optimal solutions be Vb, x^-'^ and and note that

Wj (x(°)) = 1'vb = (a(^''°)s(°) - > 0

since problem LSD P-SUBO) is infeasible. Therefore, the feasibility (finite) cut

((5?^A(^'°))x(°^ < [3.18]

57

Chapter 3 Decorhposition of Linear Programs

will not admit the point but will not exclude any e since

Wj (x(°^) = 0 > because is feasible but not necessarily

optimum to problem [3.17] for all x(°) G

(b) LSD P-SUB(j) is feasible and bounded with < 9j => optimality (finite)

cut: let the optimal solution to the corresponding dual problem LSD D-SUBfj) [3.7]

be ttb \ Strong duality implies that £^(x('^^) = £^(x(°^) = Trg

Therefore, by strong duality and Proposition 1,

£j(x(°)) = £j(x(°)) < (b(^) -

for all x(°) G since ttP is feasible but not necessarily optimum to problem LSD

D-SUB(j) for all x(°^. Furthermore, constraints (3.5c) of problem LSD Master [3.5]

indicate that 9j < il^(x^°)) for any (x(°\ %) feasible to LSD Master implying that

for any (x(°\ 9j) feasible to LSD Master. Therefore, the optimality (finite) cut

(7r?'^A(^''°^)x^°^ + 9j < [3.19]

will not admit the point (x^°\9j) since 9j > £^(x(°^) but will not exclude any

(x^°\9j) feasible to LSD Master.

(c) LSD P-SUB(j) is feasible and bounded with £^(x(°)) = 9j or LSD P-SUB(j) is

feasible and unbounded: no cuts are added to Cj.

58

Chapter 3 Decomposition of Linear Programs

3.1.4 Algorithm LSD(multicut)

Algorithm LSD(multicut) is composed of two procedures - initialize and optimize. The

initialization procedure adds at least one optimality (finite) type cut [3.19] to each Q,

j = 1,..., J, if the procedure determines that the original problem LBALP [3.4] has a

feasible and finite optimal solution. The optimization procedure finds an e-optimal solu

tion to problem LBALP given that the initialization procedure determined that a finite op

timal solution exists. The algorithm is applied to the LSD Relaxed formulation, problems

[3.9] and [3.6], and is detailed below followed by the descriptions for the two contained

procedures. Complementary flowcharts for the algorithm and procedures follow the de

tailed descriptions. Note that the algorithm assumes a predefined nonnegative value for the

relative difference, e, between the upper and lower bounds on the solution, z*, to problem

LBALP.

Algorithm LSD(multlcut)

Step 0: Initialize the following parameters:

G 0,
^LB —oo,

■f- GO

Uj <- 0, j = 1, ..,J,
Oj oo, 3 = 1,
Q ■(— 0, 3 = 1, ..,J,

iTO) 0, 3 = 1,
0, 3 = 1, . . ,J,

feasible <— true,
finite true.
solved <— false.

Go to Step 1.

59

Chapter 3 Decomposition of Linear Programs

Step 1: Execute Procedure LSD(inuIticut)-Initialize. If feasible = false: stop with an

infeasible problem LBALP [3.4]; else if finite = false; stop with unbounded problem

LBALP; else if solved = true: stop with e-optimal solution to problem LBALP; else

go to Step 2.

Step 2: Execute Procedure LSD(miilticut)-Optimize. Stop with e-optimal solution to

problem LBALP [3.4].

Parameter G is the algorithm iteration counter and is increased by one in the two

referenced procedures with each attempt to solve problem LSD RMP [3.9]. The best

(greatest) lower and best (least) upper bounds on the value, z*, of problem LBALP found

through the current iteration are recorded by 2:lb and Zub respectively. For j =

LSD RMP objective function coefficient Uj for variable 6j is initially set to zero and 6j

to positive infinity to represent the optimum value of 9j. Coefficient uj, j € J, is set to

one in procedure LSD(muIticut)-InitiaIize when the first optimality cut is added to cut

set Cj after which 9j may acquire a finite value. Parameters and record the

number of optimality cuts and feasibility cuts respectively that are in C^, j = 1,..., J, at

the conclusion of each iteration. Logical parameters feasible, finite, and solved indicate

the retum status of procedure LSD(muIticut)-Initialize as follows:

/easible: state false indicates that no feasible solution exists for problem LBALP [3.4]

while state true indicates that there is a feasible solution;

60

Chapter 3 Decomposition of Linear Programs

finite: meaningful only when feasible = true and state false means problem LBALP

is unbounded while state true indicates that a bounded solution exists;

solved: meaningful only when feasible = finite = true and state true indicates that an

e-optimal solution to problem LBALP has been determined while state false indicates

that procedure LSD(multicut)-Optiinize should be executed to obtain an e-optimal so

lution.

Procedure LSD(multicut)-Initialize

Step 1: Set C? -f— G -f 1 and solve problem LSD RMP [3.9]. If LSD RMP is infeasible,

set feasible false and return to algorithm; else, LSD RMP is feasible, let optimal

solution be and 6k, k = 1,..., J, (where = oo if Cfe contains no optimahty cuts

and represents an ascent ray if 2ub(x(°)) = oo) and go to Step 2.

Step 2: Set j -s— 0, bound •«— 0, and cuts ■«— 0. If 2ub(5c(°)) = oo (LSD RMP is

unbounded regardless of 6j, j = 1, .. ., J, values), let ascent ray be =

x^°^ + AXd°^, A > 0, set £fc(x^°^) —oo, k =, 1, . . . , J, and go to Step 3; else,
.2ub(x(°^) < oo, go to Step 4.

Step 3: If j = J, go to Step 5. Set j j -h 1 and solve problem LSD PM-SUB(j)

[3.10] with x(°) = x(°\ If LSD PM-SUB(j) is infeasible, go to Substep 3a; else if

LSD PM-SUB(j) is feasible and bounded, go to Substep 3b; else, LSD PM-SUB(j) is

feasible and unbounded, repeat Step 3.

61

Chapter 3 Decomposition of Linear Programs

Substep 3a: Set cuts <— cuts + 1, solve simplex phase one type problem [3.12]

with and let the optimal dual multipliers be Construct feasibility

(unbounded) type cut [3.14] and set

Cj ̂ Q n I x^o) < } .

Set ^ + 1 and return to Step 3.

Substep 3b: Set cwts f— cuts + 1 and let optimal multipliers to LSD PM-SUB(;)

be TTu ̂ Construct optimality (unbounded) type cut [3.15] and set

Q ̂ Cy n {(x(°), 6j) I x(°) + }.

If Uj = 0, set Uj <— 1. Set <— + 1 and retum to Step 3.

Step 4: If j = J, go to Step 5. Set j j + 1 and solve problem LSD P-SlJB(j)

[3.6] with x(°) = x(°). If LSD P-SUBO) is infeasible, go to Substep 4a; else if LSD

P-SIIB(7) is feasible and bounded with £^(x(°^) < 6j, go to Substep 4b; else, LSD

P-SUB(y) is feasible and either £^(x(°)) = dj or iij(x(°^) = oo, go to Substep 4c.

Substep 4a: Set cuts -i— cuts +1 and recall that X!;j(x^^^) = —oo by definition since

X(j)(x(°)) = 0. Solve simplex phase one type problem [3.16] with x(°) = x(°^and let

optimal multiphers be dg \ Construct feasibility (finite) type cut [3.18] and set

Cj ̂ Cj n I x(°^ < } .

Set ■«— + 1 and retum to Step 4.

62

Chapter 3 Decomposition of Linear Programs

Substep 4b: Let the optimal dual multipliers to LSD P-SUB(7) be \ Construct

optimality (finite) type cut [3.19] and set

Q ̂ Q n { Oj) I + ej < } .

If Uj = 0, set Uj 1. Set bound <— hound + 1. Set •<— + 1 and return to

Step 4.

Substep 4c: If £y(x(°)) = 9j < oo, set hound hound + 1. Return to Step 4.

Step 5: Set ̂ ub Sub(x^°^) + Oj. If cuts = 0 and hound < J, set finite ■<—

false and return to algorithm; else if hound = J, go to Step 6; else return to Step 1.

Step 6: Set Zlb^ -f— 2^ub(x(°)) + J2j=i Set Zlb -f— max ^lb^) • If
(zuB — ^lb) < ^lbI e, set solved true. Retum to algorithm.

Procedure LSD(multicut)-Initialize determines if problem LBALP [3.4] is infeasi-

ble (feasible = false in Step 1) or unbounded (finite = false in Step 5) or, otherwise, is

feasible and bounded (feasible = finite = tme). Two courses of action based upon the

state of parameter solved are possible for the last case (feasible and bounded):

solved = true: an e-optimal solution to problem LBALP has been determined and the

algorithm should be terminated, otherwise,

solved = false: procedure LSD(muIticut)-Optimize should be executed to determine

an e-optimal solution to problem LBALP - each cut set Cj,j = I, . . . , J, will contain

at least one optimality (finite) type cut [3.19].

63

Chapter 3 Decomposition of Linear Programs

Note that Step 3 will never be executed after the first execution of Step 4. Step 4 is called,

say at iteration G, when a feasible solution to LSD RMP [3.9] has been found such that

oo. Executing Step 3 after this event, G > G, would imply a ray of unbounded

increase for over a feasible region no larger than the one existing at iteration G

which is not possible.

Procedure LSD(niulticut)-Optiinize

Step 1: Set G ■«— G + 1 and solve problem LSD RMP [3.9]. Let optimal solution be

and 9j, j = 1, . . . , J. Set Zub ■«— i^, j -f— 0 and cuts <— 0 and go to Step 2.
1

Step 2: If j = J, go to Step 3. Set j j + l and solve problem LSD P-SUBO") [3.6]

with x(°) = x^°). If LSD P-SXJBO) is infeasible, go to Substep 2a; else if < 9j,

go to Substep 2b; else, LSD P-SUB(j) is feasible with = 9j, repeat Step 2.

Substep 2a: Set cuts cuts + 1. Solve simplex phase 1 type problem [3.16] and

let optimal multipliers be Construct feasibility (finite) type cut [3.18] and set

Q ^ Q n I x(°) < }.
Set ■(— + 1 and return to Step 2.

Substep 2b: Let optimal multipliers to LSD P-SUB(7) be . Construct optimality

(finite) type cut [3.19] and set

C■3 q n {(x™, %) I (>r?'A»)) x<°) + 9, < b'«,r« }
Set <— + 1 and return to Step 2.

64

Chapter 3 Decomposition of Linear Programs

Step 3: If cuts = 0: set <- ^ub - Et=i and then set Zlb

max ̂ZiB, Zlb^^ . If (zub — ̂lb) < \zlb \ e, return to algorithm; else return to Step 1.

Procedure LSD(multicut)-Optimize is executed only if procedure LSD(multicut)-

Initialize determines that problem LBALP [3.4] is feasible and bounded. Therefore, pro

cedure LSD(muIticut)-Optimize obtains a bounded solution to the LSD Relaxed formu

lation, problems [3.9] and [3.6], at each iteration and must return a e-optimal solution for

problem LBALP as shown in the next subsection.

Note that the termination test, (^ub - -^lb) < I^lbI e, in Step 6 of procedure

LSD(muIticut)-Initialize and Step 3 of procedure LSD(multicut)-Optimize must be mod

ified if there is a possibility that .z* = 0. Any such modification (e.g., terminate if z^b > -eo

and Zub < where cq is the smallest positive real number possible on the computer) is as

sumed and is not discussed further.

Flowcharts of algorithm LSD(multicut) and the initialization and optimization pro

cedures are at Figures 3.2-3.4.

3.1.5 Finite Termination of Algorithm LSD(muIticut)

Algorithm LSD(multicut) will terminate in a finite number of iterations with either an

e-optimal solution to problem LBALP [3.4] or with an indication that problem LBALP

is infeasible or unbounded. The proof of finite termination relies upon Propositions 1-3

starting on page 50 and five additional properties of the algorithm and the underlying LSD

65

Chapter 3 Decomposition of Linear Programs

C <- 0

-US'-"

—J=I 1

J

O
•oj=i....y

feasible^ true

pniie^ true

solved 4— false

Execute

Procedure

LSD(multIcut)-lnitlalIze

Stop With
Infeasible

Problem
feasible = false Yes

Stop With
Unbounded

Problem
Yes finite false

solved = true

Execute

Procedure

LSD(multicut)-Optimlze

Yes

T
stop With
f-optimal

Solution

Figure 3.2: Algorithm LSD(multicut) Flowchart

66

Chapter 3 Decomposition of Linear Programs

Symbol A Implies
Algorithm

LSD(muIticut)

From

:(0) _ ,(?). .CO.iJO)
* ~ ~ *p

^^0

©
Solve LSD RMP

[3.9]
a*-G*i

<D7=7 Yes

—^ Feasible^feasible false 4*No
;<-y+l

Solve

LSDPM-SUB(7; [3.10]
Yes Wth

(0) „(0)
X = X Solve Problem [3.12]

With
LSD RMP Solution

;?(0) X
& 0 -*p

Add feasibility
(unbounded)
Cut [3.14]

cuts cuts + I

» <-0
Infeasible YesP

bound*-0

cuts <- 0

KC' *- x}''' + 1
Bounded

Yes

(04N
UB Add optimality

(unbounded)
Cut [3.15]

If Uj = 0,a: ♦-!Yes
cuts cuts +1

To
J^J+l
Solve

LSD P-SUB^; [3.6]
Wth

cuts = 0 &
finite 4Yes

Solve Problem [3.16]
With

bound < J

<p> -TO
X ~xbotfful <— bound + l solved 4- true

infeasible Yes^ Add feasibility (finite)
Cut [3.18]

Yes

Yes euls <— cuts * 1
boundsJ ^No

Yes

Add optimality (finite)
Cut [319]

^LBIS Uj = 0,ujYes

bound 4— bound +

Figure 3.3: Procedure LSD(multicut)-Initialize Flowchart

67

Chapter 3 Decomposition of Linear Programs

From Symbol A Implies
Algorithm

LSD(muttlcut)

Solve LSD RMP [3.9]
Solution:

&§

G<-G + l

-P

cuts *-0

Yes

No

y<-y+l

Solve
LSD P-SUB(];) [3.6]

With
m -m
X =x

Infeasible

(0

Yes

Add optimality (finite)
Cut [3.19]
U) U)

tr-K"' +1

Solve Problem [3.16]
With

Yes-^ Add feasibility (finite)
Cut [3.18]

cuts s- cuts + 1

kI'^ +1

cuts=0

Yes

«- ̂ UB -

No
Zjn <— max

Yes

To

Figure 3.4: Procedure LSD(muIticut)-Optimize Flowchart

68

Chapter 3 Decomposition of Linear Programs

Relaxed fonnulation. These five properties are stated below as Propositions 4-8 followed

by Proposition 9 formally stating the finite termination property.

First, problem LSD RMP [3.9] is rewritten by replacing each cut set Q, j = 1,..., J,

with an explicit listing of contained constraints and by superscribing the objective function

designator with the current algorithm LSD(muIticut) iteration index G. Let and

designate the numbers of optimality and feasibility cuts respectively at the conclu

sion of iteration G with = 0 for cut sets j = 1,..., J. Finite (B) and un

bounded (U) subscript identifiers are removed from the applicable dual multipliers. Then,

at LSD(multicut) iteration G > 1, LSD RMP(G) is:

= max 4- ^ Uj6j
s.t.

7r'«AW>x(°) + e, < b'Wir«, = 1. ■;
J — 1, J,

<5'0)A(i.o)x(o) < k =

x(°) > 0,
Oj free, j =

[3.20]

The dual to problem [3.20] will also be required in the proof of the first proposition below.

Let, and be the duals to the first, second, and third sets of constraints of

problem [3.20] respectively. The corresponding dual problem is then:

69

Chapter 3 Decomposition of Linear Programs

- Uj,

7r(0) > 0,

Vk^ > 0,

4'^ > 0,

iSf^=niin b'(o)7r(0) +
j=l k=l

+ E E
j=l fc=l

s.t. A'(°'0)7r(0) + E °E
j=i fc=i

+ E E > c(0),
'"i=l k=l

r-Cj.g-i) .
'O

E
fc=i

ttW > 0,
k = l,...,K(^'('-^\

j = l,...,J,
A = l,...,X'p-b

j=l,...,J.
[3.21]

Define a feasible iteration of algorithm LSD(miilticut) as one with an optimal so

lution to the current relaxed master problem, say and Denote the LSD Re

laxed formulation, problems LSD RMP(G) [3.20] and LSD P-SUBO) [3.6], at iteration

G of algorithm LSD(muIticut) as LSD Relaxed(G). Then, Propositions 4-9 formally state

properties of the LSD(multicut) algorithm and the LSD Relaxed formulation that were

implicitly assumed in the development of the algorithm.

Proposition 4 At any feasible iteration G ofalgorithm LSD(multicut) with Zuq <

00, at least one optimality cut constraint is tight in each Cj, j G J, that has >

1.

70

Chapter 3 Decomposition of Linear Programs

Proof Note that < oo when < oo since either Uj = 0 or Uj = 1 and

}{U,G-i) > j _ i j Therefore, for each i € J with > 1, the dual

problem [3.21] constraints

r-O.g-1)
0 / .V

E = 1.

> 0, k =

require at least one positive for 1 < k < By linear programming com-

plementary slackness conditions, the corresponding primal problem [3.20] optimality cut

constraint must be tight:

'0-)A(i.o)x(o.G) + MG) ̂ H

Proposition 5 At anyfeasible iteration G of algorithm LSD(muIticut), 9^^^ >

Vi = l,...,J.

Proof This is clearly true if Zub(x(°''^^) is unbounded since is set to nega

tive infinity for j = 1,..., J in Step 2 of procedure LSD(multicut)-Initialize - recall that

-2^ub(x(°^) is never unbounded in procedure LSD(muIticut)-Optimize. It is also true when

-2ub(x(°'^^) < oo and Uj = 0 for some j G J since = oo. Then for Zub(x(°''^)) < oo

and Uj = 1 for some j G J (which implies that > 1), assume by contradic

tion that 9^^^ < £j(x^°'^)). The assumption is obviously not valid if = 0

since £^(x(°''^^) = —oo by definition. Therefore, consider the case for a feasible (i.e.,

71

Chapter 3 Decomposition of Linear Programs

Xio) is not empty) problem LSD P-SUBO) [3.6] with optimal solution and

optimal dual multipliers The assumption and strong duality imply that

The corresponding optimality cuts of problem LSD RMP(G) [3.20],

7r'WA(i.o)x(o.G) _ ̂(G) < fc = 1,..

must also be satisfied. However, A: = 1,..., are feasible but not necessarily

optimal to problem LSD D-SUBO) [3.7] for all x^^^ G implying that

ef) < (b(i) - 7r(^'^) < - A(^''°)x(°'^))'Tri^), A; = 1,...,

which violates Proposition 4. Therefore, the assumption that 6^^^ < cannot be

valid. n

Proposition 6 At any iteration G, algorithm LSD(multicut) maintains a valid lower

bound, Zis, on the value, z*, of problem LBALP [3.4]. Moreover, zlb is the best (greatest)

\

lower boundfound by the algorithm through iteration G.

Proof The value Zlb is initially set to negative infinity and is changed thereafter to z[^ =

c'(0)x(°) + £P(x(0)) only when x^^') G xf\j = 0,...,J (i.e., x^^'^ j = 0,...,J, have

been found that are feasible to problem LBALP) with z[f' > zlb- n

72

Chapter 3 Decomposition of Linear Programs

Proposition 7 At any iteration G, algorithm LSD(multicut) maintains LSD Re-

laxed(G) as a relaxation of formulation LSD Master-Sub, problems [3.5] and [3.6], and

thus the original problem LBALP [3.4].

Proof Assume j = 0,..., J, and 6j,j = 1,..., J, are feasible to formulation LSD

Master-Sub. Then j = 1,..., J, are clearly feasible to formulation LSD Relaxed(G)

since the two formulations share the same phase two subproblems LSD P-SUBO) [3.6].

The point 6 in both formulations and x^®^ must satisfy any feasibility cuts,

A(i.o)x(o) < = 1,..., j = 1,..., J,

in LSD Relaxed(G) since these cuts were formed to admit only x(°^ such that

j E J, is not empty (i.e., problem LSD P-SUB(7) is feasible). Since the constraints (3.5c)

in problem LSD Master [3.5] require that?^ < £^(x(°)),; = 1,..., J, any optimality cuts

to LSD Relaxed(G),

must also be satisfied due to fc = 1,..., feasible but not necessarily optimal

to problem LSD D-SUB(j), implying that

< 4(5(0)) _ £D(~(o)) < _ A(i.o)x(o))'7r(f), k = l,..., j = 1,..., J.

Therefore, any x(^), j = 0,..., J, and 9j,j = 1,..., J, feasible to LSD Master-Sub is also

feasible to LSD Relaxed(G). Conversely, Proposition 5 indicates that x(^), j = 0,..., J,

and 9j,j = 1,..., J, feasible to LSD Relaxed(G) may not be feasible to LSD Master-Sub

73

Chapter 3 Decomposition of Linear Programs

since the latter requires that 9j < j = 1,..., J. Since algorithm LSD(muIticut)

replaces the value of problem LSD Relaxed(G), with

Proposition 5 also implies that zub > 2:*. Therefore, LSD Relaxed(G) is a relaxation

of LSD Master-Sub and thus the original problem LBALP [3.4] since the latter two are

equivalent. n

Proposition 8 The original problem LBALP [3.4] is infeasible or unbounded if and

only if algorithm LSD(muIticut) terminates with an indication that the problem is infeasi

ble or unbounded respectively.

Proof The algorithm terminates with an indication that the problem is unbounded only

when procedure LSD(muIticut)-InitiaIize finds x^\ j = 0,..., J, feasible to problem

LBALP such that is unbounded for at least one j G 0 n J. LSD(muIticut) termi

nates with an indication of infeasible only when problem LSD RMP(G) [3.20] is found to

be infeasible. The latter implies that problem LBALP is infeasible by Proposition 7. Con

versely, the algorithm terminates at iteration G with an e-optimal solution only if ̂lb > —00

and 2:ub < 00 indicating that x^-'), j = 0,..., J, feasible to problem LBALP have been

found with ̂ lb < 2* < Zub by Propositions 6 and 7. n

Proposition 9 Algorithm LSD(muIticut) terminates in a finite number of iterations

either with an indication that the original problem LBALP [3.4] is infeasible or unbounded

or with an e-optimal solution to problem LBALP given that problems LSD RMP(G) [3.20]

74 •

Chapter 3 Decomposition of Linear Programs

and LSD P-SUB(j) [3.6], j = 1,..., J, are not degenerate or that the simplex solver

prevents cycling.

Proof Cycling prevention and/or the absence of degeneracy insures that the solutions to

LSD RMP(G) and LSD P-SUB(j"), j = 1,..., J, will be obtained in a finite number of

simplex iterations at each iteration of algorithm LSD(multicut). Each and 5^^^ coef

ficient vector in the optimality and feasibility cuts corresponds to a basis of the coefficient

matrix (after adding columns to account for slack variables) of the appropriate problem

[3.6], [3.10], [3.12], or [3.16]. Since each of these matrices has a finite number of square

non-singular submatrices, there are a finite number of possible feasibility and optimality

cuts. No Tr^^^or will be generated more than once since any subsequent generation

would imply the admission of a solution from outside the current feasible region includ

ing the cut based upon the initial generation. Therefore, algorithm LSD(multicut) will

terminate in a finite number of iterations.

Assume that the algorithm does not terminate with an indication that the problem

is infeasible or unbounded implying that problem LBALP is feasible and bounded by

Proposition 8. The algorithm concludes each iteration, G, either by adding at least one

cut and starting the next iteration or by terminating with an e-optimal solution. There

fore, a sequence of non-increasing upper bounds are generated since the feasible region

for LSD Relaxed(G) is a subset of the feasible region for LSD Relaxed(C? — 1). As

sume that the last possible cut is added during iteration G. The algorithm will then gen-

75

Chapter 3 Decomposition of Linear Programs

erate LSD RMP(G + 1) solution with objective value =

c'(o)x(o.G+i) at iteration G +1. Each LSD P-SUBO) must be feasible with

£P ̂jj.(o,G+i)^ _ j = j J, due to the assumption that the last possible cut was

generated during the previous iteration implying that

Zlb = = ZUB.

j=l

Therefore, by Propositions 6-8, algorithm LSD(multicut) either determines that problem

LBALP is infeasible or unbounded or it generates a sequence of upper bounds and a se

quence of lower bounds that converge to an e-optimal solution of problem LBALP. n

3.2 Dantzig-Wolfe Decomposition

Applying L-Shaped decomposition to a given LP is equivalent to applying Dantzig-Wolfe

decomposition (DWD) to the dual of that LP. Thus, LSD (DWD) can be interpreted as the

dual method of DWD (LSD). The duality of the two decomposition procedures has been

known since the inception of LSD (see Van Slyke and Wets [196, page 653]). For instance,

the application of LSD to problem [3.1] is equivalent to the application of DWD to the dual

problem:

z* = min -h (3.22a)
s.t. A'(°'°)7r(°) + > c(°), (3.22b)

A'(i'i)7r(i) > (3-22c) ^ ^ ^
T^(J) > 0, J=0,1. (3.22d)

Constraints (3.22b) are known as linking constraints and constraints (3.22c) are termed

linked constraints. Dantzig-Wolfe decomposition, like L-Shaped decomposition, is an iter-

76

Chapter 3 Decomposition of Linear Programs

ative two-phase algorithm that replaces the original problem with a restricted master prob

lem (RMP) - subproblem formulation with a subproblem for each set of linked constraints.

Solutions to the restricted master problem (phase one) and the subproblems (phase two)

are obtained during each iteration of the algorithm. These results are then analyzed to de

termine if an e-optimal solution to the original problem has been found. If an e-optimal

solution is not available, the solutions to the subproblems are used to modify the restricted

master problem by adding one or more activities (columns - as opposed to cuts or con

straints in LSD) to the restricted master problem and a new iteration is executed. The pro

cedure continues until an e-optimal solution to the original problem is found or the original

problem is determined to be infeasible or unbounded.

Derivations for DWD for the case of one set of linked constraints similar to problem

[3.22] are given in Bazaraa, Jarvis, and Sherali [6, Chapter 7], Chvatal [34, Chapter 26], and

Nazareth [157, Chapter 12]. That version is temied the DWD(single-activity) algorithm

since the single set of linked constraints induces the addition of at most one activity to the

restricted master problem during any iteration. Dantzig and Wolfe [49] and Dantzig [43,

Chapter 23] provide a derivation for the case of two sets of linked constraints but with at

most one new activity added at each iteration. The algorithm developed in the remainder

of this section is termed the DWD(multiactivities) algorithm since it applies to the case of

an arbitrary (though finite) number of sets of linked constraints and allows the addition of a

new activity for each set of linked constraints. Dantzig and Wolfe [50] also give a version

77

Chapter 3 Decomposition of Linear Programs

of the algorithm for multiple sets of linked constraints, but that version is significantly less

detailed than the one presented below.

3.2.1 DWD for Multiple Sets of Linked Constraints

Algorithm DWD(multiactivities) is developed to obtain an e-optimal solution to the dual

of problem LBALP [3.4]. The dual problem UBALP:

2*= min b'^TrW + . (3.23a)
j=i ,

s.t. (3.23b)
j=i

> cW), j = (3.23c)
ttW > 0, j = (3.23d)

[3.23]

has multiple sets of linked constraints, constraints (3.23c). The matrices of coefficients in

constraints (3.23b-c) form the upper block-angular structure depicted in Figure 3.5.

Define the feasibility sets

n(i) = I > 0 } , j = 1,..., J,

and note that problem UBALP [3.23] is infeasible if = 0 for any j G J = {1,..., J}.

Moreover, for each j G J such that 0, polyhedral theory (e.g., see Theorem 2.1 of

Bazaraa, Jarvis, and Sherali [6, page 69] and/or Theorem 1.3-2 of Nazareth [157, page 10])

assures that:

1. has a nonempty, finite set of extreme points, say , A: = 1,...,

78

Chapter 3 Decomposition of Linear Programs

A'W) • • • A'0.0) • • AV-1.0) A'WO)

A'Oj)

A'W-i.J-1)

Figure 3.5: Upper Block-Angular Structure

79

Chapter 3 Decomposition of Linear Programs

2. has a finite set (which is empty if and only if is bounded) of extreme directions,

say fc = 1,..., K'f\ and

3. e if and only if

K^i)

^{3) = ̂ ^0)^0)
k=l k=l

J^U)

E-)? = 1.
fc=i

7)® > =

Therefore, assuming that 7^ 0 for j = 1,..., J, problem UBALP can be refor

mulated as the equivalent master problem, DWD Master:

J

z*= imiL b'(0)7r(°) + ^
j=l k=l

J

+ EE
i=l k=l

s.t. A'(0-0)7r(°) + E E
j=l k=l

J ^d^
-b E E > c(0),

j=l k=l

K^)

E# = 1. ; =
k=l

TrW > 0,

1?' > 0.

4=1

3 -t, • • •)
[3.24]

80

Chapter 3 Decomposition of Linear Programs

where the first set of inequality constraints are known as base constraints and the equality

constraints are known as convexity constraints.

Solving problem DWD Master directly is generally not practicable since the extreme

points and extreme directions are probably not known beforehand and since the numbers

of extreme points, K^\ and extreme directions, Kf\ for any j € J are usually very large.

However, assume that there are known subsets of extreme points, ..., and

extreme directions, ..., ̂^1) with > 1 and > 0, for j = 1,..., J.

Then the restricted master problem, DWD RMP:

j

= min
j=l k=l

7

+ EE
j=l A:=l

J

s.t. A'(0'0)7r(0) + E E
i=i fc=i

J

E — 1,
k=l

7r(o) > 0,

> 0,

> 0,

+ E E
j=l k=l

...

j 1,..., t7,

k = L...,K<f\
J = 1,. J,

k = l,...,K'f\ n

[3.25]

clearly provides an upper bound on DWD Master (i.e., z^ > z*) since any optimal solu

tion for DWD RMP is feasible but not necessarily optimum to DWD Master. Optimality

of DWD RMP requires that, for j = 1,..., J, the reduced costs for all optimum extreme

81

A(o,o)x(o) < b(°).

<

^?'^A(^-'0)x(0) <

x(o) > 0,
free.

Chapter 3 Decomposition of Linear Programs

point convexity parameters, say k = 1,..., and all optimum extreme direction

parameters, say k = 1,..., be nonnegative. Let and 9j, j = 1,..., J,

be the optimum dual multipliers to DWD RMP and thus an optimal solution to the dual

problem:

4b = max c'(0)x(0) +.
i=i'

' S.t. _

A (■i.O),JO) , o ^ k =
j = [3.26]

k = U.. .,Ki'\
j =

J = 1, . . . , J.

Nonnegativity of reduced costs at optimality of DWD RMP [3.25] implies that for j =

- 6j = -9j >0,k=l, . . , ,

b'0>S®-?'®A0.»>x(°) = (bM-AO.°)x(''))'af >0,ife = l A®.
[3.27]

Moreover, the optimal solution to DWD RMP is optimum to DWD Master only if the re

duced costs associated with all extreme points and extreme directions of j = 1, . . . , J,

are nonnegative. The latter condition can be verified by solving the phase two subproblems,

DWDD-SUB0),J = 1, . . . ,J:

2)°(x(°)) = min
s.t. > c(^), [3.28]

> 0,

82

Chapter 3 Decomposition of Linear Programs

which correspond to the dual phase two subproblems, DWD P-SUBO), j = 1, -.., J:

= max

s.t. [3.29]

x^^') > 0.

Since j = 1,..., J, are assumed to be nonempty, DWD D-SUB(j) either has a finite

optimal solution at an extreme point of or is unbounded along an extreme direction of

nw.

A bounded DWD D-SUB(;) for some j 6 J with 2)°(x(°^) - < 0 implies an

extreme point solution, say , such that

Note that ^ since the extreme points in the subset are included

in DWD RMP and each is associated with a nonnegative reduced cost as shown in the

first relation of [3.27]. Therefore, is included in the subset of extreme points for

and a new activity, say (referred to as an extreme point activity), is eligible
/fcp + J.

to enter the basis of problem DWD RMP [3.25] for each j e J such that problem DWD

D-SUBO") [3.28] is bounded with S)9(x(°)) - Oj < 0. If DWD D-SUB(j) is bounded

with — ̂ = 0 for _; = 1,..., J, then zub = -s* and the current optimal solution to

DWD RMP is also optimum to problem DWD Master [3.24] and thus the original problem

UBALP [3.23].

83

Chapter 3 Decomposition of Linear Programs

An unbounded DWD D-SUBO) for some j € J implies a feasible solution, say

such that

(bO") - A4i)+i < 0 V A > A

~ ~(j) (~{j) ~ij) 1for some A > 0. Note that ^ |^i ,... since the extreme directions in

the subset are included in DWD RMP and each is associated with a nonnegative reduced

~(j)
cost as shown in the second relation of [3.27]. Therefore, ̂j-o),, is included in the subset

of extreme directions for and a new activity, say (referred to as an extreme

direction activity), is eligible to enter the basis of problem DWD RMP [3.25] for each

j e ̂ such that problem DWD D-SUB(j) [3.28] is unbounded.

Problems DWD RMP and DWD D-SUB(j), j = 1,..., J, also provide a valid lower

bound on any feasible original problem UBALP [3.23] as shown by the following propo

sition.

Proposition 10 Assume problem UBALP [3.23] is feasible and let and 9j, j =

1,... ,J, be optimal solutions to the dual problem [3.26] of the current DWD RMP [3.25].

Then, z* > where:

Zlb - •s^ub + XI [®i ~ %
j=i

84

Chapter 3 Decomposition of Linear Programs

Proof Let j = 0,..., J, be any feasible solution to problem UBALP. Then,

j G J, feasible but not necessarily optimum to DWD D-SlIB(j) [3.28] implies that:

> 2)?(x(°^), j = 1,..., J

+ S)5'(x(o)), j = l,...,J

J

> S'(o) f2 ^ ©^(x^o)).
j=i i=i i=i

Constraints (3.23b) of problem UBALP imply that:

^ > cW - A'(0'0)^(°^
i=i

=» ^ b'(j)7f^^') > c'(°)xW - 5c'(°^A'(°'°)7f(°) + 3:)?(xW)
i=i j=i

(A(°'0)xW)' 7f^°) + x: > c'WX(O) ̂ £ SD(x(0)).
i=i j=i

The objective function and first set of constraints, A(°'°)x(°) < b(°), to the dual problem

[3.26] to the current DWD RMP then imply that:

' ' [3-30]
j=i i=i

b'(0)^(0) + >:^ + Y^ [©.^(xW) - Oj

Therefore, since inequality [3.30] is valid for all j = 0,..., J, feasible to prob

lem UBALP and since the left-hand-side of inequality [3.30] is the objective function of

UBALP, inequality [3.30] implies that:

^" > ^ fD?(xm) - Si
j=l n

[3.31]

where by strong duality.

85

Chapter 3 Decomposition of Linear Programs

3.2.2 Modifying DWD RMP With Additional Activities

The basics of modifying the DWD RMP by adding activities at the conclusion of each iter

ation of the DWD algorithm are discussed above. However, the above discussion implicitly

assumed that the current DWD RMP has a feasible and finite optimal solution. Details of

the DWD RMP modification are now presented including the cases of an infeasible or an

unbounded restricted master problem.

Let and be the numbers of known extreme points, ..., |,
and extreme directions, ..., j-j respectively for j = 1,..., J, at the
conclusion of iteration G. Denote the restricted master problem at the beginning of iteration

G as DWD RMP(G) and reformulate DWD RMP(G) as:

b'^TT^ +
j=l k=l

.J irO-.c-i)

+ E E b'WiW,,®
i=i fc=i

J -"-p

s.t. A'(0'°)7r(0) + E E
i=l A:=l

+ E E > c(0)^
j=i fc=i

•^P

fc=l

= Uj,

7r(») > 0,

> 0,

vf > 0,

j = 1,..., J,

= 1,..., d

j,= 1,..., J.
[3.32]

86

Chapter 3 Decomposition of Linear Programs

with corresponding dual problem:

P(G)
2ub =

S.t.

c'(0)x(0) +
i=i

A(0,0)x(0)

^pAO-.0)x(0) +

^'0)aO-.o)x(o)

< b(0),

9 n < A: = 1,...,^3 — " ' j = 1,..., J,

< 1) • • •) -^d^' \
x(°) > 0,
9j free, j = 1,..., J.

[3.33]

The numbers of extreme points and extreme directions are all initially 0, =

0, j = 1,..., J, and either or may be increased by 1 at the conclusion

of iteration G. The right-hand-sides of the convexity constraints, t)^ = Uj,

j = 1,..., J, in DWD RMP(G) are also all initially 0 and Uj is changed to 1 when the first

extreme point is added to the subset of extreme points j E

Let a new extreme point activity, , j £ created at the conclusion of
Kp ' +1

iteration G be denoted by the vector

1,

K,-0,G-1)+1

of its objective function coefficient (first element) and technology matrix coefficients (re

maining elements). Similarly, let the vector

87

Chapter 3 Decomposition of Linear Programs

0

denote a new extreme direction activity, j ̂ J. created at the conclusion of

iteration G.

Each of the two primary types of activities, extreme point and extreme direction, used

to modify the restricted master problem has two subtypes depending upon the feasibility

of DWD RMP(G). The four types of activities are termed extreme point (infeasible),

extreme direction (infeasible), extreme point (feasible), and extreme direction (feasible).

The applicability and derivation of each activity is discussed below:

1. DWD RMP((?) is infeasible: formulate the following simplex phase one type problem

DWD M-RMP(G) based upon the current restricted master problem:

88

Chapter 3 Decomposition of Linear Programs

M(G)
2ub ' = nun V

s.t. V

+
j=i

+

J Kj-'"-"
+ E E

i=i fc=i

+ E E
j=l k=l

Wj + E 4'''
fc=l

V > 0,
Wj > 0,
7r(0) > 0,

nf > 0, k = l,..

> 0,k = l,.. Ki.G-i)

> cW,

= 1, j= 1,-

II

j = L-

II

..,J,
[3.34]

which is always feasible and bounded. Fonnulate the corresponding subproblems,

DWD DM-SUBO), J = 1,..., J:

2)DM(x(0)) =
s.t.

7r(^') > 0,
[3.35]

where is the vector of dual muitipliers to the base constraints in problem DWD

M-RMP((?) [3.34]. Solve problem DWD M-RMP(G) and note that > 0 since

DWD RMP(G) is infeasible. Let the optimal solution be:

v(^),
(G)

7r(0.G)

= = l j,

89

Chapter 3 Decomposition of Linear Programs

with optimal dual multipliers and j = 1,..., J, to the base and convexity

constraints respectively. Then, for some j e J, solve problem DWD DM-SUBO")

[3.35] with and the type of activity to add depends upon the solution:

(a) DWD DM-SUB(j) is infeasible stop - problem UBALP [3.23] is infeasible

since = 0.

(b) DWD DM-SUBO) is feasible and bounded =^> let optimal solution be where

k = + 1 and add new activity based upon:

0 => no new activity is

added since all extreme points and extreme directions have nonnegative reduced

costs.

ii. < 0 => extreme point

(infeasible) activity: create new extreme point activity, r)y\ with coefficients

[3.36]

and set = k.

(c) DWD DM-SUB(_f) is feasible and unbounded extreme direction (infeasible)

activity: let descent direction be 6^^ where k = + 1 and create new

90

Chapter 3 Decomposition of Linear Programs

extreme direction activity, with coefficients

b'0-)<5W

[3.37]

and set = k.

2. DWD RMP(G) is feasible and bounded: Let the optimal solution be:

TT
(0,G)

Vk'^, k=l,.
V
O'.G) u _, k = l,.

• 3 9 J ■*■3 • • • 3T^ihG-l) - I J

with optimal dual multipliers and j = 1, . . . , J, to the base and convexity

constraints respectively. Then, for some j G J, solve problem DWD D-SUB(j) [3.28]

with and the type of activity to add depends upon the solution:

(a) DWD D-SUB(j) is infeasible =4> stop - problem UBALP [3.23] is infeasible since

n(^') = 0.

(b) DWD D-SUB(j) is feasible and bounded ==^ let optimal solution be where

k = + 1 and add new activity based upon:

i. S)?(x(°'®)) - 9^^ = > 0 no new activity is
added since all extreme points and extreme directions have nonnegative reduced

costs.

91

Chapter 3 Decomposition of Linear Programs

ii. — 6^^^ < 0 =^> extreme point

(feasible) activity: create new extreme point activity, 'if^\ with coefficients

A'(i.o)^O') [3.38]

and set = k.

(c) DWD D-SUBO) is feasible and unbounded => extreme direction (feasible)

activity: let descent direction be where k = + 1 and create new

extreme direction activity, with coefficients

b'W<5W

A'0'.o)<5jf') [3.39]

and set = k.

3. DWD RMP(G) is feasible and unbounded: stop - problem UBALP [3.23] is

unbounded.

3.2.3 Algorithm DWD(muItiactivities)

Algorithm DWD(multiactivities) is composed of two procedures - initialize and optimize.

The initialization procedure adds at least one extreme point (feasible) type activity [3.38]

to the restricted master problem for each feasibility set j = 1..., J, if the procedure

determines that the original problem UBALP [3.23] has a feasible and finite optimal solu-

92

Chapter 3 Decomposition of Linear Programs

tion. The optimization procedure finds an e-optimal solution to problem UBALP given that

the initialization procedure determined that a finite optimal solution exists. The algorithm

is detailed below followed by the descriptions for the two contained procedures. Comple

mentary flowcharts for the algorithm and procedures follow the detailed descriptions. Note

that the algorithm assumes a predefined nonnegative value for the relative difference, e,

between the upper and lower bounds on the solution, z*, to problem UBALP.

Algorithm DWD(muItiactivities)

Step 0: Initialize the following parameters:

G <- 0,
Z-LB f- —oo,

■2^UB -t- oo

Uj <— 0,

rH
II

<- 0, 3 = L-
<— 0, .7 = 1, •

feasible •(- true,
finite f- true.
solved false.

Go to Step 1.

Step 1: Execute Procedure DWD(multiactivities)-InitiaIize. If feasible = false: stop

with an infeasible problem UBALP [3.23]; else if finite = false: stop with an un

bounded problem UBALP; else if solved = true: stop with e-optimal solution to prob

lem UBALP; else go to Step 2.

Step 2: Execute Procedure DWD(multiactivities)-Optimize. Stop with e-optimal so

lution to problem UBALP.

93

Chapter 3 Decomposition of Linear Programs

Parameter G is the algorithm iteration counter and is increased by one in the two

referenced procedures at the beginning of each attempt to solve the current restricted mas

ter problem. The best (greatest) lower and best (least) upper bounds on the value, z*, of

problem UBALP found through the current iteration are recorded by 2lb and Zub respec

tively. For j = 1,..., J, the right-hand-side, uj, of the corresponding DWD RMP(G)

[3.32] convexity constraint is initially set to zero. The value, Uj, is set to one in procedure

DWD(multiactivities)-lnitialize when the first extreme point activity for j G J, is

added to the restricted master problem. Parameters and are set to zero to in

dicate that there are no extreme point or extreme direction activities in the initial restricted

master problem DWD RMP(l). Logical parameters feasible, finite, and solved indicate

the return status of procedure DWD(multiactiyities)-lnitialize as follows:

feasible: state false indicates that no feasible solution exists for problem UBALP while

state true indicates that there is a feasible solution;

finite: meaningful only when feasible = true and state false means problem UBALP

is unbounded while state true indicates that a bounded solution exists;

solved: meaningful only when feasible = finite = true and state true indicates that

an e-optimal solution to problem UBALP has been determined while state false indi

cates that procedure DWD(multiactivities)-Optimize should be executed to obtain an

e-optimal solution.

Procedure DWD(multiactivities)-InitiaIize

94

Chapter 3 Decomposition of Linear Programs

Step 1: Set G ■«— G + 1, solve problem DWD M-RMP(G) [3.34] and let the optimum

solution be:

v(G),
wf\ i =

with optimal dual multipliers and j = 1, . . . , J, to the base and convexity

constraints respectively. If > 0 (at least one artificial variable is positive) go to

Step 2; else, = 0 (a feasible solution to problem DWD RMP(G) [3.32] has been

found), go to Step 5.

Step 2: Set j +— 0, acts -f— J and go to Step 3.

Step 3; If j = J, go to Step 4. Set j ■(— ji + 1, solve modified subproblem DWD DM-

SUB(j) [3.35] with If DWD DM-SUB(j) is infeasible, set feasible <—

false and return to algorithm; else, if DWD DM-SUBO) is feasible and bounded, set

k = + 1, let optimal solution be and go to Substep 3a; else, DWD DM-

SUBO) is feasible and unbounded, set k = + 1, let descent direction be

and go to Substep 3b.

Substep 3a: If > 0, set acts <-

acts — 1 and return to Step 3; else, 2)™(x^°''^)) — 9^^^ = — —
9f> < 0, an extreme point of has been found with negative reduced cost, so
create new extreme point (infeasible) type activity, r]^\ with coefficients [3.36], set

^ and set Uj •(— 1 if = 1 and return to Step 3.

95

Chapter 3 Decomposition of Linear Programs

Substep 3b: An extreme direction of has been found with negative reduced

cost, so create new extreme direction (infeasible) type activity, with coefficients

[3.37], set = k and return to Step 3.

Step 4: If acts = 0, set feasible false and return to algorithm; else, acts > 0, retum

to Step 1.

Step 5: Set as follows:

i=i fc=i i=i ifc=i

If = -oo, set bound -f— false and retum to algorithm; else, z^^^^ > -oo, set

•«— j ̂ 0, acts *- 0 and go to Step 7.

Step 6: Set C; ̂ G + 1, solve problem DWD RMP(G) [3.32]. If = -oo, set

bound ̂ false and retum to algorithm; else, > -oo, set Zub <- and let the

optimum solution be:

7r(o.G),

with optimal dual multipliers and df\ j = 1,..., J, to the base and convexity

constraints respectively. Set j <— 0, acts 0 and go to Step 7.

Step 7: If j = J, go to Step 8. Set j j + 1, solve subproblem DWD D-SUB(j)

[3.28] with xW = x(0'®). If DWD D-SUBfj') is bounded, set k =

optimal solution be and go to Substep 7a; else, DWD D-SUBO) is unbounded, set

k = + 1, let descent direction be 6^^ and go to Substep 7b.

96

Chapter 3 Decomposition of Linear Programs

Substep 7a: Set acts -f— acts+1.

6^^^ = 0, repeat Step 7; else, <

0, an extreme point of has been found with negative reduced cost, so create new

extreme point (feasible) type activity, 'fl\ with coefficients [3.38], set K^''^ = k

and return to Step 7.

Substep 7b: An extreme direction of has been found with negative reduced cost,

so create new extreme direction (feasible) type activity, with coefficients [3.39],

set = k and return to Step 7.

andStep 8: If acts < J, return to Step 6. Set = zxjb + J2j=i

then set zisb ̂ max ̂^lb,z[s^^. If (zub — Zlb) < ̂lbI e, set solved ■«— true. Retum to
algorithm.

Procedure DWD(multiactiyities)-Initialize determines, if problem UBALP [3.23]

infeasible (feasible = false in Step 3 or Step 4) or unbounded (bound = false in Step 5

or 6) or, otherwise, is feasible and bounded (feasible = bound = true). Two courses of

action based upon the state of parameter solved are possible for the last case (feasible and

bounded):

solved = true: an e-optimal solution to problem UBALP has been determined and the

algorithm should be terminated, otherwise.

97

Chapter 3 Decomposition of Linear Programs

solved = false: procedure DWD(multiactivities)-Optimize should be executed to de

termine an e-optimal solution to problem UBALP - each feasibility set j =

1,..., J, will be represented by at least one extreme point (feasible) type activity [3.38].

Note that Steps 1-5 are not executed after the first execution of Step 7 and Steps 6-8 are

executed until problem IJBALP is determined to be feasible and bounded (i.e., a finite

lower bound is established in Step 8). Problems DWD D-SUB(j), j = 1,..., J, are known

to be feasible upon the first entry to Step 7 since the feasible regions to problems DWD

D-SlJB(j) [3.28] and DWD DM-SUBO) [3.35] are the same (i.e., for j = 1,..., J.

In addition, for j = 1,..., J, is represented by at least one extreme point (infeasible)

type activity [3.36] at the first entry to Step 7 (since artificial variable = 0) implying

that Uj = 1 and that 2)° — 9^^^ < 0 in Substep 7a.

Procedure DWD(multiactivities)-Optiiraze

Step 1: Set G G + 1 and solve problem DWD RMP(G) [3.32]. Let the optimum

solution be:

7r(o.G),

with optimal dual multipliers and 9f\j = 1,..., J, to the base and convexity

constraints respectively. Set •«— j <— 0, acts •«— 0 and go to Step 2.

Step 2: If j = J, go to Step 3. Set j j 1, solve subproblem DWD D-SIIB(7)

[3.28] with x(o) = x(0'^). If DWD D-SUBO") is bounded, set k = -F 1, let

98

Chapter 3 Decomposition of Linear Programs

optimal solution be and go to Substep 2a; else, DWD D-SUB^) is unbounded, set

k = + 1, let descent direction be <5^^^ and go to Substep 2b.

Substep 2a: Set acts -f— acts+1.

0^9^ = 0, repeat Step 2; else, 2)° — — <

0, an extreme point of 11^^ has been found with negative reduced cost, so create new

extreme point (feasible) type activity, with coefficients [3.38], set = k

and return to Step 2.

Substep 2b: An extreme direction of has been found with negative reduced cost,

so create new extreme direction (feasible) type activity, with coefficients [3.39],

set = k and return Step 2.

Step 3: If acts = J: set <— z^b + !Cj=i and then set Zjsb ■*—

max ^2:lb, z[b^^ . If (zub — Zlb) < I-^lbI e, return to algorithm; else return to Step 1.
Procedure DWD(multiactivities)-Optiniize is executed only if procedure

DWD(muItiactivities)-Initialize determines that problem UBALP [3.23] is feasible and

bounded. Therefore, problem DWD RMP(G) [3.32] is feasible and bounded and problems

DWD D-SUB(j) [3.28], j = 1, . . . , J, are feasible at every iteration G of the optimization

procedure. This procedure must then return an e-optimal solution for problem UBALP as

shown in the next subsection.

Flowcharts of algorithm DWD(muItiactivities) and the initialization and optimiza

tion procedures are at Figures 3.6-3.8.

99

Chapter 3 Decomposition of Linear Programs

'LB

'UB^

\
feasible^ troe

Jinite^ true

solved <— false

Execute

Procedure

DWD(multiactivities)-lnitialize

Stop With
Infeasible

Problem
feasible = false Yes

Stop With
Unbounded

Problem
Yes finite false

solved = true

Execute
Procedure

DWD(multiactivities)-Optimize

Yes

Stop With
f-optiinal

Solution

Figure 3.6: Algorithm DWD(multiactmties) Flowchart

100

Chapter 3 Decomposition of Linear Programs

Add

extreme direction

(infeaslble)
^tiwty (3.37)

Set: k = +\

DWDDM-SUB(j)

Extreme I^iecticxi:

Symbol A Implies
Algorithm

DWO(nfiultiactivit]es)

/Trorn\

rw

C*-0+l

Solve

DWD M-RMP(G) [3.34]

Solution

„(0.C]

=1 J

4'-<^Kk=1
Dual Multipliers

(.0,0) ̂
X &

No>

Yes

acts

G> ;=/Yes

Sove

DWD DM-SUB(/; [3.35]
With

X = X

To

acts

Yes

feasible*:^ false

See
To Next

Page

bound <— false

D(G)
^UB

D(G)
UB

Yes* Jir-O

acts <- 0

D(C) . h-C)) J».0) , ̂ P y Uj)IjUW)ZJJB =0 It +2, 2 D''lli 'rt
J=1 k=l

M.G-1)

+ S 2 b
■1=1 k=]

feasible*- false

No

(G)3^MBounded Yes

Add extreme point
(infeaslble)

Actixrity [3.36]

KlZ-'^Kk

Set: k = +1

DWDDM-SUB(;)

Optimum SoIutioD: v!jp

Figure 3.7: Procedure DWD(multiactivities)-Iiiitialize Flowchart
(continued on next page)

101

Chapter 3 Decomposition of Linear Programs

Symbol A Implies
Algorithm

DWO{fnuitiactlvItles)

Solve

DWD mPiG)
[3.32]

acisKJ

To

D(G
bound <— false CO)UB

^LB ^UB

riB*
(G)

^LB max
LB

. Solution

>.G) n

J

Dual Multipliers

y
Yes

D(0)
solved= true^UB ̂ ̂uB

; <-0

Also The Connector For

The Previous Page Add extreme point
(feasible)

' Activity [3.381

(J.C)
a*

Solve

DWD D-SUBO; [3.28]
W^th DWDD.SUB(;}

Optimum Solution: 7^/^

Add

extreme direction

(feasible)
Actiwty [3.39]

X = X

Set Jt = A:y^'+i
Bounded Yes^ acts <- acts +1UWDJ>SUB(j)

Extrone Direction:

Figure 3.7: (continued) Procedure DWD(multiactivities)-Initialize Flowchart

102

Chapter 3 Decomposition of Linear Programs

Symbol A Implies
Algorithm

DWD(inultiactivities}

Add

extreme direction

(feasible)
Activity [3.39]

4""-'

DWDI>5tJB(;)

Extreme Direction:

G<-G+l

Solve

DWD RMP(G)
[3.32]

Solution

•'k p

.j=i y

Dual Multipliers

= l /

D(G)
2UB

fjrr*

Yes->^^

Solve
DWD D-SUBO; [3.28]

With
(0) (o.c)

acts<J

^LB <-

^ 1^.

Yes

Yes

Add extreme point
(feasible)

Activity [3.38]

Set: k = +1

DWDD.SUB(j)

Optimum Solution:

GBounded >-YesP aeis <- acts +1

Figure 3.8: Procedure DWD(muItiactivities)-Optimize Flowchart

103

Chapter 3 Decomposition of Linear Programs

3.2.4 Finite Termination of Algorithm DWD(multiactivities)

Algorithm DWD(multiactivities) will terminate in a finite number of iterations either with

an e-optimal solution to problem UBALP [3.23] or with an indication that problem UBALP

is infeasible or unbounded. The finite termination property is stated formally after the

following proposition concerning the feasibility and finiteness of the original problem.

Proposition 11 The original problem UBALP [3.23] is infeasible or unbounded if and

only if algorithm DWD(muItiactivities) terminates with an indication that the problem is

infeasible or unbounded respectively.

Proof The algorithm terminates at iteration G with an indication that the problem is un

bounded only if procedure DWD(multiactivities)-InitiaIize (Step 5 or 6) finds and

extreme points /c = 1,..., and extreme directions \ k — l,...,

of the feasibility sets j = 1,..., J, that are feasible to problem DWD RMP(G) [3.32]

such that DWD RMP(G) is unbounded. Problem DWD Master [3.24], and thus the equiv

alent problem UBALP [3.23], is then also unbounded since any solution feasible to DWD

RMP((j) is feasible to DWD Master. DWD(multiactivities) terminates at iteration G

with an indication of infeasibility only if the initialization procedure determines infeasibil-

ity at Step 3 or Step 4. This occurs at Step 3 only if = 0 for some j G J indicating

that DWD Master and UBALP are infeasible. Infeasibility is indicated at Step 4 only if

the optimal solution to the simplex phase one type problem DWD M-RMP(G) [3.34] has

104

Chapter 3 Decomposition of Linear Programs

at least one positive artificial variable and no extreme points or extreme directions of

j = 1,..., J, are eligible to enter the basis implying that DWD Master, and thus UBALP,

is infeasible. Conversely, the algorithm terminates at iteration G with an e-optimal solu

tion only if the initialization procedure (Step 5 or 6) or the optimization procedure (Step

1) finds 7r(°^ and extreme points k = 1,..., and extreme directions 6^(',

k = 1,..., of the feasibility sets V\^^\ j = 1,..., J, that are optimum to prob

lem DWD RMP(G) with — oo < Zlb < ■^ub < oo. This implies that DWD Master, and

thus UBALP, is feasible and bounded with z* < Zus since any optimal solution to DWD

RMP(G) is feasible but not necessarily optimum to DWD Master. ■

Proposition 12 Algorithm DWD(muItiactivities) terminates in a finite number of it

erations either with an indication that the original problem UBALP [3.23] is infeasible or

unbounded or with an e-optimal solution to problem UBALP given that problems DWD

RMP [3.25] (or DWD RMP(G) [3.32]), DWD M-RMP [3.34], DWD P-SUBO) [3.28],

and DWD PM-SUB(j) [3.35], j = 1, . . . , J, are not degenerate or that the simplex solver

prevents cycling.

Proof Cycling prevention and/or the absence of degeneracy insures that the solutions to

each applicable LP will be obtained in a finite number of simplex iterations at each iteration

of algorithm DWD(muItiactivities). Since there are a finite number of extreme points and

extreme directions for each feasibility set j = 1,. . ., J, there are a finite number of

possible extreme point and extreme direction activities that can be added to the restricted

105

Chapter 3 Decomposition of Linear Programs

master problem. No extreme point, 'k2\ or extreme direction, will be generated more

than once since those already generated are in the restricted master problem corresponding

to activities with nonnegative reduced costs. Therefore, algorithm DWD(multiactivities)

will terminate in a finite number of iterations.

Assume that the algorithm does not terminate with an indication that problem UBALP

is infeasible or unbounded implying that the problem is feasible and bounded by Proposi

tion 11. The algorithm concludes each iteration, G, either by adding at least one activity

and starting the next iteration or by terminating with an e-optimal solution. Therefore, a se

quence of non-increasing upper bounds are generated since ah optimal solution for DWD

RMP(C? — 1) is feasible but not necessarily optimum to DWD RMP(G). Assume that the

last possible activity is added during iteration G. Problem DWD RMP(G +1) is then prob

lem DWD Master [3.24] so that the solution at iteration G -b 1 is the solution to problem

UBALP. Furthermore, since optimality implies nonnegative reduced costs, the solutions of

problems DWD D-SUB(j) [3.28], j = 1,... ,J, must yield

2)D = 0

where x^^-'^+^and j = 1,..., J, are the optimal dual multipliers to the base and con

vexity constraints respectively of problem DWD RMP(G 4-1) [3.32]. Proposition 10 then

implies that 2lb = ̂ub at iteration G -b 1. Therefore, algorithm DWD(multiactivities) ei

ther determines that problem UBALP is infeasible or unbounded or it generates a sequence

106

Chapter 3 Decomposition of Linear Programs

of upper bounds and a sequence of lower bounds that converge to an e-optimal solution of

problem UBALP. n

3.3 Implementation Issues

Several implementation issues need to be addressed when considering the use of one of the

decomposition techniques examined in this chapter. Seven of the more important issues

are:

1. the decision to use decomposition on an LP or to solve the LP in its natural, or grand

LP (GLP), formulation;

2. the choice between the Dantzig-Wolfe and L-Shaped decomposition algorithms;

3. the possible availability of more efficient initialization procedures for the decomposition

algorithms;

4. the number of subproblems to employ in the decomposition procedure;

5. the removal of cuts (LSD) that are not tight or of extreme points/directions (DWD) that

are not basic - referred to simply as removing inactive additions',

6. the use of a greedy approach, when there are multiple subproblems, in which only a

subset of subproblems are solved during some iterations;

7. the accuracy of the solution, i.e., find an exact, e = 0, or approximate, e > 0, solution.

107

Chapter 3 Decomposition of Linear Programs

Each of the above issues is discussed in a problematic framework below. Empirical

information is given on each issue in Chapter 6 with the application of decomposition to a

stochastic programming formulation of a market investment model.

3.3.1 Grand LP Versus Decomposition

Decomposition may be used on any linear program although such use may require extensive

array partitioning and/or artificial variables and constraints (e.g., see Chvatal [34, page 425]

and Nazareth [157, Section 12.1]). Problem decomposition is most effective when the LP

naturally exhibits, or is easily transformed to, one of the special, lower or upper, block-

angular structures illustrated by problems LBALP [3.4] and UBALP [3.23]. Solving the

problem as a GLP or by using decomposition is not always a clear-cut decision even for

linear programs having a special structure. The method that provides a solution with the

available resources in the shortest period of time is generally the desired option. However,

the problem (or some instances of the problem) may be so large that a grand LP approach is

not practicable. Decomposition procedures are particularly attractive in such cases because

they generally require significantly less of the active memory of a computer than do GLP

solution approaches. A major disadvantage of decomposition methods is that they usually

require a significant amount of computer programming especially considering that they are

most effective when tailored to a specific problem or class of problems. This disadvantage

may be outweighed by the possible greater efficiency of decomposition methods especially

if problem instances must be frequently solved over an extended period of time.

108

Chapter 3 Decomposition of Linear Programs

The option of using either or both the grand LP method and decomposition proce

dures for a given problem or problem class may be desirable for several reasons, including:

1. one approach may be more efficient for a particular range of problem sizes while the

other approach is more effective for problems outside that range;

2. multiple solutions for the same problem obtained with different methods provide

valuable code debugging and validity verification information; and

3. there may not be enough prior problem-specific information on solution times

and memory requirements to make an educated judgement concerning procedural

efficiencies.

3.3.2 Dantzig-Wolfe Versus L-Shaped Decomposition

The choice between DWD and LSD seems, at first glance, to be more of a straightforward

decision than does the choice between decomposition and a grand LP. L-Shaped decompo

sition appears to be the better choice given a problem with the lower block-angular struc

ture of problem LBALP [3.4]. Dantzig-Wolfe decomposition, on the other hand, seems to

be the obvious choice given the upper block-angular stnicture of problem UBALP [3.23].

However, the dualistic relationships between the two problems and between the two pro

cedures adds some uncertainty to the decision making process. It is not necessarily clear

beforehand that applying LSD (DWD) to problem LBALP (UBALP) would be more effi

cient than applying DWD (LSD) to the dual problem UBALP (LBALP). The decision is

109

Chapter 3 Decomposition of Linear Programs

often to choose the decomposition procedure that has the fewest number of rows in the ini

tial RMP (e.g., see Birge and Louveaux [16, page 385] and [17, pages 176 and 243]). For

instance, apply LSD to problem LBALP if matrix in problems [3.4] and [3.23] has

more columns than rows; otherwise, apply DWD to problem TJBALP.

L-Shaped decomposition is generally used for stochastic linear programs because the

two-period problem with a discrete probability distribution has a lower block-angular struc-
t

ture and the desired results are the primial variables of this structure - see Birge [11, page

992] and Gassmann [83, page 408]. The preferred variables should not be a major consid

eration, however, if the LP solver in use gives ready access to both primal and dual vari

ables since the primal variables in one decomposition procedure are the dual variables in

the other procedure. This primal-dual relationship between the variables in the two proce

dures is obvious when the DWD restricted master problem and subproblems are compared

with the complementary LSD relaxed master problem and subproblems. The dual prob

lem [3.33] to problem DWD RMP(G) [3.32] is problem LSD RMP(G) [3.28] and the dual

problems [3.29] to problems DWD D-SUBO) [3.28] are problems LSD P-SUBO) [3.6],

7 = 1, n - •, J.

Note, however, that the two decomposition methods are theoretically indistinguish

able when applied to the same problem (primal formulation for one method and dual for

the other) if both the primal and dual simplex algorithms are available (see Birge and Lou

veaux [17, page 243]). For instance, solving the DWD restricted master problem with the

primal simplex algorithm should give the same results at each simplex iteration as solv-

110

Chapter 3 Decomposition of Linear Programs

ing the LSD relaxed master problem with the dual simplex algorithm. This equivalence

may not actually occur in practice due to particular implementations of the primal and dual

simplex algorithms by the LP solver in use. Empirical evidence that one decomposition

method may be more efficient than the other for a given class of problems even when both

simplex algorithms are available is given in Chapter 6. The time required to solve subprob-

lems is not a factor because both decomposition methods share the same subproblems in

practice - problems LSD D-SUB(j) [3.7] which are the same as problems DWD D-SUB^;)

[3.28],i = l,...,J.

3.3.3 Algorithm Initialization

The efficiency of either decomposition algorithm can be significantly increased if the need

to execute the corresponding initialization procedure can be eliminated. Each initialization

procedure has a two-fold purpose: to determine if the original problem is feasible and

bounded and to create at least one optimality (finite) cut (LSD) or extreme point (feasible)

activity (DWD) from each subproblem given bounded feasibility. The original problem

may be known, or easily determined, to be feasible and bounded. Decomposition can be

initiated in such cases by creating initial cuts/activities.

Assume that problem LBALP [3.4], for example, is known to be feasible and bounded.

Then it might be possible to initiate algorithm LSD(muIticut) in either of two ways. First,

upper bounds can be placed on each dj if scalar Mj are known for LSD P-SUBO) [3.6],

j = I,..., J, such that Sfj (x(°)) < Mj for all G x{,°^ implying that 9j < Mj.

Ill

Chapter 3 Decomposition of Linear Programs

Second, optimality (finite) cuts can be created for j = 1,..., J if some can

be determined such that < oo and problems LSD P-SUB(j) are feasible with

St] (xW) < oo. Algorithm LSD(multicut) can then begin in the optimization procedure.

Similar comments apply to problem UBALP [3.23] and algorithm DWD(multiactivities).

3.3.4 Number of Subproblems

Problems LBALP [3.4] and UBALP [3.23] can be solved by incorporating less than J

subproblems. For instance, define matrix and block-diagonal matrix as

A(i.i)A(i'O)

A(i.o) =

A(-^'O)

and = AO'.j)

and vectors and x^^^ as

- b(l) - - c(i) n - x(i) -

bw = bO-) , c(^) = qU) and x^^^ = xO)

Then problem LBALP can be reformulated as the L-Shaped problem:

z* — max -f

s.t. A(°'°)x(°) <

A(i.o)x(0) + A(i'i)x(i) < b(i),
x(°) > 0,
x(^) > 0,

with one set of linked variables, x^^^. Problem UBALP can be reformulated in a similar

way to a problem with only one set of linked constraints. The reformulated problems can

112

Chapter 3 Decomposition of Linear Programs

then be solved with one subproblem in each case. Note that the resulting subproblem, say

£P(x(°)) = max
s.t. < b(i)-A(i'0)x(0),

x(i) > 0,

using LSD as an example, is separable into the original subproblems LSD P-SUBO) [3.6],

y = 1,..., J. The effect of executing algorithm LSD(single-cut) on the reformulated prob

lem would then be similar to executing algorithm LSD(multicut) on problem LBALP but

creating one aggregated cut (either an optimality or a feasibility cut) at each iteration. In the

latter case, a feasibility cut is created if any subproblem is infeasible and all other subprob

lems are ignored; otherwise, all subproblems are feasible and the individual optimality cuts

are aggregated (summed) into one constraint with 9 replacing Clearly, problem

LBALP can be formulated as a problem with J subproblems where 1 < J < J. Similar

comments apply to problem UBALP and DWD.

Birge and Louveaux [16] and Gassmann [83] report mixed results between single-cut

and multicut LSD algorithms applied to relatively small (few thousand or less constraints

and variables) stochastic linear programs - some problems were solved faster with a single-

cut algorithm while a multicut algorithm worked faster on other problems. Results given

in Chapter 6 indicate that there may be an optimum number of subproblems for a multicut

algorithm applied to an appropriate class of problems (i.e., multiple sets of linked variables

or constraints).

113

Chapter 3 Decomposition of Linear Programs

3.3.5 Removing Inactive Additions

Murty [155] proved that optimality and feasibility cuts that are not tight can be removed

from the relaxed master problem at any iteration of the LSD algorithm. A similar result

holds for extreme points and extreme directions that are not in the basis of the restricted

master problem in DWD. Reducing the size of the RMP is an obvious advantage of re

moving inactive additions. A major disadvantage, however, is that removed cuts/activities

may be a part of the optimal solution and will need to be regenerated and reinserted into

the RMP. There is no known method for predicting which additions are required for opti

mality so that any removal scheme is likely to increase the number of iterations required

for convergence. Wittrock [207, page 83] proposes a procedure for removing an inactive

cut in LSD based upon the number of consecutive iterations for which the cut is not tight.

Removing inactive additions is not examined in detail due to reasons to be explained in

Chapter 6.

3.3.6 Greedy Algorithms

All subproblems do not need to be solved at each iteration of either decomposition algo-

rithm once the algorithm enters the applicable optimization procedure. Assume that only J,

1 < J < J, subproblems are solved at some iteration G > G where G is the index for the

last iteration of the applicable initialization procedure. The relaxed/restricted master prob

lem at iteration G+1, say RMP(G-l-l), contains the same cuts/activities present in RMP(G)

plus the additional J cuts/activities created at iteration G. Then an improved (in the ab-

114

Chapter 3 Decomposition of Linear Programs

sence of degeneracy) upper bound will be determined from the solution to RMP(G + 1)

since, for example, J activities with negative reduced costs at iteration G have been added

to the problem. Note, however, that a lower bound cannot be determined and used to up

date the best lower bound at any iteration in either algorithm unless all subproblems are

solved.

This idea is particularly appealing if some subproblems are simple (e.g., can be

solved without a simplex or other complex algorithm) while the others are hard (require

a complex algorithm). Simple subproblems are solved at every iteration to obtain im

proved upper bounds in a greedy manner. Hard subproblems are solved only intermittently

to update both bounds. Variations of this procedure are discussed in Chapter 6.

3.3.7 Solution Accuracy

Bazaraa, Jarvis, and Sherali [6, Section 7.1] and Nazareth [157, Section 12.2-2] indicate

that decomposition algorithms often converge fairly rapidly to a neighborhood of an op

timum solution but then require a substantial number of iterations to isolate the solution.

Results are presented in Chapter 6 showing the time required for convergence as a function

of the relative difference, e, between the lower and upper bounds.

115

Chapter 4
Decomposition of Stochastic Linear Programs

This chapter describes the application of the decomposition techniques discussed in

the previous chapter to stochastic linear programs as defined in Chapter 2. Application

of Dantzig-Wolfe and L-Shaped decomposition to two-period, multi-period, and block-

separable problems are covered in the first three sections below. Implementation strategies

for DWD and LSD are considered in the fourth section. A third decomposition technique,

referred to as myopic decomposition, is introduced in the fifth section. Stochastic data

storage and retrieval is the topic of the sixth and final section.

4.1 Two-Period Problems

Two-period stochastic linear programs have a problem structure that is ideal for the appli

cation of DWD or LSD. Each second period node in the SLP is complementary to a phase

two subproblem in either decomposition method whereas data at the first period node forms

the RMP for either method. Therefore the RMP can be augmented during each algorithm

iteration with a cut (LSD) or extreme point/direction activity (DWD) for each node in the

second period or with aggregated cuts/activities for selected node groupings. This symme

try between DWD and LSD and two-period stochastic linear programs is a primary reason

that the two-period problem is the most studied version of stochastic programs.

116

Chapter 4 Decomposition of Stochastic Linear Programs

4.2 Multi-Period Problems - Nested Decomposition

The most common solution procedures for multi-period stochastic linear programs are

based upon the structure of the corresponding decision tree. Each node in periods be

fore the last can be visualized as the root or anchor node for a unique two-period problem

where each post first-period problem appears to be nested within the probleni at the par

ent node. Figure 4.1 demonstrates this concept on a four-period binary outcomes decision

tree. The view from node (1,1) = [] inside the first period problem box shows two macro-

nodes represented by the second period problem boxes - one for each possible first period

outcome. A similar view exists at each node in periods two and three. Therefore the over

all multi-period problem can be treated conceptually as a sequence of nested two-period

problems.

The nested two-period problem concept can be translated into decomposition proce

dures appropriately named nested decomposition. Dantzig and Wolfe [49, page 110] coined

the term nested to describe their original outline of this technique. Dantzig [43, Section

23-4] subsequently gave a more detailed description of nested decomposition based upon

DWD. Other early work using DWD was performed by Glassey [90] and Ho and Manne

[102]. Nested decomposition algorithms using LSD are given in Birge [11], Birge, Dono-

hue, Holmes, and Svintsitski [14], Birge and Louveaux [17, Section 7.1], Gassmann [82],

[83], [84], and Wittrock [207].

117

Chapter 4 Decomposition of Stochastic Linear Programs

First Period Problem

Second Period Problem
Third Period Problem

[1.1] n

2:

Second Period Problem

Third Period Problem

[2.2] ^
^1

[1.1.1]

Third Period Problem
[1.2,1]

[1.2] -ty
[1.2.2]

2^ ^4 J

Third Period Problem
[2.1.1]

[2.1] ^\5y

[2,1.2]

2^
V® J

[2.2.1]

©
[2.2.2]

©

Figure 4.1: Four-Period Binary Outcomes Decision Tree - Nested Two-Period Problems

118

Chapter 4 Decomposition of Stochastic Linear Programs

The formulations for the relaxed/restricted master problems and subproblems used in

nested decomposition are given below followed by detailed descriptions of the applicable

cuts and extreme points/directions. This section concludes with an examination of the

procedures employed by nested decomposition algorithms.

4.2.1 RMP/SUB Formulations

Figure 4.1 suggests that nested decomposition will involve a series of RMP and SUB prob

lems. The data for the first period node inside the first period problem box form the initial

RMP for the overall problem. Data for the eight fourth period nodes are used for the pair

of initial subproblems for each of the four third period nodes. Nodes in the intermediate

second and third periods are then used to form problems that share both responsibilities -

as a subproblem of the parent node in the previous period and as a relaxed/restricted mas

ter problem for child nodes in the next period. An intermediate t-period node acting as a

SUB receives solution information from its parent node and returns cuts/activities infor

mation to the parent. Conversely, an intermediate i-period node acting as a RMP passes

solution information to its child nodes and receives cuts/activities information from the

children. Problems at the nodes in intermediate periods are then referred to as RMP-SUB

problems. The first period node acts only as a RMP passing solution information to and re

ceiving cuts/activities information from its child nodes. A terminal period node performs

only the SUB function receiving solution information from its parent node and passing

119

Chapter 4 Decomposition of Stochastic Linear Programs

cuts/activities information to the parent. Figure 4.2 illustrates this work flow for a generic

multi-period problem.

Formulations for the RMP/SUB problems are developed for LSD using the primal

multi-period problem defined in Chapter 2. Complementary formulations for DWD of the

dual problem are defined at each step. These formulations are based upon representing

the nodal value functions (xW«-i) [2.10] on page 39 for i = 2,..., T - 1 with the

equivalent forms:

£jWt max -1- ^ ̂blt+i (4.1a)
it=i

s.t. wWtxW' < bW'-BWtxWt-i, (4.1b)

-Ql'Ui (xHt) + ̂Wt+i < , 0, /, = 1,..., Lt, (4.1c)

xl'lt > 0, (4. Id)

free, lt = l,...,Lt. (4.1e)
[4.1]

Constraints (4.1c) are then replaced by a set of optimality and feasibility cuts for each child

node in period i -|-1 in order to define the approximate nodal value function, (xt"'«-i),

t = 2,..., r - 1, for problem LSD RMP-SUB([*]t):

120

Chapter 4 Decomposition of Stochastic Linear Programs

RMP

SUB RMP

ti
i

SUB

P

RMP

r
n

ti
i

SUB

P

RMP

SUB

Figure 4.2: Nested Decomposition Work Flow - First Period RMP Final Period SUB

121

Chapter 4 Decomposition of Stochastic Linear Programs

£['lt (xl'lt-i) = pW'-i max ^
it=i

s.t. wWtxWt < bWt-BW'xW'-i,

'[•l£+i-g[.]j_i_jx[«]t ̂ A: = 1,..., Ki ,
— ' 7 1 7*fci — i, . . . ,

(jJ'l'+iB^'+ixW' < , k = L- - -,Kl ,K — ZiC ' 7 1 T
It — i, . . . , Lit,

xW' > 0,

0'*''+! free, lt = l,...,Lt.
[4.2]

Coefficient vectors, and and right-hand-sides, and the op-

timality and feasibility cuts are defined in the following two subsections to insure that

QWt (xWt-i) < £Wt (xWt-i).

The overall relaxed master problem at the first period node, based upon the deter

ministic equivalent problem PMPDEP [2.11] on page 39 and referred to as LSD R]VIP([]),

is:

122

Chapter 4 Decomposition of Stochastic Linear Programs

= max c't'x'l +
ll=l

s.t. < b'l,

h = 1,. n n ,Li,

4'l=Bl-I=xli < b'^\ k = l
tl — i, . . . ,

xtl > 0,

^Wsfree, li = l,...,Li.

[4.3]

Subproblems at all nodes in the terminal period, LSD SUB([«]y), are simply the final period

nodal value functions [2.9] on page 38 reproduced below for convenience:

ICHr (xWr-i) =p-*^~^max
s.t. , [4.4]

xWt > 0,

with function identifier replaced by £1*1 t-.

Restricted master problems and subproblems for DWD are the duals to the comple

mentary problems above. The dual of problem LSD RMP([]) [4.3] is the overall restricted

123

Chapter 4 Decomposition of Stochastic Linear Programs

master problem, DWD RMP([]):

= min bll^n + g + EE 4^'^^
Zl=l k=l /l=l k=l

•)2

It. Avn + E + E ̂E B'W2jW2^;H2 >^.[1,
.[•12

E
Zi=l fc=l ;i=l k=i

Kl[•)2

E = 1, =
fc=i

ttH > 0,

rtf' > 0, /i = 1,..., Li,

> 0, i = i
ii — i,...

[4.5]

Let the dual multipliers to the base constraints (the first set above) at any node [•]j be x'*!'
I

and the dual multipliers to the convexity constraints (the second set) at that node be

/t = 1,..., Lt. The duals to problems LSD RMP-SUB([«]^) [4.2] at nodes in intermediate

periods, 2 < i t — 1, are then problems DWD RMP-SUB([*]():

124

Chapter 4 Decomposition of Stochastic Linear Programs

U K\I*lt+i2)Ht '(xW'-i) = min (b^t - + g
! it=i fc=i

+ E E
lt=l k=l

L ^

s.t. W'W^TrWt + E E B'W'+i7r["''+^r7jr^'+^
■it+i

/t=i k=i

Lt

+ E E > cWs
lt=l k=l

KWt+1

A:=l

TT^t > 0,

[.w.>0 k = i,. . . ,K^;
" - lt = l, . . . ,Lt,

„[•]«> 0,

Wt+1

u

[4.6]

and the duals to problems LSD SUB([*]2,) [4.4] at nodes in the terminal period are then

problems DWD SUB([*]y):

! . ' s.t. "VVWrTrWr > cWtj
ttWt > 0.

[4.7]

Procedures to determine the optimality cuts (extreme point activities) and feasibility
i

cuts (extreme direction activities) are described in the following two subsections.

125

i Chapter 4 Decomposition of Stochastic Linear Programs

4.2.2 Optimality Cuts - Extreme Point Activities

Derivations are given for the optimality cuts of L-Shaped decomposition of the primal

problem with the corresponding translation to extreme point activities for Dantzig-Wolfe

decomposition of the dual problem. Recall that the RMP is augmented with a new optimal-
j

ity cut whenever a subproblem is solved to optimality. Assume that problem LSD RMP-

SUB([*]j) [4.2] with at a node in an intermediate period, 2 < f < T — 1,
I

is solved at some LSD iteration. Then the vector of coefficients, , and the right-
I ̂

hand-side.6 *1' [.It \, for the new optimality cut for the RMP at the parent node in period

t-1 must be determined. Since problem LSD RMP-SUB([®]^) has an optimal solution,
I . •

the corresponding dual problem DWD RMP-SUB([«]j) [4.6] also has an optimal solution.

Let

^ n n n j-^2 h = ̂ -i-t,

1

be the optimal solution to the dual problem. Then, by strong duality,

fiW. (xM.-.) -pi;!;,-
Lt

'It+l

(bM.-BH.xM.-.)#K+
it=l kt=l

+ E E

t+i

it=i kt=\

«+i

126

Chapter 4 Decomposition of Stochastic Linear Programs
I

I

Since the optimal dual solutions above are feasible but not necessarily optimum to problem

DWD R]VpP-SUB([»]j) for any weak duality ensures that

Lt K\•It+i(bWt _ + g
it=i kt=\ ' '

Lt ^2
[•lt+1

lt=l kt=l
+ £ E

Set + 1, let k = and let

I '^k -yit-x

Vkt — Plt-1 Pkt ' Kt — , It — L,... ,Lt,
. Wi+i — ̂Ht-1Ht+i ^ 1 i^Wt+i / -t r
^kt — Plt-1 ^kt ' Kt — t, • • • , ■K-2 j It — L, . . . ,Lt.

!

i

Then 0^*'' ^ (x'"''-i) < (x'*l«-i) implies the optimality
^ ^Wt+i ^ ^

j lt=l kt=l lt=l kt=l
The light-liand-side of the above cut is the right-hand-side of the new optimality

Pit-i~

' cut

Lt

cut at the

parent nodd in period f - 1 for problem LSD RMP-SUB([*]j_j) [4.2] if 3 < f < T - 1 or

problem LSD RMP([]) [4.3] if t = 2:

:6S'= j: +E E [4.8]
1 lt=l kt=l lt=l kt=X

The coefficients for the new extreme point activity for the corresponding DWD problem

are then

r 6'*'^lA;

I
! L 1 J

where the first element is the objective function coefficient for the new activity and the
I

remaining elements are the technology matrix coefficients for the new activity.

I

127

Chapter 4 Decomposition of Stochastic Linear Programs

Equation [4.8] indicates that the right-hand-side for an optimality cut at some period

t node is a recursive function of the right-hand-sides of all optimality and feasibility cuts

for all descendent nodes in periods — 1. Therefore, for example, an optimality

cut added to the single first period node for some outcome, say li, includes information for

all descendent nodes with a first outcome of li due to the nested sums in equation [4.8].

The terminal sum in recursive equation [4.8] incorporates the right-hand-sides,

of the optimality cuts at nodes in period T — 1. These values are created when problem

LSD SUB([«]y) [4.4] at a child node in the terminal period is solved to optimality for

Let be the optimal solutions to the corresponding dual problem
I

DWD SUB([»]y) [4.7], then strong duality implies that

Since are feasible but not necessarily optimum to problem DWD SUB([*]y) for any

x[*]t-i^ we^ duality ensures that

£[*1t (x^*'^-i) < Ti-Wr,

SetirJ*'^ = 7irJ''^+l,letA; = and let 4*'^ = then < QHt (xWt-i) <
£[*1t (x'*1i'-i) implies the optimality cut

128

Chapter 4 Decomposition of Stochastic Linear Programs

The coefficients for the new extreme point activity for the corresponding DWD problem

are then

b'f'

B'HtttJ'''"
1

The right-hand-side of the last inequality above coupled with equation [4.8] results

in the recursive relationship:

iff = r.f b't-W'-'., ,

i(Arl*''+i) /t=i fc=i ^
Lt ^2

+ E E
it=i fe=i

t+i i*jt+i
2k '

if2 < f < r - 1,
[4.9]

for the right-hand-sides of optimality cuts in LSD or the objective function coefficients of

extreme point activities in DWD. Note that the derived cuts/activities are based upon on a

bounded solution to the parent relaxed master problem for LSD or a feasible solution to the

parent restricted master problem for DWD. Procedures for an unbounded/infeasible RMP

are straightforward extensions to the corresponding methods developed in Sections 3.1.3

and 3.2.2.

4.2.3 Feasibility Cuts - Extreme Direction Activities

Derivations are given for the feasibility cuts of L-Shaped decomposition of the primal prob

lem with the corresponding translation to extreme direction activities for Dantzig-Wolfe

decomposition of the dual problem. Recall that the RMP is augmented with a new feasibil

ity cut whenever a subproblem is determined to be infeasible. Assume that problem LSD

129

I Chapter 4 Decomposition of Stochastic Linear Programs

RMP-SlJB([#]j) [4.2] is infeasible with at a node in an intermediate pe

riod, 2<i<T—1, at some LSD iteration. Then the vector of coefficients, , and
j ̂ -Krr'+i

the right-hand-side, ft'*!' ., for the new feasibility cut for the RMP at the parent node

in period t - 1 must be determined. Based upon problem LSD RMP-SUB([*]j), solve the
I

following simplex phase one type problem with :

Lt Lt

WK (xlf-.) = min v+E E + E E "S'
lt=l k=l Zt=l A:=l

s.t. Iv —

n -|- ^ = 1) • • •! -^1 ^)
; It = 1,..., Lt,

It = I,... ,Lt,

xWt > 0,

^Wt+i free, = l,...,Lt,

v> 0,

^Ik — 7—1 T
Lt — 1, . . . ,Lt,

(/t)^n A:= l,...,irHt+i,
It = 1,... ,Lt,> 0,

, [4.10]

which is always feasible and bounded and corresponds to the dual problem:

130

Chapter 4 Decomposition of Stochastic Linear Programs

Lt
(xWt-i) = max (bW^xW^-i - -EE

lt=l k=l

T

-EE
jt=i fc=i

s.t. W'Wt(5W' + E E B'W'+i7rJr''+vJr''+'
it=i fc=i

Lt

+ E E > 0,
it=i k=i

[•]

fc=i

[4.11]

> 0,

.[•1t+i i- — 1 Z^Wt+1
> 0 rC — i-, - n • , .CV.]^ ,

it = 1, . . . ,Lt,

'Ht+i

It = 1,..., Lt.
pi»]t+i ^ k — 1,... ,K2 ,

Set kI"'' = -^2*'' + 1' h — and let the optimal solution to the dual problem [4.11]

be

.[•1
kt

yW.
h I
«+i _= [•It.

Pki

 0, kt = l,...,K[''^\ lt = l,

kt^i,...,K^;^'^\ it = i,t+l

• I Lt-,

• ! Lt,

then

Lt Kl'li+l

S"/'""" > 0
lt=\ kt=l

131

j Chapter 4 Decomposition of Stochastic Linear Programs

since the original problem LSD RMP-SUB([*]j) [4.2] is infeasible. Therefore, the feasi

bility cut ;

Lt

/t = l fct = l

will not admit the infeasible point Furthermore, Wf*'' = 0 for any x^t-i

feasible to problem LSD R]VIP-SUB([»]j) implying that

Lt

lt+1
"2kt l^kt

lt=l kt=l

for any xt'l'-i feasible to problem LSD RMP-SUB([*]j) since the above solutions are fea

sible but not necessarily optimum to the dual simplex phase one type problem [4.11]. The

above cut will therefore not exclude any xt'l'-i feasible to problem LSD RMP-SUB([«]j).

The right-hand-side of the above cut is the right-hand-side of the new feasibility cut for

problem LSD RMP-SUB([*]j_i) [4.2] if 3 < t < T - 1 or problem LSD RMP([]) [4.3] if

i = 2 at the parent node in period t — 1:

4'i'= +E E i'Srvi'.''"- [4.12]
kt=l

The coefficients for the new extreme direction activity for the corresponding DWD problem

are then

- -

0

where the first element is the objective function coefficient for the new activity and the

remaining elements are the technology matrix coefficients for the new activity.

132

Chapter 4 Decomposition of Stochastic Linear Programs

Equation [4.12] indicates that the right-hand-side for an feasibility cut at some period

t node is a recursive function of the right-hand-sides of all feasibility cuts for all descendent

nodes in periods t + — 1. Therefore, for example, a feasibility cut added to the

single first period node for some outcome, say li, includes information for all descendent

nodes with a first outcome of li due to the nested sums in equation [4.12].

The terminal sum in recursive equation [4.12] incorporates the right-hand-sides,

of the feasibility cuts at nodes in period T—1. These values are created when problem LSD

SUB([«]y) [4.4] at a child node in the terminal period is infeasible for

Based upop problem LSD SUB([*]2^), solve the following simplex phase one type problem

with :

)4;Wt - min v

s.t. Iv —

xWi- > 0,
V >0,

which is always feasible and bounded and corresponds to the dual problem:

ypWr = max (B^rxWr-i _ (5Wt
^ s.t. W'WrtjWr > 0,
' <5^^ < 1,

(jWi- > 0.

[4.13]

[4.14]

Set K2 -I- 1, let k = and let the optimal solution to the dual problem [4.14]

be then

yyWT (xW'-i) = (BW^xWr-i - > 0

since the original problem LSD SUB([»]^) [4.4] is infeasible. Therefore, the feasibility cut

I

133

I Chapter 4 Decomposition of Stochastic Linear Programs

will not admit the infeasible point Furthermore, = 0 for any xf'l^'-i

feasible to,problem LSD SUB([»]y) implying that

>VWt (xWi--!) = 0 > _ bW^)' 4*'"^

I

for any feasible to problem LSD SUB([»]y) since the above solutions are feasible but

not necessarily optimum to the dual simplex phase one type problem [4.14]. The above cut

will therefOTe not exclude any feasible to problem LSD SUB([»]y). The coefficients

for the new extreme direction activity for the corresponding DWD problem are then

0

The right-hand-side of the last cut above coupled with equation [4.12] results in the

recursive relationship:

, if t = T,

^ - =< u M r-, [4-15]2

*^2 +1 lt=l k=l

for the right-hand-sides of feasibility cuts in LSD or the objective function coefficients of
1

extreme direction activities in DWD. Note that the derived cuts/activities are based upon

on a bounded solution to the parent relaxed master problem for LSD or a feasible solution

to the parent restricted master problem for DWD. Procedures for an unbounded/infeasible
i

I

RMP are straightforward extensions to the corresponding methods deyeloped in Sections

3.1.3 and 3.2.2.

134

i Chapter 4 Decomposition of Stochastic Linear Programs

4.2.4 Nested Decomposition Algorithms

1

The nested decomposition algorithms cited at the beginning of this section are similar to the

multicut algorithms developed in Chapter 3 - each incorporates distinct initialization and

optimization procedures. Initialization procedures determine if the problem is unbounded

or infeasible, or, otherwise, find an initial feasible solution to the problem. Optimization

procedures then determine an e-optimal solution given the problem is feasible and bounded.

The procedures are summarized below using L-Shaped decomposition with straightforward

translations for Dantzig-Wolfe decomposition.

I
.1

' Initialization Procedure
i
I

The initialization procedure consists of a forward pass followed by a backward pass

through all nodes in the decision tree. The forward pass begins by finding a solution, xl',
I
I

to problem LSD RMP([]) [4.3] at the first period node. The overall problem is infeasible

if LSD RMP([]) is infeasible, otherwise is passed to problems LSD RMP-SUB([*]2)
1

[4.2] at each second period node. A feasibility cut is generated for LSD R]VIP([]) for each
-

LSD RMP-SUB([.]2) that is infeasible and LSD RMP([]) is resolved a for new solution.

Note that a single feasibility cut may also be passed back if control is returned to LSD

I

RMP([]) when the first infeasible LSD RMP-SUB([*]2) is encountered. This procedure

is then repeated until all second period subproblems are feasible or the overall problem is
!

determined to be infeasible.

135

! Chapter 4 Decomposition of Stochastic Linear Programs

\ ' n
The steps above are repeated at each node in the decision tree for i = 2,..., T.

1

Problem L;SD RMP-SUB([«]j), t = 2,... ,T — 1, receives a solution vector from its

parent nodje and either returns a feasibility cut to the parent or passes a solution vector
I
I

to each of its child nodes. Solution vectors are passed forward only when the problems at

all child ncjdes with a common parent are feasible. This process continues until the problem
is determined to be infeasible or feasible solutions are found to problems LSD SUB([«]y)

j

[4.4] at all I nodes in the terminal period. The overall problem is unbounded if a feasible

solution is determined at all nodes and an ascent direction is found at any node in the tree
j

with no corresponding cut to exclude the resulting ray or admit only a portion of the fay.
I

A lower bound on the objective function of the overall problem is then generated given a

feasible and bounded solution at all nodes in the tree.
I

A backward pass is executed only if a feasible and bounded solution is found during
!
1

the forward pass through the tree. The purpose of this pass is two fold: determine an

initial uppdr bound on the overall problem; and place bounds on each at all nodes

i
in periods f = 2,..., T — 1 and generate initial optimality cuts at the first period node.

I

Given a feasible solution, xI'Jt, at a terminal period node [•]y, the corresponding 0'*'^ at
I

the parent node in period T — 1 is bounded by:

el'h < 0Wr = pWr-ic'WrxWT.
I

I

This bound:is looser than the corresponding cut constraint in the sense that it bounds only

without placing restrictions on xt'li--!. Bounds are used in lieu of the normal cut

I n ,

! 136

n \

1

; Chapter 4 Decomposition of Stochastic Linear Programs

constraints since, otherwise, problem LSD RMP-SlIB([*]j), t = 2,..., T — 1, would need

to be reinitialized with each new Cut constraints at a node [•Jj in an intermediate

period, 2<t<T—1, are dependent upon the feasible solution vector received

from the pjarent node. Maintaining cuts generated for one solution, say , with a new

solution, X2 would invalidate the procedure. This would be akin to generating cuts for
!

the first period node with one set of values for fixed btl and keeping these cuts after creating
1

an entirelyi new problem by changing the right-hand-side values.
j
I

The backward pass then continues through the nodes in periods t = T — l,...,3by
1

placing bounds on each with the recursive relation:

0l']i < QWt (xHt-i)
Lt

c'HtxWt (xWt)
/f=i

This pass and the initialization procedure terminates when the normal optimality cuts are
I

generated for the first period node by each second period node. An initial upper bound on

the objective function of the overall problem is then established as:
I

Li
I -I-

h=l

Optimization Procedure

1

The optimization procedure is executed only if the initialization procedure determines

I

that the overall problem is feasible and bounded. Processing starts by finding a solution to

problem LSD RMP([]) [4.3] at the first period node and then moving through the tree by

passing feaisible solutions forward or cuts backward. A new upper bound is created each

i
137

' Chapter 4 Decomposition of Stochastic Linear Programs

time problem LSD RMP([]) is solved (assuming nondegenerency). The lower bound is

updated whenever feasible solutions are found at all nodes in the terminal period implying

I

a feasible solution to the overall problem. Processing terminates whenever the relative
1

difference between the upper and lower bounds is less than some specified positive value
I

e. \

All existing cuts, except for the upper bounds on at problem LSD RMP-

SUB([*]j),| t = 2,... ,T - 1, must be removed each time the parent node sends a new

solution veictor. Existing cuts are removed with a new parent solution vector for the reasons
i '

discussed above with the backward pass of the initialization procedure.
I

Several sequencing protocols (Birge et al. [14, Section 2.2] and Gassmann [83, page

414]) for controlling the traversal through the tree are discussed in the literature. A few of
j

these protocols are described in Section 4.4.2 below.

4.3 Block-Separable Problems
I

i

Stochastic linear programs that have the block-separable property defined in Section 2.4
I

provide miich greater flexibility in the application of decomposition algorithms than do

programs without this property. Given block-separability, the multi-period primal stochas

tic linear programming problem [2.8] on page 35 may be written in the equivalent form;

138

Chapter 4 Decomposition of Stochastic Linear Programs

^ = max + (;'(2)[]jj-(2)[] _j_ ^ ̂p[l _j_ q'(^)[*12x(^^W2
h=l

i2

+Ep1:'=
h=\

Lt-1

-j-_ ^ ̂ j^Q'(^)[*]rx^^)t*l2'-|- jj
Zr_i=l

S.t.

A(ia)x(i)[1 <bW",
A(2.1)x(l)n + A(2.2)x(2)[1 < b(2)[l,

I = 1' • • •'
'1 t = 2,... ,T,

B(2,i)[.]tx(i)Ht-i + w(2,i)Htx(^)Wt + w(2.2)Wtx(2)Ht < b(2)Wt^ / ht = I,...,Ht,
' [t = 2,... ,T,

x«n, x(2)[i > 0,

x(i)[.i._ x«H. > 0, ('^rJv • •'®'
t — z,... ,1 ,

[4.16]

where equation [2.7] on page 28 is used to determine [•jj given period-index node la

bel {t, ht) in the applicable constraints and in the discussion below. Then all constraints

involving only the aggregate level variables, can be grouped together as can the

constraints that incorporate detailed level variables, Problem [4.16] can then be

rewritten as:

139

Chapter 4 Decomposition of Stochastic Linear Programs

h=l l2=l

+ X/ Ph-i^ . . .]]
Zqp_i=1

C'(2)[]x(2)[l + l^pjl [c'(2)W2x(2)W2+ [c'(2)W3x(2)[-l3
h=l 22=1

+ £ P^'ti' [c'(2)W^x(2)Wt . . .]]
2t-i=1

S.t.

A(i'i)xW[l <bW",

B(i,i)Wtx(i)Wt-i + / ht = l,...,Ht,
' \ t = 2,... ,T,

A(2.1)x(1)[1 + A(2.2)x(2)[1 < b(2)[],

B(2.i)Wtx(i)Wt-i + < b(^)W«, | — ̂' n n n
' \ t = 2,... ,T,

n xWn,x(2)[i>o,

xWM., xMH > 0, I
([4.17])

Then, with suitable definitions for composite arrays, the multi-period problem [4.17]

can be rewritten to resemble a two-period problem. This means , that the two-phase LSD

(multicut) algorithm defined in Section 3.1.4 can be used in lieu of nested decomposition to

solve a block-separable multi-period problem. Given a phase one solution for the aggregate

level variables, the second pair of constraint sets in problem [4.17] are separable by node

into phase two subproblems for the detailed level variables. The structures of matrices

A(2:2) and W(2.2)Wt may allow for even more separability so that the indicated constraints

140

Chapter 4 Decomposition of Stochastic Linear Programs

are also separable into subproblems. This separability provides much greater flexibility

than can be expected with nested decomposition. Similar remarks apply for using algorithm

DWD(muItiactivities) from Section 3.2.3 to obtain a solution to the dual formulation of a

block-separable multi-period problem.

A disadvantage of bringing all constraints with only aggregate level variables into

the first phase of the LSD procedure or bringing all aggregate level variables into the first

phase of the DWD procedure is that the size of the corresponding initial RMP can become

very large. Large initial relaxed/restricted master problems can require significant amounts

of processing time in the early iterations of the decomposition algorithms. This can be

a serious drawback since two of the generally expected advantages of decomposition are

relative little memory usage and fast solution times in the early iterations. Note, however,

that the formulation of problem [4.17] is just one of many ways of writing a block-separable

multi-period problem to resemble a two-period problem. Constraints may be arranged by

periods so that constraints involving only aggregate level variables at nodes in a specified

number of early periods are brought into the first phase RMP while those in the later periods

remain as second phase subproblem constraints. This latter arrangement provides for a

smaller initial RMP at the expense of larger, more complicated, subproblems. A smaller

initial RMP can still be advantageous since not all subproblems must be solved at every

iteration - see the remarks on greedy algorithms in Section 3.3.6 on page 114. This and

other issues are discussed in the next section on implementation strategies.

141

Chapter 4 Decomposition of Stochastic Linear Programs

4.4 DWD-LSD Implementation Strategies

Several implementation strategies are possible when employing one of the decomposition

methods to solve a multi-period stochastic linear program. The best strategy depends upon

the system resources available as well as the structure of the problem. Determining the

most efficient strategy for a given problem or class of problems may require extensive

experimentation. Several implementation strategies are examined in this section. Empirical

results for several of the strategies described below are given in Chapter 6.

Terminology used herein relative to that normally found in the literature is discussed

in the first subsection below. The remaining three subsections consider implementation

strategies for nested decomposition, two-phase decomposition of a block-separable prob

lem, and the nested decomposition of a block-separable problem. Strategies are described

relative to L-Shaped decomposition with simjile translations possible for Dantzig-Wolfe

decomposition.

4.4.1 Terminology Issues

The most common term used in the literature on stochastic linear programming is stage.

Problems with a horizon of multiple (three or more) distinct periods are usually called

multi-stage problems versus the term multi-period used in this thesis. L-Shaped and Dantzig-

Wolfe decomposition are often referred to as two-stage procedures instead of two-phase

procedures. Finally, the term multi-stage decomposition is frequently used synonymously

with nested decomposition. The terms periods and stages were used interchangeably in the

142

Chapter 4 Decomposition of Stochastic Linear Programs

early days of linear prograinining to describe the different parts of a program that would

be separable except for a few linking constraints or variables, e.g., see Dantzig [42]. Stage

has become the dominant term in stochastic programming. Overuse of the term can be

confusing - does stage refer to a portion of the problem or to a part of the decomposition

procedure. This is not really a problem in the references on nested decomposition cited

at the beginning of Section 4.2. Those references employ the algorithm so that each stage

of the procedure coincides with a stage or period of the problem. The flexibility provided

by block-separable problems can, however, lead to obscure meanings - multi-stage decom

position could imply decomposition of a multi-stage problem with a two-stage algorithm.

Therefore, period is used to refer to the distinguishable parts of a linear program in its orig

inal grand LP formulation and phase is used to differentiate between the two modes of a

decomposition algorithm, i.e., the RMP phase versus the SUB phase. The term stage is used

to identify a portion of the problem structure specifically constructed for a decomposition

procedure. For instance, each stage may coincide with a period if nested decomposition is

used as described above. On the other hand, a multi-period stochastic linear program with

block-separable recourse may be restructured, with two stages for decomposition.

4.4.2 Nested Decomposition Strategies

Several sequencing protocols are possible for controlling the order in which problems are

solved in the optimization phase of a nested decomposition algorithm. Three of the most

common protocols are described below. One or more of these protocols are discussed in

143 .

Chapter 4 Decomposition of Stochastic Linear Programs

each of: Birge et al. [14, Section 2.2], Gassmann [83, pages 414-415], and Wittrock [207,

pages 82-83]. The terminology is from Birge et al. and each description terminates with an

enclosed listing of the contributing authors.

Fast Forward-Fast Back (FFFB): The algorithm initially begins with a forward pass

starting with a solution to the first period node. Feasible solutions are passed forward

through the tree as fast as possible returning to a parent node only when a corresponding

subproblem generates a feasibility cut. A backward pass is initiated when all subprob-

lems at nodes in the terminal period are solved and have generated, where applicable,

either a feasibility cut or an optimality cut for their parent nodes. Cuts are passed back

through the tree as fast as possible in the backward pass, i.e., one per child node (which

may be aggregated in a single-cut algorithm). The backward pass terminates and a new

forward pass is initiated whenever:

(a) all second period nodes have generated a cut for the first period, or

(b) no cut can be generated at some node [•Jj, (: = 2,..., T — 1, because problem LSD

RMP-SUB([*]^) [4.2] is optimum given feasible solutions ..., -

i.e., £W'(xW'-0

Several variants of FFFB are possible and a few are discussed after this listing (Birge et

al., Gassmann, and Wittrock).

144

Chapter 4 Decomposition of Stochastic Linear Programs

Forwards First (FF): The algorithm moves from nodes in period t to the parent nodes

in period t — I only when the solutions for all subproblems in periods are

optimal (Birge et al. and Gassmann).

Backwards First (BF): The algorithm moves from nodes in period t to the child nodes

in period t+1 only when no new cuts for period f — 1 are generated by the nodes in

period t (Birge et al., Gassmann, and Wittrock).

Birge et al., Gassmann, and Wittrock all concur that the FFFB protocol is generally

the most efficient. Birge et al. employ a variant of FFFB in which a node in an intermediate

period is termed blocked during a forward pass if the subproblem at that node is infeasible.

The forward pass is then terminated along the path anchored at the blocked node but is

continued for all unblocked nodes. Feasibility cuts generated at the blocked nodes are

then added to the problems of the parent nodes during the next backward pass. A similar

procedure could be used to discontinue a backward pass only along the paths from those

nodes that do not generate cuts while continuing to pass back cuts along the remaining

paths.

The above descriptions assume that there is a subproblem for each node in each

period. The descriptions still apply if certain consecutive periods are grouped into stages.

A five-period problem, for example, could have the first period in stage one, periods two

and three in stage two, and the remaining two periods in stage three. Such groupings can

significantly reduce the number of subproblems but at the expense of increased problem

145

Chapter 4 Decomposition of Stochastic Linear Programs

sizes. These descriptions also apply only to problems that are not block-separable or when

the property is not utilized. Strategies for using nested decomposition with block-separable

problems are discussed Section 4.4.4 below.

4.4.3 Block-Separable Strategies

Many different decomposition implementation strategies are possible with multi-period

problems that have the block-separable property. Strategies based upon arranging the prob

lem structure to resemble a two-period problem are discussed here. Strategies for using

nested decomposition with block-separable problems are discussed in the following sub

section.

In addition to the different arrangements possible for problem constraints described

in Section 4.3, implementation strategies .must account for such issues as the number of

subproblems and subproblem solution frequency. The number of subproblems determines

the number of cuts that are possible— one cut for each subproblem. Note that subproblem

as used here implies that a single cut is generated for a particular group of constraints

as described in Section 3.3.4. Subproblem solution frequency determines the amount of

improvement in the upper bound and the frequency of updates to the lower bound.

In order to demonstrate these concepts, define aggregate level constraints as con

straints containing only aggregate level, variables and detailed level constraints as

constraints that incorporate detailed level, variables. Let t, 1 < < T, index the

last period containing aggregate level constraints that are brought into the RMP. Then only

146

Chapter 4 Decomposition of Stochastic Linear Programs

aggregate level constraints from the first period are in the RMP if ? = 1 while all aggregate

level constraints are in the RMP ifi =T. An example of the latter case is the arrangement

of the constraints in problem [4.17]. Detailed level constraints in periods periods 1,..., f

are not in the RMP and form a series of independent subproblems. There can be at least

such subproblems, i.e., one subproblem for the detailed level constraints

at each node in periods 1 through f. Fewer subproblems are created if cuts are aggregated

and more are possible if the structures of matrices and t = allow

for even more separability. Note that the latter requires a modification to the notation since

the applicable nodes would then be associated with more than one 9 value. Each node in

period f+1 then anchors a subproblem with T-f periods ifi <T. Figure 4.3 demonstrates

these ideas on a four-period decision tree with binary outcomes.

It is not possible to list all decomposition strategies for a general multi-period block-

separable problem. Therefore implementation strategies will be defined by a flexible three-

level numeric planning scheme: major strategy, minor strategy, and tactics.

The major strategy defines the structure of the initial RMP and such issues as whether

to employ cold (no advance basis) or warm (advanced basis) starts to solve subproblems

and the solution frequency for subproblems. For instance, major strategy = 1 might indicate

that t = T —1, cold starts are to be used on all subproblems, and all subproblems are to be

solved at each decomposition iteration while major strategy = 2 is the same except warm

starts are to be used with subproblems.

147

Chapter 4 Decomposition of Stochastic Linear Programs

RMP and Subproblems

1. Constraints with oniy aggregate
ievei variabies go into the RMP
2. Constraints with both aggregate
and detaiied ievei variabies form

subproblems

[1.1.1]

[1.1]
-̂— i

[1.1.2]

J

[2.1.1]

[2.1]

1

[2.1.2]

2

V® J

[2.2.1]

[2.2]
/ 4 ̂

[2.2.2]

Subproblems Oniv

Each third period node
anchors a two-period
subproblem

Figure 4.3: Four Period Block-Separable Problem With t = 2

148

Chapter 4 Decomposition of Stochastic Linear Programs

The number and formulation of subproblems is designated by the minor strategy. In

other words, the minor strategy dictates how the constraints left out of the RMP are used to

create subproblems and therefore controls the maximum number of cuts that can be added

to the RMP at the conclusion of each iteration. For example, minor strategy = 1 could mean

that only one subproblem is to be employed while minor strategy — 2 indicates that there is

a subproblem for each node in period i and one subproblem for all remaining constraints.

Finally, the tactics control the number and types of cuts actually added to the RMP at

the conclusion of each iteration. For instance, only the cut associated with the mayimum

violation (e.g., maximum 6^'^^ - difference) is added when tactics = 1 while

all possible cuts are added if tactics = 2.

Decomposition method and strategies are then shown as LSD(i.j.k) or DWD(i.j.k)

where i indicates the major strategy, j the minor strategy, and k the tactics. This scheme

is used in Chapter 6 to label the decomposition strategies employed with a multi-period

block-separable market investment model. Variations to the scheme are discussed in the

following subsection and where necessary in Chapter 6.

4.4.4 Nested Decomposition of Block-Separable Problems

Very large rnulti-period problems may require nested decomposition even if the problems

have the block-separable property. Block-separable problems allow for far more flexibility

in the application of nested decomposition than do problems without this property. Block-

separability may be applied within each stage of the procedure where it is applicable. For

149

Chapter 4 Decomposition of Stochastic Linear Programs

instance, assume that a four-period problem with binary outcomes is block-separable in

every period. Then the periods can be grouped by stages - say, for example, period one in

the first stage, periods two and three in the second stage, and period four in the third and last

stage. Aggregate level constraints in period (stage) one go into the first stage RMP while

the first period detailed level constraints form second stage subproblems. Each second

period node would then anchor a three-period second stage RMP-SUB. These problems

would act as subproblems to the first stage while in the SUB mode and as second stage

relaxed master problems when in the RMP mode. Nested decomposition could be used

to solve each of these three-period problems. Aggregate level constraints in periods two

and three would go into the second stage RMP while the detailed level constraints in those

periods form third stage subproblems. Finally, each fourth period node is treated as a single

third stage subproblem. Figure 4.4 diagrams the preceding example.

Nested decomposition could be applied to the above four-period problem in several

other ways. The number of ways of using nested decomposition on a block-separable

problem grows with the number of periods in the planning horizon. Variations on the im

plementation strategy scheme described in Section 4.4.3 are required to account for nested

decomposition of block-separable multi-period problems. For instance, the grouping of pe

riods into stages and the level of nesting must be defined at one or more of the three strategy

levels. These variations are discussed in more detail in the Chapter 6 with the application

of nested decomposition to a market investment model.

150

Chapter 4 Decomposition of Stochastic Linear Programs

First Stage RMP

1. Constraints with only
aggregate level variables
go into first stage RMP
2. Constraints with both

aggregate and detailed
level variables form

second stage subproblems

[1.1]

1

[1]
/sV/T

[1.2]

2 \

[1.1.1]

[1.1,2]

o

[1.2.1]

[1,2.2]

2

[2.1.1]

@2,1

2.1.2

©
[2]

[2,2,1]

2.2

.2,2]

Subproblems - Nested Decomposition

1. Constraints in periods 2 and 3 with only aggregate level variables
form second stage RMP-SUB
2. Constraints in periods 2 and 3 with both aggregate and detailed
level variables form third stage subproblems
3. Each fourth period node anchors a third stage subproblem

Figure 4.4: Nested Decomposition of a Block-Separable Four-Period Problem

151

Chapter 4 Decomposition of Stochastic Linear Programs

4.5 Myopic Decomposition

Dantzig-Wolfe and/or L-Shaped decomposition of a multi-period stochastic linear program

offer several attractive qualities versus a grand LP solution to the same program. Decom

position methods generally require significantly less memory, especially in early iterations,

than do grand LP approaches. Subproblems may be solvable with simple algorithms ver

sus complex simplex algorithms. Decomposition algorithms may be terminated once an

e-optimal solution is available. These qualities generally mean that a decomposition algo

rithm is much more efficient than a grand LP formulation for large problems.

DWD and/or LSD applied to very large scale problems may, however, require signif

icant amounts of both computer clock time (actual run time) and central processing unit

(CPU)time. Clock time can be much larger than CPU time on systems that employ some

type of virtual memory in which a portion of the executable code and problem data may

be paged to the external memory system. Such a system allows for much larger size prob

lems but frequent requests for paged memory, which does not factor into the CPU time, can

greatly increase clock time over CPU time.

One procedure that may provide acceptable results in less time than either DWD or

LSD is myopic decomposition. The primal form of this procedure takes a short-sighted

view of the overall problem by solving decomposed subproblems in each period using in

formation from the previous periods but neglecting any effects the solution has on following

periods. The dual form is similar except it splves decomposed subproblems in each period

152

Chapter 4 Decomposition of Stochastic Linear Programs

using information from future periods and neglects effects on previous periods. Either or

both the primal and dual forms of myopic decomposition can be used to obtain an approx

imate solution to the problem. The primal form will provide a lower bound for a problem

whose objective is to be maximized while the dual form will provide an upper bound. My

opic decomposition is not new approach - Mossin [150, page 223] (1968) described the

concept as a method an investor might employ to maximize expected utility of final wealth

in a period while disregarding the future. Khang and Fujiwara [121] recently investigated

the use of a myopic view in optimizing ordering policies when there is stochastic supply.

Both the dual and primal forms are used in the myopic dual-primal cycling algorithm

(MDPCA)developed below. Formulations for the decomposed subproblems used by the

algorithm are described first. Algorithm MDPCA is then described followed by heuristic

modifications to the algorithm. Note that the algorithm is developed assuming that the

multi-period stochastic linear program is bounded and has complete or relatively complete

recourse. Requiring complete recourse is not seen as a serious drawback since, according to

Birge and Louveaux [17, Section 3.1(d)], this property is present in most practical problems

and is often added to problems without complete recourse. In any case, the algorithm

could be easily modified for a general problem by incorporating feasibility and optimality

(unbounded) cuts similar to those defined in Chapter 3.

153

Chapter 4 Decomposition of Stochastic Linear Programs

4.5.1 Myopic Subproblems

The subproblems used in myopic decomposition are based upon the grand LP formulations

of the primal multi-period problem PMPGLP [2.8] on page 35 and the corresponding

dual problem DMPGLP [2.12] on page 39. A primal phase subproblem at some node in

the decision tree assumes a feasible solution vector is available from the parent node and

ignores the effect its solution has on all descendent nodes. The resulting subproblem is

termed a nodal primal subproblem and is represented as a function, QHp'* of the

solution vector from the parent node. The first period nodal primal subproblem is then:

fltp () = max
s.t. Ax" < b", [4.18]

x" > 0,

and the nodal primal subproblem at any node in period t,t = 2,... ,T,is:

(xWt-i) = pWt max c'W'xW^
-s.t. WWtxW' < bWt-BW«xW«-i, [4.19]

xW« > 0.

A dual phase subproblem at some node in the decision tree assumes a feasible so

lution vector is available from each child node and ignores the effect its solution has on

all ascendant nodes. The resulting subproblem is termed a nodal dual subproblem and is

represented as a function, of the solution vectors, from

the child nodes where is simply ignored at nodes in the terminal period. The

nodal dual subproblem at any node in the terminal period, T, is then:

931^^ () = pHr min b'Wr^WT
s.t. > cI'It, [4.20]

> 0,

154

Chapter 4 Decomposition of Stochastic Linear Programs

and at each node where is the optimal solution to problem [4.20]

at the corresponding node. The nodal dual subproblem at any node in period, t,t = T —

1,...,2, is:

([7rWm]J^^) =pWtniin
s.t. > cWt - E B'W'+i7rWt+i,

^ ' it=i
> 0,

[4.21]

the nodal dual subproblem at the single first period node is:

9}lS =inin
Li

s.t. A'l?" > ctl - B'W27rW2, [4.22]
h=i

> 0,

and 7rW« = at each node where is the optimal solution to problem [4.21] or

problem [4.22] as appropriate at the corresponding node.

4.5.2 Algorithm MDPCA

Algorithm MDPCA is an iterative procedure where one pass is made through the nodal

primal subproblems and one pass is made through the nodal dual subproblems during each

iteration. Each iteration is called a cycle and the first pass is termed the lead half-cycle

while the second pass is referred to as the tail half-cycle. Either class of subproblems,

dual or primal, may be in the lead half-cycle and the other class in the tail half-cycle. The

resulting procedure is said to be the primals lead or the duals lead version as appropriate.

155

Chapter 4 Decomposition of Stochastic Linear Programs

A primal pass starts with a solution to the first period nodal primal subproblem [4.18].

Solutions are then obtained to the remaining primal subproblems [4.19] in an iterative,

breadth-first, node order through the decision tree. Note that the dual multipliers to the

period T nodal primal subproblems [4.19] are feasible (after dividing by to the period

T nodal dual subproblems [4.20]. Therefore, a dual pass following a primal pass can start

with the nodal dual subproblems in period T — 1.

A dual pass starts with solutions to the terminal period nodal dual subproblems [4.20].

Solutions are then obtained to the remaining dual subproblems [4.21] and [4.22] by pro

ceeding backwards through the tree in an iterative node order. Note that the dual multipliers

to the first period nodal dual subproblem [4.22] are feasible to the first period nodal primal

subproblem [4.18]. Therefore, a primal pass following a dual pass can start with the nodal

primal problems in the second period.

Best lower and upper bounds are updated after the completion of each primal half-

cycle and each dual half-cycle respectively. There is no guarantee that the bounds will

converge. Therefore the algorithm is terminated either when:

1. the relative difference between the bounds is less than or equal to some prespecified

positive amount, e, or

2. the difference between the bounds fails to decrease from one cycle to the next.

The primals lead version of the algorithm is initiated by solving the first period nodal

primal subproblem. Cycling iteratipns then begin with the primal half-cycle starting with

156

Chapter 4 Decomposition of Stochastic Linear Programs

the second period primal subproblems. Information from the period T primal subproblems

is used to start the dual half-cycle with the period T — 1 nodal dual subproblems. Once

the first period dual subproblem is solved, information from that problem is used to start

the next cycle with the second period nodal primal subproblems. Cycling continues until

at least one of the termination criteria is satisfied.

The duals lead version is initiated by solving the period T nodal dual subproblems.

Cycling iterations then begin with the dual half-cycle starting with the period T — 1 dual

subproblems. Information from the first period dual subproblem is used to start the primal

half-cycle with the second period nodal primal subproblems. Once the terminal period

primal subproblems are solved, information from those problems is used to start the next

cycle with the period T — 1 nodal dual subproblems. Cycling continues until at least one

of the termination criteria is satisfied.

Myopic decomposition can be an attractive alternative to DWD and LSD even though

the latter two methods will give a solution to within an arbitrary tolerance while myopic

decomposition will not. All three methods require roughly the same amount of overhead

memory - maintained storage of such items as best solution to date information and house

keeping variables. Myopic decomposition, on the other hand, generally requires signifi

cantly less additional active memory (random access memory or RAM) than do DWD and

LSD. At the most memory intensive point in the procedure, algorithm MDPCA needs ac

cess to enough problem data and executable code to solve the largest subproblem. Dantzig-

Wolfe and L-Shaped decomposition of large problems will generally require the same in-

157

Chapter 4 Decomposition of Stochastic Linear Programs

formation plus they must maintain the corresponding RMP in active memory. Furthermore,

myopic decomposition may arrive at a bounds gap after the first complete cycle that either

DWD or LSD would take substantially more time to achieve. Algorithm MDPCA is also

easily modified to act as an initiating procedure for either of the other two decomposition

methods. Empirical results that provide insight into these issues are given in the Chapter 6.

The detailed description of algorithm MDPCA is quite lengthy and is placed in Ap

pendix B along with flowcharts of the algorithm and its contained procedures.

4.5.3 Heuristic Modifications

Heuristic modifications to algorithm MDPCA are based upon changing the formulations of

the tail half-cycle nodal subproblems. Nodal primal subproblems in the duals lead version

of the algorithm are the decomposed nodal problems of the dual to problem DMPGLP

[2.12] modified as follows:

= minh'^Trf' -1-

s.t.

b'['•I27J-W2 -)-
L2

h

...-1-

Lt-1

It-I

[4.23]
L2

A'Tr^I > c'l — ̂ B't*l27rW2^
l2=l

W'W'TrWt > fiWtcWt _ y B'Wt+i7rW«+i
- ̂ 1^1 ' i = 2,...,T-l,

>, pHrcWr,

> 0,

TrWt > 0,

hT = l,... ,Ht,

ht — 1,..., Htj
t = 2,...,T.

158

Chapter 4 Decomposition of Stochastic Linear Programs

Nodal dual subproblems in the primals lead version of the algorithm are the decomposed

nodal problems of the dual to problem PMPGLP [2.8] modified as follows:

= max + ... +

il=l i2=l

'r-i=l

s.t. Ax'' < b",

WWtxWt < bWt-BW'xH'-i, ht = L...,Ht, t = 2,...,T, ^^^4]

x" > 0,
xW' > 0, = t = 2,...,T.

The primal subproblem for the first period is not required in the duals lead version of

algorithm MDPCA. Heuristically modified nodal primal subproblems for nodes in periods

2,..., T — 1 for the duals lead version are the decomposed nodal subproblems of the dual

to problem [4.23]:

3 •i't \'

iDTp'' (x'*''-i) =p''ltmax ^ ̂ x'*l«

s.t. WWtxWt < bWt-BWtxW«-i,

x'^'t > 0,
[4.25]

and the terminal period primal subproblems remain unchanged from problems [4.19]. Dual

subproblems for the terminal period are not required in the primals lead version of the

algorithm. Heuristically modified nodal dual subproblems for nodes in periods T-1,..., 2

in the primals lead version are the decomposed nodal subproblems of the dual to problem

159

Chapter 4 Decomposition of Stochastic Linear Programs

[4.24];

StL-i- =

pW' min (bW^ - bW^x^'-i)'

s.t. W'Wti?Wt > cWt -^y B'W'+i-TrWt+i
— nl*]t 4^ i

^ it=\

^[•It > 0,
[4.26]

and the first period dual subproblem remains unchanged from problem [4.18].

Objective function values must be corrected after the solutions are obtained at each

node in each applicable period as follows:

Lt

lt=l

([7rW'+i]^^^) = +7r'W'BW'xW'-i

Nodal subproblems [4.25] and [4.26] are not valid formulations since the problems

they are based upon, [4.23] and [4.24] respectively, are invalid as formulated. Each of the

latter two problems treats some variables as unknown in the objective function while treat

ing these same variables as known in the constraints. These unknown-known variables then

become part of the objective function coefficients in the nodal subproblems. Since each set

of resulting subproblems are in the tail half-cycle of the algorithm, the corresponding vari

ables have been assigned values during the lead half-cycle. The heuristic method proved

to be more effective than the unmodified algorithm on the market investment model de-

160

Chapter 4 Decomposition of Stochastic Linear Programs

veloped in Chapter 5. No theoretical evidence is currently available to suggest that the

heuristically modified algorithm would be more effective on a general class of problems.

4.6 Stochastic Data Storage and Retrieval

Frequent access to stochastic data is a common requirement of each of the decomposition

methods examined herein. Efficient data storage and retrieval procedures are therefore an

imperative component of any effective decomposition algorithm. A Fortran 95 module,

referred to as StocJForest, was developed to implement these procedures. This module

encapsulates the data structures and functions required to efficiently store and retrieve sto

chastic data.

Data structures in module StocJForest are based upon the structure of the decision

tree. Problem data are considered to be assigned to the nodes of the tree. A block of nodal

data is either stored or retrieved by traversing the tree with pointers directing traffic from

one node to another. Individual nodes are identified by the path vector, = [Zi,..., Zt_i],

to the desired node. Functions are provided to store data by node in either an iterative

(breadth-first) or recursive (depth-first) order. Both storage orders require that data for all

ancestral nodes be stored prior to storing data for a descendant node. Stored data may be

retrieved in any nodal order and may be retrieved as a block (all data for a given node) or

by array components.

161

Chapter 4 Decomposition of Stochastic Linear Programs

Module StocJForest allows data to be maintained in active memory or to be stored

in binary direct access files on a nodal basis. In other words, data for some nodes may

be maintained in RAM while data for the other nodes is kept in files. Storing data in files

allows for much larger problems at the expense of significantly decreased storage and re

trieval efficiencies. The module will also store and retrieve data for a theoretically unlimited

number of independent decision trees. The module is very efficient, generally requiring a

minuscule amount of time relative to the other processes involved in decomposition proce

dures.

162

Chapter 5
Market Investment Model

Decomposition procedures developed in Chapters 3 and 4 are applied to a multi-

period market investment model developed by Edirisinghe, [64] and [66], for implementa

tion at a private investment company. Model development, model properties, and solution

procedures are described in this chapter. Solution results and analyses are presented in the

following chapter.

The market investment model is presented in detail in the first section. Model devel

opment incorporates both primal and dual problem formulations. Required array notation

and properties of model problem instances are described in the second and third sections

respectively. Application of Dantzig-Wolfe, L-Shaped, and myopic decomposition to the

model is covered in the fourth section. Computer implementation of the model is the topic

of the fifth section. Scenario generation procedures used to simulate uncertain data for the

model are detailed in the sixth and final section.

5.1 Model Development

The goal of the market investment model is to optimize the period-to-period holdings in

a finite number of securities while accounting for the transaction costs of trades and a

specified measure of aversion, or tolerance, to risk. Securities is used herein as a generic

term for financial instruments that may include, but not be limited to, such items as stocks.

163

Chapter 5 Market Investment Model

bonds, and mutual funds. Each type of security is quantified in terms of units defined by

the investor. One unit of stock XTZ, for example, may equate to 100 shares of that stock.

The number of units of an individual security that are held or traded is also referred to as

the number of positions held or traded.

The model is formulated as a multiple period stochastic linear program, MIMPSLP,

to optimize the number of positions of each security to be held in each period of the plan

ning horizon subject to the uncertainties of future events. Optimality of holdings is based

upon maximizing the expected net return over the planning horizon subject to penalties

assigned during each period for any violations to a specified risk aversion measure.

Notation is first established for a single-period model and is subsequently expanded

to account for a model with one or more periods. Let N represent the number of securities

and let n e N = {1,..., A/"} index a specific security. The performance of a given security,

n 6 N, is measured by:

1. the expected retum, of each position held in that security,

2. the positive standard deviation, ct„, of the uncertain retum, and

3. the covariances, anm, between security n and securities m = , N, m ̂ n.

Let <T = (cTi,..., an)' be the vector of standard deviations and let S £ represent the

covariance matrix which is assumed to be positive definite. Parameters /u = (//i,...,

and S are then assumed to describe a finite joint probability distribution on returns per

position. Let L designate the number of possible outcomes in the joint probability space

denoted by the outcomes matrix R £ where R = [R.i,..., R.;,..., R.^] and R,z =

164

Chapter 5 Market Investment Model

{Rii, Rni, , Rm)' is the random vector of individual returns, Rni, for each security

n e iV at outcome I € L = Note that the transpose of the outcomes matrix,

R', is generally called an observations matrix and Rjj, is the L x 1 observations vector for

security n G N. Vector p = {pi,. n. ,pi, n n. ,Pl)' represents the probabilities of observing

each outcome I = 1,... ,L. Mean returns can then be represented as:

L

= ̂ (R-n.) = P'R-n. = ̂PlRnl, n=l,...,N,
1=1

where £ denotes the expectation operator.

Model MIMPSLP then consists of two primary components: expected net retum and

risk aversion. Procedures for incorporating these two components are described in the first

two subsections below using the notation established above for a single-period planning

horizon. A sipgle-period model formulation follows the descriptions of expected retum

and risk aversion. The final subsection defines the notation and formulates the model for a

general planning horizon with one or more periods.

5.1.1 Expected Return

Expected net retum for a given security is determined by subtracting the fixed transaction

cost associated with a trade in tha:t security from the total retum expected to be observed

as a result of the trade. Transaction costs, e.g. commissions, are termed slippage and are

a function of the trade amount. Notation and procedures for incorporating expected net

retum in a single-period planning horizon are developed below.

165

Chapter 5 Market Investment Model

Expected Total Return

Let y = (2/1,... ,yiv) denote the portfolio variables, the vector of the number of

positions held in each security at the conclusion of all trades at the beginning of the planning

horizon. The expected total return, £ (TRn), for a given security is then:

£{TRn)=£ (ynR^.) = VnS (R^.) = PriVn, n € N, [5.1]

and the expected cumulative total return, S (TR), for all securities is:

(N \ N N N
^ynR'n,) = iVn^n,) = (Rjj.) = ̂ PnVn = A^V- [5-2]
n=l / n=l n=l n=l

Slippage

Let ..., denote the vector of the number of positions held in each

security prior to conducting any trades at the beginning of the planning horizon. Transac

tion costs associated with a trade in security n G N are a function of the amount, Xn \ of

the transaction, i.e., the absolute difference in the number of held positions:

-^71 |yn tin \ n

Two functions, called slippage functions, are used to determine the transaction costs as

sociated with trades in each security: a slippage per position function and a total slippage

function. The slippage per position function, 6n for each security n G N is a

piece-wise linear concave function with two segments called the first and second slippage

regions. Each function is described by four parameters:

166

Chapter 5 Market Investment Model

1. Kn- the minimum cost per position,

2. X™': the transaction amount that is the boundary between slippage regions,.

3. ain'. the slope of the slippage per position linear function in the first slippage region,

and

4. a2ri'- the slope adjustment factor that is added to oi^ to obtain the slope in the second

slippage region.

These parameters are restricted by the following conditions for all securities n = 1,..., A^:

0 < < GO,

0 < xr < oo,

0 < Oln < OO,

{
0 < a2n < oo, if ain = 0,

^271 ̂ OO, if ^ 0.

The last condition on the slope adjustment factor, a2n, precludes the unreasonable possi

bility that decreasing transaction costs are associated with increasing transaction amounts.

Slippage per position function, , for security n € IM is then:

6. W)) =
, {am + a2n) - a2nX^\ X^ < X^^ < oo.

The total slippage function, 6n (x^), for security n G N is obtained by multiplying

the applicable slippage per position function by the transaction amount, =

167

Chapter 5 Market Investment Model

xi'^ fai^xi'^ +kX 0 < xi'^ < XT,
Bn = <j [5.3]

(flln + a2n) Xn^ + l^n — 0.2nXTy(l)
u\n , XT<xk'^<oo.

Graphs for both functions for a typical security n e N are given in Figure 5.1.

Total slippage function 6„ ^ piece-wise quadratic function and cannot be

incorporated as is into a linear program. Each total slippage function [5.3] is therefore

approximated with a piece-wise linear (PWL) function of the transaction amount. The PWL

function for each security n = consists of iT = iiTi -f- ̂ 2 linear functions where

Kj is the designated number of PWL segments desired in slippage region j for j = 1,2.

Each PWL segment, A; G K = {1,..., K}, for security n G N is bounded by lower and

upper break points T'(fc_i)n and '^kn respectively where = 0 and = oo. The last

break point for the first slippage region is assigned to the region boundary, = XT,

when XT > 0. Break points '^kn, k = 1,... ,1^1 — 1, in the first slippage region are

assigned values based upon either one of two criteria:

1. minimizing the average absolute error between PWL and actual slippage over the first

slippage region, or

2. limiting the maximum relative error between PWL and actual slippage in any segment

to a specified value ci > 0.

Break points '^kn. A: = /iTi + 1,..., iT, in the second slippage region are assigned values

to limit the maximum relative error in any segment to a specified value > 0. The linear

168

Chapter 5 Market Investment Model

s.

CO

s

First Slippage Region Second Slippage Region

J

Slope Is

) /

yf Slope is

L ̂1"

VCUt

►
T ransaction Amount r(»

CO

▲

First Slippage Region Second Slippage Region

►
Transaction Amount rC)

Figure 5.1: Slippage Per Position and Total Slippage for Security n e N

169

Chapter 5 Market Investment Model

function in segment /c e K has slope where

—

_ (^fcre) - On (^(fc-l)n)
'^kn - ̂{k-l)r.

All terminal break points '^Kn for each security n = 1,..., A" are set to positive infinity

after the slopes ̂ Kn have been determined. Break points and slopes for all securities

n = 1,..., A" are determined such that;

0 = <^ln <••• <^kn<- - - < Kn = OO, [5.4a]

< • • • < < • • • < ̂Kn- [5.4b]

Detailed procedures for assigning values to the PWL break points and slopes are given in

Appendix C. A sample graph of the actual and piece-wise linear slippage functions with

two PWL segments in each slippage region is illustrated at Figure 5.2.

Expected Net Return

Expected net return for security n G N is determined by subtracting the actual slip

page defined by equation [5.3] from the expected total retum defined by equation [5.1]:

S {NRf) =s\rRn- &n ^ {TRn) - Gn = PnVn " ©. •

Model MHVLPSLP cannot incorporate the above expression, however, since

a piece-wise quadratic function of Xn\ Instead, the PWL slippage functions described

above are used to determine an approximate expected net retum for each security. Define

170

Chapter 5 Market Investment Model

Second Slippage RegionFirst Slippage Region

Slope = T,

Slope = $

Slope = $2„

Slope = $i„

Transacrtion Amount

NOTES:

1. Two PWL sections in each slippage region

2. Last PWL break point (T4„ in figure) changed to positive infinity

after last PWL slope ($4„) is determined with:

y = 1 4

Figure 5.2: Sample Piece-Wise Linear Slippage Approximation for Security n e N

171

Chapter 5 Market Investment Model

the slippage variables for each security n = 1,..., N such that:

= [5-5^)
fc=l

0 < k = l,...,K. [5.5b]

Then a pair of constraints in addition to those defined by [5.5b] are required for each secu

rity to determine k = 1,... ,K, such that equation [5.5a] is satisfied. The additional

constraints for security n e N are:

K

Vn-Y^x'^^<yf, [5.6a]
fc=l

+ P.6b]
fc=l

Constraints [5.6a-b] are termed the slippage constraints for security n € N. Constraint

[5.6a] is referred to as the slippage buy constraint for security n since yn > Vn^ if Xn^ =

(vn — while constraint [5.6b] is called the slippage sell constraint since yn < yn^ if

Total slippage for security n 6 N is then approximated by:

fc=i

and approximate expected net return for security n is:

K

S (NRT) = - E [5.7]
k=l

subject to constraints [5.5b] through [5.6b]. Constraints [5.6a-b] guarantee that

,fc=l

172

Chapter 5 Market Investment Model

as required by equation [5.5a]. The cumulative expected net retum for all securities is

then:

£ (iviP") = E (''«!'»- E) = f'y- E p.8]
re=l \ fc=l / n=l

5.1.2 Risk Aversion

The model currently incorporates only information on the expected performance of each

security without considering the uncertainty of security activity. A portfolio, y, maximizing

expected net retum would be determined if model constmction terminated at this point.

This portfolio could, however, result in an actual net retum significantly different from that

predicted by the current model. Markowitz [140, page 77], in fact, rejected the hypothesis

that a model should maximize expected retum in favor of an approach that couples expected

retum with the variance of retum. Based upon this mean-variance analysis concept and

his work on utility of wealth [141], Markowitz [142] proposed methods that measure the

efficiency of a portfolio by the ratio of the expected retum to the variance of the retum.

These methods equate risk with the standard deviation (square root of the variance) of the

retum and reduce risk through variance reduction procedures. Variance reduction methods

have at least two major drawbacks: they are modelled with nonlinear programs and are

therefore computationally expensive and they punish portfolios with significantly higher

retums than expected as well as those with lower retums. Advances in technology as well

as linear approximation techniques such as the mean absolute deviation risk models of

Konno and Yamazaki [128] and Konno and Kobayashi [127] reduce the importance of the

173

Chapter 5 Market Investment Model

nonlinear prograimning requirement of variance reduction methods. Punishing portfolios

with significantly higher than expected retums as well as those with significantly lower than

expected retums is, therefore, considered the more critical of the two shortcomings. One

procedure for circumventing the high retums punishment problem is the semi-variance

concept of Markowitz [142, Chapter 9] - risk is equated to the variance of only those

retums that fall below the mean value. Fishbum [78] expands on the semi-variance concept

by introducing a range of models in which risk is associated with retums that fall below

some target value.

Model MIMPSLP incorporates the concept of risk associated with below-target re

tums by including terms in the objective function that penalize only retums with downside

deviation, i.e., those retums that fall below the expected retum. Models equating risk with

downside deviation have been developed for and implemented by large corporations. Ep-

pen, Kipp, and Schrage [73] describe a capacity planning model developed for General

Motors that penalizes scenarios that induce profits to fall below a specified target level.

Worzel, Vassiadou-Zeniou, and Zenios [210] discuss a fixed-income assets management

model implemented by Metropolitan Life Insurance Company that penalizes downside de

viations from a fixed-income index. The MIMPSLP model also hedges against risk by

limiting the number of positions that can be held during any period of the planning hori

zon. These two risk aversion measures are described below.

174

Chapter 5 Market Investment Model

Downside Deviation

The downside deviation (y) of portfolio y relative to outcome I eLis defined as:

p'y-E - (R:,y-E .0
n=l / \ n=l / .

2)i (y) = max [(/:* - R.^)' y, O] [5.9]

(y) = max

Therefore, the downside deviation of a given portfolio relative to a specific outcome is pos

itive only if the net return (or, equivalently, the total return) of the portfolio determined

with the specified outcomes vector is less than, or downside of, the expected net (total) re

turn. The model incorporates downside deviation to control risk by penalizing the objective

function in either one of two modes:

linear downside deviation', the penalty increases with the expected value of the down

side deviation, or

quadratic downside deviation', the penalty increases with the expected value of the squared

downside deviation - analogous to Markowitz's semi-variance concept.

The quadratic downside deviation mode requires piece-wise linear approximations to

the function [iPi (y)] = ipf (y). Procedures discussed above for approximating slippage

are easily adapted to determine PWL approximation parameters for ̂ (y)] since this

function can be considered as a special case of the slippage function for some security with

oin = 1 and 02n = /Cn = 0. The minimum average absolute error procedure can be applied

if desired by creating two artificial downside deviation regions with a simulated value for

a region boundary analogous to Methods described in Appendix C are then used to

175

Chapter 5 Market Investment Model

determine break points q = 0,...,Q, and slopes 7^, 9 = 1,..., Q, for a specified

number Q of PWL segments such that:

0 = (fQ <(p^ < n n n < (fg < n n n < Pq = 00, [5.10a]

7i < • • • < < • • n < 7q- [5.10b]

Note that the linear downside deviations mode is represented exactly by one segment with

the two break points, (/'o = 0 = OO' slope 7^ = 1.

Define the deviation variables for each outcome Z = 1,..., Z such that:

Q

= [5.11a]

9=1

0 <xf 9 = 1,...,g. [5.11b]

Then another constraint in addition to those defined by [5.1 lb] is required for each outcome

to determine x'^\ q = 1,..., Q, such that equation [5.11a] is satisfied. The additional

constraint for outcome Z 6 L, based upon equation [5.9] and termed a deviation constraint,

is:

N Q

E (''»- yn - ^ p.12]
7Tr—1 ^

The penalty term in the objective function is then:

[5-13]
1=1 \q=l J

subject to constraints [5.11b] and [5.12]. Risk aversion factor A > 0 in penalty term [5.13]

is used to model different levels of aversion to risk which increases with A. Constraints

[5.12] guarantee that equation [5.11a] is satisfied.

176

Chapter 5 Market Investment Model

Limiting Holdings

An additional hedge against uncertainty in performance is provided with the follow

ing risk budget constraint'.

N

<r'y = Y^ar,yn<Pi, [5.14]

where 0 < /^^ < oo, is some specified amount of capital. The budget constraint is in

tended to limit liability if the return for each security drops by an amount equal to the stan

dard deviation of the return. Portfolio y is also bounded by i

and YSf = (Yir,..., Y^, Y^^)' such that:

-oo < Y^ < y < Y:;^. [5.15]

5.1.3 Single-Period Planning Horizon

Model MIMPSLP with a single-period planning horizon then consists of the expected net

retum [5.8] and penalty term [5.13] in the objective function, slippage constraints [5.6a-

b], deviation constraints [5.12], budget constraint [5.14], and bounding constraints, [5.5b],

[5.11b], and [5.15]. The primal formulation for the single-period problem is then:

z = max^ "A
n=l n=l fc=l Z=l g=l

[5.16]

177

Chapter 5 Market Investment Model

N

S.t. E (ynVn < ^1,
n=l

K

Vn - < yn\ n = i,...,Ar,
fc=i

Vn + > yn\ n = l,...,N,
k=l

E (l^n - Rnl) Vn " E < 0> l =
n=l q=l

Y^<yn<Y^r. n=l,...,N

0 < Xii* < k = l,...,K,n=l,...,N,

0 < <(Pg- (fq-i, q = l,...,QJ = l,...,L.

The single-period problem [5.16] serves primarily to provide the foundation for the formu

lation of the problem for a general planning horizon.

5.1.4 General Planning Horizon

Formulations are developed below for a general planning horizon, i.e., a horizon with one

or more periods. Notation is extended to accommodate a problem with multiple periods

followed by formulations for the primal and dual problems.

Let T denote the number of periods where 1 < T < oo. Transaction costs are

assumed to remain constant across all periods. Constant transaction costs, or slippage,

is a reasonable assumption given the relative short period lengths, from a few days to a

few weeks, that will be examined. Multiple period problems are constructed and their

components labelled using the decision tree structure and notation described in Section

2.2. For example, yl'l' is the portfolio vector for a period t, 1 < t < T, node [•Jj =

178

W = 1,...,T

Chapter 5 Market Investment Model

[Zi,..., It-i] = {t, ht) where [•j^^ = [] = (1,1) is the single first period node. Equation

[2.7] on page 28 is used to relate a period-index node label, (t, ht), with the corresponding

path vector label, [•Jj = [Zi,..., Zt_i], throughout this chapter. Let I3t, At, Y"" e

and € R^'^^ such that

0 < Pi < oo

0 < At

-oo < < Y^ ̂

be the right-hand-sides of the budget constraints, the risk aversion factors, and the lower

and upper portfolio bounds respectively for nodes in a specified period. Define Qt, such

that 0 < < 1, as the capital discount factor for period t,l<t<T, where Qi = 1. Let

Qt be the compound discount factor for period t,t = 1,... ,T:

t

Qt = Qj,t = 1, . . ., T.
i=i

Table 5.1 summarizes the notation used in the formulation of model MIMPSLP problems.

The formulation of the single-period problem [5.16] can now be extended to accommodate

a general planning horizon.

Primal Formulation

Note that slippage for a node in period t = 2,... ,T is a function of |

where [•jj G ([•]«-!)) i-C-, node is a child of node [•\t_i- Then, recalling from

Section 2.2.2 that represents the probability that the process enters the period t node

179

Chapter 5 Market Investment Model

Table 5.1: Model MIMPSLP Notation (continued on next page)

Symbol Description

^In Slope of slippage per position linear function in first region: 0 < ai„ < oo

02n Slippage slope adjustment factor for the second region: -oin < a2n < oo

Ht
t-i

Number of nodes in period t: Ht — 0 Rj
3=1

H^t)
t

Cumulative number of nodes through period t: Rj
3=1

K, Number of slippage PWL segments in slippage region j = 1,2: 0 < iiTj < oo
K Total number of slippage PWL segments: K = Ki + K2
k Index for slippage PWL segment: A: G {1,..., K}
Lt Number of outcomes at each node in period t:2<Lt<oo
It Index for a specific outcome: It G {1,..., if}
N Number of securities in the market investment model analysis: 1 < iV < 00
N Set of security indices: N = {1,..., N}
n Index for a specific security: n G N

pWt Vector of outcomes' probabilities at node pl*h G

pi:'' Probability of outcome k at node [•Jj: 0 < p|*'' < 1
pW. Compound probability of entering node ['jt = fi,..., ft-i

T t—1 r.i]:p[-h=
J n j=i

Q Number of downside deviation PWL segments: 1 < Q < 00

Q Index for downside deviation PWL segment: g G {1,..., Q}
Outcomes matrix of returns at node G

Return for security n given outcome k at node ["j^: —00 < R^'i^ < 00
T Number of periods in the planning horizon: 1 < T < 00
t Index for a specific period: f G {1,..., T}

XT Boundary between slippage regions for security n: 0 < XT < 00
y(i)W.
A.TI Transaction amount for security n at node [•Ij: =

1

T

1

Portion of transaction amount for security n at node in PWL segment k

pit Portion of downside deviation for outcome k at node in PWL segment q
'Y'TCISX Matrix of maximum number of positions: Y™" G R^ ̂
Vniax
^ nt Maximum number of positions for security n in period t: -00 <

Matrix of minimum number of positions: Y™" G R^ ̂ ̂
V'nim
^ nt Minimum number of positions for security n in period t: -00 <
y[*lt Vector of portfolio decision variables at node G R^

yiT'' Portfolio decision variable for security n at node YT" < yn^' < Y^
yio; Vector of number of positions held at beginning of planning horizon: y G R-*^

Number of positions held at beginning of planning horizon in security n: —00 < yT

180

Chapter 5 Market Investment Model

Table 5.1: (continued) Model MIMPSLP Notation

Symbol Description

Pt Capital budgeted for risk in period t: 0 < /3t < oo

la Downside deviation PWL slope in segment q- Ji < • n • < Jo < ''' < lo
Kji Minimum cost per position: 0 < Kn < oo
Ai Risk aversion factor for period t: At > 0

Mean returns at node [•Jj: S

Mean return for security n at node [•J^: — oo < < oo
Duals: budget constraint/portfolio upper bounds at node ["ly,: S

„(o)W.
"^0 Dual: budget constraint at node [•J^: > 0

n n Dual: security n portfolio variable upper bound at node > 0

7r(i)W. Duals: slippage constraints/^j.^^^'^' upper bounds at node 6 R(^+i)^
Dual: security n buy slippage constraint at node [•J^: > 0

^N+n Dual: security n sell slippage constraint at node [•],: > 0
_Cl)Wt
^2N+(n-l)(K-l)+k Dual: upper bound (1 < fc < iiT - 1) at node [.]t: 4w+f„+iUic-ii+fc ̂ 0

7r(2)H. Duals: deviation constraints/X^^^^'*^' upper bounds at node g
WH.
It

Dual: outcome k deviation constraint at node > 0

Lt.+(lt~l)(Q—l)+a Dual: upper bound (1 < g < Q - 1) at node [•]<: > 0
Qt Capital discount factor for period f: 0 < ^ 1' = 1

Qt

t

Compound capital discount factor for period t: H 9j
j=i

Standard deviations on returns at node [•Jj: o-l'k e
Standard deviation on return for security n at node [•];.: 0 < a^n'' < oo

$ Matrix of slippage PWL slopes for all securities: ̂ &

^kn Slippage PWL slope for security n in segment k\ $i„ < • • • < < ... < ̂Kn
Downside deviation PWL upper break point in segment q:

0 = 9Po < ¥>1 < • • • < ̂<7 < • • • < Vo = 00
Matrix of slippage PWL break points for all securities: ̂ 6

^kn Slippage PWL upper break point for security n in segment fc:
0 = ̂'on < < • • • < ̂fcn < • • • < = OO

£t Length in days for period t,l <t <T

Ht Path vector to node [•J^ = fi,..., k-i
{t,ht) Period-index label for node ["Jj:

see equations [2.6] and [2.7] to relate and (i, ht)

181

Chapter 5 Market Investment Model

[•]j, 1 < t < T, the primal grand LP formulation for a general problem is:

T

z = max

t=i \7i=l n=l fc=l lt=l q=l

[5.17]

s.t. constraints at the single first period node,

^

^ + E^£'"
k=l

-^ / n n \ n QeW-Oj/U - EX^II
n=l ̂ / 9=1

< Pi,

< ^(0)
yn 5 n = 1,.

> ^(0)
yn) n = 1,.

< 0, Zi = 1,..., Li,

constraints at nodes ["jj = {t,ht), ht = I,..., Ht, t = 2,... ,T,
N

E < P,
n=l

- EJf£.""' <0, n=l,...,N,
k=\

-yl"'- + y!r'' + >0, n = l,...,Af,

W* -b];';)yl''* - < 0. =
Ti=l ^ ' g=l

and bounds at nodes [•](= (t,ht), ht = 1,... ,11^ i = 1, n n n ,T,

ynt<yn'<y^'', n=l,...,iV,

0 < - ̂(fe_i)n, k = l,...,K,n=l,...,N,

0 < <^g- ̂g-i, q = l,...,Q,lt = l,...,Lt.

The following simplifying notation is introduced to make the problems more man

ageable. First, the variable substitution:

x(0)W. = yW. _ y7, ht = l,...,Ht,t = l,...,T, [5.18]

182

Chapter 5 Market Investment Model

is made for the portfolio variables at all nodes. Variables are referred to as trans

lated portfolio variables while variables y'*!' are called non-translated portfolio, or simply

portfolio, variables. Introduction of translated portfolio variables results in lower bounds

of zero on these variables and simplifies construction of the dual problem. The portfolio

variables' substitutions also induce the additive objective function constant:

t=i

Ht / N

Ep'*'*
L/if=i vn=l t=i Lht=i

Ht

and the following changes to the right-hand-sides of the indicated constraints at all nodes

Ht = (^>ht), = =

rmm

• •t 5

AY™" =

=15,-

y(o)_Y^", iff = l

ifte{2,...,r}

4:'"=E (<' - pi.''') IS".'.=1 Lt,
n=l ̂ '

/\"ymax Y™"* Y™™
®t ®f J

Computations are reduced by defining the following variables representing the upper bounds

on the translated portfolio variables and the PWL slippage and deviation variables at all

budget constraints,

slippage constraints,

deviation constraints,

upper bounds on

nodes:

jj(0)[*]j ̂ y\"yniax Y"™* Y"™"

< Aipg = (Pg- (fq-i, q = l,...,Q,lt = l,...,Lt.

183

Chapter 5 Market Investment Model

Finally, the imaginary period zero portfolio variable:

(0)[»]o _
X

simplifies construction of the problem at the single first period node. Table 5.2 summarizes

this new notation and is provided as a convenient reference.

Primal problem [5.17] is then reformulated as problem PMPGLP:

T

z = max^^j
t=i ht=\ \n=l n=l fc=l lt=\ q=l

[5.19]

s.t. constraints at nodes [•]j = (t, /it), ht = 1,..., i?t, t = 1,..., T,

n=l
K

if- Exf-l' < -Ay^. n=l N,

E W'-b5) - E4?"'' ̂ =
71=1 ^ ' g=l

and bounds at nodes = {t,ht), ht = 1,..., Ht,t = 1,... ,T,

184

Chapter 5 Market Investment Model

Table 5.2: Model MIMPSLP Simplifying Notation

Notation Description" Reason

x(°)Wt = y[*It -
portfolio
variables'

substitution

induce lower

boimds of

zero

T* H

^con =ESt t)
t=l ht=l

objective
function

constant

variable

substitution

=Pt- cr'Wt YSf RHS of budget
constraints

variable

substitution

^Yiiax _ — Y°^ upper bounds on
x(o)W.

variable

substitution

AYmin-/ t = l
"1 Y™?_,^-Yr, t = 2,...,T

RHS of slippage
constraints

variable

substitution

4:'' = E K'i' -mL'M Y^,k = l,...,Lt
71=1 ^ ^

RHS of deviation

constraints

variable

substitution

A^ffcn = ̂fc„ - k = l,...,K
upper bounds on
slippage variables

computational
convenience

'^fq=fg-^g-l,q = h- - -,Q
upper bounds on
deviation variables

computational
convenience

xWWo = 0 imaginary period 0
portfolio variables

problem
construction

° RHS means right-hand-side

185

Chapter 5 Market Investment Model

< Ay„7', n = 1,...,N,

< ASb.. k = 1,...,K-■1, n = 1, .

q = l, . . ■ iQ- 1,

t-H
II

■ ■ ,Lt,

xfW- > 0, n = 1, . . .,N,

> 0, A: = 1, . ,. . ,K, n = 1, . . . ,N,

IV
o

q = l, . . ■ ,Q, it = 1, . ■ ■iLt-

Note that the inequality on the slippage buy constraints (third set of constraints) has been

reversed from the original formulation in order to put the problem in canonical form (e.g.,

see Bazaraa, Jarvis, and Sherali [6, page 5 and Table 1.1]). Also note that upper bounds

are not included at any node for slippage variables n = 1,. . ., A/", or for deviation

variables h = 1, . . . ,Lt. These bounds need not be explicitly listed since A<^q =

oo and /X^Kn = oo forn = 1, . . . , iV. Furthermore, the portfolio variables' substitutions

(equations [5.18]) require that the objective function constant defined above (or see the

second row of Table 5.2) be added to the above result to obtain the true problem value:

Z = Z-\- Zcon- [5.20]

Dual Formulation

Three sets of dual multipliers are defined for each node in order to construct the

dual problem to problem [5.19]. These definitions are valid at each node [•jj = (t, At),

ht — 1, . . . ,i?t, t = 1, . . . ,T. First, let G referred to as the dual budget

186

Chapter 5 Market Investment Model

variables, be the vector of multipliers for the budget constraint and the upper bounding

constraints on the translated portfolio variables with vector indices corresponding to the

applicable primal constraints:

E 4°""'.'0 '

[5.21]

xh
(0)['

Note that no dual budget variable, is required for any primal portfolio variable

upper bounding constraint that has = oo since any such dual variable would always

have a value of zero. Duals to the slippage constraints and upper bounding constraints on

the slippage variables are called the dual slippage variables and are denoted by G

^{K+i)N vector indices:

W' - £ < Ay-, n = 1,..., iV:K

z
A:=l

K

E
A:=l

< - Ay„r, n=l,...,N: Trf'"K j = N + 1,... ,2N,

TT,
J ' iK +1) N.

[5.22]

Finally, the duals to the deviation constraints and upper bounding constraints on the devi

ation variables are called the dual deviation variables and are denoted by G

with vector indices:

E (/A-I- - b!;',-) xfW' - E < S;}, i, = 1.... .i,: = 1,...,L,.
71=1 ^ ^ qf=:l

4fAA,=,.,= l....,<3-l.i, = l.....L,: xfl',
' [5.23]

187

Chapter 5 Market Investment Model

Slippage duals, = o, are also defined for all fictitious nodes in an imaginary

period T +1 for problem construction purposes only. Then the dual to problem PMPGLP

[5.19] is referred to as problem DMPGLP and is:

T Ht

z = xmn

t=l ht=l L n=l

[5.24]

+ ± - 4^1') + E E
71=1

Lt

lXK-l)+k
n=l fc=l

h h 2—^ 2-^ ^9 Lt+{lt—l)iQ—l)+q
lt=l lt=l g=l

s.t. constraints at nodes = (t,ht), ht = 1,..., Ht,t = 1,... ,T,

4.1.4W1. + 40,1,. ̂ 41,1,, _ ,a)w. + ̂ ̂4,. _ jjWA 42,1,.
lt=l

TTn ^N+n ^^2N+{n-l){K-l)+k — StP *^kn.
k = l,...,K -I,

(i)Wt
—TTn — TTN+n

-TT,
(2)H, .(2)[.!t

-TT:
(2)b

+^L£+(«t-l)(Q-l)+5 ^ StP 'MPi, Iq, =

> = 1,..., Lt,

and lower bounds at nodes [•jj = {t, ht), ht = 1,... ,Ht,t = I,. ̂. ,T,

188

Chapter 5 Market Investment Model

7ri°"*''>0, n = a,...,N,

i = l (K + \)N,

The first set of N constraints at each node are known as the dual composite con

straints because they incorporate all three types of dual variables. The next pair of con

straint sets are referred to as the dual slippage constraints since they involve only the dual

slippage variables. Finally, the last pair of constraint sets are called the dual deviation

constraints since they involve only the dual deviation variables.

Note that similar to the primal problem PMPGLP [5.19], equation [5.20] must be

applied to the objective function value of problem DMPGLP [5.24] in order to obtain the

value for the original problem.

5.2 Model Problems in Array Notation

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP can be put into the

array notation defined in Chapter 2. Definitions for problem vectors and matrices are given

below followed by the formulations in array notation. The following notational conventions

are used to define problem arrays:

[jj: floor of j - largest integer less than or equal to j,

• M-hy-N matrix of zeros, and

189

Chapter 5 Market Investment Model

A (ii '.12, ji '.32) '• array colon notation - the submatrix of A containing elements in rows

ii through i2 and columns ji through j2-

Also recall from Section 1.4 that 1m represents the M-hy-M identity matrix. All arrays are

defined relative to the primal formulation, problem PMPGLP [5.19], and the transposes of

these arrays are used as appropriate in the dual problem DMPGLP [5.24]. Upper bounding

constraints are included in the definitions for the right-hand-side vectors and the transition

and recourse matrices.

5.2.1 Problem Vectors

Composite vectors x'*'', ct*'*, and bl'l' are used to represent the decision variables, cost

coefficients, and right-hand-sides respectively for each node [•jj in the decision tree. Vector

xi'lt e is defined as

=

x(0)Wt

x(i)Wt
x(2)[-h

where e is defined by equation [5.18], E R-^^ such that

where { fcrj = 1,... ,KN.
and E such that

2.(2)[»1< _ where ̂ Q
+ 1

Qj — j {Ij 1) Q

Cost coefficient vector ct'I* E is defined as

for^' =

=

c(0)Ht

c(i)Wt
c(2)[«lt

[5.25]

[5.26]

[5.27]

[5.28]

190

Chapter 5 Market Investment Model

where e such that

c(i)['lt e R^^ such that

where | = L"^J "

and e R'^^' such that

+ 1

1)

[5.29]

K
forj = l,...,KN, [5.30]

where
tzl
Q
+ 1

Qj — j {Ij 1) Q

Right-hand-side vector b^'^t G]^i+(K'-i-2)iv+QLt jg defined as

b(o)Ht

fori = l,...,QLt. [5.31]

bWt = b(i)M^

b(2)Wt

where e R^+^ such that

p , n = 0
&(0)[.]t =

' AY^, n=l,...,N,
b(i)Wt e R(^+^)^ such that

' AYjr, j = l,...,N,

-Ay™", j = N + l,...,2N,

=

j = 2N+l,...,{K + l)N,

where
Uj =

j-(2Ar+i)
K-l + 1

k^=3-2N-{n^-l){K-l)

and b(2)["]t g R<3^t such that

6f = \
J = +1) • • •

where gj=;-L4- 3-{Lt+l)
Q-1 (Q-1)

[5.32]

[5.33]

[5.34]

[5.35]

191

Chapter 5 Market Investment Model

5.2.2 Problem Matrices

Composite matrices Bl*!' and are used to represent the transition matrices and re

course matrices respectively. Transition matrix

BWt e]g[l+(A'+2)Ar+QLt]x[(i<:+l)Ar+(3Lt_i]

is defined for each node [•jj in the decision tree in periods t = 1,..., T and in the imagi

nary period t = T + las

[®](i+jv)xiv [®](i+i\r)xirjv [®](i+jv)xQi,t_i

[0](A-+i)ArxK;v [®](K'+i)iVxQit-i ' [5.36]

[^]oLtXJV MgLtXiTAT MqLtxQLt-i

where G such that

B(i'0)Wt (i:N, 1:N) = -I^

B(i-0)['h (AT + i;2JV, hN) = Ijv > if 2 < f < r,

Bri.o)[.]. (2Ar + i:(K + 1) N, 1:N) = ^

B^'l' -

[5.37]

BO.0H1 = ift = 1 orT + 1

Note that = [®](a-+i)jvxjv defined solely for the purpose of simpli

fying the problem construction procedure.

Recourse matrix

WWt e]Rll+(^+2)^+Qit]x[(/f+l)Ar+Qit]

192

Chapters Market Investment Model

is defined for each node [•Jj in the decision tree in periods f = 1,..., T as

[0](1+Ar)x;!rjv [®](i+iV)xQi:,t

WW.= W<'.°)W. , [5.38]

where the five non-zero submatrices of Wt*l« are defined as follows. Submatrix e

]^(i+iv)xjv jg defined as

w(0;0)Wt = cr'Wt,

W(0'0)Wt (liA^, l:N) = Ijv,

[5.39]

submatrix is defined as

(liAT, i:N) = In,

(TV + l:2Ar, l\N) = -In,

(2JV + 1: (Jf + 1) JV, 1:JV) = ,

[5.40]

and submatrix 6 jg defined as

= (m'*'- - Rlt)', i, = 1,.... i„ [5.41]
(£, + i:Qi„ iM) = .

The lower two diagonal submatrices 6]R(-'^+i)-'^xirAr 2j.jd e - Q̂LtxQLt

are defined in Figures 5.3 and 5.4 respectively. Note that the first period technology matrix

is denoted by W'l and not by A as in Chapters 2 and 4.

193

Chapter 5 Market Investment Model

w('''H(i:2Ar,i;/OT) =

V.K

Upper Submatrix

Columns Rows

{n-^)K+'{:nK • • • ̂ N-^)K+^:NK

1

N

N+^

N+n

2N

V.K

w''-'"*'' (2Af+1: (a:+1) 1: JfN) =

Ijc-iO

Lower Submatrix

Columns

{n-^)K+ ̂ :nK ^{N-^)K+^:NK

Ia-iO
NOTES

1. Blank portions of both submatrices filled with zeros

2. represents the (/<'-1)-by-(K'-1) identity matrix

3. 0 represents a column vector of (K-1) zeros

Figure 5.3: Recourse Submatrix

194

Rows

2W+1:2W+(K'-1)

2N+n(K-^)-K+2:2N+n{K-^)

2N+N{K-^)-K+2:{K+■\)N

Chapter 5 Market Investment Model

1:2 •

-1 . . . -1

Upper Submatrix

Columns Rows

(/,-1)2+1:/,2 • • • (L,-1)2+1^/^2

1

-1 . . . -1

-1 . . . -1

1:2

W<""*''(A+1:2A.1:24) =

1^0

Lower Submatrix

Columns

(/,-1)2+1:/,2 • ■■{L^A)Q+V^

1^40

Rows

L,+1:L,+(2-1)

L,^{Q-^)-Q+2■.L,^{Q-^)

L,+L,{Q--l)-Q+2-.QL,

NOTES

1. Blank portions of both submatrlces filled with zeros

2. Ig., represents the (2-1)-by-(2-1) identity matrix

3. 0 represents a column vector of (2-1) zeros

Figure 5.4: Recourse Submatrix

195

Chapter 5 Market Investment Model

5.2.3 Array Formulations

Problem PMPGLP [5.19] can then be written in the following formulation analogous to

formulation [2.8] on page 35;

T* Ht

z = max ^ "Yj
t=l ht=l

s.t. WllxH < bll,

BWtxWt-i + wHtxWt < bWt, = t = 2,...,T,

xW' > 0, = t = l,...,T.
[5.42]

Similarly, problem DMPGLP [5.24] can be written in the following formulation analogous

to formulation [2.12] on page 39:

T Ht

z = min Y S
t=l ht=l

s.t. W'WtTrWt + T B'W'+i7rW«+i > cWt

W'WTTrWT > cWt, hT = l,...,HT,

where tfW' e Ei+(^+2)i^^+Qit such that

[5.43]

Tri'Jt =

7r(o)[*h

7r(i)Wt

7r(2)[-lt

[5.44]

196

Chapter 5 Market Investment Model

5.3 Properties and Sizes of Model Problems

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP possess several of

the stochastic programming properties described in Chapters 2 and 4. Each problem has

complete recourse, is block-separable, and models a sequential decision-observation sto

chastic process that terminates with an observation in each period of the planning horizon.

These three properties are discussed below and additional properties of the model are in

troduced where appropriate. This section concludes with comments on the sizes of the two

grand LP formulations.

5.3.1 Observation-Terminated Process

Model MIMPSLP mathematically describes a observation-terminated stochastic process

as defined in Section 2.2.1. The end of each period in the planning horizon is simulated by

the observation of the vector of random returns and the simultaneous determination of the

downside deviation. Deviation variables at each node [•]^ in the decision tree are

reactive recourse variables since they model a automatic reaction of the system to a realized

outcome. Translated portfolio variables and slippage variables at each node

in the tree are considered to be discretionary recourse variables. The translated portfolio

variables simulate investment decisions that must consider the fixed costs, or slippage, but

must be made prior to the observation of the uncertain returns in the applicable period.

The observation-terminated market investment process requires two modifications

to the notational conventions developed in Chapter 2 for stochastic linear programs that

197

Chapter 5 Market Investment Model

model decision-terminated processes. One modificatidn results from the presence of ran

dom returns in the first period of the planning horizon. The first period technology matrix is

treated as a recourse matrix, denoted by W^', since it contains stochastic elements whereas

this matrix is fixed in a decision-terminated process. Termination of the final period with

an observation induces the second modification which is to assign a number of outcomes,

Lr, to each node in the terminal period. No outcomes are assigned to nodes in the final pe

riod of a decision-terminated process. Each of these modifications has been incorporated

in the formulations developed in the previous section.

5.3.2 Complete Recourse

The primal budget constraints, insure that problem PMPGLP [5.19]

is bounded since (see the third row of Table 5.2)

=(3^- < oo

for all nodes [•](in periods t = l,...,T.ln addition, if

at each node, then there exist translated portfolio vectors > 0 such that the primal

budget constraints are satisfied. The above condition is checked as soon as the input data

for the model is known and the program is terminated if the condition is violated at any

node. Therefore, no solution procedure is initiated unless there exist values for the primal

portfolio variables that satisfy the budget constraints.

198

Chapter 5 Market Imestmeht Model

Then note that given translated portfolio variables, there exist prinial slippage vari

ables > 0 and deviation variables > 0 at all nodes that satisfy the primal

slippage constraints,

+ iP"' - E < A};f,

rrf'-l- - rrf I-l- - E < -Ay-",
fc=l

(i)Ht

> n = l,... ,N,

and primal deviation constraints.

> It — 1,..., Lt,n=l ̂ ' 5=1

< ̂<Pq, q = l,...,Q -1,

respectively. Problem PMPGLP [5.19] is therefore bounded and considered to have com

plete recourse which also implies that the dual problem DMPGLP [5.24] has a feasible

and bounded solution.

Given the problem array notation defined in Section 5.2 above, the only stochastic

arrays are the recourse matrices W'*)' [5.38], specifically the submatrices [5.41].

Therefore, problems PMPGLP and DMPGLP do not have fixed recourse.

5.3.3 Block-Separable Recourse

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP have the block-

separable recourse property described in Section 2.4 starting on page 42. Block-separability

is demonstrated by examining the left-hand-sides of the second set of constraints in the

199

Chapter 5 Market Investment Model

array formulation of problem PMPGLP [5.42]. These left-hand-sides:

BWtxWf-i

can be equivalently written with the subarray notation defined in Section 5.2. Transition

matrix Bt'l' [5.36] is written in terms of submatrix [5.37] and eight zero submatri-

ces. Recourse matrix W'*'' [5.38] is written in terms of four zero submatrices and the five

non-zero submatrices defined by equations [5.39] through [5.41] and Figures 5.3 and 5.4.

All dimensioning subscripts on the zero submatrices are omitted for brevity. Decision vec

tor [5.25] is written in terms of the three subvectors [5.18], [5.26], and

x(2)Wf [5.27]. The left-hand-sides in subarray notation are:

[0]

[0]

[0]' x(®)Wt—1

[0] x(i)Ht-i -i-

[0] x(2)Ht-i

[0] x(o)Ht

x(i)Ht

r(2)[.

[5.45]

Translated portfolio variables are treated as aggregate level decision variables

while primal deviation variables are detailed level decision variables. Pri

mal slippage variables ■«— can be treated as either aggregate or detailed level

decision variables. The best (fastest) results are obtained when the primal slippage vari

ables are considered to be detailed level decision variables and this assignment is adopted

hereinafter. The left-hand-sides given by relation [5.45] can be separated according to these

assignments for aggregate and detailed level decision variables. Similar separations of cost

200

Chapter 5 Market Investment Model

coefficient vectors [5.28] into the subvectors defined by equations [5.29] through [5.31]

and right-hand-side vectors b'*'' [5.32] into the subvectors defined by equations [5.33]

through [5.35] are possible. These array separations allow problem PMPGLP [5.42] to be

equivalently formulated as:

z = max EE c'(o)[.]^xWWt+^ ̂
t=i /it=i t=i ht=i

[5.46]

s.t. aggregate level constraints at nodes [•jj = {t,ht), ht = I,..., H^t = I, n n n .T,

x(°)Wf > 0,

and detailed level constraints at nodes = (t, /it), /it = 1,..., iJt, i = 1,..., T,

B(i,o)[.],x(o)[.]t-i + w(i'0)Wtx(°)Wt + W(i4)Wtx(i)Wt <

W(2.0)Wtx(°)W' +W(2'2)Wtx(2)Wt < b(2)Wt

x(i)Wt > 0,
x(2)[.]t > 0.

Recall from equation [5.37] that is a zero matrix so that the term

in the first set of detailed level constraints of problem [5.46] is absent in the first period,

t=l.

Dual problem DMPGLP [5.43] may also be equivalently formulated as:

7 H% 7 Ht

z = min 53 -t-
1=1 ht=l t=l ht=l

[5.47]

s.t. aggregate level constraints at nodes = (^, /it), /it = 1,..., ̂Tt, i = 1,..., T,

201

Chapter 5 Market Investment Model

t+1 7r(i)W t+1 >
!t=l

7r(0)Wt > 0,

and detailed level constraints at nodes [•Jj = (i, /it), /it = 1,..., f/t, t = 1,..., T,

^t(i,i)[.]t7r(i)Wt > c(^)Wt,

■y^/(2,0)[*]j.jj.(2)[»]f ^ Q(2)[*]t^

7r(^)Wt > 0,
7r(2)Ht > 0.

Recall from equation [5.37] that are zero matrices so that the summation term

in the first set of aggregate level constraints of problem [5.47] is absent in the terminal

period, t = T.

Note that both the primal formulation [5.46] and the dual formulation [5.47] have

the form of a two-stage stochastic linear program. Aggregate level constraints in both

formulations are in the first stage while the detailed level constraints are in the second stage.

Therefore, algorithm LSD(multicut) described in Section 3.1.4 can be applied directly to

problem PMPGLP as formulated by [5.46]. Similarly, algorithm DWD(multiactivities)

described in Section 3.2.3 can be applied directly to problem DMPGLP as formulated by

[5.47]. Block-separable recourse allows for many other structural rearrangements that can

be exploited for decomposition. Additional rearrangements are described in Section 5.4

below.

202

Chapter 5 Market Investment Model

5.3.4 Sizes of Problems

The size of a model MIMPSLP primal or dual problem is expressed in terms of four

parameters: number of variables, constraints, non-zero technology matrix coefficients, and

nodes in the decision tree. Size parameters are derived in Appendix D for primal problem

PMPGLP [5.19] and dual problem DMPGLP [5.24]. Table 5.3 summarizes the results

obtained in Appendix D and is provided as a convenient reference.

5.4 Decomposition of Model Problems

Problems PMPGLP [5.19] (or [5.42] in array notation) and DMPGLP [5.24] ([5.43] in

array notation) of model MIMPSLP are especially amenable to the decomposition pro

cedures described in Chapters 3 and 4. An extensive selection of problem formulations

and decomposition techniques are available due to the three model properties described

in Section 5.3 above. The single-period problem is a stochastic linear program since an

observation-terminated process is simulated by the model. Single-period problems, as well

as problems with multiple periods, may be solved with a grand LP formulation or with

DWD/LSD. Initialization of DWD/LSD algorithms is a simple process since model prob

lems are bounded and have complete recourse. Complete recourse also insures that there

will be no need for feasibility cuts in LSD or extreme direction activities in DWD. Further

more, myopic decomposition may be an attractive alternative to DWD/LSD dUe to com

plete recourse. Block-separable recourse allows for significant flexibility in structuring

203

Chapter 5 Market Investment Model

Table 5.3: Sizes of Model MIMPSLP Problems

Parameter Symbol Value Equation

Nodes (Period)" Ht
t-l 0

n Lj, where Hi — 0 = 1
i=i j=i

P.l]

Nodes (Cumulative)^ H^t)
t t fji-i \
E if,- = E n
j=l ji=l \j2=l)

[D.2]

Primal Constraints (1 + 2N) + E HtLt
t=i

P.3]

Primal Variables
£=1

[D.6]

Primal Non-zeros" [{2K + 5) - 2] iV + (AT 4- Q) E HtU
t=i

P.8]

Dual Constraints #E {K + \)NH^'^^ +QY^HtLt
t=\

P.7]

Dual Variables [1 + {K + 1)N] -f Q E HtLt
t=l

[D.5]

Dual Non-zeros'' [(3ii: + 4) - 2] AT -f (iV + 2Q - 1) E HtLt
t=i

P.9]

Number of nodes in period t,l<t<T

'' Number of cumulative nodes in periods 1 through t,l <t <T
Number of non-zeros in the primal technology matrix

Number of non-zeros in the dual technology matrix

204

Chapter 5 Market Investment Model

problems for DWD or LSD. Any model MIMPSLP problem may be treated as a two-stage

problem regardless of the number of periods in the planning horizon. Problems involving

three or more periods, on the other hand, may also be solved with nested decomposition

modified to take advantage of block-separability. Each of these solution techniques is de

scribed in detail in Appendix E.

5.5 Implementation

Model MIMPSLP is implemented with a collection of nine computer code libraries. Linear

programming support is provided by the commercial CPLEX' 6.5 callable library package.

I

Random scenarios are generated using a Visual C-H-^ 6.0 library, MRScenGen, developed

and provided by a private company. Scenario generation is discussed in detail in the fol

lowing section. The remaining seven libraries were developed or modified specifically for

the MIMPSLP model. All routines in these latter seven libraries are written in either Vi

sual C-»~i- 6.0 or Compaq^ Visual Fortran 6.1 A (CVF). CVF is a Fortran 95 compiler with

language extensions that allow fairly easy intercommunication between Fortran and C/C-H-

routines.

The seven model MIMPSLP specific libraries as well as the scenario generation

library are listed in Table 5.4 with the library names and sizes for both the source and com-

^ CPLEX is a registered trademark of ILOG, Inc., Gentilly, France
^ Visual C++ is a registered trademark of Microsoft Corporation, Redmond, WA
® Compaq is a registered trademark of Compaq Computer Corporation, Houston, TX

205

Chapter 5 Market Investment Model

Table 5.4: Model MIMPSLP Run-Time Libraries

Description Library Name
Source 1

Size (KB");
CompUed
Size (KB)^

Market Investment Model'' MIMPSLP 9,568.9 12,134.0

Options Options 378.Q 392.6

C-H- Interface C++_Ifaces 508.8, 567.0

CPLEX Interface CPLEX_Ifaces 326.2 355.2

Common Common 328.9 552.3

Utilities Utils 2,982.6 3,413.5
Decision Tree Stoc_Forest 151.4 105.6

Scenario Generator" MRScenGen unknowii 8,574.4

Combined Size 14,244.8^ 26,094.6

Kilobytes (1 kilobyte = 2^° = 1,024 bytes) ;
Each size includes both the static {.lib) and dynamic {.dlt) libraries !

Includes the model routines as well as the routines' interfaces module arid the version module

Provided by a private company i

Without the scenario generator source files

206

Chapter 5 Market Investment Model

piled files. Figure 5.5 is a schematic of the general calling sequence between main pro

grams and the libraries. Note that library Stoc_Forest encapsulates the data and procedures

required to implement the decision tree structure and is described in Section 4.6.

5.6 Scenario Generation

Scenario generation for model MIMPSLP is based upon the following assumptions.

Scenario Generation Assumptions

1. Daily returns for the N securities in each period form independent, identically

distributed random vectors from a iV-variate non-singular normal probability

distribution. ,

2. The mean and standard deviation vectors and the correlation'matrix for the daily returns

in the first period of the planning horizon are known.

3. The distribution of daily returns in a given period is dependent on the observed returns

in previous periods with a known dependence relationship.

Procedures, based upon the above assumptions, for generating random returns in

a given period, creating conditional distributions, and drawing a random sample are de-
I

scribed below. The procedural descriptions are followed by a discussion of the method

used to measure sample effectiveness in approximating the derived distributions.

207

Chapter 5 Market Investment Mendel

Symbol A designates appropriate main or GUI

C++_/feces
Graphical User
Interface (GUI)

Fortran 95 Options
Data Files

C++
<-

Mam Mam

Options

Common

MRScenGen

Stoc Forest

Utils

Output Reports

MIMPSLP CPLEX Ifaces

CF>LEX Library
of Functions

General Calling Sequence
i

1. Mains or GUI may leave default options in place or set all options vi/lth optional data tiles or set Individual options with
In-place code (C++ main or GUI must use C++_lfaces library) '
2. Mains or GUI Invoke the MIMPSLP library (C++ main or GUI must use C++_lfaces library) which retrieves options
from the Options library and:

a. Calls the Common library to set common data such as slippage piece-wise linear slopes and break points
b. Creates the decision tree by node by alternately calling the MRScenGen library to generate the data and the
Stoc_forest library to store the data as required by the number of periods and number of outcomes per period
c. Solves problem with CPLEX using the Intermediate CPLEXJfaces library
d. Creates any optional output reports using applicable routines In the Utils library I
e. Destroys the decision tree and frees associated memory with call to the Stoc_Forest library

3. MIMPSLP retums to appropriate main or GUI '

Figure 5.5: Schematic of Market Investment Model Libraries

208

Chapter 5 Market Investment Model

5.6.1 Returns for a Period

The probability distribution for returns in a period is based upon the distribution of daily

returns in that period. The following description for the derivatioii of the former distribution

given the latter is for a generic period and subscripts/superscripts identifying the period are

omitted for simplicity.

Let y e be the vector of held positions and let e; R-'^ represent the random
I

vector of daily returns for day m e {1,..., i?} in a period of length £ > 1 days. Total

return over the period is then the random variable

TR = f'lY + • • • + f;„y + • • • + f'^y = 1 ^:
\m=i

Returns for the period are therefore represented by the random vector

£ i

r = 5^f^.
m=l

Let (i e R^, cr € R^, and F G R^^^ be the mean vector, standard deviation vector,

and correlation matrix respectively for daily returns in the period. Scenario generation
I

assumption number one implies that the random vector r is normally distributed with mean
i

vector ̂ G R^ and covariance matrix S G such that (e.g., see Rencher [173,

property 7, page 100]):

£

m=l

£

S = Y,t = £±,
m=l

209

Chapter 5 Market Investment Model

where S is the covaiiance matrix for daily returns. Covariance matrices must be determined

using the corresponding correlation matrices and the well known relationship (e.g., see

Rencher [173, equation 3.36, page 69])

S = D^fD^,

where Dv G represents the diagonal matrix formed with vector v e{Vi, i = j,
0, t ̂ j.

Note that matrix-vector multiplication is not required for the product DvU where u e R^

is compatible with Dy. The same result may be achieved with the Hadamard product

denoted by the symbol O:

DyU = V o u = ..., VmUm,. .., VmUm)' • [5.48]

Several properties of the Hadamard product are described by Magnus and Neudecker [139,

Chapter 3, Section 6]. This product will be used in the description of conditional distribu

tions in Section 5.6.2 below.

The covariance matrix for period retums is then

S = f = D^fD^,

where a = \/~£d- is the vector of standard deviations for the retums in the period. Note that

the above relationship also demonstrates that the correlation matrix for period retums is the

same as that for the daily retums. Therefore, random vector r, representing the retums for

the period, has the A''-variate normal distribution Nn D^FDo-^ .

210

Chapter 5 Market Investment Model

5.6.2 Conditional Distributions

The distribution of returns for the first period is determined with the procedure described

above using the parameters for the first period daily returns distribution. First period daily

returns distribution parameters are known by the second scenario generation assumption.

Daily returns distributions for periods after the first are dependent on the observed retums

in previous periods. Procedures for creating the conditional distributions given the depen

dence relationship introduced by the third scenario generation assumption are discussed

below.

Let /i'' 6 <t" 6 R"'^, and e be the known mean vector, standard

deviation vector, and positive definite correlation matrix respectively for daily retums in

the first period. Assume that the columns of history matrix

are the observed retums in periods 1 through i-1 where 2 <i<T and period t has length

£t '> l days for t = The conditional distribution for retums at some node [•Jf in

period i given history matrix Rf_i must now be determined. Conditional distributions in

model MIMPSLP are based upon a dependence relationship that:

1. sets the standard deviation vector and correlation matrix for daily retums at the period t

node equal to the corresponding arrays for the first period node:

o-Wt = o-[l and f = f and [5.49]

211

Chapter 5 Market Investment Model

2. sets the mean vector for daily returns at the period i node according to:

/xHf = ̂[1 + / - /itJ) , [5.50]

where the dependence factor / and the historical conditioning vector v are described

below.

Dependence factor / in equation [5.50] is a constant, 0 < / < 1, that determines

the degree of dependency on the history of the process. Daily returns distributions are

independent of the history when / = 0 since the parameters for the distributions in each

period remain constant at their first period values. Conversely, the mean vector for the daily

returns distribution at a node in period i, 2 < £ < T, is equal to the historical conditioning

vector V (following description) when / = 1. Otherwise, 0 < / < 1 and the daily returns

mean vector at node is a function of the historical conditioning vector and the first

period daily returns mean vector.

Historical conditioning vector v is a weighted sum of the columns the history matrix

scaled by the corresponding period lengths:

I""

where,

t-i

= [5.52]
t=i

Returns in period £ are considered to be twice as influential as the returns in period £ -1 so

that the additional conditions

wt = 2wt-i,t = 2,...,t-l [5.53]

212

Chapter 5 Market Investment Model

are imposed on the weights. Equation [5.53] implies that the weights form a geometric

progression with (e.g., see the CRC Math Handbook [39, equation 2.1.4]):

t—1 f—1 .. /i\t—1

^^ = wt-i ~ , [5.54]
t=l t=l 2

where the second term above simply reverses the order of the weights in the first term.

Equations [5.52] through [5.54] then yield the weights,

-, t = i-l
t-1

Wt =

2^t+l

used in equation [5.51] to determine the historical conditioning vector.

Equations [5.49] and [5.50] can now be used to determine the daily returns parame

ters and respectively. Random vector r'*'', representing the returns for a node in

period f, 2 <t <T, then has the iV-variate normal distribution A/jv D Wf Ft'D

where //W' = and

5.6.3 Sampling

Downside deviation at each node in the decision tree is approximated by sampling from

the A/'-variate normal distribution of returns at the node. Assume that the iV-variate nor

mal distribution A/jv for the returns at a node in period t, 1 <

t ^ T, have been determined as described in Section 5.6.2 above. Covariance matrix

SWt = is symmetric and positive definite due to the non-singular normal

ity assumption. Therefore, there exists a lower triangular Cholesky decomposition matrix

e such that = S'*'* (e.g., see Golub and Van Loan [93, Section

213

Chapter 5 Market Investment Model

4.2.3] or Rencher [173, Section 2.7]). Then, given a vector u 6 of N independent sam

ples from a standard univariate normal distribution, DeGfoot [52, Section 5.4], Krzanowski

[130, Section 7.2] and Rencher [173, Section 4.2] show that

r = [5.55]

is a sample vector from Mn Since a constant correlation matrix

ri' (see the first dependence condition on page 211) across all periods, equation [5.55] can

be replaced by

r = D^[.]. (Cu)+Mf'ls [5.56]
where C is the lower triangular Choleksy decomposition matrix for ft'. Equation [5.56] is

equivalent to equation [5.55] since,

SW. = D,i.i.r"D,,.,.

cW.cw. = d^,.,.cc'd^,.,.

Cl*l'C'W..= (d^|.i.c) (d^w.c)'
=!- cw. = D^i.,.e;.

Use of equation [5.56] in lieu of equation [5.55] saves considerable time since only one

Cholesky decomposition matrix must be determined and operation D^[.]j ̂ Cu
is significantly faster than the Cholesky decomposition procedure.

Assume the next node to add to the decision tree is in period t, \ < t < T, with

length > 1 days. Let the path vector to the node be [•Jj = Zi,..., Zt_i which implies

214

Chapter 5 Market Investment Model

the returns history matrix Rf_i = •.., where R" = [] (i-e., empty history

matrix if t = 1). Then, the following procedure could be used to draw a sample of Lt

returns.

Cholesky Sampling Procedure

Step 1; Derive the unconditional (t = 1) or conditional (2 < t < T) distribution

using the procedures described in Sections 5.6.1 and 5.6.2.

Set I 0 and go to Step 2.

Step 2: If Z = Lt, return to invoking procedure. Set Z •(— Z + 1 and create a vector

u G of uniform random numbers from (0,1). , Transform u into a vector of

random numbers from the standard normal distribution using the inverse distribution

procedure and go to Step 3.

Step 3: Determine the next column for R'*]«:

rW' = O (Cu) + ij,^<

Return to Step 2.

Methods other than the inverse distribution procedure may be used in Step 2 to obtain a

vector of standard normal values. The National Bureau of Standards Math Handbook [156,

Section 26.8, pages 952-953] summarizes the inverse distribution, sum of uniform deviates,

direct, and acceptance-rejection methods for drawing a standard normal sample.

215

Chapter 5 Market Investment Model

5.6.4 Sample Effectiveness

Mahalanobis squared distances (MSD) (see Krzanowski [130, page 234] andRencher [173,

Section 3.12]) are used to measure the effectiveness of a sample in approximating the parent

distribution. The MSD between two vectors, v E and w E R^, associated with a dis

tribution with positive definite covariance matrix Sm € is denoted by (v, w)

and is defined to be:

^Sm(v,w) = (v - w)'S];/(v - w) . [5.57]

The MSD for one dimensional components is simply the square of the ratio of the distance

between two points, v and w, and the standard deviation, a, of the distribution:

Ms, (v,w) = ,

where Si = [a^].

Mahalanobis squared distances, or simply Mahalanobis distances, are used frequently

in statistical data analysis. Bonanno and Griffiths [24] use a multivariate discrimination

technique based upon Mahalanobis distances to discriminate, between alcohols. Dai and

IChorram [54] use Mahalanobis distances to detect image misregistration in order to im

prove the accuracy of multisource data analysis. Kato et al. [119] develop a system

for recognizing handwritten Chinese and Japanese characters based upon modified Ma

halanobis distances. Lui and Cheng [136] maximize the Mahalanobis distance as part of

procedure to select the number of subimages in an image segmentation problem. Penny

[163] discusses the use of Mahalanobis distances in detecting outliers in multivariate data.

216

Chapter 5 Market Investment Model

Sample effectiveness in approximating the parent distribution is measured herein by

comparing the population expected values of selected Mahalanobis squared distances with

the corresponding average values realized from the sample. Three Mahalanobis squared

distances for each of two model random quantities, retums and net returns, are used in the

analysis;

1. MSD between the random quantity and the population mean of that quantity,

2. MSD between the sample average of the random quantity with the population mean of

that quantity, and

3. MSD between the random quantity and the sample average of the random quantity.

Evaluating the mean of a MSD is a necessary procedure in the analysis. Let p G

and Sm € be the mean vector and positive definite covariance matrix respectively

for some M-variate distribution. Then, if v G R-*^ represents a random vector from the

distribution, the expected value of the first MSD to be determined is:

^ (v, m)] = ̂ [(v - p)' (v - Ai)] .

Krzanowski [130, Section 7.5, page 212] andRencher [173, Section 4.2, property 3] show

that M-Zm (v, p) has a Chi-square distribution with M degrees of freedom when the distri

bution is M-variate normal. Therefore, when the parent distribution is M-variate normal,

the mean and variance, denoted by V (•), of Mzm (v, At) are (e.g., see Lindgren [132,

Section 6.9]):

^ (v, At)] = M,

217

Chapter 5 Market Investment Model

and

(v,/x)] =2M.

The latter two expressions above could be used in the analysis since library MRScen-

Gen assumes a A/'-variate non-singular normal distribution. Model MIMPSLP does not,

however, rely upon this condition so that expressions for a more general distribution are

desired. Evaluations of the three Mahalanobis squared distances described above use the

following three propositions.

Proposition 13 Let v € be a random vector from a M-variate distribution with

mean vector p. £ and positive definite covariance matrix Then,

5[Ms^(v,/x)] = M. [5.58]

Proof See Appendix E

Proposition 14 Let v e R^ be the average random vector for a random sample of size

L drawn from a M-variate distribution with mean vector p £ R^ and positive definite

covariance matrix £ R^^^. Then,

218

Chapter 5 Market Investment Model

when sampling is performed with replacement if the distribution population is discrete.

Proof See Appendix F.

Proposition 15 Let v G be the average random vector for a random sample of size

L drawn from a M-variate distribution with mean vector p, G and positive definite

covariance matrix Hm £ If v is a representative vector from the random sample,

then

= [5.60]

when sampling is performed with replacement if the distribution population is discrete.

Proof See Appendix F.

The expected Mahalanobis squared distances for random returns and random net returns

are described below followed by proposed measures for sample effectiveness.

Expected MSD for Random Returns

The expected Mahalanobis squared distances for random returns at a node Hp 1 <

f < T, in the decision tree are determined with direct applications of equations [5.58]

through [5.60]. Let represent a random vector in the sample (i.e., r''^' represents

219

Chapter 5 Market Investment Model

a column from e r be the average of the sample random vectors in R'*'', and

The expected Mahalanobis squared distances at node [•](, 1 < f < T, are then:

= N, [5.61]

Mm. E.
Lt

[5.62]

£ (rWsrWt)l = [5.63]
I ̂ \ Lt

Expected Mahalanobis squared distances for all nodes are evaluated directly with

equations [5.61] through [5.63]. The expected squared distances for each period, denoted

by5 = l,2,3,forf = l,...,r, are then defined as:

Ht Ht

=ArJ^p['h=iV,i=l,...,r, [5.64]
ht ht

s [a4^w, (fWs //W')] = E ̂p[-]t = ̂, i = 1,..., r, [5.65]
ht ^ ht ^

ht ^ V
[5.66]

where equation [2.7] on page 28 is used to determine label [•jj given label {t, ht) throughout

this discussion.

220

Chapter 5 Market Investment Model

Expected values determined with equations [5.64] through [5.66] are compared with

the corresponding average values realized from the samples to measure the effectiveness

of the samples in approximating the parent distributions. Average values, denoted by

A , j = 1,2,3, for f = 1,..., T, are determined using equation [5.57] and the

drawn samples:

^ (m?) = f pM. (rM. _ ̂1.1,)' (rW. - pK)
L^t=i

[5.67]

A (a4?) = (fW' - /xWt)' (fW. _
ht u=i

[5.68]

^ (rk _ f [.].)'(s!;')" (<' - ffi.)
L^t=i

,f = l,...,T.

[5.69]

Expected MSD for Random Net Returns

Expected Mahalanobis squared distances for random net returns at a node Wi. 1 <

f < r, in the decision tree are deteimined similarly to those for random returns. The

primary difference in the two procedures is that the distributions for random net returns

may not be A^-dimensional. Net return for security n G N is not a random variable if the

number of held positions, is zero since = 0 for Zt = 1,..., Lt. Propositions

221

Chapter 5 Market Investment Model

13 through 15 can still be used to determine the expected squared distances for random net

return as demonstrated below.

Define as the index sets

N[«h = {n|y[;h^O},/it = l,...,ff„i = l,...,T,

and let be the number of indices in set N^t, t e {1,..., T}. Let yWt j G
and j e denote the portfolio vector and mean returns vector respectively
that include only securities with non-zero held positions at node Similarly,

let G |jg jjjg matrix of sample returns that includes only securities

with non-zero held positions at each node. Define vectors /i^' G R^'*'* and uj*'' G

as:

and

/ig. ̂ y[.|, Q ^|^[.|,^ , ft, = 1,..., t = 1, . . . , T,

•I' = yW. (nH.) 0 rW- (nM.) , = 1,... i,_ ft, = ^ ^ _ r_

and let and u'*'' be a representative vector and the sample average vector respectively

at each node. Finally, let G be the covariance matrix at node [•j^, 1 <

t <T, obtained by deleting all rows and columns in with indices n such that n ̂ Nt'h.

Magnus and Neudecker [139, Theorem 29] indicate that covariance matrices S'-'f,

are positive definite given that the corresponding parent matrices are positive defi

nite at each node. Furthermore, Rencher [173, Section 4.2, property 4a] states that u[*I«

will have a TVf'l'-variate distribution with mean vector and covariance matrix S'-'f, .
• JVWt

222

Chapter 5 Market Investment Model

Propositions 13 through 15 then imply that the expected Mahalanobis squared distances for

net returns, denoted by £ J = 4,5,6, for periods f = 1,..., T, are:

E (uWs aS')1 = i = 1,..., T, [5.70]

e (m^A =^P^'^^£ U-Wt =-i J]pW'iVWsi = l,...,T, [5.71]

Lt-l
Ht

Lt
£ (M") = Xjl-l. (uW..uH.)

ht L iJl'lt J - ^
[5.72]

Note that the expected value expressions use arrays defined for total returns and not

net returns. Covariances for total returns and net returns are the same since a net return vec

tor is obtained by subtracting constant slippage factors from each corresponding total return

vector. In addition, slippage factors cancel out in net return difference vectors (see equa

tion [5.57]) since each argument vector includes the constant slippage factors. Equations

[5.70] through [5.72] are, therefore, valid for both total and net returns.

Average values for net return, denoted by A (Mf^^, j = 4,5,6, for t = 1,..., T,
j

are determined as:

^ („H. _ ̂ .)
ht ^4=1

[5.73]

223

Chapter 5 Market Investment Model

A {Mf) = f:pW. [(uM. - /ifi.)' (s;?;.,.)-' (uH. - aW.)
ht

Ht r Lt

I
hi

^ {Mf) = K'' - K" -

[5.74]

,t = l,...,T.

[5.75]

Equations [5.73] through [5.75] are also valid for both total and net returns.

Sample Effectiveness Measures

Values defined by equations [5.64] through [5.69] for returns and equations [5.70]

through [5.75] are then used to defined the following sample effectiveness measures:

E)
{Mf) ([5.76])

Random samples that approximate a parent distribution reasonably well should yield small

Ef values since each of these measures represents a percentage absolute difference be

tween an expected population MSD and an average sample MSD. Empirical results for

model MIMPSLP are reported in the next chapter.

224

Chapter 6
Model MIMPSLt* Results and Analyses

Analyses of the results obtained by applying the decomposition procedures developed

and described in Chapter 4 to the market investment model, MIMPSLP, formulated in

Chapter 5 are provided in this chapter. Two-stage decomposition of model MIMPSLP

problem instances based upon the block-separability property is compared with nested and

myopic decomposition of those problem instances. Results and analyses for measuring the

effectiveness of the underlying random samples and for model applications are also given.

All results were obtained on a Pentium IP 400 megahertz machine with 384 megabytes of

RAM running under Window NT 4.0^ with service pack six installed.

Material in this chapter is organized into seven sections. Constant data values and

representative problem instances are described in the first section. Implementation strate

gies for two-stage and nested Dantzig-Wolfe and L-Shaped decomposition are given in the

second section. Dantzig-Wolfe and L-Shaped decomposition results are analyzed for sin

gle period problems in the third section and for multiple period problems in the fourth

section. Myopic decomposition results are analyzed and compared with Dantzig-Wolfe

and L-Shaped decomposition results in the fifth section. Section six contains results and

analyses for measuring sample effectiveness with the Mahalanobis squared distance mea-

^ Pentium Uis a registered trade mark of INTEL Corporation, Santa Clara, CA
® Windows NT is a registered trademark of Microsoft Corporation, Redmond, WA

225

Chapter 6 Model MIMPSLP Results and Analyses

sures developed in Section 5.6.4. Managerial insight through application is the topic of the

seventh and final section.

See the two-page Table 5.1 starting on page 180 and Table 5.2 on page 185 for a

review of the notation defined for the market investment model.

6.1 Constant Data and Problem Instances

An infinite number of model MIMPSLP problem instances can be constructed. A repre

sentative sample of these instances is used as the basis for the material in this chapter. The

representative sample is built under two conditions:

1. certain problem parameter data is kept constant for all problem instances, and

2. limits are placed upon the number of periods in a planning horizon and on the number

of outcomes that may be generated for any period.

Constant problem data is described first, followed by a description of the sample of problem

instances constructed based upon the two conditions above.

6.1.1 Constant Data

Fixed transaction costs, or slippage, data (see Section 5.1.1 starting on page 165) and sce

nario generation distribution data (see Section 5.6 starting on page 207) are kept constant

for all problem instances. These data are controlled by data files that are input to the

scenario generator code library described in Section 5.6. The data files utilized for the

problem instances described below are applicable to set of N = securities. Slippage is

226

Chapter 6 Model MIMPSLP Results and Analyses

approximated with 4 piece-wise linear segments in each of the two slippage regions so that

iif = 4 -h 4 = 8. Piece-wise linear approximation break points and slopes are assigned to

minimize average absolute error in the first slippage region and to limit the maximum rela

tive error to ten percent in the second slippage region. Only the linear deviations model is

examined so that deviation is modeled exactly with a single linear function {Q = 1). All

problem instances are based upon zero position holdings = 0) at the beginning of the

planning horizon. Positions for each security are not bounded from above (Yjjf = oo) and

no short positions are allowed (Y;;^ = 0) during any period, t, in the planning horizon.

Problem instances described in the next subsection span planning horizons of from

one to five periods. Each period, t, will have a length, £t, in days selected from six pos

sible values. The risk aversion factor. At, capital discounting factor, and risk budget

amount, (3t, are also held constant for periods of the same length. Selected period lengths

and the dependent problem parameters are described in Table 6.1. Constant discount fac

tors of 1.0 (no discounting of capital) given in Table 6.1 are considered reasonable given

the relatively short period lengths. The risk aversion factors shown in Table 6.1 result in

very low aversion to risk (almost no slack in the risk budget constraints) except when the

applicable period is the first in a multiple period planning horizon. Risk aversion for the

first period in the latter case is considered fairly high to moderate (30 to 50 percent slack in

the risk budget constraint).

227

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.1: Period Lengths and Dependent Data

Period Risk Discount Scaled Actual

Length" Aversion Factor Budget Budget

£t Qt Pt" Pt'
2 0.0334 1.0 2,000,000.00 2,828,427.12

3 0.0784 1.0 2,000,000.00 3,464,101.62
5 0.2160 1.0 2,000,000.00 4,472,135.95

10 0.5620 1.0 2,000,000.00 6,324,555.32

15 0.8350 1.0 2,000,000.00 7,745,966.69
25 1.2520 1.0 2,000,000.00 10,000,000.00

In days.

In dollars (US) - the notation is new

In dollars (US) - actual budget is: = Pty/£t

228

Chapter 6 Model MIMPSLP Results and Analyses

6.1.2 Problem Instances

Problem instances are constructed for planning horizons with from one to five periods.

Instances for horizons with a single period and those with two or more periods are described

separately below.

Single Period Problem Instances

Planning horizons with a single period give considerable insight into the application

of decomposition techniques. Fairly large single period problems can be solved using both

the grand LP formulation and decomposition procedures in relative short amounts of time.

Most multiple period problem instances considered in this chapter cannot, however, be

solved in the grand LP formulation due to insufficient computer memory resources. There

fore, single period problems provide a better platform than multiple period problems for

comparing the efficiency of decomposition methods with grand LP solutions. Single pe

riod problems are also critical components in the most efficient decomposition strategies

discussed in the next section.

All planning horizons with a single period that are considered below have period

(horizon) lengths of 5 days. Only the number of random outcomes generated during the

period differentiates single period problem instances. Specific instances are given with

applicable results and analyses in Section 6.3 below.

229

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.2: Scenario Generation Data for Multiple Period Problem Instances

Number

Periods

T

Periods'

Lengths

[A]

Outcomes by Problem Size and Number of Periods
Small

10^ Scenarios
Medium

10® Scenarios
Large

10® Scenarios

2 [5 25] [100 100] [500 200] [1000 1000]
3 [5 10 15] [50 2010] [80 50 25] [100 100 100]
4 [2 3 10 15] [25 20 10 2] [40 25 20 5] [80 50 25 10]
5 [2 3 5 10 10] [20 10 5 5 2] [25 20 10 10 2] [50 25 20 104]

Multiple Period Problem Instances

Multiple period problem instances have planning horizons of from 2 to 5 periods.

Individual problems are generated with 10'^, 10®, or 10® scenarios and are classified as

small, medium, or large respectively. Period lengths and the numbers of outcomes by

period are shown in Table 6.2 based upon the number of periods, T, in the planning horizon.

Problem instances are labelled as PT-Small, PF-Medium, or PF-Large where F

is replaced with the number of periods in the planning horizon. Problems are copied to

CPLEX using nine arrays to transport problem data. The copy process can require a con

siderable amount of memory since CPLEX creates its own memory block (see function

CPXcopylp in the CPLEX reference manual [109]) doubling the amount of memory re

quired to copy problem data. Memory allocated for the original problem data arrays cannot

be freed until the copy process has completed. Problem size information based upon the

formulae in Table 5.3 on page 204 and the memory required for the copy process is given

in Table 6.3 for each of the 12 multiple period problem instances.

The entries in Table 6.3 demonstrate that model MIMPSLP problems can be ex

tremely large. Over 23 gigabytes of RAM would be required to copy the primal grand LP

230

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.3: Sizes of Multiple Period Problem Instances (Primal Grand LP Formulation)

Problem

Label

Number of Copy
Memory"

Size

Rank''Nodes" Constraints Variables Non-zeros"

P2-Small 101 23,937 71,912 840,992 12.6 12

P2-Medium 501 169,137 407,112 7,649,792 106.3 10

P2-Large 1,001 1,138,137 1,613,612 70,498,292 907.9 5

P3-SmaU 1,051 155,037 654,262 2,263,142 49.5 11

P3-Medium 4,081 663,177 2,601,652 13,009,052 245.3 9

P3-Large 10,101 2,393,937 7,191,912 84,120,992 1,261.1 4

P4-SmaU 5,526 772,587 3,397,437 8,962,217 223.2 8

P4-Medium 21,041 3,003,657 12,998,132 38,398,172 903.8 6

P4-Large 104,081 15,363,177 64,801,652 224,809,052 4,909.6 2

P5-Small 6,221 868,497 3,823,472 10,002,632 250.2 7

P5-Medium 55,526 7,762,587 34,137,437 90,022,217 2,242.5 3

PS-Large 276,301 39,129,537 170,372,512 482,622,392 11,595.6 1

" Cumulative nodes in all periods

^ In the technology matrix
" Memory in megabytes required to copy to CPLEX - effectively doubled during copy process

By descending order of copy memory required - rank 1 requires the most memory

231

Chapter 6 Model MIMPSLP Results and Analyses

fonnulation of problem P5-Large to CPLEX. Large scale problems are a characteristic of

most stochastic linear programs. The size rank indices (last column) in Table 6,3 will be

used to characterize the relative size of the 12 problem instances, e.g. P5-Large is the

largest while P2-Small is the smallest.

6.2 DWD and LSD Implementation Strategies

Implementation strategies for Dantzig-Wolfe and L-Shaped decomposition are defined us

ing the major strategy, minor strategy, and tactics planning scheme described in Section

4.4.3. Seven major strategies are available in the model MIMPSLP library. Major strategy

levels 1 through 6 are described in the first three subsections below. Only two-stage decom

position based upon the block-separable property of model MIMPSLP problems is used

under major strategies 1 through 6. Major strategy 7 is defined in the fourth subsection.

Both two-stage and nested decomposition procedures are possible under major strategy 7.

Preliminary decomposition results are discussed in the fifth and final subsection.

Tables are used in the first three subsections to define the minor strategies and tac

tics levels for the applicable major strategies. The term eligible is used in these tables to

describe decomposition subproblems that may be used to generate a new optimality cut

(LSD) or extreme point activity (DWD). An eligible DWD subproblem yields an extreme

point with negative reduced cost. An eligible LSD subproblem has a relaxation function

value that is less than the corresponding relaxation variable value. The subproblem yield-

232

Chapter 6 Model MIMPSLP Results and Analyses

ing the most negative reduced cost (DWD)/relaxation function minus relaxation variable

difference (LSD) during any iteration is said to be the most eligible subproblem.

6.2.1 Major Strategies 1 and 2

Major strategies 1 and 2 may be used with problems having an arbitrary number of periods.

The initial RMP is formed with the primal budget constraints (LSD) from all nodes in the

decision tree or with the dual variables to these constraints (DWD). Major strategies 1 and 2

are the same except for the values assigned to the right-hand-sides (LSD)/objective function

coefficients (DWD) of the initial optimality cuts (LSD)/convexity activities (DWD). Major

strategy 1 assigns zero to each of these quantities (see Section E.1.1). Major strategy 2

uses the feasible solution returned from the first half-cycle of the duals lead version of the

myopic dual-primal cycling algorithm (see section 4.5 and Appendix B) to assign these

values. The minor strategies and tactics that are available for the first two major strategy

levels are shown in Table 6.4.

6.2.2 Major Strategies 3 and 4

Major strategies 3 and 4 may only be used with problems that have two or more periods.

The initial RMP is formed with the primal budget constraints (LSD) from the nodes in all

periods except the last or with the dual variables to these constraints (DWD). Major strate

gies 1 and 2 are the same except for the manner in which the subproblems associated with

nodes in the terminal period are copied to CPLEX. Each nodal component subproblem (see

233

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.4; Minor Strategies (Minor) and Tactics for Major Strategies 1 and 2

Minor

Value Minor Description
Tactics

Value Tactics Description

1 1 SUB for all slippage/deviation 1 Add if eligible [1]"
2 1 SUB for all slippage and

1 SUB for all deviation

1 Add most eligible [1]
2 Add all eligible [2]

3 1 SUB for slippage for each
period and 1 SUB for deviation
for each period

1 Add most eligible [1]
2 Add most eligible among slippage and most

eligible among deviation [2]
3 Add all eligible among slippage and most eligible

among deviation \T + 1]
4 Add all eligible [2T]

A" 1 SUB for slippage at each
node and 1 SUB for

deviation at each node

1 Add most eligible [1]
2 Add most eligible among slippage and most

eligible among deviation [2]
3 Add most eligible among slippage during each

period and most eligible among deviation [T +1]
4 Add most eligible among slippage during each

period and most eligible among deviation during
each period [2T]

5 Add all eligible among slippage and most eligible
among deviation +1]

6 Add all eligible among slippage and most eligible
among deviation during each period [Ff + T]

7 Add all eligible
4c 1 SUB for slippage at each

security and 1 SUB for deviation
for each of G = 1 or U''
outcomes' groupings

1 Add most eligible [1]
2 Add most eligible among slippage and add

deviation if eligible [2]
3 Add most all eligible among slippage and add

deviation if eligible [N + 1]
> 4 Add all eligible [N + U]

[A]: A is the maximum number of constraints/activities that can be added at any iteration

For problems over 2 or more periods only

For problems over a single period only

U is the Minor Strategy value when this value is greater than or equal to 4

234

Chapter 6 Model MIMPSLP Results and Analyses

Appendix E) is copied in whole to CPLEX under major strategy 3. Each subproblem in

major strategy 3 is then solved with a cold start (no advance basis). Only the first nodal

component subproblem, node (T, 1), is copied in whole under major strategy 4. Subprob-

lems at the remaining terminal period nodes are created by changing only CPLEX problem

data that differs from the previous subproblem. The latter procedure is fairly efficient since

nodal component subproblems in the same period are the same size and share a significant

amount of common data. Major strategy 4 then uses a cold start only on the first nodal com

ponent subproblem while warm starts (with an advance basis) are used with the remaining

subproblems. The minor strategies and tactics that are available for major strategies 3 and

4 are shown in Table 6.5.

6.2.3 Major Strategies 5 and 6

Major strategies 5 and 6 are the same as major strategies 3 and 4 except the final period

nodal component subproblems are not solved during every decomposition iteration. In

stead, a greedy procedure (see Section 3.3.6 starting on page 114) is used in which these

subproblems are solved intermittently. The minor strategies and tactics that are available

for major strategies 5 and 6 are shown in Table 6.6.

6.2.4 Major Strategy 7

Major strategy 7 may be used only with problems that have two or more periods. This ma

jor strategy is similar to major strategy 5 except that nodal component subproblems may

235

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.5: Minor Strategies (Minor) and Tactics for Major Strategies 3 and 4

Minor

Value Minor Description
Tactics

Value Tactics Description

1 1 SUB for all 1 Add if eligible [1]"
2 1 SUB for slippage/FPN''

and 1 SUB for all deviation

1 Add most eligible [1]
2 Add all eligible [2]

3 1 SUB for slippage for each
t <T,\ SUB for FPN, and
1 SUB for deviation for each

t < T

1 Add most eligible [1]
2 Add most eligible among slippage/FPN and

most eligible among deviation [2]
3 Add all eligible among slippage/ITN and

most eligible among deviation [T + 1]
4 Add all eligible [2r - 1]

4 1 SUB for slippage at each
node in each t <T,\ SUB
for each FPN, and 1 SUB

for deviation at each node in

each t <T

1 Add most eligible [1]
2 Add most eligible among slippage/FPN and

most eligible among deviation [2]
3 Add most eligible among slippage during each

t<T, most eligible among FPN, and most
eligible among deviation [T +1]

4 Add most eligible among slippage during each
t <T, most eligible among FPN, and most
eligible among deviation during each
t < r [2r - 1]

5 Add all eligible among slippage/FPN and most
eligible among deviation + 1]

6 Add all eligible among slippage/FPN and most
eligible among deviation during each
t <r[F(^)+r-i]

7 Add all eligible + H^']
5 1 SUB for slippage at each

security at each node in each
t <T, I SUB for each FPN,

and 1 SUB for deviation for

each node in each t <T

1 Add all eligible

° [AY-A is the maximum number of constraints/activities that can be added at any iteration

^ EPN stands for final period nodes

236

I

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.6: Minor Strategies (Minor) and Tactics for Major Strategies 5 and 6

Minor

Value Minor Description
Tactics

Value Tactics Description
3" 1 SUB for slippage for each

t <r, ISUBforFPN^and
1 SUB for deviation for each

t<T

1 Add most eligible [1]®
2 Add most eligible among slippage/FPN and

most eligible among deviation [2]
3 Add all eligible among slippage/l^N and

most eligible among deviation [T +1]
4 Add all eligible [2r - 1]

4 1 SUB for slippage at each
node in each t <T,1 SUB
for each EPN, and 1 SUB
for deviation at each node in

eacht <T

1 Add most eligible [1]
2 Add most eligible among slippage/FPN and

most eligible among deviation [2]
3 Add most eligible among slippage during each

t <T, most eligible among FPN, and most
eligible among deviation [T +1]

4 Add most eligible among slippage during each
t<T, most eligible among FPN, and most
eligible among deviation during each
t<T[ir-l]

5 Add all eligible among slippage/FPN and most
eligible among deviation [if +1]

6 Add all eligible among slippage/FPN and most
eligible among deviation during each
t<T [F(^)+T-l]

7 Add all eligible + m-' J]
5 1 SUB for slippage at each

security at each node in each
t<r,l SUB for each FPN,
and 1 SUB for deviation for

each node in each t <T

1 Add all eligible

Minimum allowed Minor Strategy is 3 to be consistent with other Major Strategies
[A]: A is the maximum number of constraints/activities that can be added at any iteration
FPN stands for final period nodes

237

Chapter 6 Model MIMPSLP Results and Analyses

be created for nodes in periods prior to the last but later than the first. The resulting nodal

component subproblems may be solved in the grand LP formulation (two-stage decompo

sition) or with a recursive application of major strategy 7 (nested decomposition). Cold

starts are used for all grand LP solutions - there is no complementary warm start major

strategy for reasons given in the next subsection.

Risk budget constraints in periods = 1 through f are used to form the

initial RMP for a specified i, referred to as the RMP cutojf period, such that 1 < t < T

(also see Section 4.4.3 starting on page 146). Note that major strategy 7 is the same as

major strategy 5 if the RMP cutoff period is one less than the terminal period. The RMP

cutoff period is set equal to the value of the minor strategy.

Two-stage decomposition is applied if the value of tactics is between 1 and 4 inclusive

and nested decomposition is applied if the value of tactics is between 5 and 12 inclusive.

The primary subproblem anchor period is defined as Ap = i = t + 1 and the primary

subproblem cutoff period, Cp, is defined as

' T, if 1 < tactics < 4,

Cp = < +i, if 5 < tactics < 8,

T — 1, if 9 < tactics < 12.

If the tactics value is between 5 and 12 inclusive, the secondary subproblem anchor period.

As, and cutoff period, Cs, are defined as A5 = Cp-1-1 and Cs = T. Figure 6.1 summarizes

these concepts.

238

Chapter 6 Model MIMPSLP Results and Analyses

©-- O"- ©—©--Q— A, Y---

LEGEND

Af,: Anchor period for the RMP
Cf,: Cutoff period for the RMP
Ap: Anchor period for the primary SUBs
Cp: Cuttoff period for the primary SUBs
Ag: Anchor period for the secondary SUBs (nested tactics only)
Cg: Cutoff period for the secondary SUBs (nested tactics only)

RMP - All Tactics

A,= 1
Cp = Minor Strategy (')
Ap - Cp+ ̂

Tactics

1 -4

SUBs

Primary SUB Cutoff

Cp=T

Solution - Secondary SUB Cutoff

Grand LP

5-8

9-12

Cp =
T- t

+ t

Cp= 7-1

Nested Decompostion
With

Cs=T

Figure 6.1: Major Strategy 7 Schemetic and Description

239

Chapter 6 Model MIMPSLP Results and Analyses

The value of tactics also determines the problem formulation-simplex solver combi

nation that will be applied to the grand LP for applicable nodal component subproblems

- primary subproblems when 1 < tactics < 4 or secondary subproblems when 5 < tac

tics < 12. Four combinations are possible and are shown in Table 6.7 relative to the tactics

value.

Table 6.7: Major Strategy 7 Subproblem Formulation-Simplex Solver Combinations

Tactics Value Formulation-Solver Shorthand Notation

1,5, or 9 Primal Formulation - Primal Simplex (PF-PS)
2, 6, or 10 Primal Formulation - Dual Simplex (PF-DS)
3, 7, or 11 Dual Formulation - Primal Simplex (DF-PS)
4, 8, or 12 Dual Formulation - Dual Simplex (DF-DS)

6.2.5 Preliminary Decomposition Results

The major strategy controls the amount of problem information that is used to construct the

initial RMP and, therefore, dictates how much of the problem structure must be accounted

for by subproblems. In general, increasing major strategy levels lead to smaller initial re

laxed/restricted master problems and to more or larger subproblems. Dantzig-Wolfe and

L-Shaped decomposition routines were developed and implemented in the sequential or

der of the major strategy indices. Routines based upon major strategy 7 were developed

last using information collected from studies of decomposition results obtained with major

strategies 1 through 6. Similarly, the development of routines based upon major strategies

240

Chapter 6 Model MIMPSLP Results and Analyses

5 and 6 (3 and 4) was motivated by the results obtained with routines based upon major

strategies 1 through 4 (1 and 2).

Minor strategy and tactics indices within a given major strategy level (1 through 6)

detennine the detail of the information used from one decomposition iteration to modify

the RMP for the next iteration. Smaller minor strategy indices yield fewer, fairly large ag

gregated subproblems while larger minor strategy levels result in separation of aggregated

subproblems into more, smaller subproblems. The maximum number of optimality cuts

or extreme point activities that may be added to the RMP increases with the tactics level

within a major-minor strategy combination.

Studies of the results obtained with routines based upon major strategy levels 1

through 6 inspired the eight rules of thumb described in the following list. Applicability of

these rules is effected by such factors as available condputer memory, efficiency of the sim

plex solver that is employed, and the structure of the stochastic program under study. The

rules are considered, however, to provide a good basis for the types of issues that should

be addressed in order to construct an efficient solution algorithm for a general stochastic

linear program.

1. A small initial RMP is more efficient for larger problems (hundreds or more nodes)

while a larger initial RMP is better for smaller problems (tens of nodes or less). Note

that the size of the initial RMP refers to the amount of problem information used to

construct the RMP - a small initial RMP for a large problem may be significantly larger

than a large initial RMP for a smaller problem.

241

Chapter 6 Model MIMPSLP Results and Analyses

2. More, smaller subproblems are more efficient than fewer, more aggregated

subproblems. This rule is especially important if separation of large subproblems yields

smaller, more easily solved subproblems.

3. Addition of multiple cuts/activities to the RMP during an iteration is more effective

than using fewer cuts/activities. More problem information is added to the RMP with

multiple cuts/activities than can be added with fewer, more aggregated cuts/activities.

4. No significant advantage is gained by removal of inactive cuts (not tight) or activities

(not basic). RMP solution times are more dependent on the number of additional

cuts/activities than on the size of the RMP since all solutions after the first iteration use

an advanced basis. Any advantages gained by increasing the available active memory

through removal of cuts/activities is, in general, more than offset by the overhead

involved in the removal process. This rule is, of course, effected by the amount of

available computer memory.

5. No advantage is gained by using the myopic dual-primal cycling algorithm to generate

initial optimality cuts/extreme points. The simple initialization procedures described in

Appendix E require significantly less time than initialization procedures based upon the

MDPCA. Moreover, the two initialization methods generally do not yield a significant

difference in the number of decomposition iterations required to achieve a specified gap

tolerance.

242

Chapter 6 Model MIMPSLP Results and Analyses

6. Solving grand LP formulated subproblems with cold starts is generally as or more

effective than solving these subproblems with warm starts. Information obtained with

the CPLEX preprocessing algorithm (see the CPLEX user's manual [110, pages 72

- 73]) applied during a cold start solution procedure appears to more than offset any

advantages gained by using advance basis information.

7. Grand LP based solutions can be obtained more efficiently than decomposition based

solutions when the underlying problems are relatively small. The simplex solver that is

employed can greatly influence the applicability of this rule.

8. Greedy algorithms are more efficient than algorithms that solve every subproblem

during each decomposition iteration. Significant time savings with relative little loss

of information is realized when larger, more complicated subproblems (generally

embedded deep in the decision tree) are solved on an intermittent basis.

The eight rules of thumb motivated development of solution routines based upon ma

jor strategy 7. These routines proved to be significantly more efficient on problems with

two or more periods than routines based upon the smaller major strategy levels. Conse

quently, all results for problems with multiple periods that are reported in the next section

were obtained using major strategy 7.

243

Chapter 6 Model MIMPSLP Results and Analyses

6.3 DWD and LSD Results - Single Period Problems

Thirteen single period problems that differ only the number of outcomes generated during

the period are examined. The number of outcomes vary from a low of 2 to a high of

100,000. Table 6.8 lists the thirteen problems by size (number of outcomes L) and shows

the times required to obtain grand LP solutions. Times are given for each of the four

possible formulation-solver combinations using the shorthand notation of Table 6.7 on page

240. Note that the primal formulation is best for only the five smallest problems while the

dual formulation is best for the larger problems. Data in Table 6.8 also indicates that there

can be large variations in solution time relative to the choice of a simplex solver. The

overall effect can be drastic - the slowest time for the largest problem is almost 25 times

greater than the fastest time for that problem. Figure 6.2 illustrates the fastest grand LP

solution times relative to the size ranking of the 13 single period problems.

Each of the 13 single period problems was also solved with Dantzig-Wolfe and L-

Shaped decomposition. Only major strategy 1 applies to single period problems and minor

strategy 4 for single period problems (see Table 6.4 on page 234) is the best applicable

minor strategy. Each problem was solved under nine different tactics values to determine

the effect of varying the number of subproblems. The Dantzig-Wolfe decomposition re

stricted master problem was solved with the dual formulation-primal simplex combination

at each iteration while the primal formulation-dual simplex combination was applied to the

relaxed master problem of L-Shaped decomposition. These two formulation-solver combi-

244

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.8: Single Period Grand LP Solution CPU Times (Minutes)

Outcomes

L

Formulation-Solver Combination"

(PF-PS) (PF-DS) (DF-PS) (DF-DS)

2 0.0005" 0.0005 0.0008 0.0008

10 0.0010 0.0008 0.0013 0.0013

20 0.0018 0.0010 0.0022 0.0018

50 0.0030 0.0017 0.0072 0.0023

100 0.0062 0.0033 0.0103 0.0033

500 0.0604 0.0250 0.0616 0.0113

1,000 0.2333 0.0988 0.1611 0.0324

2,500 1.330 0.6848 , 0.5873 0.2140

5,000 4.830 3.700 1.890 0.8796

10,000 9.340 8.120 3.750 3.270

20,000 42.41 32.53 8.450 9.930

50,000 235.7 204.6 32.48 49.86

100,000 1,803 1,525 72.59 111.4

" Using the shorthand notation defined in Table 6.7 on page 240

'' Bold face times in each row are the fastest times for the individual problem

245

Chapter 6 Model MIMPSLP Results and Analyses

/

0

Q.
O

10

10

.1^

4 6 ,8 10
Increasing Size Rank (Smallest to Largest)

Figure 6.2: Fastest Grand LP Single Period Solution Times

246

Chapter 6 Model MIMPSLP Results and Analyses

nation versus type RMP matches proved to be the best in all model MIMPSLP problems

that were examined. All decomposition procedures for the single period problems em

ployed an acceptable termination relative tolerance of 5 x 10"®:

UpperBound — LowerBound ̂ ̂
LowerBound

Solutions satisfying the above termination tolerance are considered exact since the default

value for all CPLEX LP simplex solver tolerances is 10~® (see the CPLEX user's manual

[110, pages 85 - 86]) and the default tolerances were used in all calls to CPLEX. Table 6.9

contains the solution times required for the Dantzig-Wolfe and L-Shaped decomposition

procedures.

The solution times in Table 6.9 indicate that each decomposition method-problem

combination has an optimum number of subproblems. Therefore, increasing the number,

and thus decreasing the size, of subproblems is beneficial to some threshold beyond which

this process becomes detrimental to the decomposition algorithm. Note also that data in

Table 6.9 show that Dantzig-Wolfe decomposition consistently outperforms L-Shaped de

composition.

The CPU times in Tables 6.8 and 6.9 demonstrate that obtaining solutions with the

grand LP formulation is more efficient for problems with less than about 1,000 outcomes

while either decomposition method is more efficient for larger problems. Table 6.10 con

tains the ratios for the fastest grand LP solution times to the fastest Dantzig-Wolfe and

L-Shaped decomposition times and for the fastest DWD times to the fastest LSD times.

247

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.9: Single Period DWD/LSD Solution CPU Times (Seconds)

Outcomes DWD(1AU)/LSD(1.4.U)'' for U":
L 1 5 10 20 25 50 75 100 125

2 0.0921<^ _d
— — — — — — —

0.1202 - - - - - - - -

10 0.0962 0.0781 0.0801 — — — — — —

0.1202 0.1042 0.1262 - - - - - -

20 0.1662 0.1442 0.1402 0.1522 — — — —

0.2464 0.2383 0.2424 0.2363 - - - -

50 0.2283 0.2002 0.1723 0.1863 0.1903 0.1943 - — —

0.3405 0.2403 0.3805 0.3205 0.3405 0.2904 - - -

100 0.3805 0.3004 0.2403 0.2804 0.3004 0.3104 0.3004 0.3805 -

0.7811 0.5708 0.5107 0.5608 0.4807 0.5708 0.5608 0.4907 -

500 0.8813 0.5708 0.6810 0.7010 0.6810 1.052 1.222 1.512 1.652

1.502 1.142 1.212 1.322 1.592 2.233 2.534 2.784 2.664

1,000 1.823 0.9614 1.022 1.001 1.242 1.723 2.434 2.544 2.954

2.774 1.783 2.113 2.233 2.694 3.655 5.107 6.089 7.351

2,500 5.838 2.764 2.163 2.363 2.233 3.365 3.755 4.787 5.718

7.521 4.216 3.705 4.607 4.527 7.391 9.243 11.76 14.65

5,000 11.72 5.198 4.356 4.166 3.935 5.027 5.548 7.731 8.562

13.67 7.230 6.820 7.521 7.010 10.13 12.65 17.19 19.52

10,000 19.40 10.32 7.611 6.630 7.541 8.082 9.434 11.61 12.62

20.88 12.87 10.03 10.01 11.86 15.42 19.31 26.05 28.14

20,000 27.98 17.14 15.35 13.51 12.76 13.60 16.04 18.38 18.45

28.53 18.89 18.30 18.17 18.73 23.87 30.06 38.06 43.59

50,000 92.81 55.82 45.36 38.34 36.37 34.37 38.30 43.28 39.70

93.40 57.93 49.99 45.78 45.42 47.38 60.21 77.6 80.01

100,000 163.7 114.2 96.37 79.56 79.56 72.69 70.45 67.92 71.54

163.0 117.1 102.0 89.13 88.67 96.10 101.4 106.9 125.0

DWD solution times are above LSD solution times in each cell

U is the number of outcomes' groups - see Table 6.4 on page 234

Bold face times in each row are the fastest times for the individual problem

Nonapplicable entries are indicated with a dash, -

248

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.10: Single Period Solution CPU Time Ratios

Outcomes

L

Ratios of i i'astest Solution Times

GLP/DWD GLP/LSD LSD/DWD

2 0.3257 0.2496 1.305

10 0.6146 0.4607 1.334

20 0.4280 0.2518 1.700

50 0.5920 0.4245 1.395

100 0.8240 0.4119 2.000

500 1.188 0.5937 2.001

1,000 2.022 1.090 1.855

2,500 5.936 3.466 1.713

5,000 13.41 7.738 1.733

10,000 29.59 19.60 1.510

20,000 39.73 27.90 1.424

50,000 56.70 42.91 1.322

100,000 64.13 49.12 1.306

" &and Linear Program

249

Chapter 6 Model MIMPSLP Results and Analyses

These ratios clearly demonstrate that decomposition can be a very attractive procedure for

solving large scale linear programs. Dantzig-Wolfe decomposition of the largest single pe

riod problem is, for example, more than 64 times as fast as the best grand LP solution

procedure. Figure 6.3 graphically illustrates the ratios contained in Table 6.10.

6.4 DWD and LSD Results - Multiple Period Problems

Two-stage and nested decomposition procedures were applied to the 12 multiple period

problem instances defined in Section 6.1.2 and listed in Table 6.3 on page 231. Major strat

egy 7 as defined in Section 6.2.4 and illustrated in Figure 6.1 on page 239 was used to

define the employed decomposition procedures. Individual procedures are labelled accord

ing to the scheme described in Section 4.4.3 starting on page 146 - 'D'WD{i.j.k)lLS'D(i.j.k)

where i = 7 is the major strategy, j is the minor strategy, and k is the tactics.

Dantzig-Wolfe decomposition restricted master problems were solved with the dual

formulation-primal simplex combination at each iteration while the primal formulation-

dual simplex combination was applied to each relaxed master problem of L-Shaped decom

position. All decomposition procedures for each multiple period problem except P5-Large

employed an acceptable termination relative tolerance of 5 x 10~®. The decision tree for

each problem except P5-Large was stored in random access memory. Problem P5-Large

required special handling due to its size and solution procedures for this problem are de

scribed in Section 6.4.3 below.

250

Chapter 6 Model MIMPSLP Results and Analyses

70 r n2.1

60

50

Q
ui

£ 40
—I

O
TS
C.
m

Q 30
Q.
_1

O

20

10

0

^ /

I \ i-SLP/Dwd
\

j (Left AxisJ

I

LSD/DWD-^f \ c/

\ I ^

\ I. \ Q •

\ -i 7 !
*' \ / ^-GLP/LSD -\ j I (Left Axis)

0 /

A /

/A
/ \

./ /' \
\

y ̂ \p' \/V \
^ ̂ I I I

1.9

1.8

1.7?
Q
CO

1.6

1.5

1.4

0 2 4 6 8 10 12 14

Increasing Size Rank (Smallest to Largest)

1

Figure 6.3: Solution CPU Time Ratios for Single Period Problems

.3

251

Chapter 6 Model MIMPSLP Results and Analyses

An overview of the grand LP and decomposition solution results for the multiple

period problems is given in Section 6.4.1. Two-stage and nested decomposition results

are analyzed in Sections 6.4.2 and 6.4.3 respectively. Section 6.4.4 contains concluding

general comments concerning Dantzig-Wolfe and L-Shaped decomposition.

6.4.1 Overview

Exact solutions (5 x 10~® relative tolerance) were obtained on all problems except PS-

Large using two-stage decomposition techniques. Nested decomposition was used to solve

problem PS-Large to a relative tolerance of 10"^. Grand LP solutions, on the other hand,

could be determined for only the three smallest multiple period problems. Available com

puter memory prevented some problems {not enough memory) from even being copied to

CPLEX in the grand LP formulation. Some problems could be copied to CPLEX as a grand

LP but not solved in a reasonable amount of time due to a drain on the available memory

{insufficient memory). A problem in the insufficient memory category can be identified by

the very low (0 - 20) percentage of CPU usage registered by the Windows NT Task Man

ager (see the Windows NT resource guide [146, Chapter 11]) after the problem has been

copied to CPLEX. The fastest solution times using decomposition ahd grand LP formula

tions are shown in Table 6.11.

Problem P4-Large is the largest known stochastic linear program to be solved on a

computer not in a mainframe or higher class. The largest solved problem found in an ex

tensive literature search has a grand LP formulation of approximately 5 million columns

252

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.11: Multiple Period Problems' Fastest Solution CPU Times (Minutes)

Problem

Label

Grand LP DWD and LSD Times

Ratio"Combination" Time Method(Strategy) Time"

P2-Small (DF-DS) 5.9492 DWD(7.I.2) 2.0423 2.9130

P2-Medium (DF-DS) 226.91 DWD(7.1.2) 43.742 5.1875
P2-Large Not Enough Memory" LSD(7.1.4) 894.75 NA"

P3-SmaII (PF-PS) 58.385 DWD(7.2.2) 10.291 5.6734

P3-Medium Insufficient Memory^ DWD(7.2.2) 73.960 NA

P3-Large Not Enough Memory DWD(7.2.2) 366.87 NA

P4-SmaU Insufficient Memory DWD(7.2.2) 30.786 NA

P4-Medium Not Enough Memory DWD(7.2.2) 492.80 NA

P4-Large Not Enough Memory DWD(7.2.2) 4,853.9 NA

P5-SmaII Insufficient Memory DWD(7.3.2) 58.336 NA

P5-Medium Not Enough Memory DWD(7.3.2) 608.57 NA

P5-Large Not Enough Memory DWD(7.2.10) 4,086.1 NA

Fomulation-solver combination - shorthand notation defined in Table 6.7 on page 240
P5-Large relative tolerance gap is 10"^ - all others use 5a;10~®

Ratio of grand LP time to decomposition time

Not enough memory available to copy problem in grand LP formulation to CPLEX

Not available - grand LP formulation is unsolved

Insufficient memory available to solve problem in Grand LP formulation once copied to CPLEX

253

Chapter 6 Model MIMPSLP Results and Analyses

and 700,000 constraints (exact dimensions and density information not provided) and is de

scribed in Birge, et al. [14, page 346, problem SCAGR(P5S16)]. That problem was solved,

however, with a parallel implementation of a nested L-Shaped decomposition algorithm on

a network of eight RS/6000® workstations.

6.4.2 Two-Stage Decomposition

Solution CPU times as a function of relative tolerance for selected two-stage decomposition

strategies applied to the 11 smallest multiple period problems are shown in Table 6.12.

Times for two or more strategies applied to the same problem are shown for some problems

in order to demonstrate the variations that exist between these strategies. Dantzig-Wolfe

decomposition is more efficient than L-Shaped decomposition on all problems except P2-

Large. The greatest relative time difference (approximately 93 percent) between the two

methods occurs for problem P3-Large. Graphs of the CPU time as a function of relative

tolerance for the decomposition of these two extreme problems are shown in Figure 6.4.

A similar graph for each of the 11 smallest multiple period problems, including full page

reproductions of Figures 6.4(a) and 6.4(b), is at Appendix G. The best DWD strategy is

20.77 percent faster than the best LSD strategy when averaged over all 11 problems and

15.46 percent faster on average when the two extreme problems are omitted. Reasons for

the superior performance of DWD over LSD are examined below.

® RS/6000 is a registered trademark of International Business Machines Corporation, Armonk, NY

254

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.12: Two-Stage Decomposition Solution CPU Times (Minutes)

Problem

Label

Solution

Strategy
■R-iplet"

Relative 1 iblerance
Dantzig-Wolfe L-Shaped

10-^

1

o

O
1

a

Exact"

o
1

10"^

0
1

O

Exact

P2-SmaU (7.1.2) 0.4822 1.786 1.917 2.042" 0.5124 1.576 2.527 2.527
P2-Medium (7.1.2) 6.235 21.90 39.14 43.74 6.474 24.29 46.14 52.65
P2-Large (7.1.4)" 97.74 313.3 606.5 927.7 98.46 319.9 620.2 894.7"
P3-Small (7.1.2) 9.506 31.84 46.90 46.90 9.613 32.18 49.75 49.75

(7.2.2) 5.985 8.113 10.01 10.29 6.115 9.249 10.84 11.39
P3-Medium (7.1.2) 205.0 638.1 910.8 910.8 204.8 637.6 1020 1130

(7.2.2) 32.70 56.87 70.10 73.96 44.07 84.37 104.9 110.7
P3-Large (7.2.2) 133.4 262.5 330.1 366.9 186.0 436.2 676.0 707.7

P4-Small
(7.1.2) 41.52 202.6 318.0 318.0 41.06 223.9 296.0 296.0
(7.2.2) 8.063 18.47 28.75 30.79 8.195 18.78 29.10 31.16
(7.3.2) 32.90 41.53 47.84 51.51 33.80 50.35 55.97 59.99

P4-Medium (7.2.2) 107.1 255.7 434.0 492;8 108.0 286.8 463.4 522.1
(7.3.2) 360.0 456.3 502.2 530.7 673.0 1,014 1,083 1,096

P4-Large (7.2.2) 1,004 2,382 4,031 4,854 1,007 2,401 4,056 5,156

P5-SmaII
(7.2.2) 17.46 56.82 89.68 102.9 17.46 50.20 89.70 116.0
(7.3.2) 11.43 23.65 45.89 58.34 13.57 29.31 44.97 63.39
(7.4.2) 96.54 121.3 130.9 133.0 88.53 121.3 130.2 132.9

P5-Medium (7.3.2) 138.2 276.7 483.2 608.6 183.2 354.9 562.5 685.6
PS-Large Cannot je solved in reasonable amount of time with two-stage decomposition

" See Section 6.2.4 and Figure 6.1 on page 239
^ 5x10""® is considered exact
® Bold face time is the fastest exact time for the individual problem
^ Only problem for which formulation-solver (DF-DS) is best, rest use (PF-DS) - see Table 6.7
® Only problem for which LSD is fastest to exact - DWD is fastest for the rest

255

Chapter 6 Model MIMPSLP Results and Analyses

16

14

12

o 10

I 8

3 6
Q-

" 4

DWD(7.1.4)
LSD(7.1.4)

it- -iir

/

1E-1 1E-2 1E-3 1E-4 1E-5 1E-B

(a) P2-Large: Bounds' Gap Relative Tolerance
1E-7

12

10 -I

-0- DWD(7.2.2)
LSD(7.2.2)

3
O

X

8 -

I B

R 4
o

"T

A--

2 -

A

-0'

-0-
0"

n -e^>

1E-1 1E-2 1E-3 1E-4 1E-5 1E-B

(b) P3-Large: Bounds' Gap Relative Tolerance
1E-7

Figure 6.4: Extreme Two-Stage Decomposition Solution CPU Times

256

Chapter 6 Model MIMPSLP Results and Analyses

The work history of the different strategies expressed in terms of the number of it

erations and the number of added cuts/activities is given in Table 6.13. This history does

not explain why DWD generally outperforms LSD. For example, by comparing the com

plementary best strategies:

• five problems (the first four in Table 6.13 and P3-Large) have more LSD cuts than

DWD activities added during an average iteration,

• one problem (P3-Medium) has the same average number of each, and

• the remaining five have fewer LSD cuts than DWD activities added on average.

Similar results hold for the other statistics listed in Table 6.13. An explanation for the per

formance difference between the two methods can be found, however, by a more detailed

examination of the iterations data.

Two major types of iterations exist when decomposition is performed using major

strategy 7:

complete - all subproblems, including grand LP nodal subproblems, are solved and

both bounds can be updated, and

partial - only the simple deviation and slippage subproblems (i.e., no nodal subprob

lems) are solved and only the upper bound can be updated.

A complete iteration is performed as the first iteration of every decomposition procedure

in order to obtain valid upper and lower bounds. Execution of complete iterations after the

first is controlled by an options value provided to the MIMPSLP code library. This option

257

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.13: Two-Stage Decomposition Cuts/Activities Statistics

Problem

Label

Solution

Strategy
Triplet"

Dantzig-Wolfe L-Shaped
Total

Iters^
Added Activities Total

Iters

Added Cuts

Total" Max" Avg" Total Max Avg

P2-Small (7.i.2y 180 1,881 102 10.45 184 1,992 102 10.83

P2-Medium (7.1.2) 287 8,058 502 28.08 288 9,631 502 33.44

P2-Large (7.1.4) 278 15,449 1,002 55.58 276 15,513 1,002 56.21

P3-SmaII (7.1.2) 99 1,263 55 12.76 107 1,314 58 12.28

(7.2.2) 70 23,307 1,214 332.9 69 23,570 1,173 341.6

P3-Medium (7.1.2) 124 1,674 84 13.50 130 1,845 83 14.19

(7.2.2) 107 60,951 4,239 569.6 109 62,083 4,239 569.6

P3-Large (7.2.2) 149 123,024 10,298 825.7 147 123,783 10,298 842.1

P4-Small

(7.1.2) 65 651 27 10.01 65 636 27 9.785

(7.2.2) 64 12,490 575 195.2 67 12,421 575 185.4

(7.3.2) 61 98,778 6,525 1,619 59 98,512 6,521 1,670
P4-Mediiim (7.2.2) 79 23,720 1,120 300.3 80 23,381 1,120 292.3

(7.3.2) 73 307,900 22,709 4,218 72 307,855 22,709 4,277
P4-Large (7.2.2) 94 68,145 4,240 724.9 95 68,190 4,240 717.8

P5-Small

(7.2.2) 65 8,002 363 123.1 69 8,019 .357 116.2

(7.3.2) 92 42,438 2,620 461.3 93 42,494 2,627 456.9

(7.4.2) 60 166,470 14,029 2,775 62 166,322 14,024 2,683
P5-Medium (7.3.2) 78 131,687 6,532 1,688 78 131,258 6,489 1,683

P5-Large Not solved with two-stage decomposition

See Section 6.2.4 and Figure 6.1 on page 239

Total number of iterations for relative tolerance of 5a;10~®

Total number of cuts/activities added over all iterations

Maximum number added during any iteration (minimum varies from 1 to 16)

Average number of cuts/activities added over all iterations

Boldface type indicates the fastest strategy for the individual problem

258

Chapter 6 Model MIMPSLP Results and Analyses

value indicates that a complete iteration is to be performed at every P" iteration where i >

1. Complete iterations are also automatically executed whenever the upper bound shows

no improvement from one iteration to the next. The best results for model MIMPSLP

problems are obtained with i set to a very large number so that complete iterations (after

the first) are only performed after an iteration at which the upper bound fails to decrease

in value. Partial iterations occur between complete iterations and serve to improve the

upper bound in a greedy fashion since these iterations are significantly faster than complete

iterations.

The numbers of complete and partial iterations, with the average time for each type,

required for two-stage decomposition of the 11 smallest multiple period problems are

shown in Table 6.14. Note that the number of partial iterations significantly exceeds the

number of complete iterations in each case. In addition, the LSD procedure has a sub

stantially greater average partial iteration time than the complementary DWD procedure

for each of the 11 fastest strategy triplets. The average best DWD partial iteration time

is 131.6 percent faster than the average best LSD partial iteration time ranging from a

minimum of 18.7 percent (P3-Small) to a maximum of 240.6 percent (P4-Large) relative

difference in favor of DWD. Times for complete iterations compare much more equably

because these iterations are dominated by the time required to solve the grand LP nodal

subproblems and the two decomposition methods use the same set of solution subroutines

for these subproblems.

259

Chapter 6 Model MIMPSLP itesults and Analyses

Table 6.14: Two-Stage Decomposition Average Iteration CPU Times (Seconds)

Problem"

Label

Solution

Strategy
THplet''

Dantzig-Wolfe 1.^-Shaped
Partial

Time (#)"
Complete
Time (#)''

Ail

Time'

Partial

Time (#)
Complete
Time (#)

All

Time

P2-SmaU (7.i.2y 0.0335 (164) 7.3149(16) 0.6808 0.1022 (166) 7.4824 (18) 0.8242

P2-Medium (7.1.2) 0.4829 (260) 92.55 (27) 9.144 1.4615 (259) 95.87 (29) 10.97

P2-Large (7.1.4) 1.233 (243) 1,581 (35) 200.2 3.437 (243) 1,601 (33) 194.5

P3-SmaU (7.1.2) 0.0176 (80) 148.0 (19) 28.42 0.0452 (87) 149.1 (20) 27.90

(7.2.2) 6.947 (56) 16.32 (14) 8.821 8.243 (55) 16.44 (14) 9.907

P3-Medium (7.1.2) 0.307 (107) 3,214 (17) 440.7 0.0919 (109) 3,227 (21) 521.3

(7.2.2) 28.75 (93) 126.0 (14) 41.15 52.89 (94) 111.5(15) 60.95

P3-Large (7.2.2) 69.26 (136) 968.7 (13) 147.7 211.5 (132) 969.2 (15) 288.8

P4-Small

(7.1.2) 0.0065 (51) 1,362 (14) 293.5 0.0123 (52) 1,366 (13) 273.3

(7.2.2) 0.5054 (49) 121.5 (15) 28.86 0.8360 (52) 121.7 (15) 27.90

(7.3.2) 50.04 (45) 52.42 (16) 50.66 65.83 (42) 49.09 (17) 61.00

P4-Medium (7.2.2) 1.379 (62) 1,734 (17) 374.3 2.646 (62) 1,731 (18) 391.6

(7.3.2) 469.2 (57) 318.9(16) 436.2 1,090 (57) 242.3 (15) 913.2

P4-Large (7.2.2) 7.846 (76) 16,146 (18) 3,098 26.72 (76) 16,176 (19) 3,256

P5-SmaU

(7.2.2) 0.2510 (49) 385.0 (16) 94.96 0.3652 (51) 385.7 (18) 100.9

(7.3.2) 7.930 (63) 103.5 (29) 38.05 11.42(62) 99.86 (31) 40.90

(7.4.2) 156.2 (45) 63.48 (15) 133.0 153.3 (46) 57.60 (16) 128.6

P5-Medium (7.3.2) 72.91 (56) 1,474 (22) 468.1 154.2 (56) 1,477 (22) 527.4

PS-Large Not solved with two-stage decomposition

All data for decomposition termination at relative tolerance of 5x10"®

See Section 6.2.4 and Figure 6.1 on page 239

Average time in seconds for (number of) partial iterations (nodal subproblems not solved)

Average time in seconds for (number of) complete iterations (all subproblems solved)

Average time in seconds for all iterations

Boldface type indicates the fastest strategy for the individual problem

260

Chapter 6 Model MIMPSLP Results and Analyses

A second contributing factor to the performance difference between DWD and LSD

is the time required by each of the two decomposition stages. Time distribution data for

the stage one and stage two procedures of each iteration type are given in Table 6.15.

L-Shaped decomposition spends a significantly greater percentage of time than Dantzig-

Wolfe decomposition in stage one during the partial iterations of each of the fastest strategy

triplets. Dantzig-Wolfe decomposition, on the other hand, is in stage two for both iteration

types for a larger percentage of time than L-Shaped decomposition. Time spent in stage

one modifying and solving the RMP is critical to the performance variation between two

complementary decomposition procedures (same strategy triplet) because DWD and LSD

share the same set of subproblems in stage two.

The superior performance of two-stage DWD of model MIMPSLP problems relative

to two-stage LSD can then be mostly attributed to CPLEX. Adding variables to an existing

problem of this class and resolving with an advanced basis is evidently a more efficient

procedure in CPLEX than resolving the dual of that problem with a warm start after the

addition of constraints.

6.4.3 Nested Decomposition

Nested decomposition was applied to the last 9 problem instances (those with three or

more periods) defined in Section 6.1.2 and listed in Table 6.3 on page 231. The nested de

composition strategies used on these problems are described in Sections 4.4.4 and B.1.5.

These strategies are based upon the block-separability property of model MIMPSLP prob-

261

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.15: Time Percentages Devoted to Stages of Two-Stage Decomposition

Problem

Label

Solution

Strategy
TVlplet^

Dantzig-Wolfe L-Shaped
PartiaP Complete" Partial Complete

RMP^ SUB^ RMP SUB RMP SUB RMP SUB

P2-SmaII (7.i.2y 4.291 0.196 0.548 94.966 11.041 0.145 2.153 86.660

P2-Medium (7.1.2) 4.725 0.059 0.653 94.563 11.931 0.053 3.062 84.954

P2-Large (7.1.4) 0.533 0.005 0.251 99.210 1.550 0.005 0.864 97.580

P3-Small (7.1.2) 0.484 0.002 0.034 99.916 0.129 0.003 0.095 99.773

(7.2.2) 62.838 0.169 4.519 32.475 66.181 0.144 4.401 29.274

P3-Medium (7.1.2) 0.006 0.000 0.002 99.992 0.015 0.000 0.008 99.977

(7.2.2) 60.125 0.120 8.291 31.464 74.755 0.081 2.907 22.257

P3-Large (7.2.2) 42.708 0.085 4.738 52.469 65.719 0.041 3.033 31.207

P4-Small

(7.1.2) 0.002 0.000 0.001 99.997 0.003 0.000 0.002 99.994

(7.2.2) 1.318 0.228 0.507 98.152 2.302 0.023 0.409 97.266

(7.3.2) 72.697 0.162 4.724 22.417 76.683 0.130 2.677 20.509

P4-Medium (7.2.2) 0.286 0.003 0.094 99.617 0.520 0.003 0.197 99.279

(7.3.2) 83.916 0.062 5.237 10.786 94.439 0.033 0.862 4.666

P4-Large (7.2.2) 0.203 0.002 0.082 99.713 0.655 0.001 0.091 99.252

P5-Small

(7.2.2) 0.196 0.004 0.089 99.712 0.264 0.003 0.101 99.631

(7.3.2) 14.214 0.059 3.057 82.670 18.558 0.055 1.348 80.039

(7.4.2) 87.966 0.104 3.278 8.653 88.333 0.107 2.385 9.174

P5-Medium (7.3.2) 11.164 0.017 1.765 87.054 20.980 0.016 1.664 77.340

PS-Large Not solved with two-stage decomposition

Percentage of time in iterations during which nodal subproblems are not solved

Percentage of time in iterations during which all subproblems are solved

See Section 6.2.4 and Figure 6.1 on page 239

Percentage of time spent in stage one

Percentage of time spent in stage two

Boldface type indicates the fastest strategy for the individual problem

262

Chapter 6 Model MIMPSLP Results and Analyses

lems. Sample procedures for three- and four-period problems are respectively illustrated

by Figure E.l on page 382 and Figure 4.4 on page 151. Only nested Dantzig-Wolfe de

composition algorithms were employed due to the generally superior performance of DWD

versus LSD of this class of problems.

Solution CPU times as a function of relative tolerance for selected nested decompo

sition strategies applied to the subset of multiple period problems are shown in the mid

dle portion of Table 6.16. All second stage nodal subproblems were, solved to a relative

tolerance equal to one-tenth of the specified termination relative tolerance for the overall

problem. Nested decomposition of nodal subproblems for problem P5-Large was then

terminated at a relative tolerance of 10"^; Decomposition of all other nodal subproblems

terminated at a relative tolerance of 5 x 10~®. The solution CPU times for the fastest two-

stage decomposition strategy for each problem instance are given in the last four columns

of Table 6.16.

Two-stage DWD is significantly more efficient than nested DWD at each relative

tolerance level for all problems except the two largest, P4-Large and P5-Large. Problem

P5-Large is so large that the decision tree must be stored in a file and two-stage DWD

cannot be applied with a minor strategy (cutoff period Or = i for the first stage RMP) of

3 or greater under major strategy 7. Sufficient computer memory was not available to store

the initial RMP and ancillary data for two-stage decomposition under major strategy 7 with

i>3. Smaller major strategy levels are also incompatible with this problem since t must be

4 or 5 at those levels. Nested decomposition of problem P5-Large is faster than two-stage

263

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.16: Nested Dantzig-Wolfe Decomposition Solution CPU Times (Minutes)

Problem

Label

Solution

Strategy
THplet"

Relative Tolerance

Nested Dantzig-Wolfe Best Two-Stage
10-^ 10-4 10-" Exact^ 10"^

o
I

10-" Exact

P3-SmaU (7.1.6) 10.14 37.59 47.63 50.15 5.985 8.113 10.01 10.29^

P3-Medium (7.1.6) 75.55 282.5 392.6 392.6 32.70 56.87 70.10 73.96"
P3-Large (7.1.6) 687.9 2,420 3,114 3,457 133.4 262.5 330.1 366.9^

P4-Small

(7.1.6) 43.52 340.5 385.2 407.7

8.063 18.47 28.75 3Q.W(7.1.10) 26.48 168.8 266.9 266.9

(7.2.6) 24.17 55.47 86.97 99.56

P4-Medium (7.1.10) 265.4 998.2 1,449 1,539 107.1 255.7 434.0 492.8«

(7.2.6) 130.3 333.2 569.2 636.7

P4-Large (7.2.6) 934.2 2,405' 3,859 4,591 1,004 2,382 4,031 4,854"

PS-Small

(7.1.6) 65.83 613.4 883.4 883.4

11.43 23.65 45.89 58.34'

(7.1.10) 66.61 584.5 960.9 960.9

(7.2.6) 56.48 180.5 323.7 323.7

(7.2.10) 33.17 103.7 173.6 196.5

(7.3.6) 32.14 81.98 151.1 185.5

PS-Medium (7.2.10) 687.5 1,525 2,526 , 3,362 138.2 276.7 483.2 608.6'
(7.3.6) 338.5 775.9 1,348 1,629

PS-Large (7.2.10) 4,086 Stopped at e = 10"^ NA*^

See Section 6.2.4 and Figure 6.1 on page 239

5il0~® is considered exact

Best two-stage exact time for P3-Small uses DWD(7.2.2)

Best two-stage exact time for P3-Medium uses DWD(7.2.2)

Best two-stage exact time for P3-Large uses DWD(7.2.2)

Best two-stage exact time for P4-Small uses DWD(7.2.2)

Best two-stage exact time for P4-Medium uses DWD(7.2.2)

Best two-stage exact time for P4-Large uses DWD(7.2.2)

Best two-stage exact time for P5-Small uses DWD(7.3.2)

Best two-stage exact time for P5-Medium uses DWD(7.3.2)

Not available - PS-Large was not solved with two-stage decomposition

264

Chapter 6 Model MIMPSLP Results and Analyses

decomposition when the first stage cutoff period is 2 or less because decomposition of the

resulting 3- (i = 2) or 4-period (t = 1) nodal subproblems is more efficient than a grand LP

approach. Even nested decomposition of this problem was limited to a termination relative

tolerance of 10"^ since that procedure required over 68 hours (see the last row of Table

6.16). The size of nodal subproblems generally tends to increase with the size of the overall

problem and, at some point, it is faster to solve these subproblems with decomposition than

with a grand LP formulation. Therefore, nested decomposition becomes more efficient

than two-stage decomposition as the size of a problem increases. Data in Table 6.16, in

particular for the three 4-period problems, support the latter observation.

6.4.4 General Comments

Decomposition of stochastic linear programs in particular, and large scale linear programs

in general, is clearly an attractive alternative to grand LP solution procedures. Available

computer resources will limit the size of any LP that can be solved in a grand LP formula

tion so that some form of decomposition will often be required. Decomposition may also

be significantly more efficient than a grand LP approach even for relatively small prob

lems. The option to terminate a solution procedure at some specified bounds' gap that is

less than what may be considered 'exact' is also a beneficial property of decomposition

algorithms. Solution times in Table 6.12 on page 255 demonstrate, for instance, that de

composition of the 11 smallest multiple period problems can, on average, be tenninated at

265

Chapter 6 Model MIMPSLP Results and Analyses

a relative tolerance of 10"^ in less than one third (0.27) of the time required for an exact

solution.

Dantzig-Wolfe decomposition proved to be more efficient than L-Shaped decom

position for model MIMPSLP problems over planning horizons of one to five periods.

Employment of CPLEX software may be a critical factor in this performance variation.

The difference in efficiencies may also not be present, or even reversed, in other problem

classes. It is important to realize, however, that such differences may exist between these

two decomposition methods. Knowledge of the relative efficiencies of Dantzig-Wolfe and

L-Shaped decomposition for a given class of problems may be necessary to the design of

the most effective solution procedures.

Two-stage decomposition is generally more efficient than nested decomposition when

sufficient resources are available to execute both procedures. Many stochastic linear pro

grams possess the block-separability property and can be structured for two-stage decom

position. Nested decomposition, however, may be required or may be more efficient than

two-stage decomposition for very large problems. Block-separability, if present, can also

be incorporated to optimize the design of nested decomposition algorithms.

6.5 Myopic Decomposition Results

Myopic decomposition as described in Section 4.5 starting on page 152 was applied to

the 12 multiple period problem instances defined in Section 6.1.2 and listed in Table 6.3

266

Chapter 6 Model MIMPSLP Results and Analyses

on page 231. Both the primals lead and duals lead algorithms detailed in Appendix B

were applied to each problem instance. Only the results for the primals lead algorithm are

discussed below since this version significantly outperformed the duals lead version in all

cases.

Myopic decomposition terminated for each problem instance after the completion of

a full cycle with no improvement in the bounds' gap from the previous cycle. Performance

data at termination and after the first complete cycle are shown in Table 6.17. The last three

columns of this table list data for the fastest two-stage decomposition method and strategy

triplet for each problem.

Data in Table 6.17 indicates that there was no significant improvement in the bounds'

gap of any problem after the first cycle. In fact, there was no improvement after the first cy

cle for 6 of the 12 problems (termination after 2 cycles). Note, however, that the first cycle

data for myopic decomposition compares very favorably with the data for the fastest two-

stage decomposition procedures. Myopic decomposition achieved the first cycle bounds'

gap significantly faster than achieved by the fastest two-stage decomposition method for

all problems except P2-Large for which the two times are nearly equal. Myopic decompo

sition required, on average, 27 percent of the time required by two-stage decomposition to

obtain the first cycle bounds' gap.

Myopic decomposition lower and upper bounds at termination and after the first com

plete are shown in Table 6.18 along with the fractional gap between the lower bound and the

exact objective function value obtained with Dantzig-Wolfe and L-Shaped decomposition.

267

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.17: Myopic Decomposition Solution CPU Times (Minutes)

Problem

Label

Myopic Decomposition Data Two-Stage Data"

II

Termination Data 1st Cycle Data Method

(Strategy)"
Nearest

Time''% Gap Time Cycles" % Gap Time

P2-Small 1.129 0.3009 2 1.129 0.1524 DWD(7.1.2) 0.4822 0.3161

P2-Medium 1.598 5.083 3 1.828 1.703 DWD(7.1.2) 4.621 0.3685

P2-Large 2.158 155.7 3 2.210 51.91 LSD(7.1.4) 51.63 1.005

P3.SmaU 2.496 0.9470 2 2.496 0.4635 DWD(7.2.2) 5.367 0.08636

P3-Medium 2.448 5.242 2 2.448 2.603 DWD(7.2.2) 32.70 0.07960

P3-Large 2.726 34.72 2 2.726 17.39 DWD(7.2.2) 107.0 0.1625

P4-SmaU 3.266 4.160 2 3.266 2.067 DWD(7.2.2) 5.923 0.3490

P4-Medium 3.610 16.75 2 3.610 8.333 DWD(7.2.2) 77.58 0.1074

P4-Large 4.026 136.3 3 4.244 45.14 DWD(7.2.2) 728.5 0.06196

P5-SmaU 4.865 7.967 3 4.944 2.647 DWD(7.3.2) 7.008 0.3777

P5-Medium 4.903 85.86 4 5.559 21.44 DWD(7.3.2) 79.39 0.2701

P5-Large 5.582 341.9 3 5.823 113.3 DWD(7.2.10) 1,862 0.06085

Data for the fastest two-stage Dantzig-Wolfe or L-Shaped decomposition procedure

Index of cycle at which there was no improvement in bounds gap from previous cycle

Decomposition method acronym and strategy triplet

Time required for two-stage method to achieve the 1 cycle myopic bounds gap or better

Ratio of the 1 cycle myopic time to the two-stage time

268

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.18:, Myopic Decomposition Objective Value Comparisons

Problem

Label

Exact

Value

Obj"

Myopic Decomposition
Fractional Gap
To Lower Bound

1st Cycle Bounds Termination Bounds

Lower

MLBi
Upper
MUBi

Lower

MLBp
Upper
MUBp Ist" Term"

P2-Small 2,822,734 2,804,928 2,836,588 2,804,928 2,836,588 0.5624 0.5624

P2-Medium 2,596,361 2,568,460 2,615,418 2,574,269 2,615,418 0.5942 0.5942

P2-Large 2,472,811 2,445,419 2,499,485 2,446,677 2,499,485 0.5066 0.5066

P3-SmaU 3,022,102 2,992,621 3,067,329 2,992,621 3,067,329 0.3946 0.3946

P3-Medium 2,496,515 2,476,574 2,537,189 2,476,574 2,537,189 0.3290 0.3290

P3-Large 2,152,676 2,127,553 2,185,548 2,127,553 2,185,548 0.4332 0.4332

P4-Small 4,326,598 4,272,048 4,411,582 4,272,048 4,411,582 0.3909 0.3909

P4-Medium 3,972,196 3,916,018 4,057,380 3,91^18 4,057,380 0.3974 0.3974

P4-Large 3,692,139 3,624,752 3,778,584 3,632,340 3,778,584 0.4381 0.4089

P5-SmaU 3,927,228 3,843,899 4,033,935 3,846,775 4,033,935 0.4385 0.4299

P5-Medlum 3,696,311 3,618,894 3,820,076 3,620,336 3,797,832 0.3848 0.4291

P5-Large 3,588,547" 3,520,603 3,725,592 3,525,459 3,722,253 0.3315 0.3206

Exact DWD/LSD objective function values (5 x 10 ® relative tolerance) except for problem P5-Large
Obi-MLBy
MUBi-MLBi
Obj-MLB-p

MUB-p-MLB-p

Lower Bound at 1 percent relative gap with DWD(7.2.10)

269

Chapter 6 Model MIMPSLP Results and Analyses

The exact objective function value is nearer the lower bound (fractional gap is less than

0.5) for all problems except the three two-period problems. Future research should then be

directed toward improving the tail (dual) half-cycle results in order to obtain smaller upper

bounds at each cycle.

The biggest drawback to the current myopic decomposition algorithms is their inabil

ity to guarantee a specified relative tolerance. They can, however, be very efficient relative

to Dantzig-Wolfe and L-Shaped decomposition in obtaining fairly good solutions.

6.6 Sample Effectiveness Measures

The Mahalanobis squared distance based measures developed in Section 5.6.4 starting on

page 216 may be used to supplement traditional methods of judging the effectiveness of

a random sample in approximating a known distribution. Mahalanobis squared distance

values and sample effectiveness measures for six model MIMPSLP problem instances

are described below. Only problems with a single period are evaluated since the scenario

generator library (see Section 5.6 starting on page 207) employs a multivariate normal dis

tribution to generate random outcomes in each period of the planning horizon. Therefore,

no additional insight into the value of the proposed measures is gained by examining model

MIMPSLP problems with more than one period.

Three random seed values were used to generate outcomes for each of the six prob

lems which, otherwise, differ only in the number of outcomes in the random sample. The

270

Chapter 6 Model MIMPSLP Results and Analyses

resulting expected population and average sample Mahalanobis squared distance values

defined by equations [5.64] through [5.75] starting on page 220 are listed in Table 6.19.

These values were then used to determine the six sample effectiveness measures defined by

equation [5.76] on page 224 and the results are given in Table 6.20.

Several interesting conjectures may be formulated based upon the data in Table 6.20.

Measures based upon comparing the population expected return with the sample average

return {E'2^) and the expected population net return with the average sample net return

{E^^) do not appear to be useful since they are uniformly relatively large and exhibit sub

stantial variations. Each of the remaining four measures are based upon comparing sample

returns and net returns vectors with the corresponding population expected and sample av

erage returns and net returns vectors. These measures tend to behave as expected since

they generally decrease in value with increasing sample size. Measures based upon Maha

lanobis squared distances between sample net returns vectors and the population expected

net returns vector and the sample average net returns vector {E'q^) are considered

the more important pair. The latter two measures characterize the results of the model's

investments decisions whereas measures e[^'' and £'3^^ provide information only for the

generated sample.

Values in Table 6.20 for measures E^^ and Eg^^ indicate that a sample size of from

20 to 50 outcomes is probably too small to provide investment decisions that are robust

for different seed values. Values of these measures for samples of 100 to 1,000 outcomes,

on the other hand, vary little across both the seed values for the same sample size and the

271

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.19: Mahalanobis Squared Distance Values for Single Period Problems

Outcomes Random Returns" bet Returns"

L Seed M'i^
20 100 68" 3.40000 64.60000 26 1.30000 24.70000

68.66788"^ 2.26265 66.40523 27.16844 1.04168 27.77348

1,000 68 3.40000 64.60000 26 1.30000 24.70000

67.30189 2.84333 64.45857 25.84362 1.05348 26.20875

10,000 68 3.40000 64.60000 24 1.20000 22.80000

67.00530 3.94039 63.06491 22.93230 1.31420 21.52928

50 100 68 1.36000 66.64000 23 0.46000 22.54000

67.59106 0.94155 66.64951 23.08775 0.25904 20.75519

1,000 68 1.36000 66.64000 23 0.46000 22.54000

68.11555 1.46123 66.65432 24.28390 0.59530 24.74113

10,000 68 1.36000 66.64000 27 0.54000 26.46000

68.18476 1.49929 66.68547 27.34499 0.59303 24.07765

100 100 68 0.68000 67.32000 29 0.29000 28.71000

68.59674 0.49566 68.10108 29.84762 0.16944 29.40369

1,000 68 0.68000 67.32000 25 0.25000 24.75000

68.18315 0.78266 67.40049 25.56521 0.32157 24.77922

10,000 68 0.68000 67.32000 28 0.28000 27.72000

67.99100 0.59751 67.39349 28.69767 0.20103 26.12339

500 100 68 0.13600 67.86400 31 0.06200 30.93800

69.09147 0.16018 68.93129 31.86859 0.08689 31.64606

1,000 68 0.13600 67.86400 27 0.05400 26.94600

68.39446 0.18370 68.21076 27.46871 0.09001 27.09422

10,000 68 0.13600 67.86400 31 0.06200 30.93800

68.47139 0.14105 68.33034 31.29956 0.08562 30.64816

1,000 100 68 0.06800 67.93200 29 0.02900 28.97100

68.37054 0.05637 68.31417 29.20934 0.02507 29.04360

1,000 68 0.06800 67.93200 27 0.02700 26.97300

68.32987 0.08138 68.24849 27.31412 0.04526 27.47360

10,000 68 0.06800 67.93200 28 0.02800 27.97200

68.00626 0.05797 67.94829 28.05830 0.03036 27.52237

100,000 100 68 0.00068 67.99932 28 0.00028 27.99972

67.97271 0.00063 67.97209 27.98512 0.00032 27.98232

1,000 68 0.00068 67.99932 28 0.00028 27.99972

68.03666 0.00069 68.03597 27.99650 0.00023 28.00022

10,000 68 0.00068 67.99932 28 0.00028 27.99972

68.02099 0.00071 68.02027 27.99423 0.00040 27.99423

See equations [5.64] through [5.69] starting on page 220

See equations [5.70] through [5.75] starting on page 223

Population expected value is in the top half of each cell

Sample average value is in the bottom half of each cell

272

Chapter 6 Model MIMPSLP Results and Analyses

Table 6.20: Sample Effectiveness Measures for Single Period Problems

Outcomes

L .

Random

Seed

Returns^ Net Returns^

Ef^ E'i^ E'i^
20 100 0.98218 33.451 2.7945 4.4940 19.871 12.443

1,000 1.0266 16.373 0.21893 0.60146 18.963 6.1083

10,000 1.4628 15.894 2.3763 4.4488 9.5167 5.5733

50 100 0.60138 30.768 0.014271 0.38152 43.687 7.9184

1,000 0.16993 7.4434 0.021489 5.5822 29.413 9.7654

10,000 0.27171 10.242 0.068232 1.2777 9.8204 9.0036

100 100 0.87756 27.109 1.1602, 2.9228 41.572 2.4162

1,000 0.19338 15.097 0.11956 2.2608 28.628 0.11806

10,000 0.013235 12.131 0.10917 2.4917 28.204 5.7598

500 100 1.6051 17.779 1.5727 2.8019 40.145 2.2886

1,000 0.58009 35.074 0.51096 - 1.7360 66.685 0.54999

10,000 0.69322 21.074 0.68717 0.96632 38.097 0.93684

1,000 100 0.54491 17.103 0.56258 0.72186 13.552 0.25060

1,000 0.48510 19.676 0.46589 1.1634 67.630 1.8559

10,000 0.0092059 14.750 0.041652 0.20821 8.4286 1.6074

100,000 100 0.040132 7.3529 0.040045 0.053143 14.286 0.062144

1,000 0.053912 1.4706 0.053898 0.012500 17.857 0.0017857

10,000 0.030868 4.4118 0.030809 0.020607 42.857 0.019607

" See equation [5.76] on page 224 with j = 1,2,3

'' See equation [5.76] on page 224 with j = 4,5,6

273

Chapter 6 Model MIMPSLP Results and Analyses

different sample sizes. Samples with 100,000 outcomes exhibit uniformly small and

e'q'^ (also E^^ and E^) values for all random seeds and should be more than adequate for

the model.

The above observations can be used to supplement information gathered from a more

traditional approach such as judging model robustness to different sample sizes and random

seed values. For example, the net return for each random seed and sample size combina

tion used above is listed in Table 6.21. Note that net returns for samples with 100 or more

Table 6.21: Net Returns for Single Period Problems

Outcomes

L

Random Seed

100 1,000 10,000

20 143,739.8 126,506.0 110,304.0

50 162,230.4 161,596.1 125,322.9

100 161,194.9 168,310.9 151,691.2

500 166,963.7 169,969.2 165,991.1

1,000 170,199.4 173,320.0 168,129.2

100,000 170,683.7 171,146.0 171,328.0

outcomes vary much less than the smaller samples across seed values. In addition, the net

returns for samples with from 100 to 1,000 outcomes are relatively close to the fairly uni

form results for a sample with 100,000 outcomes - a maximum difference of 11.5 percent

between net returns for 100 outcomes and 100,000 outcomes with a common seed value

of 10,000. These observations agree those based upon the Mahalanobis squared distance

sample effectiveness measures. This agreement suggests that the proposed measures could

prove to be very useful analysis tools.

274

Chapter 6 Model MIMPSLP Results and Analyses

6.7 Model Application Restilts

Model MIMPSLP incorporates uncertainties about future securities' performances to for

mulate investment decisions that reflect the individual investor's aversion to risk. Model

results may be used to create analysis tools to aid in the flnal decision making process. Two

such commonly used tools are the efficient frontier and the Sharpe ratio.

Markowitz [142] introduced the efficient frontier in 1959 as a method to identify the

portfolio with the highest rate of return at a given level of risk. The efficient frontier is

a concave curve that is the upper boundary on the rate of return for a collection of risky

investments. The Sharpe ratio is used to measure the reward to risk performance of a

particular investment. First introduced by Sharpe [187, page 123] in 1966 as the reward-to-

variability ratio, the measure has commonly become known as the Sharpe ratio (see Sharpe

[188, page 688]). These two tools are illustrated in Figure 6.5.

Efficient Frontier

Riskless
Return R.

CC

Slope IS the
Sharpe Ratio

Risk

Figure 6.5: Efficient Frontier and the Sharpe Ratio

275

Chapter 6 Model MIMPSLP Results and Analyses

The portfolio with the maximum possible rate of return among all portfolios with a

given level of risk is the one that lies on the efficient frontier boundary depicted in Figure

6.5. Shaipe ratios are commonly used to determine the investment with the maximum rate

of return relative to some riskless investment. For example, given the riskless investment in

Figure 6.5 with return Rq, the line through Rq and tangent to the efficient frontier identifies

the desired portfolio as the one with risk ai and return R^. The corresponding Sharpe ratio,

SR, is then:

SR = (-^1 ~ -^o)

Problem P3-Small is used as a basis to demonstrate the coupling of these two analysis

tools with results of the market investment model. Fifteen problem instances with gradu

ated aversion to risk levels were created. The analysis in Section 6.6 above indicates that

a sample of 50 first period outcomes generated for a problem P3-Small instance probably

does not adequately represent the population. Therefore, a post solution simulation option

available in the MIMPSLP library is utilized to estimate risk data based upon a sample of

1,000 first period outcomes for each problem instance. Risk is determined as the product

of the expected value of the displacement below the mean return (expected shortfall devi

ation) with the fraction of the risk budget that is at risk (one minus the fraction of slack in

the risk budget constraint). This risk measure then combines both of the model's risk com

ponents - the risk budget constraint and the shortfall from the mean return. The first period

efficient frontier based upon expected net retums and this risk measure is illustrated in Fig

ure 6.6. The concave shape of the efficient frontier depicted in Figure 6.6 agrees with the

276

Chapter 6 Model MIMPSLP Results and Analyses

o

12

cr
^ 10

£ 8
a.

Ill

4 5 6

Risk *10-^

Figure 6.6: Problem P3-Small First Period Efficient Frontier

277

Chapter 6 Model MIMPSLP Results and Analyses

classical shape illustrated by Figure 6.5. Decreasing aversion to risk values (increasing risk

measures) yield increasing expected net returns but at higher levels of risk.

The MIMPSLP code library currently evaluates Sharpe ratios based upon a riskless

return rate of zero. Sharpe ratios, scaled to daily values, for the expected net returns of

the 15 problem P3-Small instances are plotted in Figure 6.7 versus the same risk measure

(scaled to daily values) used in the efficient frontier illustration at Figure 6.6. Note that the

resulting curve clearly indicates that there is an optimal (relative to Sharpe ratios) level of

risk. The optimal risk level from Figure 6.7 is very small indicating that a high aversion to

risk is warranted. This result is expected since a riskless return rate of zero yields a steep

efficient frontier tangent line with a small risk level at the point of tangency (see Figures

6.5 and 6.6).

278

Chapter 6 Model MIMPSLP Results and Analyses

\

4.6

□

CO

4.2

3.8

0 0.5 1 2 2.5

Risk *10-^

Figure 6.7: Problem P3-Small First Period Sharpe Ratios

279

Chapter 7
Summary and Conclusions

Stochastic linear programming is an effective and often used tool for incorporating

knowledge of uncertainties into decision making processes. Problems based upon stochas

tic programming techniques are generally quite large and require sophisticated solution

procedures. Developing and implementing such procedures are the primary goals of this

thesis.

Effective solution algorithms require efficient structures and procedures for data stor

age and retrieval. Analysis tools for measuring the effectiveness of a random sample and

judging a model's results are also necessary components of a comprehensive mathematical

model. Efficient methods for addressing each of these areas are secondary goals.

Detailed solution algorithms for multiple period stochastic linear programs are devel

oped based upon Dantzig-Wolfe and L-Shaped decomposition. These algorithms allow for

solutions to within an arbitrary tolerance on the gap between the lower and upper bounds

of a problem's objective function value. Results obtained by applying the decomposition

algorithms to a multiple period market investment model are reported and analyzed. Very

large market investment problems, with tens of millions of constraints and variables, were

solved on a personal computer. Three, hopefully significant, contributions derived from

this work are described in the following list.

280

Chapter 7 Summary and Conclusions

1. First known application of solution procedures based upon both Dantzig-Wolfe and

L-Shaped decomposition to the same class of problems. The results indicate that one

method may, in practice, be significantly more efficient than the other for certain classes

of problems. This observation counteris the generally accepted theory that procedures

based upon the two decomposition methods should have nearly equivalent efficiencies.

2. First known computational study of the application of the block-separability property

possessed by many stochastic linear programs. Results indicate that two-stage

decomposition can be significantly more efficient than nested'decomposition on

block-separable problems with from 1 to 5 periods and the constaints and variables

number on the order of millions or less.

3. First known development of nested decomposition algorithms that take advantage

of the block-separability property. These algorithms allow for greater flexibility in

structuring block-separable problems for decomposition than allowed for by currently

documented algorithms. The resulting nested decomposition procedures are more

efficient than two-stage decomposition procedures oh very large problems (tens of

millions of constraints and variables).

A third decomposition technique based upon a myopic view of the future is devel

oped and applied to market investment problems. Myopic decomposition algorithms can

yield very good solutions in a fraction of the time required by Dantzig-Wolfe/L-Shaped de

composition algorithms. Inability to guarantee an arbitrary solution tolerance is the major

drawback to the current myopic decomposition algorithms.

281

Chapter 7 Summary and Conclusions

Mahalanobis squared distance based sample effectiveness measures are developed

and shown to be useful supplements to traditional tools such as analysis based upon vari

ations in the samples' sizes and generation seeds. Data storage and retrieval procedures

based upon a multiple period decision tree structure are described and implemented. These

techniques are very efficient and require only a fraction (negligible for large problems) of

the processing time required by the selected solution procedure.

Future research is recommended in two areas. First, Dantzig-Wolfe and L-Shaped

decomposition algorithms should be applied with a broad selection of simplex solvers to

varied classes of problems to study the relative efficiencies of the two methods. Knowledge

of these relative efficiencies could prove to be very beneficial to the design of effective

solution procedures. Second, parallel computing algorithms should be developed to take

advantage of block-separability when present. Extremely large multiple period problems

could then be efficiently solved with two-stage decomposition methods.

282

REFERENCES

283

References

[1] Abrahamson, P. 1981. A nested decomposition approach for solving staircase-
structured linear programs. In: G. B. Dantzig, M. A. H. Dempster, and M. Kallio,
eds., Large-Scale Linear Programming, Volumn 1, 367-381.

[2] Alonso, A., L. F. Escudero, and M. T. Ortuno. 2000. A stochastic 0-lprogram
based approach for the air traffic flow management problem. European Journal of
Operational Research 120,47-62.

[3] Ament, D., J. Ho, E. Loute, and M. Remmelswaal. 1981. LIFT: a nested
decomposition algorithm for solving lower block triangular linear programs. In:
G. B. Dantzig, M. A. H. Dempster, and M. Kallio, eds., Large-Scale Linear
Programming, Volumn 1, 383-408.

[4] Anandalingam, G. 1987. A stochastic programming process model for investment
planning. Computers & Operations Research 14(6), 521-536.

[5] Bahn, O., O. du Merle, J.-L. Goffin, and J.-P. "S^al. 1995. A cutting plane method
from analytic centers for stochastic programming. Mathematical Programming 69,
45-73.

[6] Bazaraa, M. S., J. J. Jarvis, and H. D. Sherali. 1990. Linear Programming and
Network Flows. John Wiley & Sons, New York.

[7] Bazaraa, M. S., H. D. Sherali, and C. M. Shetty. 1993. Nonlinear Programming,
Theory and Algorithms, Second Edition. John Wiley & Sons, Inc., New York.

[8] Beale, E. M. L. 1955. On minimizing a convex function subject to linear
inequalities. Journal of the Royal Statistical Society, Series B 17, 173-184.

[9] Benders, J. F. 1962. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik 4, 238-252.

[10] Bienstock, D. and J. F. Shapiro. 1988. Optimizing resource acquisition decisions
by stochastic programming. Management Science 34(2), 215-229.

[11] Birge, J. R. 1985. Decomposition and partitioning methods for multistage
stochastic linear programs. Operations Research 33(5), 989-1007

284

References

[12] Birge, J. R. 1985. A Dantzig-Wolfe decomposition variant-equivalent to basis
factorization. In: R. W. Cottle, ed., Mathematical Programming Study 24, 43-64.

[13] Birge, J. R., M. A. H. Dempster, H. I. Gassmann, E. A. Gunn, A. J. King,
and S. W. Wallace. 1987. A standard input format for multiperiod stochastic
linear programs. Mathematical Programming Society, Committee On Algorithms
Newsletter 17, 1-19. (Paper obtained as file smps.ps on the World Wide Web,
http://ttg. sba. dal. ca/sba/profs/hgassmann/smps. html)

[14] Birge, J. R., C. J. Donohue, D. F. Holmes, and O. G. Svintsitski. 1996. A parallel
implementation of the nested decomposition algorithm for multistage stochastic
linear programs. Mathematical Programming 75, 327-352.

[15] Birge, J. R. and D. F. Holmes. 1992. Efficient solution of two-stage stochastic
linear programs using interior point methods. Computational Optimization and
Applications 1, 245-276.

[16] Birge, J. R. and F. V. Louveaux. 1988. A multicut algorithm for two-stage
stochastic linear programs. European Journal of Operational Research 34,
384-392.

[17] Birge, J. R. and F. Louveaux. 1997. Introduction to Stochastic Programming.
Springer-Verlag, New York.

[18] Birge, J. R. and C. H. Rosa. 1995. Modeling investment uncertainty in the costs
of global CO2 emission policy. European Journal of Operational Research 83,
466-488.

[19] Birge, J. R. and R. J-B. Wets. 1986. Designing approximation schemes for
stochastic optimization problems, in particular for stochastic programs with
recourse. In: A. Prekopa and R. J-B. Wets, eds.. Mathematical Programming Study
27, 54-102.

[20] Birge, J. R. and R. J-B. Wets. 1987. Computing bounds for stochastic programming
problems by means of a generalized moment problem. Mathematics of Operations
Research 12(1), 149-162.

[21] Bitran, G. R. and S. Dasu. 1992. Ordering Policies in an environment of stochastic
yields and substitutable demands. Operations Research 40(5), 999-1017.

285

References

[22] Bloom, J. A. 1983. Solving an electricity generating capacity expansion planning
problem by generalized Benders' decomposition. Operations Research 31(1),
84-100.

[23] Bloom, J. A., M. Caramanis, and L. Chamy. 1984. Long-range generation planning
using generalized Benders' decomposition: implementation and experience.
Operations Research 32(2), 290-313.

[24] Bonanno, A. S. and P. R. Griffiths. 1995. Discrimination of organic solvents using
an infrared-emitting diode-based analyzer. Part I: feasibility. Applied Spectroscopy
49(11), 1590-1597.

[25] Borison, A. B., P. A. Morris, and S. S. Oren. 1984. A state-of-the-world
decomposition approach to dynamics and uncertainty in electric utility generation
expansion planning. Operations Research 32{5), 1052-1068.

[26] Carino, D. R., T. Kent, D. H. Myers, C. Stacy, M. Sylvanus, A. L. Tumer,
K. Watanabe, and W. T. Ziemba. 1994. The Russell-Yasuda Kasai Model: An
asset/liability model for a Japanese insurance company using multistage stochastic
programming. Interfaces 24(1), 29-49.

[27] Carino, D. R., D. H. Myers, and W. T. Ziemba. 1998. Concepts, technical issues,
and uses of the Russell-Yasuda Kasai financial planning model. Operations
Research 46(4), 450-461.

[28] Carino, D. R. and W. T. Ziemba. 1998. Formulation of the Russell-Yasuda Kasai
financial planning model. Operations Research 46(4), 433-449.

[29] Chames, A. and W. W. Cooper. 1960. Chance-constrained programming.
Management Science 6(1), 73-79.

[30] Chames, A., W. W. Cooper, and G. H. Symonds. 1958. Cost horizons and certainty
equivalents: an approach to stochastic programming of heating oil. Management
Science 4(3), 235-263.

[31] Chen, Z. L. and W. B. Powell. 1999. Convergent cutting-plane and partial-sampling
algorithm for multistage stochastic linear programs with recourse. Journal of
Optimization Theory and Applications 102(3), 497-524.

286

References

[32] Chun, B. J. and S. M. Robinson. 1995. Scenario analysis via bundle decomposition.
Annals of Operations Research 56, 39-63.

[33] Chung, K. L. 1979. Elementary Probability Theory with Stochastic Processes.
Springer-Verlag, New York.

[34] Chvatal, V. 1983. Linear Programming. W. H. Freeman and Company, New York.

[35] Clay, R. L. and I. E. Grossmann. 1997. A disaggregation algorithm for the
optimization of stochastic planning models. Computers & Chemical Engineering
21(7), 751-774.

[36] Couillard, J. 1993. A decision support system for vehicle fleet planning. Decision
Support Systems 9,149-159.

[37] Couillard, J. and A. Mattel. 1990. Vehicle fleet planning in the road transportation
industry. IEEE Transactions on Engineering Management 37(1), 31-36.

[38] Consigli, G. and M. A. H. Dempster. 1998. Dynamic stochastic programming for
asset-liability management. Annals of Operations Research 81,131-161.

[39] CRC. 1996. Standard Mathematical Tables and Formulae, Thirtieth Edition. D.
Zwillinger, editor-in-chief. CRC Press, Inc., Boca Raton.

[40] Dantzig, G. B. 1949. Programming of independent activities U: mathematical
model. Econometrica 17(3-4), 200-211.

[41] Dantzig, G. B. 1955. Linear programming under uncertainty. Management Science
1(3-4), 197-206.

[42] Dantzig, G. B. 1959. On the status of multistage linear programming problems.
Management Science 6(1), 53-72.

[43] Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ.

[44] Dantzig, G. B. 1981. Time-staged methods in linear programming: comments
and early history. In: G. B. Dantzig, M. A. H. Dempster, and M. Kallio, eds.,
Large-Scale Linear Programming, Volume 1, 3-16.

287

References

[45] Dantzig, G. B. and P. W. Glynn. 1990. Parallel processors for planning under
uncertainty. Annals of Operations Research 22,1 -21.

[46] Dantzig, G. B. and G. Infanger. 1993. Multi-stage stochastic linear programs for
portfolio optimization. Annals of Operations Research 45, 59-76.

[47] Dantzig, G. B. and A. Madansky. 1961. On the solution of two-stage linear
programs under uncertainty. In: J. Neyman, ed.. Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, 165-176.

[48] Dantzig, G. B. and M. N. Thapa. 1997. Linear Programming 1: Introduction.
Springer-Verlag, New York.

[49] Dantzig, G. B. and P. Wolfe. 1960. Decomposition principle for linear programs.
Operations Research 8,101-111.

[50] Dantzig, G. B. and P. Wolfe. 1961. The decomposition algorithm for linear
programs. Econometrica 29(4), 767-778.

[51] Darby-Dowman, K., S. Barker, E. Audsley, and D. Parsons. 2000. A two-stage
stochastic programming with recourse model for determining robust planting plans
in horticulture. Journal of the Operational Research Society 51, 83-89.

[52] DeGroot, M. H. 1970. Optimal Statistical Decisions. McGraw-Hill, Inc., New
York.

[53] Dempster, M. A. H. and R. T. Thompson. 1999. EVPI-based importance sampling
solution procedures for multistage stochastic linear programmes on parallel MIMD
architectures. Annals of Operations Research 90,161-184.

[54] Dia, X. and S. Khorram. 1998. The effects of image misregistration on the accuracy
of remotely sensed change detection. IEEE Transaction on Geoscience and Remote
Sensing 36(5), 1566-1577.

[55] Dror, M. 1993. Modeling vehicle routing with uncertain demands as a stochastic
program: properties of the corresponding solution. European Journal of
Operational Research 64,432-441.

[56] Duffuaa, S. O. and K. S. Al-Sultan. 1999. A stochastic programming model for
scheduling maintenance personnel. Applied Mathematical Modelling 25, 385-397.

288

References

[57] Dupacova, J. 1974. Minimax stochastic programs with nonconvex nonseparable
penalty functions. Colloquia Mathematica Societatis Janos Bolyai, 303-316.

[58] Dupacova, J. 1987. Stochastic programming with incomplete information: a
survey of results on postoptimization and sensitivity analysis. Optimization 18(4),
507-532.

[59] Dupacova, J., M. Bertocchi, and V. Moriggia. 1997. Postoptimality for a bond
portfolio management model. In: C. Zopounidis, ed.. New Operational Approaches
for Financial Modelling, 49-62.

[60] Dupacova, J., A. Gaivoronski, Z. Kos, and T. Szantai. 1991. Stochastic
programming in water management: a case study and a comparison of solution
techniques. European Journal of Operational Research 52, 28-44.

[61] Eaves, B. C. and W. I. Zangwill. 1971. Generalized cutting plane algorithms. SIAM
Journal on Control 9(4), 529-542.

[62] Edirisinghe, N. C. P. 1991. Essays on Bounding Stochastic Programming Problems.
Ph.D. Dissertation, The University of British Columbia.

[63] Edirisinghe, N. C. P. 1996. New second-order bounds on the expectation of saddle
functions with applications to stochastic linear programming. Operations Research
44(6), 909-922.

[64] Edirisinghe, N. C. P. 1997. Bet sizing models for Market Research, Inc.,
preliminary report on model formulation. University of Tennessee, Working Paper.

[65] Edirisinghe, N. C. P. 1999. Bound-based approximations in multistage stochastic
programming: nonanticipativity aggregation. Annals of Operations Research 85,
103-127.

[66] Edirisinghe, N. C. P. 1999. Bet sizing models for Market Research, Inc., extension
of the one period model, two period stochastic programming formulation.
University of Tennessee, Working Paper.

[67] Edirisinghe, N. C. P., D. Atkins, and P. lyogun. 1994. Bounds on stochastic convex
allocation problems. Applied Stochastic Models and Data Analysis 10,123-140.

289

References

[68] Edirisinghe, N. C. P. and G-M. You. 1996. Second-order scenario approximation
and refinement in optimization under uncertainty. Annals of Operations Research
64,143-178.

[69] Edirisinghe, N. C. P. and W. T. Ziemba. 1992. Tight bounds for stochastic convex
programs. Operations Research 40(4), 660-677.

[70] Edirisinghe, N. C. P. and W. T. Ziemba. 1994. Bounds for two-stage stochastic
programs with fixed recourse. Mathematics of Operations Research 19(2),
292-313.

, [71] Edirisinghe, N. C. P. and W. T. Ziemba. 1994. Bounding the expectation of a saddle
function with application to stochastic programming. Mathematics of Operations
Research 19(2), 314-340.

[72] Edirisinghe, N. C. P. and W. T. Ziemba. 1996. Implementing bounds-
based approximations in conyex-concave two-stage stochastic programming.
Mathematical Programming 75, 295-325.

[73] Eppen, G. D., R. K. Martin, and L. Schrage. 1989. A scenario approach to capacity
planning. Operations Research 37(4), 517-527.

[74] EPRI. 1989. Decomposition Techniques for Multi-Area Generation and
Transmission Planning Under Uncertainty. Electric Power Research Institute
Report EL-6484.

[75] EPRI. 1990. Decomposition of Linear Programs Using Concurrent Processing on
Multicomputers. Electric Power Research Institute Report EL-6769.

[76] Fernandez, A. A., R. L. Armacost, and J. J. Pet-Edwards. 1998. Understanding
simulation solutions to resource constrained project scheduling problems with
stochastic task durations. Engineering Management Journal 10(4), 5-13.

[77] Fine, C. H. and R. M. Freund. 1990. Optimal investment in product-flexible
manufacturing capacity. Manageihent Science 36(4), 449-446.

[78] Fishbum, P. C. 1977. Mean-risk analysis with risk associated with below-target
returns. The American Economic Review 67(2), 116-126.

290

References

[79] Ford, L. R. Jr. and D. R. Fulkerson. 1958. A suggested computation for maximal
multi-commodity network flows. Management Science 5(1), 97-101.

[80] Frauendorfer, K. 1992. Stochastic Two-Stage Programming. Springer-Verlag,
Berlin.

[81] Frauendorfer, K. 1996. Stochastic multistage programming in financial decision
making. Zeitschritt fur Angewandte Mathematik undMechanik 76, Supplement 3,
21-24.

[82] Gassmann, H. I. 1987. Multiperiod Stochastic Programming. Ph.D. Dissertation,
The University of British Columbia.

[83] Gassmann, H. 1.1990. MSLiP: a computer code for the multistage stochastic linear
programming problem. Mathematical Programming 47,407-423.

[84] Gassmann, H. 1.1990. MSLiP user's guide. Dalhousie University, Working Paper
WP-90-4.

[85] Gassmann, H. I. and A. M. Ireland. 1996. On the formulation of stochastic linear
programs using algebraic modelling languages. Annals of Operations Research 64,
83-112.

[86] Gassmann, H. I. and E. Schweitzer. 1996. A comprehensive input format for
stochastic linear programs. Dalhousie University, Working Paper WP-96-1 (revised
April 1998).

[87] Geoffrion, A. M. 1970. Elements of large-scale mathematical programming part I:
concepts. Management Science 16(11), 652-675.

[88] Geoffrion, A. M. 1970. Elements of large-scale mathematical programming part U:
synthesis of algorithms and bibliography. Management Science 16(11), 676-691.

[89] Geoffrion, A. M. 1972. Generalized Benders decomposition. Journal of
Optimization Theory and Applications 10(4), 237-260.

[90] Glassey, C. R. 1973. Nested decomposition and multi-stage linear programs.
Management Science 20(3), 282-292.

291

References

[91] Glockner, G. D. and G. L. Nemhauser. 2000. A dynamic network flow problem
with uncertain arc capacities; formulation and problem structure. Operations
Research 48(2), 233-242.

[92] Glynn, P. W. and D. L. Iglehart. 1989. Importance sampling for stochastic
simulations. Management Science 35(11), 1367-1392.

[93] Golub, G. H. and C. F. Van Loan. 1993. Matrix Computations, Second Edition,
Fourth Printing. The Johns Hopkins University Press, Baltimore.

[94] Golub, B., M. Holmer, R. McKendall, L. Pohlman, and S. A. Zenios. 1995. A
stochastic programming model for money management. European Journal of
Operational Research 85, 282-296.

[95] Henaff, P. 1998. Hedging exotic derivatives through stochastic optimization.
Journal of Economic Dynamics and Control 22,1453-1466.

[96] Higle, J. L., W. W. Lowe, and R. Odio. 1994. Conditional stochastic decomposition:
an algorithmic interface for optimization and simulation. Operations Research
42(2), 311-322.

[97] Higle, J. L. and S. Sen. 1991. Statistical verification of optimality conditions for
stochastic programs with recourse. Annals of Operations Research 30, 215-240.

[98] Higle, J. L. and S. Sen. 1991. Stochastic decomposition: an algorithm for two-stage
linear programs with recourse. Mathematics of Operations Research 16(3),
650-669.

[99] Hiller, R. S. and J. Eckstein. 1993. Stochastic dedication: designing fixed income
portfolios using massively parallel Benders decomposition. Management Science
39(11), 1422-1438.

[100] Ho, J. K. and E. Loute. 1981. An advanced implementation of the Dantzig-Wolfe
decomposition algorithm for linear programming. Mathematical Programming 20,
303-326.

[101] Ho, J. K. and E. Loute. 1983. Computational experience with advanced imple
mentation of decomposition algorithms for linear programming. Mathematical
Programming 27,283-290.

292

References

[102] Ho, J. K. and A. S. Manne. 1974. Nested Decomposition for dynamic models.
Mathematical Programming 6,121-140.

[103] Hobbs, B. J. and Y. Ji. 1999. Stochastic programming-based bounding of expected
production costs for multiarea electric power systems. Operations Research 47(6),
836-848.

[104] Hogan, W. W. 1973. Applications of a general convergence theory for outer
approximation algorithms. Mathematical Programming 5,151-168.

[105] Hsu, A. and Y. Bassok. 1999. Random yield and random demand in a production
system with downward substitution. Operations Research 47(2), 277-290.

[106] Huang, C. C., W. T. Ziemba, and A. Ben-Tal. 1977. Bounds on the expectation
of a convex function of a random variable: with applications to stochastic
programming. Operations Research 25(2), 315-325.

[107] IBM. 1995. Optimization Subroutine Library, Guide and Reference.

[108] lerapetritou, J., J. Acevedo, and E. N. Pistikopoulos. 1996. An optimization
approach for process engineering problems under uncertainty. Computers &
Chemical Engineering 20(6/7), 703-709.

[109] ILOG. 1999. CPLEX 6.5 Reference Manual.

[110] ILOG. 1999. CPLEX 6.5 User's Manual.

[111] Infanger, G. 1992. Monte Carlo (importance) sampling within a Benders
decomposition algorithm for stochastic linear programs. Annals of Operations
Research 39, 69-95.

[112] Infanger, G. 1994. Planning Under Uncertainty: Solving Large-Scale Stochastic
Linear Programs. Boyd & Eraser Publishing Company, Danvers, MA.

[113] Infanger, G. and D. P. Morton. 1996. Cut sharing for multistage stochastic linear
programs with interstage dependency. Mathematical Programming 75, 241-256.

[114] Jacobs, J., G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and J.
Stedinger. 1995. SOCRATES: a system for scheduling hydroelectric generation
under uncertainty. Annals of Operations Research 59, 99-133.

293

References

[115] Jonsson, H., K. Jomsten, and E. A. Silver. 1993. Application of the scenario
aggregation approach to a two-stage, stochastic, common component, inventory
problem with a budget constraint. European Journal of Operational Research 68,
196-211.

[116] Jonsson, H. and E. A. Silver. 1989. Common component inventory problems with a
budget constraint: heuristics and upper bounds. Engineering Costs and Production
Economics 18, 71-81.

[117] Kali, P. 1976. Stochastic Linear Programming. Springer-Verlag, Berlin.

[118] Kail, P. and S. W. Wallace. 1994. Stochastic Programming. John Wiley & Sons,
Chichester.

[119] Kato, N., M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto. 1999. A handwritten
character recognition system using directional element feature and asymmetric
Mahalanobis distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 21(3), 258-262.

[120] Kelley, J. E. Jr. 1960. The cutting-plane method for solving convex programs.
Journal of the Society for Industrial and Applied Mathematics 8,703-712.

[121] Khang, D. B. and O. Fujiwara. 2000. Optimality of myopic ordering policies for
inventory model with stochastic supply. Operations Research 48(1), 181-184.

[122] Kim, K. and J. L. Nazareth. 1991. The decomposition principle and algorithms for
Mnedx pxo^diroxmxtg. Linear Algebra and its Applications 152, 119-133.

[123] King, A. J., R. T. Rockafellar, L. Somlyody, and R. J-B. Wets. 1988. Lake
eutrophication management: the Lake Balaton project. In: Y. Ermoliev and R. J-B.
Wets, eds.. Numerical Techniques for Stochastic Optimization, 435-444.

[124] Kira, D. S. and M. I. Kusy. 1990. A stochastic capital rationing model. Journal of
the Operational Research Society 41(7), 853-863.

[125] Kiwiel, K. C., C. H. Rosa, and A. Ruszczynski. 1999. Proximal decomposition via
alternating linearization. SLAM Journal of Optimization 9(3), 668-669.

294

References

[126] Klaassen, P. 1998. Financial asset-pricing theory and stochastic progranuning
models for asset/liability management: a synthesis. Management Science 44(1),
31-48.

[127] Konno, H. and K. Kobayashi. 1997. An integrated stock-bond portfolio
optimization model. Journal of Economic Dynamics and Control 21,1427-1444.

[128] Konno, H. and H. Yamazaki. 1991. Mean-absolute deviation portfolio optimization
model and its applications to Tokyo stock market. Management Science 37(5),
519-531.

[129] Korycki, J. 1996. On a distributed implementation of a decomposition method for
multistage linear stochastic programs. Optimization 38,173-200.

[130] Krzanowski, W. J. 1988. Principles ofMultivariate Analysis: A User's Perspective.
Oxford University Press, New York.

[131] Kusy, M. 1. and W. T. Ziemba. 1986. A bank asset and liability management model.
Operations Research 34(3), 356-376.

[132] Lindgren, B. W. 1993. Statistical Theory, Fourth Edition. Chapman & Hall, New
York.

[133] Louveaux, F. V. 1980. A solution method for multistage stochastic programs with
recourse with application to an energy investment problem. Operations Research
28(4), 889-902.

[134] Louveaux, F. V. 1986. Multistage stochastic programs with block-separable
recourse. In: A. Prekopa and R. J.-B. Wets, eds., Mathematical Programming
Study 28,48-62.

[135] Louveaux, F. V. and D. Peeters. 1992. A dual-based procedure for stochastic
facility location. Operations Research 40(3), 564-573.

[136] Lui, Y. M. and H-D. Cheng. 1994. A new peak selection criterion based on
minimizing the classification error. Information Sciences 94,213-233.

[137] Lustig, I. J., J. M. Mulvey, and T. J. Carpenter. 1991. Formulating two-stage
stochastic programs for interior point methods. Operations Research 39(5),
757-770.

295

References

[138] Madansky, A. 1963. Dual variables in two-stage linear programming under
uncertainty. Journal of Mathematical Analysis and Applications 6, 98-108.

[139] Magnus, J. R. and H. Neudecker. 1988. Matrix Differential Calculus with
Applications in Statistics and Econometrics. John Wiley & Sons, Chichester.

[140] Markowitz, H. 1952. Portfolio selection. The Journal of Finance 7, 77-91.

[141] Markowitz, H. 1952. The utility of wealth. The Journal of Political Economy 60,
151-158.

[142] Markowitz, H. M. 1959. Portfolio Selection: Efficient Diversification of
Investments.YaHe University Press, New Haven.

[143] Mattel, A., R. Nadeau, and W. L. Price. 1990. A stochastic programming approach
to the estimation of shell fragmentation distributions. INFOR 28(1), 53-66.

[144] Messina, E. and G. Mitra. 1997. Modelling and analysis of multistage stochastic
programming problems: a software environment. European Journal of Operational
Research 101, 343-359.

[145] Meszaros, C. 1997. The augmented system variant of IPMs in two-stage stochastic
linear programming computation. European Journal of Operational Research 101,
317-327.

[146] Microsoft. 1996. Microsoft Windows NT Workstation Resource Kit.

[147] Morton, D. P. 1996. An enhanced decomposition algorithm for multistage
stochastic hydroelectric scheduling. Annals of Operations Research 64, 211-235.

[148] Morton, D. P. 1998. Stopping rules for a class of sampling-based stochastic
programming algorithms. Operations Research 46(5), 710-718.

[149] Morton, D. P. and R. K. Wood. 1999. Restricted-recourse bounds for stochastic
linear programming. Operations Research 47(6), 943-956.

[150] Mossin, J. 1968. Optimal multiperiod portfolio policies. The Journal of Business
41, 215-229.

296

References

[151] Mulvey, J. M., D. P. Rosenbaum, and B. Shetty. 1997. Strategic financial risk
management and operations research. European Journal of Operational Research
97,1-16.

[152] Mulvey, J. M. and A. Ruszczynski. 1992. A new scenario decomposition method
for large-scale stochastic optimization. Princeton University, Technical Report
SOR-91-19.

[153] Mulvey, J. M. and A. Ruszczynski. 1995. A new scenario decomposition method
for large-scale stochastic optimization. Operations Research 43(3), 477-490.

[154] Mulvey, J. M. and H. Vladimirou. 1992. Stochastic network programming for
financial planning problems. Management Science 38(11), 1642-1664.

[155] Murty, K. G. 1968. Linear programming under uncertainty: a basic property of the
optimal solution. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete
10, 284-288.

[156] National Bureau of Standards. 1972. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Tenth Printing. M. Abramowitz and
I. A. Stegun, editors. United States Government Printing Office, Washington, D. C.

[157] Nazareth, J. L. 1987. Computer Solutions of Linear Programs. Oxford University
Press, New York.

[158] Nielsen, S. S. and S. A. Zenios. 1997. Scalable parallel Benders decomposition for
stochastic linear programming. Parallel Computing 23,1069-1088.

[159] Noble, B. and J. W. Daniel. 1988. Applied Linear Algebra. Prentice-Hall,
Englewood Cliffs.

[160] Olsen, P. 1976. When is a multistage stochastic programming problem
well-defined? SIAM Journal on Control and Optimization 14(3), 518-527.

[161] Olsen, P. 1976. Multistage stochastic programming with recourse as mathematical
programming in an Lp Space. SIAM Journal on Control and Optimization 14(3),
528-537.

297

References

[162] Paules, G. E. IV and C. A. Floudas. 1992. Stochastic programming in process
synthesis: a two-stage model with MINLP recourse for multiperiod heat-integrated
distillation sequences. Computers & Chemical Engineering 16(3), 189-210.

[163] Penny, K. 1.1996. Appropriate critical values when testing for a single multivariate
outlier by using the Mahalanobis distance. Applied Statistics 45(1), 73-81.

[164] Pereira, M. V. F. and L. M. V. G. Pinto. 1985. Stochastic optimization of a
multireservoir hydroelectric system: a decomposition approach. Water Resources
Research 21(6), 779-792.

[165] Pereira, M. V. F. and L. M. V. G. Pinto. 1991. Multi-stage stochastic optimization
applied to energy planning. Mathematical Programming 52,359-375.

[166] Pieptea, D. R. 1987. Leveraged bond portfolio optimization under uncertainty. The
Financial Review 22(1), 87-109.

[167] Pistikopoulos, E. N. and M. G. lerapetritou. 1995. Novel approach for optimal
process design under uncertainty. Computers & Chemical Engineering 19(10),
1089-1110.

[168] Pistikopoulos, E. N., T. V. Thomaidis, A. Melin, and M. G. lerapetritou. 1996.
Flexibility, reliability and maintenance considerations in batch plant design under
uncertainty. Computers & Chemical Engineering 20 Supplement, S1209-S1214.

[169] Prekopa, A. 1995. Stochastic Programming. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

[170] Prisman, E. Z., M. B. Slovin, and M. E. Sushka. 1986. A general model of the
banking firm under conditions of monopoly, uncertainty, and recourse. Journal of
Monetary Economics 17,293-304.

[171] Qi, L. 1985. Forest iteration method for stochastic transportation problem. In: R.
W. Cottle, ed.. Mathematical Programming Study 25, 142-163.

[172] Qiu, J. and A. A. Girgis. 1993. Optimization of power system reliability level by
stochastic programming. Electric Power Systems Research 26(2), 87-95.

[173] Rencher, A. C. 1995. Mehtods of Multivariate Analysis. John Wiley & Sons, Inc.,
New York.

298

References

[174] Rockafellar, R. T. and R. J.-B. Wets. 1991. Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of Operations Research 16(1),
119-147.

[175] Romisch, W. and R. Schultz. 1996. Decomposition of a multi-stage stochastic
program for power dispatch. Zeitschriftfur Angewandte Mathematik und Mechanik
76 Supplement 3,29-32.

[176] Rosa, C. H. and A. Ruszczynski. 1996. On augmented Lagrangian decomposition
methods for multistage stochastic programs. Annals of Operations Research 64,
289-309.

[177] Rosa, C. H. and S. Takriti. 1999. Improving aggregation bounds for two-stage
stochastic programs. Operations Research Letters 24,127-137.

[178] Rotting, T. A. and A. Gjelsvik. 1992. Stochastic dual dynamic programming for
seasonal scheduling in the Norweigian Power System. IEEE Transactions on
Power Systems 7(1), 273-279.

[179] Ruszczynski, A. 1986. A regularized decomposition method for minimizing a sum
of polyhedral functions. Mathematical Programming 35, 309-333.

[180] Ruszczynski, A. 1993. Parallel decomposition of multistage stochastic
programming problems. Mathematical Programming 58,201-228.

[181] Ruszczynski, A. 1995. On convergence of an augmented Lagrangian decomposition
method for sparse convex optimization. Mathematics of Operations Research
20(3), 634-656.

[182] Ruszczynski, A. 1995. On the regularized decomposition method for stochastic
programming problems. In: K. Marti and P. Kail, eds.. Proceedings of the 2nd
GAMM/IFIP — Workshop on "Stochastic Optimization: Numerical Methods and
Technical Applications", 93-108.

[183] Ruszczynski, A. 1997. Decomposition methods in stochastic programming.
Mathematical Programming 79, 333-353.

[184] Ruszczynski, A. and A. Swietanowski. 1997. Accelerating the regularized
decomposition method for two stage stochastic linear programs. European Journal
of Operational Research 101, 328-342.

299

References

[185] Sanghvi, A. P. and I. H. Shavel. 1986. Investment planning for hydro-thermal
power system expansion: stochastic programming employing the Dantzig-Wolfe
decomposition principle. IEEE Transactions on Power Systems PWRS-1(2),
115-121.

[186] Sapountzis, C. 1989. Allocating blood to hospitals. Journal of the Operational
Research Society 40(5), 443-449.

[187] Sharpe, W. F. 1966. Mutual Fund Performance. The Journal of Business 39,
119-138.

[188] Sharpe, W. F. 1985. Investments, Third Edition.Prentice Hall, Inc., Englewood
Cliffs.

[189] Silva, E. L., M. Morozowski, L. G. S. Fonseca, G. C. Oliveira, A. C. G. Melo,
and J. C. O. Mello. 1995. Transmission constrained maintenance scheduling of
generating units: a stochastic programming approach. IEEE Transactions on Power
Systems 10(2), 695-70L

[190] Sinha, D. and J. C. Wei. 1992. Stochastic analysis of flexible process choices.
European Journal of Operational Research 60,183-199.

[191] Somlyody, L. and R. J.-B. Wets. 1988. Stochastic optimization models for lake
eutrophication management. Operations Research 36(5), 660-681.

[192] Takriti, S., B. Krasenbrink, and L. S.-Y. Wu. 2000. Incorporating fuel constraints
and electricity spot prices into the stochastic unit commitment problem. Operations
Research 48(2), 268-280.

[193] Taylor, A. E. and W. R. Mann. 1983. Advanced Calculus, Third Edition. John
Wiley & Sons, Inc., New York.

[194] Taylor, H. M. and S. Karlin. 1994. An Introduction to Stochastic Modeling, Revised
Edition. Academic Press, San Diego.

[195] Van Slyke, R. and R. Wets. 1966. Programming under uncertainty and stochastic
optimal control. SIAM Journal on Control 4(1), 179-193.

300

References

[196] Van Slyke, R. M. and R. Wets. 1969. L-Shaped linear programs with applications
to optimal control and stochastic programming. SIAM Journal on Applied
Mathematics 17(4), 638-663.

[197] Vladimirou, H. 1998. Computational assessment of distributed decomposition
methods for stochastic linear programs. European Journal of Operational Research
108,653-670.

[198] Vladimirou, H. and S. A. Zenios. 1999. Scalable parallel computations for
large-scale stochastic programming. Annals of Operations Research 90, 87-129.

[199] Van der Vlerk, Maarten H. 2001. Stochastic Programming Bibliography. World
Wide Web, http://mally.eco.rug.nl/biblio/stoprog.html.

[200] Wagner, J. M., U. Shamir, and D. H. Marks. 1994. Containing groundwater
contamination: planning models using stochastic programming with recourse.
European Journal of Operational Research 77,1-26.

[201] Watanabe, T. and H. Ellis. 1993. Stochastic programming models for air quality
management. Computers & Operations Research 20(6), 651-663.

[202] Wets, R. J. B. 1966. Programming under uncertainty: the equivalent convex
program. SIAM Journal on Applied Mathematics 14(1), 89-105.

[203] Wets, R. 1966. Programming under uncertainty: the solution set. SIAM Journal on
Applied Mathematics IA{5), 1143-1151.

[204] Wets, R. 1966. Programming under uncertainty: the complete problem. Zeitschrift
fur Wahrscheinlichkeitstheorie und verwandte Gebiete 4, 316-339.

[205] Wets, R. J-B. 1974. Stochastic programming with fixed recourse: the equivalent
deterministic program. SIAM Review 16(3), 309-339.

[206] Wets, R. 1983. Stochastic programming: solution techniques and approximation
schemes. In: A. Bachem, M. Grotschel, and B. Korte, eds.. Mathematical
Programming: The State of the Art, Bonn 1982, 566-603.

[207] Wittrock, R. J. 1985. Dual nested decomposition of staircase linear programs. In:
R. W. Cottle, ed.. Mathematical Programming Study 24, 65-86.

301

References

[208] Wollmer, R. D. 1985. Critical path planning under uncertainty. In: R. W. Cottle,
ed., Mathematical Programming Study 25, 164-171.

[209] Wood, M. K. and G. B. Dantzig. 1949. Programming of independent activities I:
general discussion. Econometrica 17(3-4), 193-199.

[210] Worzel, K. J., C. Vassiadou-Zeniou, and S. A. Zenios. 1994. Integrated simulation
and optimization models for tracking indices of fixed-income securities. Operations
Research 42(2), 223-233.

[211] Yakowitz, D. 1992. An exact penalty algorithm for recourse-constrained stochastic
linear programs. Applied Mathematics and Computation 49,39-62.

[212] Yakowitz, D. S. 1994. A regularized stochastic decomposition algorithm for two-
stage stochastic linear programs. Computational Optimization and Applications 3,
59-81.

[213] Zakeri, G., A. B. Philpott, and D. M. Ryan. 2000. Inexact cuts in Benders
decomposition. SIAM Journal on Optimization 10(3), 643-657.

[214] Zenios, S. A., M. R. Holmer, R. McKendall, and C. Vassiadou-Zeniou. 1998.
Dynamic models for fixed-income portfolio management under uncertainty.
Journal of Economic Dynamics and Control 22,1517-1541.

[215] Ziemba, W. T. 1970. Computational algorithms for convex stochastic programs
with simple recourse. Operations Research 18(3), 414-431.

302

APPENDICES

303

Appendix A
Equivalence of Node Labeling Schemes

Derivations and proofs for the equivalence of the path vector and period-index node

labeling schemes developed in Chapter 2 are given below. Equivalence of the two schemes

is extremely important since they are frequently used together in problem formulations.

Both schemes assume the use of the convention that all nodes in a given period have the

same number of possible outcomes as described in Section 2.2.1. The derivation and va

lidity of equation [2.6] on page 28 for determining the period-index label given the path

vector are discussed in the first section below. The second section contains the derivation

for equation [2.7] on page 28 for determining the path vector given the period-index la

bel. Relating the two labeling schemes when the decision tree is traversed in a systematic

manner is the topic of the third and final section of this appendix.

A.1 Path Vector to Period-Index

Equation [2.6],

ht <

' 1, ifi = 1,

h-i + ̂ {Ij — 1) Lj+iLj+2 n • • Lt-i, if 2 < t < T,
j=i

is used to find the period-index label (t, ht) for a node in period t,l < t <T, given the

path vector = [/i,..., k-i] to that node. The single first period node represented by the

null or empty path vector, [], clearly has a period-index label of (1,1). A simple example

helps to visualize the derivation of the equation for a node in a period later than the first.

304

Appendix A Equivalence ofNode Labeling Schemes

Figure A.l shows the path vector [2,2,2] to the last node in a four-period binary outcomes

decision tree as the darkened path through the tree. The within period sequential index,

^4 = 8, for this node is a function of the number of nodes above it in the tree. There is

a group of nodes on or above node [2,2,2] for each of its three ancestor nodes along the

path. Group one consists only of four descendents of the first period node. The second

group contains two descendents of the grandparent node in the second period while the

final group is the older child of the parent node. The number of nodes in each of the first

two groups is the index for the outcome associated with the coTOsponding ancestor node

less one times the product of the number of outcomes possible in the periods between the

ancestor node and node [2,2,2]. Summing these products and the corresponding outcome

index for the parent node will give the sequential index for the node in question:

h/^ = (Zi — 1) L2L3 -f [I2 — 1) L3 -|- Z3

= (2-1) (2) (2)+ (2-1) (2) 4-2

= 4+2+2

= 8.

The above discussion suggests that the >vithin period sequential node index, ht, for a

node with a path vector of [h,..., Zt_i] in period f, 2 < f < T, is

ht — {h ~ 1) L2LS • n n Lt-i {I2 — f)L' z • • • Lt-i + ... + {lt-2 ~ 1) Lt-i + It-i
I

t-2

= k-l + ̂2 ^j+lh'j+2 n • • Lt-1
j=l '

I

which agrees with equation [2.6]. Induction,is used below to show that equation [2.6] is

valid in the general case. ^05

Appendix A Equivalence of Node Labeling Schemes

[1.1.1]

[1.1]

1.1.2

[1]

1.2.1

[1.2.2]

[2,1,1]

[2.1.2]

2

[2.2.1]

[2,2]

>[2.2.2]

nodes =[l]^-\)LiL^
= (2-l)(2)2
= 4

nodes =(1^-1)1^
= (2-1)2
= 2

/14 = ̂3 + 4+2

= 2+6

Figure A.l: Equivalence of Labels for Node [2,2,2] = (4,8) In a Four-Period Binary
Outcomes Decision Tree

306

Appendix A Equivalence ofNode Labeling Schemes

Equation [2.6] is clearly valid for the first period and also for the second period since

h2 = h and the summation term in equation [2.6] is zero. Assume the equation is valid for

any node in period t — 1 for 3 < f < T. Then given the path vector, [/i, Z2, - • •, k-2,

to a node in period t, the ht-i in the period-index label {t — 1, ht-x) for the parent node

[li,l2, • • •, ̂t-2] in period f — 1 is

t-3

ht-i = lt-2 + ̂ {Ij — 1) Lj+xLj+2 • • • Lt-2-
i=i

Each node (i — 1, A:), /: = 1,..., ht-i — 1, in period t — 1 has Lt-x child nodes in period

t that are above node [IxJ2t- - , k-2, ̂t-i] which is child number k-x of its parent node

implying that

ht = I —1 + lt-2 + {Ij — 1) Lj+xLj+2 • • • Lt-x + k-x
i=i

i-3

— k-1 + {k-2 1) Lt-x + {Ij — 1) Lj+xLj+2 • • • Lt-2Lt-x
j=l

t-2

— k-x + ̂ {Ij - 1) Ljj^xLjJr2 n n • Lt-2Lt-X.
J=1

Therefore, equation [2.6] is valid by inductive reasoning.

A.2 Period-Index to Path Vector

Equation [2.7],

Ik — 1 +

fc-1

ht — l—^ {Ij — l)Lj+xLj+2

t-x

n Lj
j=k+l

n Lt-x
k-x

ht — {lj ~ ̂)Lj+xLj+2 • • • Lt-x
i=i

t-x

n Lj
i=fc+l

307

Appendix A Equivalence of Node Labeling Schemes

is solved in sequential order for Ito determine the path vector [^i,..., k-i] to

a node in period t given the period-index label {t, ht) for that node. Either right-hand-side

term of equation [2.7] may be used. Equation [2.6] is used to derive the above relationship.

Assume that the values Zi,..., Ik-i are known for some k such that 2 < k < t — 1.

Then equation [2.6] implies that

k-l

ht = k-l + X) (Ij ~ 1) ̂j+1 • n n Lt-1 + {Ik — 1) Lk+i • n • Lt-i
i=i

+ X (Ij ~ 1) k^j+i • • • Lt-i.
j=k+l

Rearranging the above equation yields

t-l t-2 fc-1

{Ik — 1) JJ Lj + k-l + {Ij ~ 1) Lj^i • • n Lt-i = ht — {Ij — 1) Lj+1 • • • Lt-i,
j=k+l j=k+l j=l

[A.1]

and

t-2

k-l + ̂ 2 ̂^3 ~ 1) n n n ^t-1 > 0
j=k+l

[A.2]

since Lj > 1 and 1 < k < Ltfort = 1,..., T. Removing the term on the left of inequality

[A.2] from equation [A.l] implies that

k—l

^t — X {lj ~ ̂)Lj+iLj+2 • • • Lt-i
i

Zfc — 1 <
=i

t-i

n hij
j=k+l

Zfc — 1 <

fc-1

^t ~ X {lj ~ ̂)Lj+iLj+2 • n n Lt-i
j=i

t-i

n h,j
j=k+l

308

Appendix A Equivalence of Node Labeling Schemes

Then, since Ik is an integer,

fc—1

ht — {Ij — l)Lj+iLj+2 n • n Lt-i
J=i

t-i

n Lj
j=k+l

[A.3]

Subtracting one from both sides of equation [A.l] results in

(h — 1) n Lj + lt-1 — 1 + (lj ~ 1) Lj+1
j=fc+l j=k+l

— ht — 1 — Yl{lj ~ 1) Lj+i • n n Lt-i,
j=i

• • Lt-i

t-i

and dividing through the above equation by f] Lj gives
j=fc+i

— 1 +

k-i - 1 + Yj {lj - 1) Lj+i
j=k+l

n Lj
j=k+l

Lt_i

ht — 1 — Y {lj ~ 1) Lj+i • • • Lt-i

t-i '

n Lj
j=k+l

which implies that

It-i - 1 + Y {lj ~ 1) Lj+i n n n Lt-i
ik-i+

t-i

n Lj
j=k+l

>

k-1

ht — l—Y {lj ~ 1) Lj+i • • • Lt-i

t-i

n Lj
j=k+l

. [A.4]

309

Appendix A Equivalence of Node Labeling Schemes

Now, since the left-hand-side of inequality [A.2] is an integer, subtracting one from the

left-hand-side of that inequality implies that

t-2

It-i - 1 + ̂ (Z,- - 1) • • • Lt-i > 0. [A.5]
i=fc+i

The relations 1 < Zt < Lt for t = 1,..., T imply that

t-2 t-2

Zt-1 — 1 + ̂ {Ij — 1) Lj+i • • • Lt-i < Lt-\ -1-1- ̂ {Lj — 1) Lj+i • • • Lt-i- [A.6]
j=k+l j=k+l

Let L equal the right-hand-side of inequality [A.6], then

t-2

L = Lt-i -1-1- ̂ {Lj — 1) Lj+i • • • Lt-i
j=k+l

t-2 /t-1 \ t-2 / t-1

= Lt-i -

j=k+l \i=j J i=k+l \i=j+l
t-1 t-2 /t-1 \ t-3 / t-1= Lt-i-i+]][Lj+ ̂ - s (n ̂0

j=k+l j=k+2 \i=j / i=/:+l V=i+1
t-1 t-2 /t-1 \ t-2 /t-1

= -1-t- ^ (n^M - Yi
j=k+l j=k+2 \i=j J i=k+2 \i=j
t-1

L = -1+ Lj.
j=k+l

Then inequality [A.6] becomes

t-2 t-1

Zt-1 — 1 + ̂ {lj — 1) Lj+i • n n Lt-i < —1 -b Lj,
j=k+l j=fc+l

or, equivalently,

f-2 t-1

Zt_i - 1 + ̂ (Z,. - 1) Lj+r n n n Lt-I < n Lj. [A.7]
i=fc+l j=k+l

310

Appendix A Equivalence ofNode Labeling Schemes

Since Lf > 1 for i = 1,..., T, inequalities [A.5] and [A.7] imply that

k-i — 1 + (Ij ~ 1) Lj+i n • • Lt-i

0< <1, n

n
j=k+l

and since the center term above is the fractional term in the left-hand-side of inequality

[A.4], the latter inequality may be simplified to

> 1 +

ht — 1 — ̂ {Ij — 1) Lj+i • • • Lt-i

t-i

n Li
j=k+l

[A.8]

Inequalities [A.3] and [A.8] establish respectively upper and lower bounds on Ik. It

can be shown, however, that the right-hand-sides of inequalities [A.3] and [A.8] are equal.

Define integer m equal to the right-hand-side of inequality [A.3]:

k-l

m —

then

ht — {Ij — ̂)Lj+iLj+2 • • • Lt-i
j=i

t-i

n bj
j=k+l

k-l

ht — {Ij ~ ̂)Lj+iLj+2 • • • Lt-x
1 , i=i ^

m — 1 < < m,

n Lj
j=k+X

or, equivalently.

t-i jfc-i t-i

{rn 1) Lj <j. ht ^ i — m Lj
j=k+l i=l j=k+l

311

Appendix A Equivalence ofNode Labeling Schemes

since n ij>i- Since all three terms in the above expression are integers, subtracting
j=k+l

one from the middle term yields

t-i fc-i t-i

[rn, — 1) Lj ht — 1 — ̂ ~ l)Lj^iLj+2 n n n i m Lj,
j=k+l j=l j=k+l

which implies that

m — l =

k-l

ht — 1 — Y2 ih ~ ̂)Lj+iLj+2 n • n Lt-i

t-i

n
j=k+l

or

1 +

fc-i

ht — 1 — Y2 ih ~ ̂)Lj+iLj+2 • • • Lf-i
i=i

t-i

n ̂ 3
j=k+l

k-l

ht — {lj — l)Lj+iLj+2 • n • Lt-i
j=i

t-i

n ̂ 3
j=k+l

[A.9]

Therefore, inequalities [A.3] and [A.8] and equation [A.9] result in

Ik — 1+

ht — l—Y ih ~ ̂)Lj+iLj+2 n • • Lt-i

t-i

n Lj
j=k+l

k-l

ht — Y ih ~ L)Lj+iLj+2 • n n Lt-i
3=1

t-i

n Lj
j=k+l

SO that equation [2.7] will determine the path vector given the period-index label.

A.3 Practical Implementation

Equations [2.6] and [2.7] would be useful in relating path vector and period-index labels

when nodes are selected on a random basis. In most practical situations, however, the

decision tree is traversed in a systematic manner - generally in an iterative, breadth-first.

312

Appendix A Equivalence ofNode Labeling Schemes

or a recursive, depth-first, node order. Use of equations [2.6] and [2.7] would be both

inefficient and unnecessary in these situations.

Path vectors are used to traverse all decision trees discussed in this thesis. The path

vector scheme is the ideal way to label the nodes when a recursive tree traversal is used. A

practical implementation of recursive tree traversal is described in the first subsection be

low. Period-index labels, on the other hand, are more practical when the tree is traversed

in an iterative order. Implementing a practical period-index to path vector translation in an

iterative tree traversal without the use of equation [2.7] is the focus of the second subsec

tion.

The following notation, in addition to that established in Section 2.2.1, will be used

in the following discussions. A path vector is denoted by path and element j will be

designated as path (j). The colon notation of such programming languages as Fortran 95

and MATLAB' is used to designate a particular array section. Array colon notation can be

summarized as: path{j : k) is the vector formed by elements j,j + l,...,k-l,k where

path(j : fc) = [] if < j or the indices are otherwise invalid. Note that path{l: 0) = []is

a null or empty vector and designates the first period root node of the tree. Also note that

path{j : j) is a vector with a single element (or a null vector if j is an invalid index) and

not a scalar. The path vector is assumed to be allocated size of at least T - 1 so that the

elements with indices 1,..., T — 1 are accessible.

MATLAB is a registered trademark of The MathWorks, Inc., Natick, MA

313

Appendix A Equivalence ofNode Labeling Schemes

A.3.1 Recursive Tree Traversal

Recursive tree traversal is performed in a depth-first node order as indicated by the bold

and underlined node indices to the left of each node in Figure A.2. The recursive function

pseudo-code below is one way to efficiently implement a depth-first node order traversal.

Argument t is the index for the current period and must be set to one on the initial entry

(i.e., on the call from the driver routine), T is the number of periods represented in the

tree, and path is the allocated path vector. The ellipsis in the argument list represents any

remaining arguments that would be required by the function. The number of outcomes, Lt,

possible at any node in period £, l<f<T—l,is assumed to be available through shared

memory (such as global in C/C++ or a module in Fortran 95).

recursive function (t, T, path,...)

access the node pointed to hy path {1 : t — 1)

executable command statements

if (£ = 7") return

for It = n

path{t) = It

call recursive function ((£ + 1), T, path, ...)

end for

end recursive function

314

Appendix A Equivalence ofNode Labeling Schemes

[1.1.1]

[1.1

2/3

[1.1.2

[1]

£ / 2

[1.2.1]

[1.2.2]

2.1.1

11

10

[2.1.2]

12

[2]

[2.2,1]

14

2,2

13 [2,2,2]

15

#; Node index in recursive, depth-first, order

Figure A.2: Decision Tree Node Indices in a Recursive, Depth-First, Order

315

Appendix A Equivalence of Node Labeling Schemes

The if {t = T) return statement is the terminal condition of the recursion.

A.3.2 Iterative Tree Traversal

Iterative tree traversal is performed in a breadth-first node order as indicated by the bold

and underlined node indices to the left of each node in Figure A.3. The pseudo-code block

below is one way to efficiently implement a breadth-first node order traversal. The number

of periods, T, and the number of outcomes, Lu possible at each node in periods t =

1,..., T — 1 are assumed to be accessible.

access the first period node pointed to by path{\ : 0)

executable cominand statements

H = l

for t = 2,... ,T

j = t-l

k = j

path (1 : j) = 1

path {j) = 0

H = H* Lt-i

for h = I,... ,H

316

Appendix A Equivalence of Node Labeling Schemes

[1.1.1]

1.1

2/3

1.1.2

[1]

1.2,1
10

1.2.2

11

2,1.1

12

[2.1,2]

13

2

[2,2.1

14

2,2

2,2,2

15

#: Node index in iterative, breadth-first, order

Figure A.3: Decision Tree Node Indices in an Iterative, Breadth-First, Order

317

Appendix A Equivalence of Node Labeling Schemes

do

path (k) = path {k) + 1

if (path{k)<Lt)exit do

path (k) = 1

k = k — 1

end do

k = j

access the node pointed to by path{l : t — 1)

executable command statements

end for

end for

Note that the desired process statements for the data associated with the first period

node are executed outside the/or loops to preclude an attempt to access an invalid index of

path, i.e., path (0) in the outer loop.

318

Appendix B
Algorithm MDPCA Listings

Detailed listings are provided below for the myopic dual-primal cycling algorithm,

MDPCA, and four procedures referenced by the algorithm. These listings are based upon

properties of the algorithm that are established in Section 4.5.2 starting on page 155. Also

recall that the algorithm assumes a problem that is bounded and has complete or rela

tively complete recourse. Algorithm MDPCA is listed first followed in order by the refer

enced procedures Initialize(DuaIs Lead), Initialize(Primals Lead), Solve(DuaIs Lead),

and Solve(Primals Lead). Flowcharts for each procedure follow the listings. This appen

dix concludes with some remarks concerning possible modifications to the algorithm.

Note that the path vector, [•Jj = [li,. Zt_i], and period-index, (t, ht), node labeling

schemes described in Section 2.2.1 starting on page 24 are used interchangeably in the

listings (with the period identification subscript on ht omitted). Equation [2.7] on page 28

can be used to determine the path vector given the; period-index label for a particular node.

The path vector is required in order to obtain stored stochastic data as described in Section

4.6. In practice, the procedures outlined in section A.3 are used to relate the two labeling

schemes and obtain the necessary data.

319

Appendix B Algorithm MDPCA Listings

B.l Algorithm MDPCA

This listing assumes that the desired version, duals lead or primals lead, and the maximum

desired relative bounds gap, e, are prespecified. Explanatory remarks follow the listing.

Algorithm MDPCA

Step 0: Initialize the following parameters:

k <r- 0,

2:lb -oo,

^UB 00,

diff <r- oo.

Go to Step 1.

Step 1: If primals lead, execute procedure IiiitiaIize(Primals Lead) and go to Step 2;

else, duals lead, execute procedure Initlalize(Duals Lead) and go to Step 3.

Step 2: Set A: ■(— fc + 1 and t 1. Execute procedure SoIve(PrimaIs Lead) and go to

Step 4.

Step 3: Set A: ■«— A: + 1 and t T. Execute procedure SoIve(Duals Lead) and go to

Step 4.

Step 4: If (zuB - zi:&) < I^lbI £, stop with e-optimal procedure; else if (zub - -Tlb) >

diff, stop with diverging solution; else, set diff {zw - Zlb) and return to Step 2 if

primals lead or to Step 3 if duals lead.

Parameter k is the cycle counter and parameters 2lb and z^b record the best found

lower and upper bounds respectively. Parameter diff records the difference between

bounds, (^uB — at the conclusion of the previous cycle. The four referenced pro

cedures are detailed below.

Appendix B Algorithm MDPCA Listings

B.2 Initialization Procedures

Procedure lnitialize(Duals Lead) initializes the algorithm when duals lead by obtaining

a solution to each nodal dual subproblem in the terminal period. Solutions to the dual

subproblems in the terminal period are not required thereafter in the duals lead version.

Procedure InitiaIize(Primals Lead) initializes the algorithm when primals lead by obtain

ing a solution to the nodal primal subproblem in the first period. Solutions to the primal

subproblem at the fiirst period node are not required thereafter in the primals lead version.

Procedure InitiaIize(Duals Lead) is listed first followed by procedure lnitialize(Primals

Lead). Each listing is followed by explanatory remarks.

Procedure InitiaIize(DuaIs Lead)

Step 1: Set 0 and ■<— 0. Go to Step 2.

Step 2: If h = Ht, retum to algorithm MDPCA. Solve the nodal dual subproblem

[4.20] at node (T, h) = [•]y, let the optimal solution and objective function value be

and Zub, set <— z^ -I- zub and repeat Step 2.

Parameter z^ records the upper bound for the current cycle, k, by accumulating the
objective function values for the nodal dual subproblems. Parameter h indexes the nodes

in the current period (recall that Ht is the total number of nodes in period t).

Procedure InitiaIize(Primals Lead)

Step 1: Solve the nodal primal subproblem [4.18] at node (1,1) = [], let the optimal

solution and objective function value be and z[q and retum to algorithm MDPCA.

321

Appendix B Algorithm MDPCA Listings

Parameter serves the same purpose for the lower bound at the current cycle as

does parameter for the upper bound.

B.3 Solution Procedures

Procedure Solve(Duals Lead) executes one complete cycle of the duals lead version of

the algorithm where each cycle starts with the nodal dual subproblems in period T —1.

Information obtained at the conclusion of each lead dual half-cycle from the solution to the

dual subproblem at the node in the first period is used to start the tail primal half-cycle in the

second period. Solution information obtained at the conclusion of each primal half-cycle

for the primal subproblems at the nodes in the terminal period is used to start the next cycle

with the dual subproblems in period T — 1. Procedure Solve(Primals Lead) executes one

complete cycle of the primals lead version of the algorithm where each cycle starts with

the nodal primal subproblems in the second period. Information obtained at the conclusion

of each lead primal half-cycle from the solutions to the primal subproblems at the nodes

in the terminal period is used to start the tail dual half-cycle in period T — 1. Solution

information obtained at the conclusion of each dual half-cycle for the dual subproblem at

the first period node is used to start the next cycle with the primal subproblems in the second

period. Procedure Solve(DuaIs Lead) is listed first followed by procedure Solve(PrimaIs

Lead). Each listing is followed by explanatory remarks.

Procedure Solye(Duals Lead)

322

Appendix B Algorithm MDPCA Listings

Step 1: lft = 2, go to Step 3; else, set t <— t — 1, ■(— 0 and go to Step 2.

Step 2: If h = Ht, return to Step 1. Set /i +1 and solve the nodal dual subproblem

[4.21] at node (t, h) = ["jj. Let the optimal solution and objective function value be

Trt'lt and Zi^. Set + ^ub and repeat Step 2.

Step 3: Set t 1 and solve nodal dual subproblem [4.22] at node (1,1) = []. Let

optimal solution, dual multipliers, and objective function value be tt", and Zub- Set

. ̂ + ^UB, -2lb 2ub + x'^ and go to Step 4.

Step 4: Set Zus = max ^Zub, 2:^) and go to Step 5.
Step 5: If f = T — 1, go to Step 7; else, set t <— f + 1, ■(— 0 and go to Step 6.

Step 6: Ifh = Ht, return to Step 5. Set +1 and solve the nodal primal subprob

lem [4.19] at node (t, h) = Let the optimal solution and objective function value

be xW« and Zlb- Set z[b^ <— z[b + ^lb and repeat Step 6.

Step 7: Set <— 0, /i ^ 0 and go to Step 8.

Step 8: If h = Ht, go to Step 9. Set h + 1 and solve the nodal primal subproblem

[4.19] at node (T,/i) = [•j^. Let the optimal solution, dual multipliers, and objective

function value be xt'lr, and ^lb- Set ziS <- + Zlb, z^^^^ <- z^^'^ -t- Zlb +

and repeat Step 8.

Step 9: Set Zlb = min (zi^, z^^ and return to algorithm MDPCA.

323

Appendix B Algorithm MDPCA Listings

Cumulative bounding values and are initialized in Steps 3 and 8 for the

next primal and dual half-cycles respectively. The best upper and lower bounds found to

date are updated in Steps 4 and 9 respectively.

Procedure Solve(Primals Lead)

Step 1; If t = r — 1, go to Step 3; else, sett <—t + 1, h <—0 and go to Step 2.

Step 2: If /i = Ht, retum to Step 1. Seth<r- h + 1 and solve the nodal primal subprob-

lem [4.19] at node (t, h) = [•jj. Let the optimal solution and objective function value

be and Zlb- Set z[^ <— z[^ + zlb and repeat Step 2.

Step 3: Set zl^^ <— 0,t T, h <— 0 and go to Step 4.

Step 4: If h = Ht, go to Step 5. Set h<^h + l and solve the nodal primal subproblem

[4.19] at node (T, h) = [^jy. Let the optimal solution, dual multipliers, and objective

function value be and z^. Set z^ -e- -h Zlb, ^ + ̂lb +

and repeat Step 4.

Step 5: Set Zlb = niin ̂ Zlb, ̂lib^ and go to Step 6.

Step 6: lft = 2, go to Step 8; else, set t <— f — 1, /i 0 and go to Step 7.

Step 7: lfh = Ht, retum to Step 6. Set h <— h + 1 and solve the nodal dual subproblem

[4.21] at node {t, h) = [•Jj. Let the optimal solution and objective function value be

and zub. Set z^^ ■«— zl^ + zub and repeat Step 7.

324

Appendix B Algorithm MDPCA Listings

Step 8: Solve nodal dual subproblem [4.22] at node (1,1) = []. Let optimal solution,

dual multipliers, and objective function value be Tr^, xt', and 2ub- Set

^ 5ub + x'" ZtU and go to Step 9.

Step 9: Set Zm = max ̂Zub, ^ and return to algorithm MDPCA.

Cumulative bounding values and are initialized in Steps 4 and 8 for the

next dual and primal half-cycles respectively. The best lower and upper bounds found to

date are updated in Steps 5 and 9 respectively.

Figure B.l is the flow chart for algorithm MDPCA. Figure B.2 shows the flow

charts for both initialization procedures with procedure Initialize(Duals Lead) to the left

of procedure Initialize(Primals Lead). Flowcharts for procedures Solve(Duals Lead) and

Solve(PrimaIs Lead) are at Figures B.3 and B.4 respectively.

B.4 Algorithm Modifications

Modiflcations are easily made to algorithm MDPCA depending upon the desired results.

The coded version of the algorithm includes several modifications. Options are available to

force the algorithm to terminate (return to the calling routine) after the first complete cycle

or after the first lead half-cycle (in either the duals lead or primals lead application). The

algorithm will also terminate after a specified number of complete cycles regardless of the

status of the other two termination criteria - e-optimal solution or a diverging solution.

325

Appendix B Algorithm MDPCA Listings

a: <-0

ZUB

Execute Procedure

Solve(Primals Lead)

1 r

4—Yes No—^

kir-k + l

t^T

Execute Procedure

Solve(Duals Lead)

(ZUB FlbI Yes-M Stop with f-optimal solutionZlB

(ZUBStop with divergent solution M*Yes diffZlB

No

Figure B.l: Algorithm MDPCA Flowchart

326

Appendix B Algorithm MDPCA Listings

Procedure lnitialize(Duals Lead)

Symbol A Implies I f From \
Algorithm MDPCA | ̂ A)

Procedure lnitialize(Primals Lead)

r

ZUB <-0
A<-0

1 r

Yes

Solve nodal dual subproblem
[4.20] at node {J,h) and let

optimal solution and
objective be

Jt' ̂ &5ub
ZpB ̂ ̂UB ^UB

/TrorrA fiv
l^s
Symbol A Implies
Algorithm MDPCA

Solve nodal primal
subproblem [4.18] at node
(t,h) = [] and let optimal
solution and objective be

NOTE: Use equation [2.7] to determine path vector given period-index label [T,h)!

Figure B.2: Procedures Initialize(Duals Lead) andInitialize(Primals Lead) Flowcharts

327

Appendix B Algorithm MDPCA Listings

Symbol A Implies
Algorithm MDPCA

Yes

From

No

Yes

h ̂ A+1
Solve nodal dual subproblem
[4.21] at node and let

optimal solution and
objective be

71^ & ZuB

ZUB +

r <— 1
Solve nodal primal subproblem [4.19]
at node (f,/)) and let optimal solution,
dual multipliers, and objective be

Jt' ',x' 1,&ZUB

^ ̂UB ̂ ̂UB

ZlB <-ZuB+x'

I -CUB'^UB Imax*.UB

r+1

;i<-o

Yes

Yes

h<-h + l
Solve nodal primal

subproblem [4.19] at node
(t,h) and let optimal solution

and objective be

x'"'' &2lb
Zlb <-Zi£+Zlb

z!?;''<-o

Zia ̂ maxIzLB.zl^'J

h<—h+1

Solve nodal primal subproblem [4.19] at
node (T,h) and let optimal solution, dual

multipliers, and objective be

jjHr ̂ ^

zii' <- zS + ZtB

NOTE; Use equation [2.7] to determine path vector given period-index label (t,h)!

Figure B.3: Procedure Solve(Duals Lead) Flowchart

328

Appendix B Algorithm MDPCA Listings

Symbol A Implies
Algorithm MDPCA

Yes

From

'"(zlb.Zlb)2lB min

t-2

Yest + \

Yes

h<-0

Yes

- h^h + \
Solve nodal primal

subproblem [4.19] at node
(t,h) and let optimal solution

and objective be

Yes No

h ̂ rt + 1
Solve nodal dual subproblem
[4.21] at node {t,h) and let

optimal solution and
objective be

Tl'"'' &2mb

X ' &Zin

zlb <-zlb +Zlb

ZUB ̂ ̂UB ̂ ̂UB

h^O

ZijB

Solve nodal dual subproblem [4.22] at
node (1,1) and let optimal solution,
dual multipliers, and objective be

71 , X , & ZuB

Zlb"'^
i.=]hi-~h+l

Solve nodal pnmal subproblem [4.19]
at node (T.h) and let optimal solution,

dual multipliers, and objective be

(zuB.zim)&5lb ZuB max

Zlb <- Zl£ + Zlb

NOTE; Use equation [2.7] to determine path vector given period-index label ('. A)!

Figure B.4: Procedure Solve(Primals Lead) Flowchart

329

Appendix B Algorithm MDPCA Listings

Algorithm MDPCA can therefore be used to obtain an initial feasible solution to

either the primal or the dual problem in a relatively efficient manner. These solutions can

then be used to initiate either Dantzig-Wolfe or L-Shaped Decomposition as appropriate.

330

Appendix C
Piece-Wise Linear Approximations

Procedures for assigning slopes and break points for the piece-wise linear (PWL)

approximations to the quadratic slippage function and the quadratic downside deviation

5

function are developed in this appendix. All derivations are based upon the slippage func

tion since a quadratic downside deviation function can be considered as a special case of

the slippage function. General conditions assumed in the derivations are first established.

Procedures for assigning slopes and break points are then developed for two criteria -

controlling the maximum relative error in any PWL segment and minimizing the average

absolute error over all PWL segments in a bounded region. Procedural descriptions are fol

lowed by discussions concerning applications of the procedures under general conditions

and under several special conditions. The final section details using the procedures devel

oped for the slippage function to determine PWL approximation parameters for quadratic

downside deviation.

C.1 General Conditions

All PWL approximation derivations for slippage are developed for a generic security with

index n where 1 < n < A" and N is the number of securities represented in the model. Let

yn be the number of positions held in security n at the end of a period (or at the start of

the planning horizon) and let represent the number of positions held in security n after

331

Appendix C Piece-Wise Linear Approximations

trading is completed at the start of the next period. Then, Xn = \yn — yn\ is the absolute

transaction amount for security n and the associated transaction cost, or slippage, is:{ ^n "h '^n) ■> • 0 ^)
[C.l]

where the parameters are defined in Section 5.1.1. Let Ki and K2 be the numbers of desired

PWL break points, '^kn, k = ■ ,K = Ki+K2,m slippage regions one, 0 < < XT,

and two, XT < Xn < 00, respectively. Derivations are developed assuming the following

general conditions exist:

1 < < 00, [C.2]

1 < K2 < 00,

0 < xr < OG,

0 < ain < 00,

^In ^ ^2n ^ 00.

Furthermore, break points are to be placed at the origin, ^on = 0, and at the region bound-

Figure 5.2 on page 171 illustrates the PWL slippage approximations for

Ki = K2 = 2.

Let <^i and <^2 represent user specified maximum desired relative errors between PWL

and actual slippage for all securities in the first and second slippage regions respectively.

Define the triplet \flin, a2n, ?] as:
[oiji, /C,j, Cl] , 0 ^ Xji <[X^ ,

[fllji, (l2n, ~ ^ [C.3]
[(Uln "h CL2n} , 0'2n-^T) j '^2] , OOj

332

Appendix C Piece-Wise Linear Approximations

so that the slippage function can be represented by:

©n (^-n) — {P'ln^n "b ̂ ^211) • [C.4]

Let the linear functions

^kn (^n) ~ ̂kn^n '^km ̂ {k—l)n — ^knt [C.5]

be the slippage approximating functions in PWL segments k = I,... ,K. The slope,

in segment k £ K = {1,..., iiT} is:

^ ̂kn kn "b Ci2n) ^(k—l)n l)n "I" ®2ra)
^'fcre — ̂(fc-l)n

(^In - ̂(fc-l)n) + kn " ^(k-l)n)
^kn l)n

^kn ~ ̂In (^(fc—l)n "I" "b ®2n! [C.6a]

and the vertical axis intercept, Vkn, for segment k eKis determined by setting Gkn (^fcn) =

©n (^'fcra):

'^kn (®ln^A:n "b Q2n) [^In (^fcn "b ̂ (fc—1)71) "b U2ti] ̂ kn

= + ®2n^fcTi — Sln'^'fcn ~ ®ln^(fc-l)n^fc7i — 0,2n'^kn

f^kn ~ l)7i^fcn.- [C.6b]

Note that each term on the right-hand-side of equation [C.6b] is nonnegative implying

that:

Vkn<0,k=l,...,K. ([C.6c])

333

Appendix C Piece-Wise Linear Approximations

Finally, define the absolute error, fKjj (rc„), between the PWL approximate slippage

and the actual slippage at some Xn as:

(2J71) — ©fcn (^n) > l)ra ̂ ^kn- [C.7]

Note that the actual slippage function, (a;„) as defined by equation [C.4], is convex in

each slippage region since ain > 0 in both slippage regions under the general conditions

[C.2] (6n (xn) has a positive second derivative). Therefore, fKn (^'(fc_i)n) = ̂ {^kn) = 0

and IHn (a;„) > 0 for < ̂kn-

The objective of the PWL approximation scheme is to assign break points 0 = ̂'on <

^i7i< ••• <^fcn< ••• <^A-n = oo such that the slope in each PWL segment is strictly

smaller than the slope in the next segment: < • • • < < • • • < ̂ Kn- Slopes

within the same slippage region will naturally increase in value from segment to segment

due to the convexity of Gn (xn) in each region. Special attention, however, must be given

to the assignment of the first break point, ̂ '(Ari+i)n, in the second slippage region when

the slope adjustment factor is negative, i.e., a2n < 0. The actual slippage function is not

convex across the region boundary, X™', when a2n < 0 and care must be taken to insure

that Break points are assigned in order' to control the approximation

error in either one of two ways as described in the next two sections.

334

Appendix C Piece-Wise Linear Approximations

C.2 Maximum Relative Error Procedure

The goal of the maximum relative error procedure is to assign break points so that no

relative error is greater than some specified positive value. This goal can be achieved

by insuring that the maximum relative error in each PWL segment is no larger than the

specified value. The procedure may be used in both slippage regions with and

preassigned the values 0 and X™' respectively.

Define the relative error between the approximate and actual slippage at some trans

action amount as

©n (p^n)

where &n (^n) and fHn (^n) are defined by equations [C.4] and [C.7] respectively. Equa

tions [C.3] through [C.7] imply that:

xj-y /„ \ ®fcn ip^n) ©n (^^n)
/■Cn [Xn) — - -

&n \^n)
^kn^n "t" '^kn ^2n^n

Tin (Xn) =
^In^n "b CL2nXji '

335

Appendix C Piece-Wise Linear Approximations

The first derivative of the relative error function with respect to is then:

dT^ji (OiinXjj^ + ̂2n^n} (^fcn Q2ra)]
{ainXl + a^nXnf

I ®27i) Xfi ^fcn] i^^^VnXn ~l~ *^271)
iflXfiX"^ 4" 0'2nXn}

+ Oijj {^kn 3fl2n) 4" ̂271 (^/:7i 0,2n) Xn
ifllnX^ 4" Q'2nXn}

I ^^InXji flirt (^^kn ^^2n) X^ [^271 (^fc7t ^27i) 4" ̂ttinVkn] Xn 0'2nVkn
4" ̂ 2n^n)

dT^fi {jXt^ ^l7t^fc77^7i 4~ '^O'ln'^knXn 4~ 0>2n'^kn g-
{ainXl + a^nXnf

The maximum relative error in PWL segment fc e K will occur at Xn = Xn where the

first derivative above is zero implying that:

^71 —
_ -2dl77t^fc77 ± - ̂̂ lna2nVkn^

20l7l^fc7l

-2dinVkn ± 2dinVknyJl —
2cii7j$/ot

'^kn / 1 j 1 ^2n^kn \ ^ r^i
3^77 = —^14= a/1-^ • [C.IO]

^kn \ V dlnVkn

Existence of at least one Xn satisfying equation [C.IO] such that ̂ {k-i)n < Xn < ''^kn,

2 < k < K, can be verified by the following theorem (e.g., see Taylor and Mann [193,

page 27]):

Rolle's Theorem Let ̂ (x) be a function which is continuous at each point of the closed

interval a < x < b, has a derivative at each point in the open interval a < x < b, and is

336

Appendix C Piece-Wise Linear Approximations

zero at the bounds: ̂ {a) (b) = 0. Then at least one x, a < x < b, exists such that:

dg(x)
dx

Since (xn) satisfies the conditions of Rolle's Theorem fork = 2,...,K, equation

[C.IO] must yield at least one value for such that ̂ (fc_i)n < Xn< with = 0.

Furthermore, there is only one such value for each k e {2,.. .,K} and it is obtained by

adding the radical value in the enclosed term of equation [C.IO]. The latter statement

is justified by noting that Xn < '9{k-i)n when the radical value in the enclosed term in

equation [C.IO] is subtracted from one. If the enclosed term is negative, then < 0 <

^(fc-i)n by inequality [C.6c] and construction of the break points. Then consider the case

when the enclosed term of equation [C. 10] is nonnegative and less than one after subtracting

the radical value from one implying that

, Vkn
— 'IT)

which along with the condition requires that:

— 211m. y. ilf- ,

-Vkn > ̂kn'^{k-i)n, siuce slope ̂ kn > 0 by construction,

'■ l)n "b 0,

=4> &kn (^(fc-i)n) = ©n (^'(A:-i)n) < 0, by constiuction and equation [C.5].

337

Appendix C Piece-Wise Linear Approximations

The last expression cannot be valid since (^'(fe_i)n) > 0 for all /c = 1,..., There

fore, the unique value for Xn such that < ̂kn is:

'^kn
1+

$kn

 , 2 < A: < K. [C.ll]
V ̂In^kn J

Moreover, IZn {xn) must be a maximum value for the function in the segment <

Xn < ̂kn since Un {^{k-i)n) = P-n kn) = 0 and Un (xn) > 0 for all Xn such that

^(fc-i)n < Xn < ̂kn- Givcu T'(fc_i)„, A: = 2,..., K — 1, the maximum relative error can

then be controlled by assigning a value to ̂ kn that insures that

P'u (Xn) ̂ '>}

where c is the maximum desired relative error as defined by equation [C.3].

Equation [C.ll] does not apply for the first PWL segment at A: = 1 since the relative

error at the origin is undefined:

71 (0) ^(0) Gin(0)-6n(0) 0
6„(0) 6n(0) 0"

Hence, the conditions of Rolle's Theorem are not satisfied at = 0 and equation [C.ll]

cannot be used to set a value for T'i„. The procedure to determine T'ljj is described at the

conclusion of this section.

Assume that '^jn = j = 1,..., A; — 1, 2 < A: < AT, have been fixed so that

is the next break point to be determined such that:

P-n {,Xn) C, ̂(fc—l)re Xn

338

Appendix C Piece-Wise Linear Approximations

Equation [C.8] defining Tin {xn) then implies that:

dlnXn ~t" (^fcn ®2ri) "t" f^kn ~ {p'ln^n ^2n^n}

^ (1 + ?) + [(1 + ?) a,2n ^fcn] '^^kn ~ 0*

The next break point, is the root of the above equation and can be determined with a

Newton-Raphson/bisectionprocedure. Define5'fcn k = 2,... ,K, as:

dkn i'^kn) = (1 + C) ainXl + [(1 + q) a2n " <^fcn] " Vkn [C.12]

where,

Xn = (1 + , [C.13a]^kn \ V ainVkn J

■)" ^(fe—l)n^ T" fl2re5 [C.13b]
'^kn ~ l)ri^fere* [C.13c]

Then, ^kn = '^kn is to be determined such that ^kn (^^kr^ = 0. Note that equations
[C. 13a-c] are convenient reproductions of equations [C. 11] and [C.6a-b] respectively. Each

of the left-hand-side terms in these three equations is treated as a function of ̂ kn although

functional notation has been omitted for simplicity. The first derivatives of the functions

339

Appendix C Piece-Wise Linear Approximations

defined by equations [C.12]-[C.13c] with respect to '^kn are:

(^fen) r/^ . /r,~ I ~ \ a t -s 9^kn= [(1 + c) {2a.„x„ + a,„) - * J ̂
A nj,

d^kn

dX ®2n

d-^kn

d^kn

d-^kn
dVkn

d'^kn

n

.2(2171 {^kn^n "b '^fcn) '^kn_

~ (^Ini

— ®ln^(A:—l)n*

$kn

[C.14]

[C.15a]

[C.15b]

[C.15c]

The next value, for the break point in question at iteration G of the Newton-

Raphson procedure is

kn ^ kn

gt- (C"")
9gfc7i(^fcn)

d'Hkr.

where equations [C.12] through [C.15c] are used to evaluate the necessary terms. A switch

is made to the bisection procedure if the Newton-Raphson procedure begins to diverge. The

search terminates with '^kn = when

£ > 0.

^kn j < £ for some specified tolerance

The maximum relative error procedure starts by finding the upper break point,

for the first PWL segment. The Newton-Raphscn/bisection procedure cannot be applied in

this segment since the relative error as defined by equation [C.8] is undefined at the origin.

However, since = 0, equation [C.13c] indicates that vik = 0 so that the first segment

relative error may be redefined as:

^ / \ ^In^n (^fcn ^271) « ̂ ^ ,Tr
Pn [Xn) = r 0<Xn< ̂In,

^In^n i ^2n

340

Appendix C Piece-Wise Linear Approximations

with first derivative:

dPji (^^n)

"t" ®2n)
This derivative is negative for all > 0 implying that 7^^ (a;^) decreases monotonically

with Xn. Therefore, the maximum relative error in the first PWL segment occurs at the

origin with:

Oi2n

_ ̂In (0 + ̂In) + ̂2n ~ ̂2n
a^n

t^n

using equations [C.3] and [C.6a]. This result suggests the following procedure to determine

^m:

1. define as:

^in = —Ci, [C.17]
O'ln

2. if 1,1 < X^\ set = ̂in and use the Newton-Raphson/bisection procedure for

k = 2,.. .,K; else, set and use the Newton-Raphson/bisection

procedure for the break points in the second slippage region.

Note that there will be allocated but unassigned break points if > X™' and

iiTi > 1. Any excess break points may be assigned to the second slippage region or the

associated memory can be returned to the system. On the other hand, there is no guarantee

that the final break point in the first slippage region will coincide with the region boundary

««i>.

when < X^K Any unassigned break points may be treated as above if the Newton-

341

Appendix C Piece-Wise Linear Approximations

Raphson/bisection procedure determines '^jn > for some j < Ki. The Newton-

Raphson/bisection procedure cannot be used in the second slippage region, however, if

'^Kin < '• This latter condition occurs if the number of break points, Ki, assigned

to the first slippage region is incompatible with the specified maximum desired relative

error, Ci, for this region. Any break points already assigned in the first slippage region are

deleted and all first region break points are assigned with the minimum average absolute

error procedure described below prior to assigning break points in the second slippage

region.

C.3 Minimum Average Absolute Error Procedure

The maximum relative error procedure is used to assign a finite number of PWL break

points over either a finite or an infinite domain. The minimum average absolute error

procedure, on the other hand, is applicable only over a finite domain. Therefore, the latter

procedure may be used only in the first slippage region. The minimum average absolute

error algorithm assigns the Ki break points based upon two criteria:

1. break points must be assigned to the origin and to the region boundary, i.e., = 0

and = X^\ and

2. any remaining break points are assigned such that the average absolute error over the

first slippage region is minimized.

342

Appendix C Piece-Wise Linear Approximations

Average absolute error between PWL and actual slippage is evaluated using the defi

nition for the average of a function over a closed region. Given an integrable function 5" {x)

over a closed region [a, h],h > a, the average function value, ([a, 6]), over this region is

defined to be (e.g., see Taylor and Mann [193, pages 45-46]):

0

d ([a, b]) = J ̂ (x) dx.

Let 21 represent the average absolute error between PWL and actual slippage in the

first slippage region given the vector of first region break points.

Criterion two above then requires that break points k = 1,... ,Ki — l,he assigned

such that

21(^•Ti) — J {^n) dXji
be minimized. Equation [C.7] defining the absolute error, ̂ (xn), implies that

^cut
" fc=l

'^kn

I ^kn (^7i) (.^n) dXr.

and equations [C.l] and [C.5] indicate that

^ k=i

^fcn

/
(fc-l)n

\^kn^n ~t~ '^kn '^n)] dXn

343

Appendix C Piece-Wise Linear Approximations

Applying equations [C.6a-b] and [C.3] to the integrand results in

^knXn + Vkn ~ {p-ln^n + — \P'\n (^(fc-l)ra + ̂fcn) "t~ ~

Xtj {piinXji "I" /?n)

^\n (^(fc—l)re "i" ̂ fcn) "h l)n^fcre

~ ®ln [(^(fc—l)n "I" ̂ fcn) ^(fc—l)re'®'fcra] j

SO that the average error function simplifies to

. " fc=i

^fcn

j '^kn) ^(fc—l)Ti^A;n]
^(/e—l)n

Performing the indicated integrations yields

a(®-'') = ̂ E
^ jfc=i

iTi

iTl

^

^(fc-l)ra + ̂kn 2 1
x: ^(fc—l)n^fen^7i^ ^fcn

^(fc-l)n_

 5^ [3 (^(fc-l)n + (^'L - ̂(fc-l)n) - 2 (^'L - ̂(fc-l)n)
" fc=l

(^fcn - ̂(fc-l)r.)]

®ln

6 Vcut E (^L - 2^(M-l)n^kn - ̂(fc_l)n)]
" k=l

[C.18]

344

Appendix C Piece-Wise Linear Approximations

The first partial derivatives of 21 (^,^) with respect to 'ilkn for k = 1,... ,Ki - 1

(recall that and '^Km are fixed) are then:

521 (^,„) ain d

d'^kn
dire

3

- ̂(fc-l)n) + (^^(fc+l)n — "^kn)'

6XT
Ctin

2^
O^ln

 - ̂(fc-l)n) - 3

[C.19]

2X'='" ^(fe-l)ra) ̂ fcn (^(fc+l)n ^(fc-l)n)]
521 (^,n) ain /t •.■ N T / \i

d^kn ~ (^(fc+l)n ~ ^(A:-l)n) ~ (^(fc-l)n + ^(fc+l)n)] •
Therefore,

521 (^.n) ^ Q ^ ^ ^(fc-l)n + ^(/;+l)n ^ _ K^ - 1

SO that the first partial derivatives are zero when the break points in the first slippage region

are equidistant from each other, implying that:

k^kn = -^XT,k = 0, . .. ,Ki.

Average absolute error, equation [C.18], at the point is then

[C.20]

21
k k — 1'

k=l

am fXT"cut

Kr K,
3 iTi

1
 \ ̂ -^1

fr) E
[C.21)

\Kx j

The Hessian matrix for 21 (^.n) is examined to determine if the point 21 (^'n^
defined by equations [C.20] and [C.21] is a maximum, minimum, or saddle point. Second

345

Appendix C Piece-Wse Linear Approximations

partial derivatives of ('I'.n) for A: = 1,..., iiTi — 1 are derived from equation [C.19] as;

a\ ^(fc—l)n) 5 3 — ̂ 1)

(^(fc+l)n ^(A:—l)ra) > J ~

(^'(fc+i)„ - ̂kn) , 3 = k + L

I 0, otherwise.

The resulting Hessian matrix, H [21 ('S'.n)] € for general is shown in

Figure C.l. When evaluated at the point as defined by equation [C.20], the

Hessian matrix is:

H [21 (§.n) Q-iw

JS^cut

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

Define H as H = H [2t

Hu =
O'ln

and let u € Then Hu is:

2ui — U2

—U\ + 2u2 — U3

—Uk-i + 2uk — Uk+i

-'^Ki-3 + '^UKi-2 — UKi-1

346

Appendix C Piece-Wise Linear Approximations

\XJ U/ U/ _U/ Mf MJ
^1/j ^2n ^3n * In ^2n''*3n

XI/ _XI/ XI/ _XI/ XI/ XI/
^(*-l)n *ifen ^(it+l)n ^(/fe-l)n ^kn ^{k+\)n

XI/ —XI/ XI/ —XI/ XI/ —XI/
^{Ki-i)n ^(Ar,-2)n ^(/:,-l)n ^(/ri-3)n '(^:,-2)n ^(A:,-l)n

m —XI/ yCUl XI/
^(A:,-2)n ^(A:,-l)fi '^n ^{Ki-2)n

Figure C.l: Hessian Matrix for the Average Absolute Error Function

347

Appendix C Piece-Wise Linear Approximations

and u'Hu is therefore:

Hu = (2ui — U2) Ui + (—+ 2u2 — U3) U2 + • • • (—Wfc-i + — Wfc+i) Uk .
din

H h {—Uki-3 + 2Ui<-i_2 — lifTi-l) UKi-2 + {—UKi-2 + 2Wifi-i) UK2-I

= 2ul - 2uiU2 + 2ti2 - 2U2U3 H 1- 2ul — 2ukUk+i

H 1- 2u%^_2 - 2uK-^^2UK-i.-i + 2«|:^_i

= + (ui — 2uiU2 + U2) + • • • + — 2UkUk+i +

H {u\^_2 - 2UKi_2UKi-1 + '"Iti-i) + WjsTi-l
j^cut ^

"T^u'Hu = ul + ^ (Wfc - Uk+if.
fc=l

Then, since ai„ > 0 and X™' > 0 by the general conditions [C.2]:

=^i + ̂̂1-1 + ~ j > 0 V u ̂ 0,
and the Hessian matrix, H = H 21 , is positive definite by definition. Hence,

is a strict local minimum over the first slippage region (e.g., see Theorem 4.1.4 in Bazaraa,

Sherali, and Shetty [7, page 134]). Note, also, that no point, on a border (i.e., where

one or more break points coincide) can yield an average absolute error less than or equal

to 2t Border points generate less than Ki PWL segments and the resulting aver

age absolute error will necessarily be larger than that for Ki segments. Furthermore, the

point defined by equation [C.20] is the only local minimum for 2t (T'.n) since it is the

unique solution to equation [C.19] (e.g., see Theorem 4.1.3 in Bazaraa et al. [7, pagel33]).

348

Appendix C Piece-Wise Linear Approximations

Therefore, is a strict global minimum for the average absolute emor function 21

equation [C.18].

C.4 Application Under General Conditions

Application of the maximum relative error and minimum average absolute error procedures

is straightforward if the general conditions [C.2] hold. The maximum relative error proce

dure is always applied to the second slippage region. That procedure is also used in the first

slippage region if a positive desired maximum relative error, <?i, is specified. The minimum

average absolute error procedure is applied in the first region when;

1. < 0, or

2. > 0 and the maximum relative error procedure does not yield a break point at the

region boundary,

A problematic situation occurs, however, if the slope adjustment factor is negative,

i.e., a2n < 0. The slippage function, 6„ (x„), is not convex across the region boundary

when a2n < 0. Break points may be assigned such that the last PWL slope in the first

region is greater than one or more slopes in the second region when the slippage function

is not convex across the region boundary. For instance, assuming that < ̂Km,

349

Appendix C Piece-Wise Linear Approximations

using equations [C.6a-b] and [C.3], and recalling that implies:

^(/ri-l)n < ̂ATire

{o-ln + a2n) (^n' + ̂(A'l+l)!!) + " 0,2nXT ̂ + -^n') + '^n

(Oln + 0,2n) ̂(A:i+l)n < O'ln'^{Ki-l)n

'^(Ki+l)n <
O'ln

<^ln + 0,2n
[C.22]

The relation depicted in the last expression above is clearly possible when a2n < 0 (a2n is

never allowed to be less than or equal to —ain). This situation is illustrated by the graph in

Figure C.2,

First Slippage Region | Second SItppage Region /

S'<>P' = V,«)„ x!-
**,1 >

Slopes

(*.-')

Transaction Amount

Figure C.2: PWL Slopes at the Region Boundary When a2n < 0

and it can occur regardless of the procedure used to assign break points in the first slippage
/

region. Non-increasing slopes can cause erroneous results in the market investment model

and must, therefore, be prevented. If relation [C.22] is found to be true after is

350

Appendix C Piece-Wise Linear Approximations

detenmned, then that break point is adjusted according to:

^(iCi+ljn — (1 + ̂) 12!^
din "T CL2n

for some small positive value of 8. Note, however, that this may cause the maximiiTn

relative error observed in the first PWL segment of the second slippage region to exceed

the specified desired value, C2-

Piece-wise linear approximation slopes, ̂ kn, k = aie determined using

equations [C.6a] and [C.3] once each apphcable pair of break points have been set. The

final break point is changed to positive infinity, = 00, after the final slope, ̂ Kn, is

evaluated.

C.5 Application Under Special Conditions

Several special conditions are allowed for by the coded procedures. For instance:

1. a no slippage model (no transaction costs) is specified by setting the number of break

points in each slippage region to zero, Ki = K2 = 0,

2. a single slippage region model is designated when:

(a) there is no region boundary, i.e., = 0, in which case the maximum relative error

procedure is applied for all transaction amounts using the second set of values in

equation [C.3], or

351

Appendix C Piece-Wise Linear Approximations

(b) the number of break points in the second slippage region is set to zero, K2 = 0,

in which case the method in 2(a) is applied except with the first set of values in

equation [C.3], or

(c) the slope adjustment factor is set to zero, a^n = 0, in which case the slippage

function is the same for both slippage regions.

One special condition that requires individual attention is the case of no minimum

slippage per position cost (i.e., Kn = 0) when the maximum relative error procedure is

specified for the first slippage region (i.e., <;i > 0). Equation [C.16] indicates that the

maximum relative error in the first PWL segment approaches infinity as approaches

zero:

lim (0) = lim = 00.

Therefore, equation [C.17] cannot be used in this case to determine the first break point,

^'in. This problem is circumvented by assigning the first break point based upon the maxi

mum absolute error versus the maximum relative error. Maximum absolute error will occur

at the midpoint of the first PWL segment when Kn = 0 since equations [C.3] through [C.7]

indicate that:

= — fe (x) - 6 (x)dXn dXn L ^ ^

M _ -

352

Appendix C Piece-Wise Linear Approximations

Setting the above derivative to zero yields:

— 2

which must be a maximum since the second derivative (—2ai„) is negative indicating that

(xn) is a concave function over the domain of interest. The maximum absolute error at

the midpoint of the first PWL segment is:

The first break point is then set so that the maximum absolute error in the first segment is

equal to the specified desired maximum relative error:

= 2,/^.
V ̂ In

C.6 PWL Parameters for Quadratic Downside Deviation

Piece-wise linear approximation slopes and break points for quadratic downside deviation

are also determined with the maximum relative error and minimum average absolute error

procedures. Using these procedures is justified since quadratic downside deviation can

be considered a special case of the quadratic slippage function by setting ain = 1 and

<^2n = Kn = 0. The minimum average absolute error procedure can be applied by creating

two artificial downside deviation regions with a user specified value for the simulated region

boundary.

353

Appendix D
Sizes of Model MIMPSLP Problems

Equations for the sizes for model MIMPSLP problems are derived in this appendix

based upon four parameters: number of variables, constraints, non-zero technology matrix

coefficients, and nodes in the decision tree. Equations for the number of nodes in a given

period and the number of cumulative nodes though a given period are listed in the first

section below. The number of primal constraints and dual variables are derived in the

second section. The third section contains derivations for the number of primal variables

and dual constraints. Sizes for the technology matrices (number of non-zeros) are detailed

in the fourth section. Comments concerning problem size appear in the fifth and final

section of this appendix. Size results are summarized in Table 5.3 on page 204 for easy

reference.

D.l Number of Nodes in the Decision Tree

Based upon definitions in Section 2.2.1, the number of nodes, Ht, in period t and the

number of cumulative nodes, through period t, \ <t <T, are:

t-l 0

= nLj, where Lj = 1 [D.l]
i=i j=i

and

= = P3.2]

j=i ii=i \i2=i

354

Appendix D Sizes of Model MIMPSLP Problems

The remaining three size parameters can then be easily dkermined by summing the results

for a generic node over all nodes in the decision tree.

Let and be the number of variables and technology matrix non-zeros respec

tively for problem PMPGLP [5.19] on page 184. Let number of con

straints for problem PMPGLP when upper bounds on the decision variables are treated

as bounds (constraints). Denote the corresponding size parameters for some node [•jj in

the decision tree by #v*'s #c*^' and Size parameters for the dual prob

lem DMPGLP [5.24] on page 188 are represented similarly except that superscript P is

replaced with a D. Equations for each of the remaining three size parameters are derived

below followed by comments regarding the sizes of model problems.

D.2 Primal Constraints - Dual Variables

One budget constraint, 2N slippage constraints (N buy and N sell constraints), and Lt de

viation constraints are associated with each node in the primal problem PMPGLP [5.19]

when upper bounds on decision variables are treated as bounds and not constraints. There

fore, for each node = (t, hf), /it = 1,..., i?i, i = 1,..., T,

#?•!' = 1 + 2A/ + Lt

which, with equations [D.l] and [D.2], implies that:

355

Appendix D Sizes of Model MIMPSLP Problems

T

t=l

T

= ̂jyt(l + 2iV + Lt)
t=l

T T

=^{l + 2N)Y,Ht + Y,HtLt
t=i t=i

T

#S=(l + 2JV)ifM + ̂ff,i,. (D.3]
t=l

The number of constraints is significantly larger when upper bounds on decision

variables are treated explicitly as constraints. There are {K — 1)N upper bounding con

straints on primal slippage variables and {Q — l)Lt upper bounding constraints on primal

deviation variables. In addition, there is an upper bounding constraint on each translated

portfolio variable that has a finite upper bound. No upper bounding constraints for portfo

lio variables are accounted for since all problem instances analyzed in Chapter 6 assume

unbounded portfolio variables. The number of constraints at some node in this case is then:

#5*'' = l + 2N+{K-l)N + Lt + iQ- l)^t = 1 -b (ii: + l)iV -b QLt,

which implies that:

356

Appendix D Sizes of Model MIMPSLP Problems

t=i

T

= Y^Ht[l + iK + l)N + QLt]
t=i

T T

t=l t=l

T

= [1 + (i^ + 1)N] + QJ2 HtLf [D.4]
t=i

Dual problem DMPGLP [5.24] is based upon employing upper bounding constraints

in the primal problem so that the number of dual variables is:

= [1 + {K + 1)N] + Q ̂ HtLt. [D.5]
t=i

D.3 Primal Variables - Dual Constraints

There are N translated portfolio variables, KN primal slippage variables, and QLt primal

deviation variables associated with each node for problem PMPGLP [5.19]. Therefore,

for each node = {t, ht), ht = 1,..., Ht,t = I,... ,T,

=N + KN + QLt = {K + l)N + QLt

357

Appendix D Sizes of Model MIMPSLP Problems

which, with equations [D.l] and [D.2], implies that

T

t=i

T

t=l

T T

= {K + l)Nj2Ht + Qj2HtLt
t=i t=i

T

il=l = {K + l)NH^''^ + Q^HtLt. [D.6]
t=i

The number of constraints in dual problem DMPGLP [5.24] is then

T

#2 = = (AT + 1) JVffW +Q^H,L,. p.7]
t=l

D.4 Non-Zero Technology Matrix Coefficients

The number of non-zero technology matrix coefficients are first determined for problem

PMPGLP [5.19] assuming no upper bounding constraints on the decision variables. The

number of non-zero coefficients at each node by constraint type is;

budget: N,

slippage: (1 -t- K) if f = 1 or (2 -I- isT) is 2 < t < T, and

deviation: {N + Q).

Therefore, for each node = {t,ht), ht = 1,... ,Ht,t = 1,... ,T,

n #^'^'=N + 2N{j + K)+Lt{N + Q),

358

Appendix D Sizes of Model MIMPSLP Problems

where j = lift = 1 ox j = 2 otherwise. Equations [D.l] and [D.2] then imply that
1 '

T

t=l

T

t=2

T

= N + 2N{1 + K) + Li {N + Q) + Y^Ht[N + 2N {2 + K) + Lt (N + Q)]
t=2

T n T

= [1 + 2{1 + K)]N+[N + 2N{2 + K)] Y^Ht + iN + Q)Y^ HtU
t=2 t=l

T

= [l + 2{l +K)]N + [l + 2{2 +K)]N - \) + {N + Q)Y,HtLt
t=i

T

= [(2if + 5) H'-V-2]N + (N + Q)J2 HtLt- [D-81
<=1

There are an additional {K — 1)N non-zero coefficients for slippage and {Q — 1) Lt

non-zero coefficients for deviation at each node when these two sets of decision variables

have explicit upper bounding constraints. Therefore, the number of non-zeros in the tech

nology coefficient matrix for dual problem DMPGLP is:

359

Appendix D Sizes of Model MIMPSLP Problems

#? = #5 + E JSi {(K -1)N+(Q- 1) i,l
t=l

T T

= #1 + {k-i)nY,h, + {q-
t=l t=l

T

= + (if - 1) + (Q - 1) E H,Lt
t=l

T

= [{2K + 5) -2+{K-1) N+(N + Q + Q-l)Y^HtLt
t=i

T

= [(Sir + 4) - 2] AT + (TV + 2g - 1) ̂ HtLf p.9]
t=i

D.5 Comments

Model MIMPSLP problems, and stochastic linear programs in general, can obviously be

extremely large. For instance, the cumulative number of nodes in the model MIMPSLP

decision tree with the same number of random outcomes, say L, used in each period is

(using equation [D.2]):

T T /t-1 \ T

^f'"'=E^' = E(ni =E^'"
t=i t=i \j=i / t=i

which grows exponentially with L when multiple periods are involved and L > 1. Even

a problem involving only a few periods, say 2-4, could be so large that it is impossible to

store problem data in the active memory of a computer. Decomposition solution procedures

help to alleviate complications caused by problem size since they rarely require access to

360

Appendix D Sizes of Model MIMPSLP Problems

all problem data at any one time. Greater detail on this topic is given in Chapter 6 with the

application of decomposition procedures to model MIMPSLP problems.

361

Appendix E
Decomposition of Model MIMPSLP Problems

This appendix contains special problem formulations and procedures used to solve

model MIMPSLP problems. Problem formulations for L-Shaped, Dantzig-Wolfe, and

myopic decomposition are derived in the first section below. Three types of subproblems

- slippage, deviation, and nodal - incorporated by LSD and DWD are also introduced and

defined in the first section. Procedures used to solve the slippage and deviation subproblems

are detailed in the second and third sections respectively. The fourth and final section

contains detailed procedures used to determine upper bounds for the nodal subproblems.

Note that period-index and path vector node labels as defined in Section 2.2.1 are

used interchangeably below. Equation [2.7] on page 28 can be used to determine the path

vector label, = [/i,..., k-i], for a node given the period index label, (f, ht), for that

node.

E.l Decomposition Procedures

Each of the solution techniques summarized in Section 5.4 are described in detail below.

The first five subsections are devoted to the application of Dantzig-Wolfe and/or L-Shaped

decomposition to model problems. Master problems and subproblem types are described

in the first two subsections. These descriptions are for example problems based upon as-

362

Appendix E Decomposition of Model MIMPSLP Problems

sumed values for the model master strategy, minor strategy, and tactics parameters as de

scribed in Section 4.4.3. Problem structuring and DWD/LSD application techniques for

single-period, two-stage, and multi-stage problems are covered in the next three subsec

tions. Myopic decomposition of model MIMPSLP problems is discussed in the sixth and

final subsection.

E.1.1 DWD/LSD Master Problems

The problem descriptions given below apply to the single first stage master problem of

a Dantzig-Wolfe or L-Shaped decomposition procedure. Formulations for the RMP-SUB

problems in the nested decomposition of a multi-stage problem are similar and are, de

scribed in Section E.1.5. Three different types of decomposition subproblems are also in

troduced below. Subproblem types are described in detail in Section E.1.2. All DWD/LSD

procedures are based upon using the block-separable recourse property of model MIMP

SLP problems.

L-Shaped decomposition relaxed master problems are initiated with the primal bud

get constraints since these constraints involve only the aggregate level translated portfolio

variables, Similarly, Dantzig-Wolfe decomposition restricted master problems are

initiated with the dual budget variables (i.e., the dual multipliers to the primal budget con

straints). The first stage relaxed master problem, LSD RMP, for L-Shaped decomposition

is derived below. The corresponding restricted master problem, DWD RMP, for Dantzig-

Wolfe decomposition is then the dual to LSD RMP.

363

Appendix E Decomposition ofModel MIMPSLP Problems

Recall from Section 4.4.3 that the structure for the .RMP is determined by the value

of the major strategy. Using the notation from that section, assume that the major strategy

sets i, 1 < t < T, referred to, as ihe cutoff period, as the index for the last period that is

to contribute budget constraints to the initial RMP. All primal budget constraints in periods

1 through i are then accounted for in the RMP while the primal slippage and deviation

constraints at the nodes in these periods must be accounted for in one or more subproblems.

In addition, if F < T, then all constraints at each node in periods i = t + 1 through T

must also be accounted for in subproblems. The number of subproblems to create and

the manner in which subproblem solution information is used to generate additional cuts

for the RMP are determined respectively by the values of the minor strategy and tactics

as described in Section 4.4.3. Assume that the minor strategy dictates that the slippage

and deviation constraints in periods 1 through t be used to create Jg*'* slippage and

deviation subproblems at each node [•jj for 1 < t < F. Assume that the minor strategy

also requires that all constraints at nodes in periods F through T be used to create

nodal subproblems when i < T. Furthermore, assume that the value of tactics dictates

that an optimality cut is generated for each subproblem. This information is used below to

formulate the initial RMP while details on the formulations of subproblems and generation

of cuts are given in Section E.1.2.

Let G index the current iteration of the DWD/LSD algorithm and let ATd

and be the number of cuts at the beginning of iteration G that correspond to slip

page, deviation, and nodal subproblems respectively. Denote the slippage, deviation, and

364

Appendix E Decomposition ofModel MIMPSLP Problems

nodal relaxation variables by 0s*'' ̂ 0^^^ e and 0^ ̂ e R"^n^ respectively.

The initial RMP in array notation at iteration G = 1 of the LSD algorithm is then LSD

RMP(l):

zSi = max + 1'0^*'' + l'0j;'') +1'0^^^ [E.l]
t=i ht=i

s.t. -W(0'°)Wtx(o)Wt <, b(°)Ws = t =

0^' < 0, ht = l,. t = l,.

< 0, ht = l,. ..,i,

<
(£)max

"N)

;(0)[.]t > 0,

II

1—'

..,i,

0H' free. /it = 1,. ..,i.

0t*'' free. ht = 1,. ..J,

"n free.

based upon problem PMPGLP formulation [5.46] on page 201. Note that initial upper

bounding cuts for each relaxation variable are present in the formulation so that =

1, = 1, and = 1 for all subproblems. These upper bounding cuts are

validated, and 0^ defined, in the following subsection. The scalar formulation for LSD

RMP(l) is:

/ r'*'' 7l*l< . \t H N \t

t=l ht=\

= max 5: ̂ ^ + E I + E 4' [E-21
n=l j=l j=l j j=l

365

Appendix E Decomposition ofModel MIMPSLP Problems

N

E'
n=l

<

s«.

II

..,Hu

II

.,7,

n['\t < 0, i = 1, •
yblt ht = l,. 7 = 1.,.. n ,i.

oWt
^Di < 0, i = 1, •

rblt ht = l,. i = l,...,7,

'^Nj <
(t)max

^Nj > i = 1, •.. , Jn j

„(0)[«lt
J^n > 0, n = 1,...N, ht = l,. 7 = 1,...,7,

^Sj free. ; = 1,-
jWt

• • J "^S : ht = l,...,Hu 7 = 1,...,7,

free. i = 1,-
rWt

• •) > ht = 1,. 7 = 1,...,7,

free i — 1 7^*^irCC, J — L, Jfj ,

based upon problem PMPGLP formulation [5.19] on page 184.

The initial RMP for DWD using comparable decomposition strategy values is the

dual of formulation [E.l] or [E.2]. Let

_ / WtU) WtU)] jWt
VS — I ^S1 ; • • •) I J J — -t, • • • , :

_ fj'Ui) WtO') \ j[']t rp 0-,WD — yim) • • •) I) J — t,...,

^ (Oo) y jif)
/n I '/Nl :• • •;" j ' 5 ?

be the vectors of dual multipliers to the upper bounding constraints on the slippage, devi

ation, and nodal optimality cuts respectively at LSD iteration G. The initial RMP in array

366

Appendix E Decomposition of Model MIMPSLP Problems

notation at iteration G = 1 of the DWD algorithm is then DWD RMP(l):

= min E E b'(")M.^(0)H. + ̂
t=l ht=l j=l

s.t. > cWHt, ht = l,..
t = l,

= 1,

II

1)

7r(0)[«lt > 0, t = l,

> 0, 1 •

[E.4]

The scalar formulation for DWD RMP(l) is:

4'=mto EE^"'vr'*'' +
t=l ht=l j=l

- 1 7-1'/N1 ~ J — ■'■I • • •) ''N)

> 0.
[E.5]

All model MIMPSLP problem instances defined in Chapter 6 have portfolio variables

that are unbounded from above. Therefore, the corresponding dual multipliers,

n = 1, . . . , AT, to the upper bounding constraints for portfolio variables at all nodes are

zero and are omitted from the above formulations.

367

Appendix E Decomposition of Model MIMPSLP Problems

E.1.2 DWD/LSD Subproblems

One or more subproblems account for the constraints and objective function components

that are not included in the initial RMP. The number of subproblems that are possible

depends upon the degree of separability provided by the structure of the remainder of the

problem. Derivations for the three types of subproblems, slippage, deviation, and nodal,

introduced in the previous subsection are given below based upon that portion of problem

PMPGLP that is not included in LSD RMP(l).

Let G be the matrix whose columns are the vectors of translated port

folio variables at all nodes in periods t= so that:

34°' = ^(0) (1,1)^ 3^(0) (2,1)^ _ _ _ ^ ̂ (0) (2,if2)^ _ _ ^ 3j.(0) ^ ̂ (0) (t-Hf)

where period-index labels are used to identify nodes instead of path vector labels. The

problem that results from the portion of problem PMPGLP that is not in the initial RMP

is denoted by LSD LEFT and the associated second stage value function is denoted by

0® Then, based upon the array notation formulations of problems PMPGLP

[5.46] on page 201 and LSD RMP(l) [E.l] on page 365, LSD LEFT is:

tti
t=i ht=i

t=t ht=l t=i ht=l

[E.6]

s.t. detailed level constraints at nodes [•jj = {t,ht), ht = I,..., Ht,t = 1,... ,i,

368

Appendix E Decomposition of Model MIMPSLP Problems

W(2'2)Htx(2)Wt < b(2)Wt - W(2.o)Wtx(o)Wt,

x(i)Wt > 0,
x(2)Mt > 0,

aggregate level constraints at nodes = {t,ht), ht = 1,... ,Ht,t = i,... ,T,

" x(°)Wt > 0,

detailed level constraints at nodes [•]£ = (t, hf), hf = 1,..., Hf,

W(^'°)Wtx(o)Wf + < b(i)Wt- -

W(2'0)Htx(0)[«]f w(2.2)Htx(2)Wf < b(2)Hf,

xWWf > 0,
x(2)Wt > 0,

and detailed level constraints at nodes [•jj = {t,ht), ht = 1,... ,Ht,t = i + 1,... ,T,

B(i'0)[*]tx(°)Wt-i + w(i'0)Wtx(°)[*]t + W(^>i)W«xWWt < b(i)Wt,

W(2-0)Wtx(0)['!t +W(2.2)Htx(2)Wt < b(2)Wt,

x(i)Wt > 0,
x(2)H{ > 0.

Problem LSD LEFT [E.6] can then be treated as a single subproblem or it can be

separated into several subproblems due to the structures of the coefficient arrays in the con

straints and in the objective function. Regardless of the number of subproblems designated

by the decomposition strategy values, the most efficient method for solving LSD LEFT is

to separate it into independent component problems. The resulting component problems

369

Appendix E Decomposition of Model MIMPSLP Problems

are referred to as component subproblems in order to distinguish them from decomposition

subproblems. A decomposition subproblem may then coincide with a component subprob-

lem or it may be a composite of two or more component subproblems. Problem LSD

LEFT, for instance, is a composite of all component subproblems. Each component sub-

problem belongs to one of three types which correspond to the three types of decomposition

subproblems introduced in the previous subsection: slippage, deviation, and nodal. Sep

aration of problem LSD LEFT into the three types of component subproblems and each

resulting type is described below. This subsection then concludes with comments about

combining a group of component subproblems into a decomposition subproblem.

Slippage Component Subproblems

Slippage component subproblems result from that portion of problem LSD LEFT

[E.6] that involve the primal slippage variables and constraints at nodes in periods t =

Let 0® referred to as the slippage value function, denote the problem

formed by this portion:

t Ht

Q® (xf) =max^£c'WH.xmM,
t=l ht=l

s.t. slippage constraints at nodes = {t,ht), ht = 1,... ,Ht,t = 1,... ,t,

x(i)Wt > 0.

370

Appendix E Decomposition of Model MIMPSLP Problems

The slippage value function in scalar notation is then;

Ht / N K

= max - ̂ ft
t=i .ht=l \n=l fc=l

[E.7]

s.t. slippage constraints at nodes [•jj = (t, ht), ht = I,..., Ht, t = 1,... ,i,

k=l ^ /

k=l ^ /

X™*I« < AWta, k = l,...,K-l, n = l N,

> 0, k=l K, n = l,...,N.

Problem [E.7] is separable into independent subproblems for each security at each

node in periods i = 1,..., These subproblems are the slippage component subproblems

and are denoted by • Then, for all securities n = 1,..., A'" at all nodes [•jj =

{t, ht), ht = l,... ,Ht, inperiods

QS-(x[°') = max E

fc=l ^ /

-EJf™''" < - (Ar^ + xf*1-- ,
k=l ^ /

> 0,k=l,...,K.
[E.8]

371

Appendix E Decomposition of Model MIMPSLP Problems

Note that < 0 since each factor in the objective function coefficient for

^fcn b = is nonnegative. Therefore, zero is a valid upper bound for each

4*-' in the initial restricted master problem [E.2] for LSD. The dual to problem [E.8] is:

dkl' = min j pE.9]

fc=l

S-t- "n ^N+n ^ 2N+{n-l){K-l)+k — StP ^kn, /C — i, . . . , A i,

TTn ^N+n ^ ~8tP ^Kn,

> 0,

> 0,

^2jv+(n-i)(ir-i)+fc — k = 1,... ,K — 1.
Primal problems [E.8] are the slippage component subproblems for L-Shaped decom

position while dual problems [E.9] are the slippage component subproblems for Dantzig-

Wolfe decomposition. Solutions to these subproblems are easily obtained by evaluating

the primal and dual pair of subproblems for each security at each node in the applicable

periods. Detailed solution procedures for problems [E.8] and [E.9] are given in Section

E.2.

Deviation Component Subproblems

Deviation component subproblems result from that portion of problem LSD LEFT

[E.6] that involve the primal deviation variables and constraints at nodes in periods t =

The primal deviation component subproblems, denoted by are de-

372

Appendix E Decomposition of Model MIMPSLP Problems

rived in a manner similar to that for the slippage component subproblems. Then, for all

outcomes Zt = 1,..., at all nodes [•jj = (t, ht), /it = 1, , Ht, in periods f = 1,..., f:

(Xt-°^) = max
^ ^ q=l

s-t- -T.xf»' < 4:'* - E W-- <■)
0=1 n=l ^ '

-< A,p,,9=1,...,Q-1,

> 0, q=l,...,Q.
[EM]

Note that qJJ; < 0 since each factor in the objective function coefficient for
k = 1, . . . ,K, nonnegative. Therefore, zero is a valid upper bound for each

in the initial restricted master problem [E.2] for LSD. The dual to problem [E.IO] is:

QS (xf) = min 4:1' - f2 (fL*"' - -Bit')
n=l

„(2)H« , ^ A (2)[.]t
9=1

[E.11]

s.t. -TrffW' + > -PtpW'Atpl:S„ g =

> 0,

^it+(lt-l)(Q-l)+g ^0' g= 1, . . . ,Q-1.
Primal problems [E.IO] are the deviation component subproblems for L-Shaped decompo

sition while dual problems [E.ll] are the deviation component subproblems for Dantzig-

Wolfe decomposition. Solutions to these subproblems are easily obtained by evaluating the

primal and dual pair of subproblems for each outcome at each node in the applicable pe-

373

Appendix E Decomposition of Model MIMPSLP Problems

nods. Detailed solution procedures for problems [E.IO] and [E.11] are given in Section

E.3.

Nodal Component Subproblems

Nodal component subproblems result from that portion of problem LSD LEFT [E.6]

that involve the primal variables and constraints at nodes in periods after the cutoff period,

i.e., in periods t = i,... ,T. Note that there are no nodal subproblems if t = £+1 > T. The

primal nodal component subproblems, denoted by £1^2^ at nodes [•]£ = (£,

= max

\n=l n=l fc=l

Z£=l 5=1

Ht / N

+ ̂ St
t=i+l

Ep'-'-
Jit=l \n=l

n=l fc=l lf=l 5=1

[E.12]

s.t. constraints at node [•]£ = (£, hi)
N

z
n=l

< -(Ay„f+ n = l,...,N,

constraints at nodes = (£, /it), /ij = 1,..., i^t, £ = £ + 1,..., T,

374

Appendix E Decomposition of Model MIMPSLP Problems

kt'Tl I *^7l

n—\

g^WW. < "=1 N,
k=l

< -Ay^", n = l,...,iV,

E W'-<•)li?"''' - E^f' 2 =
n=l ̂ ^ q=l

and bounds at nodes [•]£ = (t, hf) and [•Jj = (t, ht), /it = 1,..., Ht, t = i+l,...,T,
< A®^, k = 1,. n = 1,...,N,

<"*'• < Av„

II

/t = l,. n n ,Lt,

4°"''' > 0, n = 1,...,N,

> 0. k = 1,...,K, n = 1,...,N,

x'f'i- > 0. q = l,.• n,Q,
The dual to problem [E.12] is:

,('■)QiZ = min ^ (Ay-+ (4""' -
n=l

N K-1

-l)(if-l)+fc

h Q-1

n=l fc=l

Zf—1

T Ht

+ EE

ij=l g=l

N

l)+9

^'•'vr*''+E^5'-(4"-i*-T™')
71=1t=i+l /it=l

+ XX^^'="''2iJ+(n-
N K-1

l){K-l)+k
n=l k=l

Lt Lt Q-1

[E.13]
lt=l lt=l 9=1

s.t. constraints at nodes [•]£ = (t, hf) and [•jj = {t, ht), /it = 1,. . . , Ht, t = t+1,

375

Appendix E Decomposition of Model MIMPSLP Problems

Lt

+ Tmi-I- - « + E (/.!•'■ - 'rf "I-
lt=l

- -£ > e^-V:K n = 1 N.
lt=l

TTn ^N+n ^^2N+{n-l){K-l)+k ^ StP ^'^kn, n=l, . . . ,N,

> -QtP^'^^^Kn, n = l, . . . ,N,

.L-Tr^^^Wt \ \ ^ 1, . . . , Q 1,—TT ^^Lt+ilt-l){Q-l)+q - StP ^^tPh Iq^ Zf = l,.. . ,Lt,

-4'"''' >-&?'•!'A,p1:''7q. /, = l,... ,i,.
and lower bounds at nodes [•]£ = (f, and [•jj = (i, ht), ht = l, . . . ,Ht,t = i+1, . .., T,

> 0,

x'"W'>0, j = l (K+1)N,

TTf'*'*>0, 3 = 1,...,QL,.
Primal problems [E.12] are the nodal component subproblems for L-Shaped decom

position while dual problems [E.13] are the nodal component subproblems for Dantzig-

Wolfe decomposition. Solutions to these subproblems are obtained using a simplex solver.

Procedures for obtaining an upper bound, say for each nodal component sub-

problem in period i are given in Section E.4. Each upper bound is independent of

and can be determined prior to the first decomposition iteration. These upper bounds can

then be used to establish upper bounds on the designated decomposition subproblems. For

example, assume that the decomposition strategies call for a decomposition subproblem at

each node in period i. There are nodal decomposition subproblems with a one-to-one

376

Appendix E Decomposition of Model MIMPSLP Problems

correspondence to the nodal component subproblems. The associated relaxation variables

are then bounded by:

_ £)(*) Ji.— l JJ.

Upper bounds on the nodal component subproblems may also be combined to deter

mine upper bounds on decomposition subproblems. Assume, for a second example, that the

decomposition strategies designate one decomposition subproblem for all nodes in period

i. The associated relaxation variable is then bounded by:

Hf

l^Nl ^ ̂N1 — 2^
^£=1

Combining Component Subproblems Into Decomposition Subproblems

Solution values, say are obtained by solving the RMP at each iteration G

of the decomposition algorithm. These are the values of the RMP primal variables in L-

Shaped decomposition or they are the values of the dual multipliers to the non-convexity

constraints in Dantzig-Wolfe decomposition. Solutions for decomposition subproblems are

then obtained by combining solutions to the appropriate component subproblems described

above.

For instance, assume that the decomposition strategies call for a subproblem account

ing for all slippage at each node in periods t = 1,... ,i. Solutions to slippage component

subproblems £)sn' n = 1,..., iV, would then be combined for each node in

the applicable periods to obtain the solutions for the decomposition subproblems. The re-

377

Appendix E Decomposition ofModel MIMPSLP Problems

suiting solutions to the decomposition subproblems are used to generate a new slippage

optimality cut (LSD) or extreme point activity (DWD) corresponding to each node in pe

riods 1 through i. Let be the vector of solutions to the slippage dual component

subproblems [E.9] at some node [•](= {t, hj) in period i e {1,..., f} and denote the cor

responding relaxation variable by A new optimality cut for LSD would then have the

form:

E f + E
,n=l

N / K-l

< ' .(l)Ht-(G)
[E.14]

.n=l \ k=l

A new extreme point activity for DWD would have an objective function coefficient equal

to the right-hand-side of inequality [E.14] and technology matrix coefficients equal to the

coefficients on the left-hand-side of the inequality.

Numerous decomposition strategies can be devised that take advantage of the flexi

bility offered by component subproblems [E.8] through [E.13]. Specific examples of de

composition strategies are given in Chapter 6.

E.1.3 Single-Period DWD/LSD

Model MIMPSLP problems with a single period have a cutoff period of t = T = 1.

These problems can be solved with a grand LP formulation or with decomposition using

the procedures described for two-stage DWD/LSD in the next subsection. Decomposition

procedures treat the primal slippage and deviation variables and constraints as second stage

378

Appendix E Decomposition of Model MIMPSLP Problems

components. Grand LP solution procedures may be more efficient (faster) than decompo

sition procedures when there are a few thousand or less random outcomes to consider.

Single period problems also occur in problems with multiple periods when the de

composition major strategy dictates that i = T — 1. In this case, there is a single period

problem anchored at each node in the terminal period. This can be an effective strategy

when there are many nodes (hundreds or more) in the final period.

E.1.4 Two-Stage DWD/LSD

Two-stage Dantzig-Wolfe or L-Shaped decomposition can be applied to any model MIMP

SLP problem regardless of the number of periods assigned to the problem. The block-

separable recourse property of model problems provides for significant flexibility in struc

turing problems for decomposition.

One obvious strategy is to assign a cutoff period of i = T so that the first stage of LSD

consists of all primal budget constraints while all primal slippage and deviation constraints

are accounted for in second stage subproblems. The comparable DWD procedure would

have all dual composite constraints in the first stage while all dual slippage and deviation

constraints would be in second stage subproblems. All subproblems in this strategy can

be solved by combining solutions of the easily solved slippage and deviation component

subproblems.

A second strategy is to assign the cutoff period such that t < T. The resulting de

composition procedure would then involve subproblems from all three categories: slippage,

379

Appendix E Decomposition of Model MIMPSLP Problems

deviation, and nodal. Initial RMP formulations would be smaller than those with t = T

since only budget/composite constraints in the first i periods are present. Second stage sub-

problems would account for the slippage and deviation variables and constraints in periods

t = 1,..., f as well as all variables and constraints in periods after the cutoff period. Note

that two-stage decomposition can only be applied when grand LP solutions are obtained

for the nodal component subproblems anchored at the nodes in the period following the

cutoff period, i.e., in period i = i + 1. Multi-stage, or nested, decomposition described

in Section E.1.5 below is required when DWD or LSD is applied to the nodal component

subproblems.

Algorithms LSD(multicut) and DWD(multiactmties) described in Sections 3.1.4

and 3.2.3 respectively can be applied, with minor modifications, to the resulting two-stage

problems. Each algorithm can be modified for model MIMPSLP problems by replac

ing the initialization procedures described in the referenced sections with much simpler

and significantly faster procedures. The detailed calculations of the documented initial

ization procedures are not required since model problems are bounded and have complete

recourse. Procedure LSD(muIticut)-ImtiaIize can be replaced by a procedure that sim

ply sets the bounds on the relaxation variables as illustrated in the formulations of prob

lem LSD RMP(l) [E.l] (array notation) and [E.2] (scalar notation). Similarly, procedure

DWD(muItiactiyities)-Iiiitialize can be replaced by a procedure that sets the objective

function coefficients for the convexity variables as illustrated in the formulations of prob

lem DWD RMP(l) [E.4] (array notation) and [E.5] (scalar notation).

380

Appendix E Decomposition ofModel MIMPSLP Problems

E.1.5 Multi-Stage DWD/LSD

Multi-stage, or nested, decomposition procedures described in Section 4.2 starting on page

117 can be applied to model MIMPSLP problems with multiple periods. The nested de

composition strategies described in Section 4.4.2 can be employed directly if the block-

separable recourse property of model problems is ignored. Strategies described in Section

4.4.4 are applicable, however, if the block-separable recourse property is utilized.

Block-separable recourse allows for increased flexibility in structuring problems for

decomposition. All master and subproblems would resemble the nodal component sub-

problems described in Section E.1.2 if block-separability is ignored. Employment of the

block-separable recourse property, however, also yields subproblems that may be solved us

ing the slippage and deviation component subproblems also described in Section E.1.2. For

example. Figure E.l illustrates nested L-Shaped decomposition applied to a three-period

model problem when block-separable recourse is utilized. Each of the three periods co

incides with a stage in a three-stage decomposition strategy. Primal budget variables and

constraints in each period remain in the corresponding stage and are accounted for in the

RMP in the first stage, the RMP-SUB problems in stage two, and the SUB problems of

stage three. Primal slippage and deviation variables and constraints in the first two peri

ods, on the other hand, are used to form subproblems in the second and third stages. The

latter subproblems are solved easily and efficiently by combining solutions of the slip

page and deviation component subproblems as appropriate. Specific nested decomposition

381

Appendix E Decomposition of Model MIMPSLP Problems

Period 1 Period 2 Period 3

Budget
Constraint

Slippage
Deviation

Constraints

Budget
Constraints

Slippage &
Deviation

onstraints

All

Constraints

RMP SUBs

1
1
1

1 RMP-SUBs
1
1
1

SUBs SUBs

i i k i i L

Stage 1 Stage 2 Stage 3

NOTES

1. Three-period problem solved with nested L-Shaped Decomposition In three stages.
2. First period budget constraint forms the initial first stage RMP.
3. First period slippage and deviation constraints form second stage subproblems that receive
solution information from and send cuts to the first stage RMP.
4. Budget constraints at second period nodes form initial second stage RMP-SUBs. SUB mode
receives solution information from and sends cuts to the first stage. RMP mode sends solution
information to and receives cuts from the third stage.
5. Second period slippage and deviation constraints form third stage subproblems that receive
solution information from and send cuts to the parent second stage RMP-SUB.
6. Data at each third period node is used to create a third stage single-period subproblem that
receives solution information from and sends cuts to the parent second stage RMP-SUB.
7. Subproblem results in each stage may be used to create individual cuts or aggregated to form
composite cuts.

Figure E.l: Example Nested Decomposition of a MIMPSLP Three-Period Problem

382

Appendix E Decomposition of Model MIMPSLP Problems

strategies that use the block-separable recourse property of model MIMPSLP problems

are described in the Chapter 6.

E.1.6 Myopic Decomposition

The myopic decomposition procedures described in Section 4.5 can be directly applied

to model MIMPSLP problems since these problems have complete recourse. Primal and

dual subproblems are formulated according to the descriptions given in Section 4.5.1. The

myopic primal subproblem, corresponding to problem [4.18] on page 154, for the single

first period node is:

N JLJL Li Q

[E.15]otP () = max ̂ -
n=l n=l /c=l /l=l

Q

2^'<l qh
9=1

s.t. E
71=1

<

Uju 2^ -^kn
k=l

- i:xs>"
k=l n

< A V'min
3
n= l,...,Ar,

_„(0)[]
djn < A Vmin

3 n = l,...,N,

EW-Bli,)-!?"'
n=l ̂ ■'

Y(2)[]
9=1

< li = 1, . . . , Li,

fc = 1, . . . ,K- 1, n = 1,at.

q = l,. . ■ ,Q- 1, /i = l, . . -)2i.

d"'" > 0. n = 1,. . . ,7V,

> 0, k = l, . . . ,iT, n = 1, ,N,

IV
o

q = l, . . ■ ,Q, Zi = 1,. . ■ ,Li-

383

Appendix E Decomposition of Model MIMPSLP Problems

Myopic primal subproblems, corresponding to problems [4.19] on page 154, for nodes

Ht = (^! — Ht, in periods t = 2,... ,T are:

N N K

= max ^ [E.16]
\ti=1 n=l fc=l

it=i g=i /

s.t.

if*'' - E^f*'- < (Ay„7' + lf*'*-), n=l,...,N:
-if*i' - E^lf' < -(Ay-'+if*'-), n = i,...,iv,

E W-- ijS)'rf- EX™' < dl:'', i, = l L„
n=l ̂ ' g=l

X™'<A®b., k=l,...,K-l, n = l AT.

X^f*''<Ap,. 5=1 0-1, 1, = 1,...,L„

if*''>0, n=l,....iV,

^£"''■>0. ft = l,. ..,Ji-, n = l,... ,JV,

X<f*''>0. 5 = 1.<3, i< = l it.

384

Appendix E Decomposition of Model MIMPSLP Problems

The myopic dual subproblems, corresponding to problems [4.20] on page 154, for

nodes [•]j, = (T, hx), hT= 1, • • n, Ht, in the terminal period are:

otL*''' () = min [E.17]

+ f; Ay-
n=l n=l A:=l

It=1

s.t. n = 1,..., JV,

It=1

— > n nWrd), fc — 1, . . . , X 1,TTn ^N+n +^2Ar+(n-l)(jr-l)+A: — 6tP ^^kn, n = 1, . . . , TV,

> -^rpWT n = 1,..., iV,

-TT:
.(2)[*]t r_(2)[*lT •nWr \ ^ 1) • • •) Q 1»'t +''^LT+(iT-i)(Q-i)+g - QtP ^TPIj. Iq, . . . ̂

-'t!?'"''' >-er^'I'-ATpg'-Te, fT = l At,

4°""'"' S 0.

irf'^>0. i = l,...,(ii:+l)Af,

j = l,.- -,QLT.

385

Appendix E Decompasition ofModel MIMPSLP Problems

Myopic dual subproblems, corresponding to problems [4.21] and [4.22], for nodes [•jj =

(i, ht), /it = 1,..., Ht, in periods t = T — 1,..., 1 are:

= min [E.18]

)+EE
n=l 71=1 fc=l

it=i lt=i q=i

s.t. - ttSJ+'tI' + ̂ (^n ' - -^it)

>

it=i

Lt

it=i

, n = l,...,N,

^N+n ^^2N+{n-l){K-l)+k
A: = 1,.
n = 1,.

^N+n

IV
1

t3>^
 _ •_

n = 1,.

, 7r^2)[.].
■t't+Ct—1)(Q—1)+9

g = 1, . .
= 1, . ■ ■ ,Lt,

-^(2)[.l. /t = 1, . ■ ■ 7

> 0,

j = l,. . . ,{K+l)N,

7rfW'>0, j = l, . . . ,QLt.

386

Appendix E Decomposition of Model MIMPSLP Problems

E.2 Solving Slippage Component Subproblems

The solution to the primal slippage component subproblem [E.8] on page 371 is deter

mined first. Dual problem [E.9] on page 372 is then solved using the primal solution and

duality theory. The derivations rely upon the fact that each factor in the objective function

coefficients of the primal problem [E.8] are nonnegative:

p, > 0, £ = l,...,r,

pWt > 0, ht = l,...,Ht, £=1,...,T,

> 0, k=l,...,K, n=l,...,N.

Define V such that;

r = /\YX -h [E.19]

then the first two constraints of the primal slippage component subproblem [E.8] imply

that:

= (E-201
fc=l

The primal upper bounding constraints on XU * insure that for any k e {1,... ,K — I}:

k=l k=l

and since = ''ifkn — for k = 1,..., K (see the third row from the bottom of

Table 5.2 on page 185) with = 0:

k k

E S E C*'" - [E-21]
A:=l k=l

Inequalities [5.4b],

^kn ^Kni

387

Appendix E Decomposition of Model MIMPSLP Problems

and the objective function and upper bounding constraints on of problem [E.8]

imply that:

> 0 only if XfS,; = for any fc € {2,..., Jf}. [E.22J

Define k such that:

k = max A; G {0,..., — 1} with ̂ kn < |r|, [E.23]

which determines the largest '^kn that is less than or equal to |r| since '^kn increases

monotonically with index k by relationships [5.4a]:

0 = < • • • < < • • • < = OO,

so that:

%n< |r| and^'(jt^i)„>.|r|.

Relations [E.19] through [E.23] then imply the primal solution is:

' '^kn - ̂ik-l)n = k = l,...,k,

= | |r|-«fe„ k = k + l, [E.24]
0; /s = /c "t" 2,..., K.

The solution to the dual slippage component subproblem [E.9] is solved by examin

ing the problem under two cases defined by the relationship between "^k^ and F.

Case 1: ■^k^ < \r\

Note that < |r| implies that |r| > 0 due to relationships [5.4a]:

0 = < ^'in < • • • < < • • • < = OO.

388

Appendix E Decomposition ofModel MIMPSLP Problems

Furthermore, > |r| by the definition [E.23] of k. Complementary slackness and

primal solution [E.24] then require that

— 0 k —k K^2N+{n-\){K-l)+k — U, rc — /C -t- i, . . . , i,

since the complementary primal constraints

are not tight. Complementary slackness also requires that the first {k + l) constraints of

dual problem [E.9] be tight since the complementary primal variables are positive by primal

solution [E.24] and the case condition, < |r|. In addition, the objective function of

the dual problem implies that only one of and can be positive in order to

minimize the function value. Therefore, the dual solution under Case 1 is:

ifr<o.
7r(i)M. =
"n

0, ifr>o,

(0, ifr<o,

'rSJiJ = <^ ^ , [E.25]
ifr>o,

[0, k = k + \^...,K — 1.
Case 2: = |r|

Complementary slackness, primal solution [E.24], and the case condition, = |r|,

require, as in Case 1, that:

'''2JV+(ra-l)(-K'-l)+fc = 0, A: = fc + 1, . . . , — 1,

389

Appendix E Decomposition ofModel MIMPSLP Problems

since the complementary primal constraints

are not tight. Complementary slackness also requires that the first k constraints of dual

problem [E.9] be tight since the complementary primal variables are positive by primal

solution [E.24] and the case condition, implying that:

_7r(i)W£ _ 4- — —b A; — 1 k IE 261"n ^N+n ' ̂2N+(n-l){K-l)+k ~ "tP Vfcrej — J-j • • • j'>'• L-ti.ZOJ

Strong duality requires that the objective functions of problems [E.8] and [E.9] be equal at

optimality, which, with equations [E.19] and [E.24], indicates that:

k kr _ ttJJJJ) + ̂ ^ ̂knA^kn. [E.27]
fc=l fc=l

Equations [E.26] and [E.27] appear to be a system of (k + l) equations in (k + 2) un

knowns. The objective function of the dual problem [E.9] implies, however, the further

condition:

> 0 and = 0, if T < 0,

[E.28]

TTn = 0 and > 0, if T > 0,

in order to minimize the function value. There are, therefore, a balanced number of equa

tions and unknowns. Multiplying each equation k at [E.26] by A'^kn and summing the

results yields:

- (Ti"!"' + >rK') E A*'" + E E
fc=l fc=l k=l

[E.29]

390

Appendix E Decomposition of Model MIMPSLP Problems

Since,

k k

Y, = Y - ̂(fc-l)n) = ̂kn,
k=l k=l

equation [E.29] becomes,

k k

- + Y ̂̂kn7T''^N%-l){K-l)+k = Y
k=l k=l

[E.30]

The case condition, = |r|, and the additional condition [E.28] imply that:

- *i„ = r - tSS") .

SO that equation [E.30] can be written as:

r - TtSJJ + Y ̂̂kn7r''2N+ln-l)iK-l)+k = Y ̂f^n^^kn,
k=l k=l

which is equation [E.27]. Therefore, equations [E.26] and [E.27] are not linearly indepen

dent. The coefficient matrix formed by omitting equation [E.27] and the first two columns

of equations [E.26] (since at least one of and is zero by condition [E.28]

while the other is omitted) is the non-singular k-hy-k identity matrix. One of the (k -|- 2)

variables:

71 n or ̂ N+n "r ̂2JV+(n-l)(K'-l)+fc' ̂ ̂ \ t, ,

may then be assigned an arbitrary nonnegative value and the other values will follow. Con

sequently, dual problem [E.9] has an infinite number of alternate optimal solutions under

Case 2. Solution values under Case 2 are assigned to maintain consistency with Case 1.

391

Appendix E Decomposition of Model MIMPSLP Problems

Therefore, solution set [E.25] is selected if F 0, otherwise,

TrSliJ = 0, [E.31]

'''2JV+(n-l)(A:-l)+A: = 0, A; = 1, . . . , iF — 1,

when r = 0 which implies that k = Oby the definition [E.23] of k.

E.3 Solving Deviation Component Subproblems

The solution to the primal deviation component subproblem [E.10] on page 373 is deter

mined first. Dual problem [E.ll] on page 373 is then solved using the primal solution and

duality theory. The derivations rely upon the fact that each factor in the objective function

coefficients of the primal problem [E.IO] are nonnegative:

Qt > 0, t =

pWt > 0, = t =

At > 0, t =

Iq > 0, g = l,...,Q.
Define F such that:

N

r = 4;'' - E ' - ̂nk) [e.32]
71=1

Then if F > 0, the optimal solution to the primal deviation component subproblem [E.10]

is clearly = 0 with objective value £3^^' (xf^ j = 0. Therefore, consider the case

392

Appendix E Decomposition ofModel MIMPSLP Problems

when r < 0. The first constraint to the primal problem implies that:

5=1

[E.33]
5=1

The primal upper bounding constraints on insure that for any q e — 1}:

<±Ar,
5=1 5=1

and since = ̂q — ̂q-i for g = 1,..., Q (see the second row from the bottom of Table

5.2 on page 185) with q>Q = Q:

n n fE.34]
5=1 5=1

Inequalities [5.10b],

7i < • • • < 75 < • • • < 7q,

and the objective function and upper bounding constraints on of problem [E.IO]

imply that:

> 0 only if for any q e {2,. ,Q} . [E.35]

Define q such that:

q = maxg G {0,..., Q - 1} with < |r|, [E.36]

which determines the largest that is less than or equal to |r| since (pg increases monoton-

ically with index q by relationships [5.10a]:

0 = (^0 < <^1 < • n • < <^5 < • • • < <^Q = OO,

393

Appendix E Decomposition of Model MIMPSLP Problems

so that:

< |r| and > |r|.

Relations [E.32] through [E.36] and the objective function to problem [E.IO] then imply

the primal solution is:

fq - <Pq-l ̂ q=l,...,q,

= 0 if r > 0, otherwise, ^ |r| -

0,

k = q + l,

k = q + 2,...,K.
[E.37]

The solution to the dual deviation component subproblem [E.ll] is solved by exam

ining the problem under three cases defined by the value of F and the relationship between

fq and F.

Case 1: F > 0

Strong duality and primal solution [E.37] imply that the dual solution under Case 1

is:

7r(2)Wt = 0.

Case 2: (p^ < |F|, F < 0

Note that < |F| implies that |F| > 0 due to relationships [5.10a]:

[E.38]

0 = V>O<<Pl<-- - <(Pq<-- - <(Pq = oo.

Furthermore, </'(g+i) > |F| by the definition [E.36] of q. Complementary slackness and

primal solution [E.37] then require that

TT
(2)Ht

1)+?= 0,g = g-fl,...,Q-l,

394

Appendix E Decomposition ofModel MIMPSLP Problems

since the complementary primal constraints

< A(pg, q = q + f...,Q-l,

are not tight. Complementary slackness also requires that the first {q + 1) constraints of

dual problem [E.ll] be tight since the complementary primal variables are positive by

primal solution [E.37] and the case condition, (pg< |r|. Therefore, the dual solution under

Case 2 is:

Trff [E.39]

(2)[.]. _ / ' 9 = • • • > 9'^Lt+(Zt-l)(Q-l)+g - \
[0, q = q + f...,Q-l.

Case 3: cpg = |r|, T < 0

Complementary slackness, primal solution [E.37], and the case condition, (pg = |r|,

require, as in Case 2, that:

^L^+ll-iXQ-i)+g = 0, g = g + 1,..., Q - 1,

since the complementary primal constraints

j5^^2)[.], ̂ g = g + 1,..., Q - 1,

are not tight. Complementary slackness also requires that the first g constraints of dual

problem [E.ll] be tight since the complementary primal variables are positive by primal

solution [E.37] and the case condition, implying that:

-Trf J = 1,..., [E.40]

395

Appendix E Decomposition of Model MIMPSLP Problems

Strong duality requires that the objective functions of problems [E.IO] and [E.ll] be equal

at optimality, which, with equations [E.32] and [E.37], indicates that:

+ Y. ̂̂g^£+t-i)(Q-i)+9 = Y [E.41]
9=1 9=1

Equations [E.40] and [E.41] define a system of [q + 1) equations in {q + 1) unknowns.

Multiplying each equation q at [E.40] by and summing the results yields:

Y^'Pi^Y ̂̂ 9^S-i)(Q-i)+9 = -hP^'^'^tP^k Y [E.42]
9=1 9=1 9=1

Since,

9 9

Y^'Pi = Y (^9 - <^9-1) =
9=1 9=1

equation [E.42] becomes,

Vg + Y = -QtP^'^'^tP^k'Y
9=1 g=l

The case condition, |r|, F < 0, then implies that:

9=1 9=1 ,•

which is equation [E.41]. Therefore, equations [E.40] and [E.41] are not linearly indepen

dent. The coefficient matrix formed by omitting equation [E.41] and the first column of

equations [E.40] is the non-singular q-hy-q identity matrix. One of the {q 1) variables:
r

^(2)Hf (2)[*]t o p f 1 n\

may then be assigned an arbitrary nonnegative value and the other values will follow. Con

sequently, dual problem [E.ll] has an infinite number of alternate optimal solutions under.

Case 3. Solution values under Case 3 are assigned to maintain consistency with Case 2.

396

Appendix E Decomposition of Model MIMPSLP Problems

Therefore, solution set [E.37] is selected if F < 0, otherwise,

Tf'■'* = [E.44]
= 0.9 = 1. ■ ■ ■ > Q - 1.

when r = 0 which implies that g = 0 by the definition [E.36] of q.

E.4 Bounding Nodal Component Subproblems

Nodal component subproblems must be solved using a simplex algorithm. However, upper

bounds on these subproblems can be used to place bounds on the LSD relaxation (6) vari

ables or to determine objective function coefficients for DWD convexity (tj) variables. An

upper bound on £2^2^ is established by determining a feasible solution to the dual
nodal component subproblem [E.13] on page 375. The derivations below rely upon the fact

that each factor, except the mean returns /j}n\ in the objective function coefficients of the

primal problem [E.12] on page 374 are nonnegative:

Qt > 0,

> 0, = t = l, . . . ,T,

^kn > 0, k = l, . . . ,K, n=l,.. . ,N,

At > 0, t = 1, . . . ,T,

pf} > 0, /t = l, . . . ,Lt, = t =
iq > 0, 9 = i, . . . ,g.

and that all standard deviations uIT'' are positive.

397

Appendix E Decomposition of Model MIMPSLP Problems

Note that

= 0 1 V
7r(2)Ht = oi J = it,ht),ht = l,...,Ht,t = t + l,...,T,

[E.45]

are feasible to all constraints in the dual problem [E.13]. A feasible solution to the dual

problem can then be defined by determining a value for at each node represented in

the problem such that = 0, and = 0 are feasible to the sets of dual

composite constraints;

Lt

lt=l

- E - fSJii'"") ̂ ap'*'*/'!;''. n = 1,..., JV, [E.46]
at these nodes.

Define Fn'* such that:

ifA^^>0,
pW' = <! for

0,

and nt'lt such that:

if//k'^' <0,

n = 1,..., A/" at nodes

[•]« = hi) and

nWt =

[•]t =

[•L =
at nodes

(f, , and

Then,

(f h \ ht — 1,. Ht,

{t,ht),ht = 1, •, Hu t — i + 1,... ,T,

[E.47]

398

Appendix E Decomposition of Model MIMPSLP Problems

and as defined by equations [E.45] are feasible to the dual composite con

straints [E.46] and thus to the dual nodal component subproblem [E.13].

Therefore, with determined by equations [E.47],

aS = + E E k = [E.48]
t=t+l '^t=l

establish upper bounds on each nodal component subproblem since the dual variable values

defined by equations [E.45] and [E.47] are feasible but not necessarily optimum to problem

[E.13]. Note that the upper bounds defined by equations [E.48] are independent of

and can therefore be determined prior to the first decomposition iteration.

399

Appendix F
Expected Mahalanobis Squared Distances

Proofs for Propositions 13 through 15 in Section 5.6.4 are given below. These propo

sitions establish the expected Mahalanobis squared distance (MSD) values used in model

MIMPSLP. Notational conventions and preliminary results required by the proofs are de

veloped first followed by the three proofs.

F.l Notation and Preliminary Results

Inductive reasoning will be used in all three proofs below. Each proposition will be proven

valid for a M-vaiiate distribution given validity for a (M — l)-variate distribution where

M > 2. Therefore, let a (M - l)-variate distribution be described by mean vector {jl =

(//i,..., /ijvf-i)' positive definite covariance matrix Sm-i € Let r =

(ri,..., tm-i)' represent a random vector from the distribution and denote the covariances

in matrix by <Jij, i.e.,

cTij = 8 [(ri - jUi) (rj - = -l,j = i = l,...,M-1,

with

^ [(^i - f^if] = o"., i = 1,..., M - 1,

where 8 is the expectation operator.

400

Appendix F Expected Mahalanobis Squared Distances

Let the notation (v)j^^ represent the vector of the first M elements of vector v when

the dimension of v is greater than or equal to M. Assume a new variable with mean

11^ and covariances (Tm = (f im, • • •, C(m-i)M) Cm)' is added to the distribution such that

the new covariance matrix

Tim =
Sm-1 {<xm)m-i

DF.l]

is positive definite. Noble and Daniel [159, problem 13 on page 39] indicate that the inverse

matrix to Tm is:

^M =
A-M—I {^m) M—1
{^m)m-1 ^MM

[F.2]

where Am-i S i)x(a^ i) ~{aiM, • , clmm)' such that:

1
(^MM 2 / \' 'v—1 / \ '

~ *^m)m-1 ̂ M-1 {P'MlM-l

{^m)m-i ~ ~(^mm'^m-i {o'm)m-\ '

Am-1 = "b ■" {^m)m-1 {^m)m-1 •
0>MM

[F.3a]

[F.3b]

[F.3c]

The MSD, (v, w), for two vectors v G and w G R^ associated with the

new M-variate distribution can then be written in terms of

three constant terms. First, the definition of MSD established by equation [5.57] on page

216 yields:

(v, w) = (v - w)' (v - w).

Equation [F.2] then implies that:

(v, w) = [(v - V!)'m-i {vm - Wm)] Am—1 M—1
{^m)m-1

(v - w)m-i
{vm — IVm)

401

Appendix F Expected Mahalanobis Squared Distances

which equates to:

(v, w) = (v - Am-1 (v - ̂)m-\ + (v -

+ {vm - Wm) (aM)M_i (v - w) + {vm - Wm) aMM {vm - Wm) •

Replacing Am-i with the equivalent expression from equation [F.3c] and combining the

middle two terms results in:

A^Sm(v,w) = (v - (v -

+-^ (v - Mm-1 M'm-1 (v -
O-MM

+2 {vm - Wm) (aM)M-i (v - w) + a^M {vm - wm)^ n

The first term in the last equation above is equivalent to

plying that:

(v, w) = [(v - Mm-i] '
O-MM

+2 {vm — Wm) {s-mYm-i (y ~ '^)m-i "I" {vm — wm)"^ n

Finally, expanding the inner products in the middle two terms and squaring the results of

the expansion of the second term yields:

AIsm (v, w) = Af Sm-1 ((v)m-i > (w)m-i) [FA]
[M-l M-2 M-1

X! (•^m - Wm)'^ + ̂ OiMdiM " Wi) {Vj - Wj)
.m=l i=l j=i+l

1
+

O'MM

M-1

+ 2 E O'mM {ym — Wm) {vm — Wm) + O'MM {^M ~ Wm)^ •
m=l

Equation [F.4] is referenced by each of the three following proofs.

402

Appendix F Expected Mahalanobis Squared Distances

F.2 Proof of Proposition 13

Proposition 13 on page 218 is reproduced below. The proof follows the reproduction of the

proposition.

Proposition 13 Let v G be a random vector from a M-variate distribution with

mean vector // G and positive definite covariance matrix Sm € R^^^. Then,

^ (v, m)] = M.

Proof Proposition 13 is clearly true for M = 1 since

1 ̂ r. ^21S [Alsi /i)] = S[{v- fj)' Si ̂ (u - p)] = —£[{v-p)]= — = l

where Si = [a\ Assume the proposition is true for M — 1 where M >2. Then, equation

[F.4] with w = fj, implies that:

^ (v, m)] = ̂ ((v)m-i > (m)m-i)]
rM-i

^ y ^mM /^m)
_m=l

M-2 M-1

+2 ̂ ̂ OiMajM {Vi - Pi) (Vj - Pj)
i=l j=t+l

+—s
O'MM

+25

■M-1

^ ^ ^mM {'^m l^rn) i^M /^m)
m=l

+ auM^ [{vm — A'm)^]

403

^[•^Sm(v,m)] = M-1 +
(^MM

M-1

Appendix F Expected Mahalanobis Squared Distances

The induction assumption implies that S ((v)m-i > (At)M-i)] = - 1 so that:

^ /M-l M-2 M-1 \

zJ ^ ̂ diMajMO-ij

+2 E dmMdmM +
m=l

Writing the first term on the second line of the last equation above as two summations and

regrouping terms yields:

/M-1 \

^ [-^Sm (v, /x)] = M - 1 + dmMdmM + | [F.5]
\m=l /

M-1 ^ /M-1 M-2 M-1 \
"h / ̂ <^mM^mM H 1 ^mM'^m "I" ̂ / J Zv d^iM^jM^ij 1

V^i 7

Set k equal to the sum of the terms on the second line of equation [F.5],

M-1 ^ /M-1 M-2 M-1 \
b = drnM^mM + ̂ I d'^M^'m + 2 ̂ diMdjMdij | , [F.6]

m=l \m=l i=l j=i+l J

and set k equal to the second term in the enclosed portion of the expression for k,

M-2 M-1

k 2 ̂ ̂ ^
i=l j=i+l

Figure F.l illustrates the expansion of the expression for k. Note that the expansion has

been written on M — 2 lines corresponding to the indices of the outer summation term and

M —1 columns where 'fc =' is the first column. Line numbers correspond to the first index

on the covariance terms (i.e., the i in aij) while column numbers correspond to the second

index. Figure F.l indicates that the expansion for k can be equivalently expressed as the

404

Appendix F Expected Mahalanobis Squared Distances

+ 2a2ya^i^O'23'^ ^ ' 2̂M^jM^2J ■' '■ '^^M^(M-2)M^2{M-2) ^'^2M®(M-1)M^2(M-I)

'^^(M-2)m'^{M-1)m'^(M-2)(M-1)

Figure F.l: Double Summation Expansion

405

Appendix F Expected Mahalanobis Squared Distances

sum of two double summations since each term in the figure is multiplied by two:

M-2 M-l M-1 j-l

EE OiiM (^jM^ij- [F.7]
j=l j=i+l j—2 i=l

The first double summation in equation [F.7] incorporates one complete set of terms

where the inner summation includes all terms in lines i = — 2of Figure F.l.

The second double summation in equation [F.7] incorporates the remaining complete set

of terms where the inner summation includes all terms in columns j = 2,...,M — 1.

Equation [F.7] can be rewritten by swapping indices in the second double summation:

M-2 M-l M-l i-l

^=EE
i=l i=i+l i=2 j=l

Then note that the upper limit on the outer summation in the first double summation in

equation [F.8] can be increased by one since the inner summation will have no terms when

i = M —1. Similarly, the lower limit on the outer summation in the second summation in

this equation can be decreased by one since the inner summation will have no terms when

i = l. Therefore,

M-l M-l M-l i-l

^=EE EE ̂iM^jM^jit
i=l j=i+l i=l j=l

which implies that:

"i-l M-lM-l

k = UiM
i=l .7=1 i=i+l

[F.9]

The expression for k in equation [F.6] can then be rewritten as

m-l M-lM-l

O'mM

^ , 0,MM
7n=l

O'MMC^mM + OmMCm + E
7=1 i=m+l

406

Appendix F Expected Mahalanobis Squared Distances

or as

'm—l M—1M-l

^=E
^mM

flMM
m=l

^ ̂ O'jM^jm "I" ^ ̂ "t"
.j=l j=m+l

[F.IO]

after rearranging terms. Then, since amj = Cjm. the indices on the covariances in the last

two terms of equation [F.IO] can be reversed yielding:

'm—1 M—lM-l

<^mM

»n=l

^ ̂ F ̂mM^rn. F ̂ ̂ 0,jM^jm F UMM^Mm
.i=l i=m+l

[F.ll]

Now note that the term in brackets in equation [F.ll] is zero for all m = 1,... M — 1 since

m—l M—l

^ ̂ %MCjm+<^mM^m'i" ̂ ̂ %M^jm+<2MM<'"Mm = 3-M (^M),7n =
i=l i=m+l

In other words, the bracketed term in equation [F.ll] is zero for each m = 1,..., M — 1

since this term is the inner product of row M from and column m from with

M.

Therefore, k = 0 and equation [F.5] can be simplified to:

^ . [F.12]
Then note that the enclosed term in equation [F.12] is one since this term is the inner

product of row M from "Ej} and colunm M from Em'

M-l

m=l

Hence,

^ (v, At)] = M - 1 + 1 = M,

and Proposition 13 has been proven valid by induction. n

407

Appendix F Expected Mahalanobis Squared Distances

F.3 Proof of Proposition 14

Proposition 14 on page 218 is reproduced below. The proof follows the reproduction of the

proposition.

Proposition 14 Let v G be the average random vector for a random sample of

size L drawn from a M-variate distribution with mean vector p, G R''^ and positive definite

covariance matrix 'Sm € Then,

^ (v, A^)] = y'

when sampling is performed with replacement if the distribution population is discrete.

Proof Let , Z = 1,..., L, be the random vectors in the sample such that

1=1

Proposition 14 is clearly true for M = 1 since v = = v implying that

^ =S[{v- ^ {v - //)] = [(w - pf] = ̂ = 1

408

Appendix F Expected Mahalanobis Squared Distances

where Si = [cF], Assume the proposition is true for M — 1 where M >2. Then, equation

[F.4] with V = V and w = /x implies that:

^ (V, m)] =
TM-I

^] ̂mM ~ fj'm)
O'MM

m=:l

M-2 M-1

+25

+2 ̂ ̂ aiMajM - fJ-i) (vj - fJ-j)
i=l j=i+l

'M-1

^ ̂ ̂ mM {ym f^m) i^M A'm)
m=l

+ o,mmS [{vm —

The induction assumption implies that S ^o that:

M-1

^ [-^Sm (v, Ai)] = <^mM^ [{'"m - f^J^]
^ 0-MM r~;

771=1

M-2 M-1

OMM
^ ̂ ̂ [(Ui Hi) (vj Hj^l
i=l j=i+l

M-1

"'"2 ̂] O^ttimS [(Vm Hm) (^M A^m)] "I" \jyM Hm)] '
m=l

or,

M-1
M-1

^ [Mji^ (v, //)] = —— +
O-MM

(

O^MM f'

— Y (C) - 2A^m<^ (^m) + A^^] [F.13]
m=l

M-2 M-1

+ ZTT Y Y [s (viVj) - HjS (Vi) - HiS {vj) + HiHj]
i=l j=i+l

M-1

+ 2Y ̂rnM [S {VmVM) ' Hm^ (^m) " Hm^ (vm) + Hm/^M]
771=1

+ <^MM [S ('^m) ~ iyu) + A^if] •

409

Appendix F Expected Mahalanobis Squared Distances

Since £ for all m = 1,..., M, expectations of the form £ {viVj) must be

evaluated in order to simplify equation [F.13]:

£ (viVj) = £ fig-") il-".
, li=l lj=l

L L

[F.14]

Expectations in the double summation in equation [F.14] may be evaluated with the well

known formula (e.g., see Lindgren [132, Section 4.7, equation (1)]):

£ (viVj) = (Tij + £ (vi) £ {vj).

Lindgren [132, Section 7.1] states that random vectors / = 1,..., L, are independent

and identically distributed since they are from a random sample. Then, since the covari-

ance between two independent random variables is zero (see Lindgren [132, Section 4.7,

Theorem 19]):

(Tij "I" £ (^i) £ (yj) j ii — Ijt

£ (vi) £ (vj), k ̂ Ij.
Equation [F.14] can now be simplified to:

L L

[(Tij + £ (^;0 £ (vj)] + YY1^ ^
1=1 ii=i ij=i

L2

£ {ViVj) = jCTij + PiPj. [F.15]

410

Appendix F Expected Mahalanobis Squared Distances

Equation [F.15] is used to reduce the terms in equation [F.13] that involve expecta

tions as follows:

^ (O - {Vm) + Mm = + Mm - 2Mm + Mm

-

-

S {viVj) - {Vi) - fiiS {Vj) + = jaij +
L

1

T— 7- ^iji

s {VmVM) - (Vm) - {vm) + fJ'mH'M = ̂ <^mM + MmMM " 2MmMM + MmMilf

^ i^li) ~ 2Mm^ {'"m) + mL =

— ^ (T^
-

Therefore, equation [F.13] can be rewritten as

M-l 7 M-l M-2M-1^ (v, m)] = —j— + ^ ^ ̂ aiMa^MCTij
m=l 2=1 j=2+l

2 1 2

m=l

or after writing the first term on the second line of the above equation as two summations

and regrouping terms.

^ (v, M)] = ̂
^M-1

M —1+ j [F.16]
M-1 ^ /M-1 M-2 M-1 \ n

+ / ̂ H j / ̂ mM^m "I" 2 yj / J 1
J.

411

Appendix F Expected Mahalanobis Squared Distances

Now. note that the bracketed term in equation [F.16] is the same as the right-hand-side

of equation [F.5] on page 404 implying that:

^ [M:Sm (v, m)] = 2^ (v, p)] n

Proposition 13 then implies that:

and Proposition 14 has been proven valid by induction. n

F.4 Proof of Proposition 15

Proposition 15 on page 219 is reproduced below. The proof follows the reproduction of the

proposition.

Proposition 15 Let v G be the average random vector for a random sample of

size L drawn from a M-variate distribution with mean vector p, G and positive definite

covariance matrix I^m € If v is a representative vector from the random sample,

then

(v,v)] =

when sampling is performed with replacement if the distribution population is discrete.

Proof Let i = 1,..., L, be the random vectors in the sample such that

^=ix:v®
1=1

412

Appendix F Expected Mahalanobis Squared Distances

and let v be a representative vector from the sample. Proposition 15 is clearly true for

M = 1 since v = = v implying that

S [A^si {v, ■y)] = £[{v- v)' Si ^ - v)] = [(t; - -y)^] = -^ = 0

where Si = [cr^]. Assume the proposition is true for M — 1 where M >2. Then, equation

[F.4] with w = V implies that:

fM-l

^ ^ ^mM i^rn ~ ^rri)
.m=l

M-2 M-1

i=l j=i+l

O'MM

+2£
'M-l

'^m) {yM '^m)
,m=l

+ O-MM^ [{vm — I^m)]

The induction assumption implies that £ ~ "St (-^ —

that:

M-l

O-MM 771=1

M-2 M-l

^ ^ ^ ^ '^iM^'jM^ \iyi '^i) iyj '^i)]O'MM ti ,=1+1
M-l

+2 O-mM^ [(f^m — Vm) {vm " ̂ ^m)] + ^MM^ [(^M ~ 1'm)^] 7
771=1

413

Appendix F Expected Mahalanobis Squared Distances

or,

(v,v)] =
L-1

M-l

(M - 1) + ^ [e (vl^) - 25 {vmVm) + s
^MM 1

[F.17]
77J=1

M-2 M-l

+ y] y] aiMajM [s (viVj) - 5 (viVj) - 5 + 5 (iiiUj)]
i=l J=i+1

M-l

2 ̂ ̂ 0,mM i^mPM) ^ ^ i^mVM) "I" ̂ ('^tti'^m)]
m=l

+ O.MM [S (vlj) - 25 {vmVm) + ̂ (^m)] •

Since equation [F.15] can be used to evaluate expectations of the form 5 {viVj), evaluations

of expectations with the form 5 {viVj) are necessary to simplify equation [F.17]:

5 iviVj) = 5
1=1

(0

= jeU^v^(0
z=i

S(viVj) = •
z=i

[F.18]

Then, since v is a representative vector from the sample, there exists I such that 1 < 1 < L

and V = v(0. Remarks in the previous section show that vectors I = 1,... ,L, are

independent and identically distributed so that:

<7ij + 5 (vi) 5 (iij), 1 = 1,

5 (vi) 5 (i;j), l^L

414

Appendix F Expected Mahalanobis Squared Distances

Equation [F.18] can now be simplified to:

S {viVj) = - (Tij + s (Vi) S (t;^) + ^
1=1
1:^1

= 7 [LfTij + + {L-1) HifXj]

£ {ViVj) — [F.19]

Equations [F.15] and [F.19] are used to reduce the terms in equation [F.17] that in

volve expectations as follows:

^ K) - 25 (VrnVm) + S (vl^) = C^i + f4n-^[l^'rn + f4n)+l<^l + f4n
L-1 o

L

£ (viVj) - £ (viVj) - £ (viVj) + £ (viVj) = (Xij + fjLifXj - 2

L-1

L

5 {VmVM) - 5 (VmVM) " 5 {VmVM) + £ {VmVM) = (^mM + 2 (jJJ'm.M +
1

I'
L-1

'^mMi

^ (^m) - 25 {vmVm) + 5 {vIj) = + Mm ~ 2 + Mm

L-1 2

415

Appendix F Expected Mahalanobis Squared Distances

Therefore, equation [F.17] can be rewritten as

T 1 1

^ [M-Zm (v, v)] = —j— (M - 1) + K) - 2^ {VmVm) + SL a^M
m=l

2 M-2 M-1
H aiuajM [S {viVj) - S {viVj) - £ (viVj) + £ (viVj)]

n.AjTA* * ^ * *O'MM

M-1

+ 2 ̂ ̂ ̂ mM \S {VjnVj\{^ £ {v^Vm) £ "I" S (■Wm'^M)]
m=l

+ o,MM \S ("y^) — 25 (vmVm) + S (w^)] •

/ -M L-1^ 2 2 2(L-1)^^^^^ [-A^Sm (v, v)] = —^ (M - 1) + 2^ 2^ aiMajMCTij
m=l z=l j=i+l

2 (L - 1) L - 1 2"b j "b ^ 0,mm^M'>
m=l

or after writing the first term on the second line of the above equation as two summations

and regrouping terms,

L-1
<M-1

M^[— 1 + I CLmM<rmM + O'MM'^'m 1 [F.20]
<m=l

M-1 , /M-1 M-2 M-1

•^Sm(v,v)] = ^

+ y^ 0'mM<rmM H [y^ + 2 y^ y^ O-iMO-jMCTij
m=l Vm=l i=l j=i+l

Now note that the bracketed term in equation [F.20] is the same as the right-hand-side

of equation [F.5] on page 404 implying that:

^ [-^Sm (v, v)] = (v, p)] .

Proposition 13 then implies that:

(v,v)] =

and Proposition 15 has been proven valid by induction. ■

416

Appendix G
Two-Stage Decomposition Graphics

This appendix contains graphs illustrating the CPU times required by two-stage de

composition procedures to achieve selected relative tolerance values. Each figure corre

sponds to one of the multiple period problems described in Section 6.1.2 and listed in

Table 6.3 on page 231. Note that problem P5-Large is not represented by a figure since

this problem could not be solved with two-stage decomposition methods.

Each figure has a curve representing required CPU time versus relative tolerance

for each decomposition method that was applied to the applicable problem. Time units

are shown as part of the labels for the vertical axes. Relative tolerance values are shown

decreasing from left to right in a logarithmic scale along the horizontal axes. The figures

are listed below in their order of appearance.

Figure G.l; DWD(7.1.2) and LSD(7.1.2) applied to problem P2-Small.

Figure G.2: DWD(7.1.2) and LSD(7.1.2) applied to problem P2-Medium.

Figure G.3: DWD(7.1.4) and LSD(7.1.4) applied to problem P2-Large.

Figure G.4: DWD(7.1.2), DWD(7.2.2), LSD(7.1.2), and LSD(7.2.2) applied to prob

lem P3-Small.

Figure G.5: DWD(7.1.2), DWD(7.2.2), LSD(7.1.2), and LSD(7.2.2) applied to prob

lem P3-Medium.

417

Appendix G Two-Stage Decomposition Graphics

Figure G.6: DWD(7.2.2) and LSD(7.2.2) applied to problem P3-Large.

Figure G.7: DWD(7.1.2), DWD(7.2.2), DWD(7.3.2), LSD(7.1.2), LSD(7.2.2), and

LSD(7.3.2) applied to problem P4-Small.

Figure G.8: DWD(7.2.2), DWD(7.3.2), LSD(7.2.2), and LSD(7.3.2) applied to prob

lem P4-Medium.

Figure G.9: DWD(7.2.2) and LSD(7.2.2) applied to problem P4-Large.

Figure G.IO: DWD(7.2.2), DWD(7.3.2), DWD(7.4.2), LSD(7.2.2), LSD(7.3.2), and

LSD(7.4.2) applied to problem P5-Small.

Figure G.ll: DWD(7.3.2) and LSD(7.3.2) applied to problem P5-Large.

418

Appendix G Two-Stage Decomposition Graphics

160

DWDC7.1.2)
LSD(7.1.2)

140 -

120

100 -
0)
-o
c
o
u
0)

CO
Sw'

0)

E

CL
O

80 -

60 -

40 -

20 -

• — -A- -ji ̂

/

/

/

A. .& -<r'

/
/
//

h'

I /

/

/

.4'
/p

//

/

//

.0

ii.

1E-1 1E-2 1E-3 1E-4 " 1E-5 1E-B

Bounds' Gap Relative Tolerance
1E-7

Figure G.l: Two-Stage Decomposition Times for Problem P2-Small

419

Appendix G Two-Stage Decomposition Graphics

60 I —I 1 1 1 r

DWD(7.1,2)
LSD(7.1.2)

50

40

w
0)

3
C

0) 30
E
i-
3
D.
O

20

10

£1-

A

A'

/

/
ja-c)

A /

/

/ /
/ /

/

/

/
/

A

•/

/

V

/ /

/

/

/ /'
/ /
/

/

0

/

J \ 1 u

1 1E-1 1E-2 1E-3 1E-4 1E-5

Bounds' Gap Relative Tolerance
1E-6 1E-7

Figure G.2: Two-Stage Decomposition Times for Problem P2-Medium

420

Appendix G Two-Stage Decomposition Graphics

16

-e- DWDC7.1.4)
-A- L5D(7.1.4)

14 -

®-<)

/-■
//

a

12

/
10 -

0

X

1 8

a
o

6 -

4 -

/
/

//
//

//

Ht- ••A""

—I

1 1E-1 1E-2 1E-3 1E-4 1E-5
Bounds' Gap Relative Tolerance

1E-B 1E-7

Figure G.3: Two-Stage Decomposition Times for Problem P2-Large

421

Appendix G Two-Stage Decomposition Graphics

50

45

40

35

30

-e- DWD(7.1.2)
-B- DWD(7.2.2)
-A- LSD(7.1.2)

LSD(7.2.2)

a> 25
£

o 20

15

10

-e-<>

} /

/■

/

/

J/

/ /
/

A(

//
ii
•/

/ /

//
//
/

!

A
/

. •V
■BH[]

1E-1 1E-2 1E-3 1E-4 1E-5
Bounds' Gap Relative Tolerance

1E-6 1E-7

Figure G.4: Two-Stage Decomposition Times for Problem P3-Small

422

Appendix G Two-Stage Decomposition Graphics

20

18 -

-S- DWD(7.1.2)
-S- DWD(7.2.2)

LSD(7.1.2)
-V- LSD(7.2.2)

16 -

14

12 -

0

1 10
P

a.

" 8

6 -

4 -

y

y

y

y

&—()

/ 0-

//

/
iL

//

/
//

/

Af

V

//
/

//
/

d

//
,/

2 -

nW

—-■ — •w-■ -V-
■-B

^■-^7
-a-q]

i_

1E-1 1E-2 1E-3 1E-4 1E-5
Bounds' Gap Relative Tolerance

1E-6 1E-7

Figure G.5: Two-Stage Decomposition Times for Problem P3-Medium

423

Appendix G Two-Stage Decomposition Graphics

12 I I I Ii 1

DWD(7.2.2)
LSD(7.2.2)

10

3
O

I 6

D.
O

/

/

A

/

A
/

./
/ /

A

/

,0^

/ 0'
y

/ /

.-yyo

-1 I I L J L

A
A A

.0-0

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6

Bounds' Gap Relative Tolerance
IE-7

Figure G.6; Two-Stage Decomposition Times for Problem P3-Large

424

Appendix G Two-Stage Decomposition Graphics

-e DWD(7.1.2)
DWD(7.2.2)
DWDC7.3.2)
LSD(7.1.2)
LSD(7.2.2)
LSD(7.3.2)

•e-

-A-

300
-V- .-•A-

V
250

/
/ .
. /

^ 200

? 150

o

/ n "t

a "iSy-- ^

s—11

■H-"

1E-1 1E-2 1E-3 1E-4 1E-5
Bounds' Gap Relative Tolerance

1E-6 1E-7

Figure G.7: Two-Stage Decomposition Times for Problem P4-Small

425

Appendix G Two-Stage Decomposition Graphics

20

18

16

14

12

o

X

® 10

x>
n.

" 8

-e- DWD(7.2.2)
-B- DWD(7.3.2)

LSD(7.2.2)
LSD(7.3.2)

n -V '

3?"

/

/

/

/

/

/

/

/

/

/

xEh-' A-"-

--B^l

/ .-B'"

/

ET"
A- .

it -A''

1E-1 1E-2 1E-3 1E-4 1E-5

Bounds' Gap Relative Tolerance
1E-6 1E-7

Figure G.8: Two-Stage Decomposition Times for Problem P4-Medium

426

Appendix G Two-Stage Decomposition Graphics

90

-9- DWD(7.2.2)
LSD(7.2.2)

80 -

70 -

60 -

i 50

a>

E

40
•D.
o

30 -

20

10

/

//
//

/
/•
//

f/''
/A

,/■
/
/

/

'lE-l 1E-2 ■ 1E-3 1E-4 1E-5 1E-B 1E-7
Bounds' Gap Relative Tolerance

Figure G.9: Two-Stage Decomposition Times for Problem P4-Large

427

Appendix G Two-Stage Decomposition Graphics

140

120

100

■2 80

<D

£

R 60
o

40

20

DWD(7.2.2)
-B- DWD(7.3.2)
-0- DWD(7.4.2)
-A- LSD(7.2.2)
-V- LSD(7.3.2)

LSD(7.4.2)

y
y/

A

/
>

/

//
V

/
//

/

/

/
/

/

/
.0

y
/y ^

■A"
f j- @=^'

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7
Bounds' Gap Ralative Tolerance

Figure G.IO: Two-Stage Decomposition Times for Problem P5-Small

428

Appendix G Two-Stage Decomposition Graphics

12

-9- DWD(7.3.2)
LSD(7.3.2)

10

/

/

A
/ p

/ /

/■ /

o

X
/

I 6

X"
CL
O 2^^

/

/•
/ 0"^

/ /

/ P
A /

/• /

/

/
/■ /

/
/

/ /
y

y

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7
Bounds' Gap Relative Tolerance

Figure G.ll: Two-Stage Decomposition Times for Problem P5-Medium

429

Appendix H
Acronyms

Table H.1: Acronyms

Acronym Description Chapter" Page"
BP backwards first 4 145

CPU central processing unit 4 152

CVF Compaq Visual Fortran 5 205

DEP deterministic_equivalent problem 2 20

DWD Dantzig-Wolfe decomposition 1 3

FF fast forward 4 145

FFFB fast forward-fast back 4 144

GLP grand linear program 2 22

GUI graphical user interface 5 208

LP linear program 2 21

LSD L-Shaped decomposition 1 4

MDPCA myopic dual-primal cycling algorithm 4 153

MIMPSLF market investment multiple period stocastic linear program 5 164 and 206

MPS mathematical programming ̂ stem 1 6

MSD Mahalanobis squared distance 5 216

PWL piece-wise linear 5 168

RAM random access memory 4 157

RMP^ relaxed/restricted master problem 3 47 and 77

RMP-SUB^ relaxed/restricted master problem-subproblem 4 119

SLP stochastic Hnear program with recource 2 22

SUB subproblem 3 47

Chapter number where first defined

Page number where first defined

Bold text for the model or italic text for the code library

First letter represents relaxed for LSD or restricted for DWD

Dual purpose problem at a node in the intermediate stage of a nested decomposition procedure

430

Vita

Earl I. (Ike) Patterson was born in Maryville, Tennessee on 9 June 1950. Put some bio

graphical info in this section. He attended public schools in Maryville and was admitted to

the United States Military Academy (USMA) in July 1968 after graduation from Everett

High School. Mr. Patterson graduated from USMA in June 1972 and was commissioned in

the Corps of Engineers. Subsequent assignments included platoon leader, company com

mander, associate professor of mathematics at USMA, and staff positions with the Joint

Strategic Target Planning Staff and Army Nuclear and Chemical Agency. He received a

Master's degree in Nuclear Engineering from the Massachusetts Institute of Technology

in 1982 preparatory to the teaching assignment at USMA. Mr. Patterson retired from the

Army in 1992 and was admitted to the Management Science doctoral program at the Uni

versity of Tennessee in the fall of 1994. His doctoral work was completed in May 2001 and

he currently resides in his home town of Maryville.

431

	Decomposition techniques for large scale stochastic linear programs
	Recommended Citation

	Decomposition techniques for large scale stochastic linear programs

