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ABSTRACT

Stochastic linear programming is an effective and often used technique for incorpo-
rating uncertainties about future events into decision making processes. Stochastic linear
programs tend to be significantly larger than othér types of linear programs and generally
require sophisticated decomposition solution procedures. Detailed algorithms based upon
Dantzig-Wolfe and L-Shaped decomposition are developed and implemented. These algo-
rithms allow for solutions to within an arbitrary tolerance on the gap between the lower and
upper bounds on a problem’s objective function value. Special procedures and implemen-
tation strategies are presented that enable many multi-period stochastic linear programs to
be solved with two-stage, instead of nested, decomposition techniques. Consequently, a
broad class of large scale problems, with tens of millions of constraints and variables, can
be solved on a personal computer. Myopic decomposition algorithms based upon a short-
sighted view of the future are also developed. Although unable to guarantee an arbitrary
solution tolerance, myopic decomposition algorithms may yield very good solutions in a
fraction of the time required by Dantzig-Wolfe/L-Shaped decomposition based algorithms.
In addition, derivations are given for statistics, based upon Mahalanobis squared distances,
that can be used to provide measures for a random sample’s effectiveness in approximating
a parent distribution. Rgsults and analyses are provided for the applications of the decom-
position procedures and sample effectiveness measures to a multi-period market investment

model.
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Chapter 1
Intreduction

Managers at most levels of business, government, and industry must make present-
day decisions with imperfect knowledge of future events. Cdnsider, for example, a property
insurance provider that returns a maturity refund to the client in addition to the protection
against damage and/or loss normally provided. Insurance policies must be structured and
assets/liabilities allocated based upon uncertainties in how the future unfolds. Decisions
must be made here-and-now before uncertainties in future interest rates, the economy, and
liabilities are resolved. Sufficient information may be, however, available to make proba-
bilistic statements concerning future uncertainties. Such information might include histor-
ical data and expert judgment. The insurance company, therefore, desires to develop and
implerhent an assét/liability management médel that would allow the company to make
asset allocation decisions that hedge against uncertainties in future events.

One method for guiding here-and-now decisions while considering the future uncer-
tainty explicitly is the stochastic programming field of mathematical programming. Models
based upon stochastic programming generally prescribe plans that involve a trade-off be-
tween costs associated with long-term anticipatory or decisions and the costs associated
with short-term recourse or adaptive decisions (see Edirisinghe [62]). The above insur-
ance company example is a real-world case study and it is described in further detail below

(Section 1.2.1).



Chapter 1 Introduction

Relatively few applications using stochastic programming techniques have been re-
ported in published material until recently although this discipline has existed since 1955.
A major drawback to stochastic prograrﬁmi@ mocieling is that the resulting problem size
for many practical applications is very large. Consequently, solution complexity of such
models often hinders irﬁplementations of stochastic programming decision models. The
focus of this thesis is the development and implementation of solution procedures for sto-
chastic programming models.

The remainder of this chapter is organized into five sections. The first two sections
summarize the historical background of stochastic programr;ﬁng and p;ovide example ap-
plications from the literature. Papers cited in those two sections are from a representative,
but small, subset of available documentation. A far more comprehensive stochastic pro-
gramming bibliography (over 3700 entries) is given by M. van der Vlerk [199]. Thesis
scope and general notational conventions are described in the third and fourth sections.

Organization of the thesis is the topic of the fifth and final section.

1.1 Historical Background

This section summarizes the evolution of stochastic programming theory and solution pro-
cedures over the last five decades of the twentieth century. Three periods are used to doc-
ument the historical information — early history covering the fifties through the seventies,

developments in the eighties, and the recent history of the nineties.



Chapter 1 Introduction
1.1.1  Early History

The birth of stochastic programming as a field of mathematical programming followed
shortly after the introduction of linear programming. According to Dantzig [44, page 4],
the articles published in 1949 by Wood and Dantzig [209] and Dantzig [40] were the first
two formal papers about linear programming (introduced in 1947 — see Dantzig [44, page
4] and Dantzig and Thapa ,[48’ page xxii]). Techniques for incorporating uncertainty into
linear programs were introduced independently six years later by Beale [8] and Dantzig
[41]. The procedures and problem formulations presented by Beale and Dantzig have since
become known as stochastic programming with recourse and form one of the two major
subfields of stochastic programming. Charnes, Cooper, and Symonds [30] in 1958 and
Charnes and Cooper [29] in 1960 introduced the second subfield which they named chance-
constrained programming. The remainder of this thesis is concerned only with stoc;hastic
programming with recourse and the interested reader can consult Kall [117, Chapter 4],
Kall and Wallace [118, Chapter 4], and Prekopa [169, Chapter 8] for more information on
chance-constrained programming.

The first procedure for solving large-scale linear programs in a reasonable amount of
time uses the decomposition principle presented by Dantzig and Wolfe, [49] and [50], in
1960 and 1961. Inspifgtioh for the décomposition principle was provided by the work of
Ford and Fulkerson [79] in 1958 on multi-commodity network flow problems (see Dantzig
and Wolfe [49, pagé 102]). Procedures based ﬁpon the decomposition principal have since

become known as Dantzig-Wolfe decomposition (DWD). Dantzig and Madansky [47] in




Chapter 1 Introduction

1961 and Madansky [138] in 1963 were the first to use DWD specifically for a stochastic
programming problem. A second decomposition procedure, generally referred to as the
L-Shaped decomposition (LSD) method, was introduced in 1969 by Van Slyke and Wets
[196] based upon work by Kelly [120] (1960) on cutting planes and Benders decomposition
[9] (1962) of mixed integer programs. Van Slyke and Wets also contributed to stochastic
programming theory with four papers published in 1966 — Van Slyke and Wets [195] and
Wets [202], [203], and [204].

Papers published in the seventies served primarily to consolidate and expand upon
the theory and solution procedures developed during the previous two decades. Geoffrion,
[87] and [88], gave a synthesis in 1970 of existing theory and algorithms. Solution algo-
rithms for convex stochastic programs with recourse were presented in 1970 by Ziemba
[215]. Eaves and Zangwill [61] (1971), Geoffrion [89] (1972), and Hogan [104] (1973)
provided additional pioneering work on cutting plane theory and Benders decomposition.
Algorithms for applying DWD to a problem involving multiple (more than two) periods or
stages were given in 1973 by Glassey [90] and in 1974 by Ho and Manne [102]. These al-
gorithms are usually referred to as nested decomposition algorithms (since the procedures
for one period or group of periods is nested within the procedures for a previous period
or group of periods) and are based upon concepts first introduced by Dantzig and Wolfe
in their original decomposition paper [49, pages 109 - 110]. Dupacova [57] (1974) pro-
vided a theoretical basis for stochastic programs with non-convex, non-separable penalty

functions. Additional theory for problems spanning multiple stages was presented in 1974
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by Wets [205] and in 1976 by Olsen, [160] and [161]. Kall [117] wrote one of the first
books, publishéd in 1976, devoted to stochastic linear programming. Huang, Ziemba, and
Ben-Tal [106] provided refinements in 1977 to bounds-based approximations to stochastic
programs based upon the classic bounds of Jensen and Edmondson-Madansky (see Birge

[17, page 288] and Edirisinghe [62, pages 21 and 25]).

1.1.2  Eighties

The eighties ushered in a two-decade period of explosive growth in stochastic programming
theory, algorithms, and applications. This growth, not surprisingly, parallels the advances
made in the personal compuier and distributed computing industries.

Advances in nested decomposition based upon DWD were made in the early eighties
by Abrahamson [1], Ament, et al. [3], Birge [12]; and Ho and Loute [100] and [101].
Nested decomposition based upon LSD was introduced in 1980 by Louveaux [133] and
expanded upon in the last half of the decade by Birge [11], Birge and Louveaux [16],
Gassmann [82], [83], and [84], Louveaux [134], and Wittrock [207].

Bounds-based approximation schemes were enhanced by Wets [206] (1983) and
Birge and Wets [19] (1986) and [20] (1987). Dupacova [58] (1987) presented methods
for analyzing stochastic programs when there is incomplete knowledge of the underlying
probability distribution. Ruszczynski [179] introduced regularized decomposition in 1986
as a method to possibly improve decomposition efficiency by adding a quadratic regulariz-

ing term to the objective function of a stochastic problem. Glynn and Iglehart [92] (1989)
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proposed methods for incorporating the classical variance reduction technique of impor-
tance sampling into stochastic programming problems.

Birge, et al. [13] made a significant contribution in 1987 with a proposal for a stan-
dard input format for stochastic programs. The proposed standard provides extensions to
the mathematical p;'ogramming ‘syster'n (MPS) input file system for linear programs (see
reference manuals [107, Chapter 9] and [109, Appendix E] for details on the MPS stan-

dard).

1.1.3  Nineties

Many advances in existing solution procedufes for stochastic programs were made in this
decade. Ruszczynski [182] and [183] and Ruszczynski and Swietanowski [184].expanded
on Ruszcznski’s regulaﬁzed decomposition method. Infanger and Morton [113] proposed
procedures for sharing cuts in the L-Shaped decomposition of stochastic linear programs
with interstage dependency. Enhancements were made to bounds-based approximations
by Edirisinghe [62], [63], and [65], Edirisinghe, Atkins, and Iyogun [67], Edirisinghe and '
You [68], Edirisinghe z;nd Ziemba [69], [70], [71], and [72], Morton and Wood [149],
and Rosa and Takriti [177]. Rosa and Ruszczynski [176] and Ruszczynski [181] pro-
posed improved solution procedures based upon augmented Lagrangian decomposition.
Additional importance sampling techniques were suggested by Dantzig and Glynn [45],
Dempster and Thompson [53], Infanger [111] and [112], and Morton [148]. Gassman and

Ireland [85] considered extensions to algebraic modelling languages for stochastic linear
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programs. Gassmann and Schweitzer [86] proposed improvements to the standard input
format for stochastic pr;)grams.

Several additional concepts were also introduced and/or developed during the nineties.
Application of parallel computing techniques to stochastic programs was covered by Birge,
et al. [14], Dantzig and Glynn [45], Dempster and Thompson [53], Electric Power Re-
search Institute Report EL-6769 [75], Korycki [129], Mulvey and Ruszczynski [152] and
[153], Nielsen and Zenios [158], Ruszczynski [180], Vladimirou [197], and Vladimirou
and Zenios [198]. Interior point solution procedures were documented by Bahn, et al. [5],
Birge and Holmes [15], Kim and Nazareth [122], Lustig; Mulvey, and Carpenter [137],
Messina and Mitra [144], Meszaros [145], and Zakeri, Philpott, and Ryan [213]. Higle and
Sen [97] and [98] introduced the stochastic decomposition algorithm for solving stochastic
programs. Extensions to the stochastic decomposition algorithm were subsequently given
by Chen and Powell [31], Higle, Lowe, and Odio [96], Morton [148], and Yakowitz [211]
and [212]. Rockafellar and Wets [174] introduced the progressive hedging algorithm solu-
tion procedure based upon scenario and policy aggregation. Subsequent techniques using
scenario aggregation were proposed by Chun and Robinson [32] and Kiwiel, Rosa, and

Ruszczynski [125].
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1.2 Applications

Stochés@ic programming techniques have been applied to the decision making processes of
a broad range of organizations in business, government, and industry. Such applications
have increased significantly in the past two decades due in large measure to advances in
computing technology. This section will summarize a representative sample of stochastic
programming application articles published within the past twenty years. Four application
categories are used: investment planning, electric power generation, process control, and
production management. Note that these categories are not intended to be definitive classi-
fication groups, but are defined for descriptive purposes only. Most articles, in fact, could
be placed in two or more of the categories and several could be placed in all four categories.
One paper in each category will be summarized in some detail while the remaining articles

in that group will be listed in a table.

1.2.1 Investment Planning

The introductory example is actually a synopsis of a multiple period stochastic linear pro-
gramming model developed by the Frank Russell Company for the Yasuda Fire and Marine
Insurance Company, Ltd. (see Carino, et al. [26], Carino, Myers, and Ziemba [27], and
Carino and Ziemba [28]). The Russell-Yasuda Kasai (kasai means fire in Japanese) model
was developed to repiace an existing static mean-variance asset allocation model. Discrete
probability distributions are used in the Russell-Yasuda Kasai (RY) model to account for

uncertainties in returns, interest rates, liabilities, and other stochastic variables. Extra in-
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come of 79 million dollars (US) was realized during the first two years (fiscal 1991 and
1992) that the RY model was employed.
Summary descriptions of the RY mode! and other investment planning application

papers are provided in Table 1.1.

1.2.2  Electric Power Generation

Jacobs, et al. [114] describe a multiple period stochastic linear programming mode] devel-
oped at Pacific Gas and Electric Company (PG&E) to optimize monthly hydrogeneration
scheduling over a 24 month planning horizon. Hydrogeneration at PG&E was scheduled
with a deterministic network optimization model prior to development of the stochastic
programming model. Discrete probability distributions are used to model uncertainties, es-
pecially the uncertainties in streamflows, in the stochastic model. The authors report that
expert users were satisfied with the results of the stochastic programming model during the
initial testing and implementation phases (1992 - 1994);

Table 1.2 contains short descriptions of the above and other papers from this applica-

tion category.

1.2.3  Process Control

Paules and Floudas [162] develop a stochastic mixed integer programming model to opti-
mize the synthesis strategy of heat integrated distillation sequences with a single multicom-

ponent feed stream. The stochastic model uses discrete probability distributions to account
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Table 1.1: Investment Planning Applications

Authors | Cite | Year | Description

Anandalingam [4] | 1987 | Investment decisions in iron/steel industry in India

Birge, Rosa - [18] | 1995 | Multi-period model of investment uncertainty in the costs of
global CO; emission policy

Carino, et al.? [26] | 1994 | Japanese insurance company multi-period asset/liability model

Carino, et al.? [27] | 1998 | Formulation details for the above model

Carino, Ziemba [28] | 1998 | Concepts and technical issues for the above model

Consigli, Dempster | [38] | 1998 | Portfolio management for a pension fund

Dantzig, Infanger [46] | 1993 | Multi-period portfolio management

Dupacova, et al.¢ [59] | 1997 | Bond portfolio management model

Frauendorfer [81] | 1996 | Optimal funding by borrowing bonds of different maturities

Golub, et al.¢ [94] | 1995 | Two-period portfolio management

Henaff [95] | 1998 | Two-period exotic derivatives investments

Hiller, Eckstein [99] | 1993 | Asset/liability management with interest rate contingent claims

Kira, Kusy [124] | 1990 | Optimal project selection for capital expenditures

Klaassen [126] | 1998 | Synthesis of asset/liability management models/pricing theory

Kusy, Ziemba [131] | 1986 | Multi-period bank asset/liability management model

Mulvey, et al. [151] | 1997 | Procedures and example cases for financial risk management

Mulvey, Vladimirou | [154] | 1992 | Financial planning using networks with stochastic parameters

Pieptea [166] | 1987 | Optimize holdings in bonds/funds with stochastic interest rates

Prisman, et al/ [170] | 1986 | Two-period bank asset/liability management model

Wagner, et al.8 [200] [ 1994 | Two-period model for optimal placement and operation of
pumping wells to contain groundwater contamination

Watanabe, Ellis [201] | 1993 | Two-period model to minimize costs of acid rain control

Zenios, et al.” [214] | 1998 | Fixed-income portfolio management with uncertain interest rates

Carino, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe, Ziemba
Carino, Myers, Ziemba

Dupacova, Bertocchi, Moriggia

Golub, Holmer, McKendall, Pohlman, Zenios

Mulvey, Rosenbaum, Shetty

Prisman, Slovin, Sushka

Wagner, Shamir, Marks

Zenios, Holmer, McKendall, Vassiadou-Zeniou

10
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Table 1.2: Electrical Power Generation Applications

|___Authors | Cite | Year Description

Bloom [22] | 1983 | Least-cost generation capacity expansion model

Bloom, et al.? [23] | 1984 | Implementation and experience with above model

Borison, et al.’ [25] | 1984 | Least-cost generation capacity expansion model

EPRI° [74] | 1989 | Resource expansion plan for large-scale multi-area electrical
power generation and transmission system

Hobbs, Ji [103] | 1999 | Minimize operation costs for a multi-area electrical power
generation and transmission system

Jaco, et al.? [114] | 1995 | Optimal scheduling of hydrogeneration for a large utility company

Morton [147] | 1996 | Multi-period hydroelectric scheduling

Pereira, Pinto [164] | 1985 | Minimize expected operation costs for a Brazilian multiple
reservoir hydrothermal system

Pereira, Pinto [165] | 1991 | Expansion of the above model with application case study

Qiu, Girgis 172] | 1993 | Maximize reliability of electric power generation system

Romi, Schultz [175] 1996 | Optimize electrical power generation in a system of thermal
power and pumped storage plants

Rotting, Gjelsvik | [178] | 1992 | Optimal seasonal scheduling for power generation in the
Norwegian power system

Sanghvi, Shavel [/185] 1986 | Hydroelectric generation capacity expansion with uncertain
hydro energy availability and uncertain load growth

Silva, et al.¢ [189] | 1995 | Minimum cost maintenance schedule for generating units in a
multi-area hydroelectric system
Takriti, et al/ [192] | 2000 | Minimize electricity generation costs of electric utilities with

uncertain load demand and uncertain spot prices

¢ Bloom, Caramanis, Charny

Borison, Morris, Oren

¢ Electric Power Research Institute, Palo Alto, CA

Jacobs, Freeman, Grygier, Morton, Schultz, Staschus, Stedinger

¢ Silva, Morozowski, Fonseca, Oliveira, Melo, Mello
/' Takriti, Krasenbrink, Wu
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for uncertainty in feed stream flowrate and component composition changes over a finite
number of periods of operation within a chemical plant. Paules and Floudas developed
the stochastic model to improve upon synthesis strategies determined with a single period
model with fixed flowrate and component composition.

Short descriptions of the above and other process control articles are provided in

Table 1.3.

1.24  Production Management

Eppen, Marﬁn, and Schrage [73] describe a stochastic mixed integer programming capacity
planning model developed for General Motors (GM) to use in making decisions concerning
four of tl;eir automobile lines. The model has a planning horizon of five one-year periods
with three possible outcomes representing uncertain demand during each period. This ap-
proach agreed with traditional GM forecasting of demand as either pessimistic, standard,
or optimistic. The authors indicate that results of the stochastic programming model were
instrumental in motivating GM to conduct further cost and forecasting analyses of the four
automobile lines.

Table 1.4 provides summary descriptions of the above GM model paper as well as

other papers in the production management application category.
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Table 1.3: Process Control Applications

_ Authors Cite | Year Description
Alonso, et al.? [2] ] 2000 Optimize air traffic flow management
Dror [55] | 1993 | Multi-period model of the vehicle routing problem with
' uncertain demands

Duffuaa, Al-Sultan [56] | 1999 | Multi-period model for scheduling maintenance personnel

Dupacova, et al.? [60] | 1991 | Multi-period model for upgrading and expanding a water
resources management system in Czechoslovakia '

Fernandez, et al.¢ [76] -| 1998 | Multi-period model for project scheduling with stochastic
task durations

Glockner, Nemhauser [91] [ 2000 | Multi-period model for a network flow problem with
stochastic arc capacities

Hsu, Bassok [105] | 1999 [ Multiple product inventory problem with downward
substitution

Terapetritou, et al.¢ [108] | 1996 | Optimal design for process models involving stochastic
parameters

Martel, et al.¢ [143] | 1990 | Two-period model to determine the distribution of shell

‘ fragments
Paules, Floudas [162] | 1992 | Optimize a chemical process heat integration scheme with
‘ stochastic feed composition and flowrate

Pistikopoulos, lerapetritou | [167] | 1995 | Two-period model for the optimal design of a chemical
processing plant

Pistikopoulos, et al/ [168] | 1996 | Optimal design, schedule, and maintenance plan for a

: chemical batch plant

Qi [171] | 1985 | Two-period model for a transportation problem with
stochastic demands

Sapountzis [186] | 1989 | Optimize the allocation of units of blood from a regional
blood transfusion center to area hospitals

Wollmer [208] | 1985 | Two-period model for critical path planning with uncertain
job completion times

¢ Alonso, Escudero, Ortuno

Dupacova, Gaivoronski, Kos, Szantai

¢ Fernandez, Armacost, Per-Edwards
Ierapetritou, Acevedo, Pistikopoulos

¢ Martel, Nadeau, Price

f Pistikopoulos, Thomaidis, Melin, Ierapetritou

13
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Table 1.4: Pfdduction Management Applications

[ Authors | Cite | Year Description

Bienstock, Shapiro [10] | 1988 | Two-period model to optimize resource acquisition policies

Bitran, Dasu [21] | 1992 | Optimize ordering policies for a production process with
stochastic yields and hierarchy of grades of output

Clay, Grossmann [35] | 1997 | Two-period model to optimize production planning in a
chemical processing plant

Couillard [36] [ 1993 | Trucking company decision support system incorporating the

| model below

Couillard, Martel [37] | 1990 | Two-period model to optimize the size and composition of a
vehicle fleet

Darby-Dowman, etal.? | [51] [ 2000 | Two-period model to optimize planting plans for a vegetable
crop

Eppen, et al.”? [73] | 1989 | Multi-period model to optimize capacity planning for four
automobile models

Fine, Freund [77] | 1990 | Two-period model to optimize the investment in flexible
manufacturing capacity

Jonsson, Silver [116] | 1989 | Two-period model to optimize the inventory of components
common to several products

Jonsson, et al.c [115] | 1993 | Extensions to the above inventory model

King, et al.¢ [123] | 1988 | Two-period model for management of eutrophication of
Lake Balaton in Hungary '

Louveaux, Peeters [135] | 1992 | Two-period model for the uncapacitated facilities location
problem with uncertainty on demand, selling prices,

. production, and transportation

Sinha, Wei [190] | 1992 | Two-period model to optimize production capacity/levels in
discrete part manufacturing

Somlyody, Wets [191] | 1988 | Detailed model description and analysis for the Lake
Balaton eutrophication model (see King, et al. above)

¢ Darby-Dowman, Barker, Audsley, Parsons
b  Eppen, Martin, Schrage

¢ Jonsson, Jornsten, Silver
¢ King, Rockafellar, Somlyody, Wets

14
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1.3 Scope

Stochastic programming techniques can be applied to both linear and nonlinear prob-
lem formulations. This thesis is concerned only with stochastic linear programs with re-
course. Solution procedures for these types of problems were classified by Edirisinghe
[65] as belonging to one of three categories: sampling-based approximation techniques,
bounds-based approximations, or mathematical decomposition of the grand linear pro-
gram. Sampling-based methods such as the stochastic decomposition algoﬁtﬁm of Higle
and Sen (see [97] and [98]) use iteratively drawn random samples from the underlying
probability distribution for a decomposition algorithm or to compute stochastic quasi-
gradients. Bounds-based approximation algorithms (e.g., see Birge and Wets [19] and
Huang, Ziemba, and Ben-Tal [106] for general details) use a successive approximation pro-
cedure based upon computable bounds on the objective function value. The focus of this
thesis is the third technique — using mathematical decomposition procedures to solve the
grand linear formulation of the stochastic programming problem. Specifically, innovations
to improve the efficiency of mathematical decomposition methods, particularly L-Shaped
and Dantzig-Wolfe decomposition, are described herein. A decompositioﬁ algorithm in-
corporating a myopic view of the future and a sampling effectiveness measurement scheme

based upon Mahalanobis distances are also deileloped.

15
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1.4 Notation

General notational conventions that are used throughout the remainder of this thesis are
defined below. Specific notational constructs are defined when introduced.

Scalars will be represented by italicized text with small letters generally used for in-
dices and large letters for fixed quantities or limits, e.g. 7 = 1,---,J. Arrays will be
shown in bold upﬁght text with small letters representing vectors and large letters repre-
senting matrices, e.g. vector X and matrix A. Array transposition will be indicated by a
prime symbol placed prior to any identifying superscripts, e.g. @ = (x")". Array di-
mensions will generally not be explicitly stated except where deemed necessary for clarity.
All arrays in any expression involving multiple arrays are assumed to be compatible. The
identity matrix is represented by ‘I which is assumed appropriately dimensioned for each
use. When appropriate, the dimension of the identity matrix will be denoted by a subscript,
e.g. Iy € RM*M_ Vectors of all zeros and all ones are represented by 0 and 1 respectively
where dimensions are to be compatible for the expression in which they are used. A spe-
cific column or row of a matrix is denoted using the notation of Dantzig and Thapa [48] -
column j of matrix A is denoted by A,; while row  of matrix A is A,.

Functions are represented by upper case letters in Fractur font, £ (x), or Calligraphic
font, Q (x). Sets are shown by upper case letters in Sans Serif font, e.g. X = {x|x > 0}
and J = {1,..., J}. The phrase for all is indicated by the symbol V and the operation ||

represents the absolute value of the operand.

16
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1.5 Organization

The remainder of this thesis consists of six additional chapters and eight appendices. Chap-

ters 2 and 3 develop the foundations for stochastic linear programs and decomposition.

of general linear programs respectively. Mathematical decomposition procedures for sto-
chastic linear programs are then derived in Chapter 4. Formulation of a multiple periéd
market investment‘ model, software to solve the model, and procedures.to measure sample
effectiveness are described in Chapter 5. Chapter 6 contains results obtained by apply-
ing decomposition techniques to the market investment model. Conclusions and summary
information are presented in the seventh and final chapter.

Material supplemental to one of the chapters is given in each of the first seven appen-
dices. Supplemenfal information is prévided for decision tree node mapping (supplemen-
tal to Chapter 2), myopic decomposition (Chapter 4), piece-wise linear approximations to
fixed costs inithe market investment model (Chapter’ 5), sizes of model problems (Chapter
5), solution procedures for decomposition subprbblems (Chapter 5), measures of sample
effectiveness (Chapter 5), and decomposition results graphs (Chapter 6). A descriptive list-

ing of all acronyms used in this thesis is at Table H.1 in the eighth and final appendix.

17



Chapter 2
Stochastic Linear Programs With Recourse

Stochastic linear programs with recourse are probably the most widely applied sto-
chastic optimization models. The notation and formulations for problems of this type are
defined in the four sections of this chapter. Generally accepted notational conventions and
formulations for two-period models are discussed in thé first section. Decision trees and
the notation used for stochastic programs over an arbitrary but finite number of periods are
described in the second section. Results from the first two sections are cqupled in the third
section to define formulations for stochastic linear programs with recourse over multiple
periods. The final section provides details on stochastic programs that exhibit a special

structural characteristic referred to as block-separable recourse.

2.1 Two-Period Stochastic Programs

A two-period stochastic program is used to model a decision-observation-decision process.
The first decision must be made prior to the occurrence of some influential event while the
second decision provides recourse after observation of the event. Knowledge of the data
associated with the event is encompassed by the probability space (€2, F, P). The universal
set {2 contains all possible values or outcomes for the uncertain event. Field § is a family
of measurablé subsets of {2 and P is a probability measure defined on §. Greater detail

on probability spaces is available in Birge and Louveaux [17, Section 2.1], Chung [33,

18
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Appendix 1 to Chapter 4], Degroot [52, Section 2.3], Kall and Wallace [118, Section 1.3],

Lindgren [132, Sections 1.4 and 2.1], and Taylor and Karlin [194, Section 1.2.8].

Stochastic programming formulations for the cases of a general probability measure

and a finitely denumerable probability measure are discussed below.

2.1.1  General Probability Measure

Let &) (o) denote the expectation operator of the enclosed operand with respect to the
random vector £ (w), w € Q. Then the general formulation for a two-period stochastic

program with recourse is:
Z*=max WxW 4+ &, [d® (w)x? ()]

s.t. Ax® < bW,
B(w)x® + W(w)x® W) < bP (W), weQas. [2.1]
x> 0,
x®w) > 0, . wenas

where one or more of the arrays b® (w), ¢® (w), B (w), and W (w) may be stochas-
tic (one or more elements of these arrays may be stochastic) and the constraints involv-
ing w hold almost surely (a.s.). Decision vector x(? (w) may assume different values for
each w € Q. Arrays b®, ¢, and A are known fixed arrays (not stochastic) and x®,
c® e RM, b®) € RM, and A € RM*M, Foreach w € Q, x? (w), ¢@ (w) € RNz,
b® (w) € RM, B (w) € RM*M and W (w) € R™*M where random vector £ (w) =
@ (w),¢® (W), Bre (@), ..., Bagye (@), Wia (@), ..., Wage ()]

Matrix A is referred to as the first pven'od technology matrix. Matrices B (w) are
called transition matrices, matrices W (w) are known as recourse matrices, and the vectors

x(? (w) are termed the recourse decision vectors. The problem is said to have fixed
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recourse when W (w) is not stochastic, i.e. W (w) = W for fixed W. Simple recourse is a
special case of fixed recourse with W = [I, —I]. The problem has complete recourse when
for allw € Q and for all x¥ € RM, there exists x? (w) > 0 such thaf W (w)x® () <
b® (w) — B (w) xM. A special case of complete recourse is relatively complete recourse:
forallw € € and for all x® € {x eRM |Ax < b®),x > 0}, there exists x@ (w) > 0
such that W (w) x@ (w) < b® (w)— B (w) x(1. Note that a problem with simple recourse
valso has complete recourse.

Problem [2.1] can also be formulated as the so-called deterministic equivalent prob-
lem (DEP). Define the second period value function 3 [x(M, € (w)] for given x") and & (w)
as:

9 [xV, ¢ (w)] = max @ (W) x? ()

st W) x®@w) < b () - B () x,

0,

IV IA

and the second period expected value function:

Q (x) = Eey (Q XM, £ ()]).

Then the DEP for a two-period stochastic linear program is:

Z* = max c’(l)x(l) + Q (x(l))
st.  Ax). < p®@), [2.2]
x> 0.

Problem [2.1] is generally difficult to solve. Frauendorfer [80] discusses some of
the more common solution procedures for two-period stochastic programs with a general
probability measure. Stochastic programs with finitely denumerable probability measures

are the most often encountered type of stochastic programs and these are the focus of the

remainder of this thesis.
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2.1.2  Finitely Denumerable Probability Measures

P)roblem [2.1] is a linear program (LP) when the universal set §2 contains a finite number
of events. The probability measure P is then a probability mass function over the finite
number of subsets in the field §. A common practice when 2 contains an infinitely denu-
merable number of events or when the events in 2 are represented by continuous variables
is to represent {2 with a finite universal set, say Q. The probability measure, ﬁ, on the
resulting family of subsets, 3, is a probability mass function that approximates the prob-
ability measure P. This practice dates back to at least 1961 with a paper by Dantzig and
Madansky (reference [47]). Importance sampling is a recently implemented procedure (see
Dempster and Thompson [53], Dantzig and Glynn [45], Dantzig and Infanger [46], Glynn
[92], and Infanger [111] and [1 12]) for variance reduction when 0 is created by sampling
from . The stochastic d.ecomposz;tion procedure of Higle and Sen [97] and [98] (also see
Higle, que, and Qdio [96]) is a iterative sampling algorithm to obtain an approximate so-
lution to a stochastic program by sequentially taking relatively small discrete samples from
Q.

Let L represent the number of discrete events in £ and let pi be the probability that
event w; € Q occurs for | = 1,..., L. Further, let the notation W denote a stochastic

array given the occurrence of event ! € L for indexing set L = {1,...,L}, ie, WH =
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W (@;). Then the stochastic linear program with recourse (SLP) over two periods is:

L
z*=max Wx® + 3 pc/@lx@
=1

st Ax® < bW,
Blx® 1  WHx®U < p@H ;-1 I [2.3]
x@ _2_ 0,
x@l > o, l=1,...,L

Problem [2.3] is ‘a linear program and is generally very large in size. The formulation
depicted by problem [2.3] is often called the extensive or grand LP form of the two-period
stochastic linear program — the term grand LP (GLP) will be used hereinafter to describe
this formulation. Most solution procedures work with the DEP [2.2] ‘where the discrete
second period expected value function is:

. |
Q(x) = Ym0 [x, Y], [24)

=1

with the discrete second period value function:

Q (xu), 5[11) — max /@lx@M

s.t. W[l]x(2)[l]
<@

b®M _ Blix®) [2.5]
0.

IV IA

'The two-period SLP forms the foundation for multi-period models. A multi-period
SLP can be viewed as a sequence of two-period problems which becomes evident below in
the development of the multi-period formulation. A useful design tool for any stochastic

linear program is the decision tree and this tool is discussed next.
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2.2 Decision Trees and Multi-period Notation

Decision trees, often referred to as event or scenario trees, are extremely useful in devel-
oping stochastic linear programs. Figure 2.1 is the decision tree for problem [2.3]. The
node (circle) under period 1 is called the roor node and it denotes the decisions that must
be made prior to observing some uncertain event, referred to as an outcome. The nodes un-
der period 2 represent the recourse decisions made in the second period after observing a
particular outcome represented by the labeled arcs connecting the first and second period
nodes.

Decision trees for multi-period stochastic linear programs and the notational conven-
tions used to navigate through these trees and to describe the corresponding problems are

described below.

Period 1 Period 2

Figure 2.1: Two-Period Decision Tree

23



Chapter 2 Stochastic Linear Programs With Recourse
2.2.1  Multi-Period Decision Trees

Multi-period stochastic programs extend the observation-decision process depicted by the
two-period tree shown in Figure 2.1. A set of arcs represe;nting outcomes branches from
each node in some period, say ¢, and ea{ch of these arcs terminates in a period ¢ + 1 node
representing the recourse decisions to be made in period ¢ + 1 given the path of outcomes
to that node. The tree extends in this manner through the number of periods, say T, in
the planning horizon. Only finite horizon, ' < oo, models are examined in this thesis.
The terminal nodes in period T are termed leaf nodes since no arcs to a following period
branch from these nodes. Multi-period decision trees are developed below for two possible
stochastic processes — those that terminate with a decision and those that terminate with an

observation,

Decision-Terminated Processes

Figure 2.2 illustrates a decision tree for a planning horizon of four periods. Two
outcomes of the uncertain event are possible in each period and the stochastic process
terminates with a decision represented by a fourth period node. Arcs in the tree are labeled
to indicate the index of the outcome represented by the corresponding arc. 'Nodes are
labeled in two ways — a period-index format and a path vector format. The period-index
foxzmat is represented by the doublet (¢, k) of the period number, ¢ (number in the upper
half of each node), and the sequential breadth-first (i.e., starting at the top of the tree within

each period) index, A, of the node (lower half of each node). Path vectors are shown by
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(1]

—
—

(2]

(1.1]

(1.2]

[21]

[22]

Figure 2.2: Four-Period Decision Tree With Binary Outcomes
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the row vectors above each node. The path vector, say {l1,l2, .. .,l;—1], to a node in period
t is a row vector of (¢ — 1) elements where element j, 1 < j < t, is the index, I;, of the
outcome in period j along the path of outcomes to the applicable node. A null (empty)
vector, [], is used Vto label the single first period root node. The path to a node in period t is
called a t-peripd scenaﬁo and each T'-period scenario is usually simply called a scenario
of the planning model. There afe foun 3-period séenan'os and eight scenarios in the model
depicted by Figure 2.2. Decision trees demonstrate the nonanticipative requirement of
stochastic programs — decisions in a given period must be made without anticipating future
outcomes. For instance, the decisions represented by node (1,1), or equivalently node [],
are the same regardless of which of the two outcomes is realized in that period or in any
following period.

A generic multi-period decision tree is illustrated in Figure 2.3. Only the nodes and
arcs in the first and second periods and those along the horizontal path through the root
node are labeled. Each node in period ¢, ¢ < T, anchors L, outcomes so that there are a
total of H; = H§;11 Ljnodes in period £, 1 <t < T, where H; =’1_[?=1 L; = 1. There are
H® ‘= Z;=1 H; cumulative nodes in periods 1 through ¢ < T'. Note that the convention
that all nodes in a given period anchor the same number of outcomes is nolt arequirement for
a stochastic linear program. This convention is adopted because it simplifies notation and
involves no loss of generality since each node in a given period may be assigned the same

number of outcomes as the node in that period with the maximum number of outcomes
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Figure 2.3: Multi-Period Decision Tree
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where all excess outcomes are assigned zero probability of occurrence. It is also assur;led
that L, > 1fort=1,...,T — 1.
The period-index and path vector node labeling schemes are equivalent (given the
above convention) in the sense that either label can be detérmined if the other is known.
Given the path vector [l1,1ls,...,l;_1] to a node in period ¢ with 1 < Il < L for k = |

1,...,t — 1, the period-index label for that node is (, 4;) where

1, ift=1,

_ t—2
M= li+ 3 (= 1) LyLysg--- Loy, if2<t<T. [2.6]
=i

Determining the path vector for a period ¢ node given the period-index label (¢, h;), with
1 < hy < H;, for that node is more involved than the reverse procedure above. The

corresponding path vector is generated by solving equation

k-1, k-1

hy—1— Zl(lj = 1)Ljt1Ljya- - Ly hy — _Zl(lj —1)Ljs1Ljya- - Le
I =1+ = = =

t—1 t—1
II L II L

j=k+1 j=k+1

[2.7]
in sequential order for k = 1,...,¢ — 1. The operations | f] and [ f] used in equation [2.7]
above are respectively the ﬂoo¥ of f (largest integer less than or equal to f) and the ceiling
of f (smallest integer great;ar than or equal to f). Either right-hand-side term in equation

[2.7] may be used to determine [ for k = 1,...,¢ — 1. Derivations for equations [2.6] and

[2.7] are given in Appendix A.
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Observation-Terminated Processes

Each decision-observation-decision-. . . -observation-decision planning process de-
scribed so far ends in a decision. Some problems may be better represented by a process
that terminates with an observation. Prekopa [169, Section 13.1] discusses both the decision-
terminated and the observation-terminated processes. Figure 2.4 illustrates a three-period
decision tree representing a planning process that terminates with an observation. The
arcs emanating from the third period nodes are termed leafless outcomes since each repre-
sents a possible terminal observation for the process. Each node in the final period of an

observation-terminated process must be associated with stochastic decision variables that:

1. are dependent upon the random outcome at that node,
2. are applicable to that node only, and

3. represent an automatic reaction of the process after the outcome has been observed as

opposed to an interactive (human) decision made prior to the observation.

These node, or equivalently period, localized stochastic variables are termed reactive
recourse variables. Variables representing decisions that must be made prior to observing
a random outcome are called discretionary recourse vﬁables. The three properties of
reactive recourse variables are implied by the structure of the decision tree, e.g., Figure
2.4. Reactive recourse variables must exist in the final period since, otherwise, there is
no reason to consider the random outcome during that period. They must be applicable

only to the final period node in question since there is no future period. Finally, reactive
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Figure 2.4: Three-Period Decision Tree Ending in an Observation
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recourse variables cannot represent a pre-observation decision since this would violate the
nonanticipative requirement of the stochastic program.

Reactive recourse variables are not restricted to the final period — they may be present
in all periods, including the first. Observation-terminated processes require some modifi-
cations to the definitions of the problem arrays and to the notational conventions developed
for decision-terminated processes. These modifications are minor and are discussed in de-
tail in Chapter 5 with the development of an observation-terminated market investment
model.

Additional notational conventions used for multi-period trees and stochastic linear

programs are introduced and defined in the next subsection.

2.2.2  Multi-period Notation

Nodes in adjacent periods of a decision tree are said to have a parent-child relationship.
Each node in period ¢, ¢ < T, of Figure 2.3 is the parent of L; child nodes in period ¢ + 1
and each node in period £, ¢ > 1, is the child of a parent node in period ¢ — 1. Nodes in
period ¢ with the same parent node are termed siblings and nodes in period ¢ with different
parents are termed cousins. Nodes to the left of (i.e., in an earlier period) or above a given
node are said to be older than that node.

Let the row vector [l~1, e ,l~t_1] be the path vector to a node in period £. The set

HE_, ([il, e ,l~t_1]) containing the corresponding unique parent node in period ¢ — 1 is
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then defined as:

HEy (B Ba]) =

where H} ([fl]) = { [Zo] } = {[]}, i.e., the parent node of a second period node is the

0, ift =1,

{[71,...,ft_2]}, if2<t<T,

single first period node. Similarly, the set H, ([fl, ey l~t_1] ) containing the period ¢ + 1

child nodes of node [l~1, ey l~t_1:| is defined as:

- . {[[11~--,L—1,lt] lt=l,...,Lt}, ifl<t<T,
Htc+1([ll,---,lt-1])= .

0, ift =T,

The two definitions abové demonstrate a major advantage that the path vector node la-
beling scheme has over the period-index scheme — parent-child relationships are obvious in
the pathv vector scheme while such relationships are not easily discernible with the period-
index scheme. For instance, calculations involving the number of outcomes in periods 1
through £ would be required to determine if node (, k;) is the parent of node (t + 1, hs1y).
A disadvantage of the path vector scheme is that the size of the vector grows with the depth
of the node in the tree. Identifying problem arrays that corréspond to a particular node by
labeling the arrays with the path vector for that node can therefore be cumbersome and im-
practical. This disadvantage can be alleviated by adopting the shorthand notation that [e],
represents the path vector for a period ¢ node. Path vector [e], then has (¢ — 1) elements

where [o], = [] is the single first period root node. Then, by convention,

[']t+1 € Hf::+1 ([o},) < [o], € Hf ([.]t+1) , and

[o]. € HE ([o],y) <= [o]s- € HE ([o],),
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when [o], and [e],_, or [e],_, are used in the same expression. Further, an expression like

L;
ol lel:
30 [k gthe)

for operator O (e) and operands x!*) and £[*¢+: where [o], = [l~1, e ,Zt—l] implies the

operation:

i O (x[‘]t,gl']m) - (x[z'l,...,i,_l],£[i1,...,i,_1,1]) L. +0O (x[z'l,...,z}_l],6[1'1,...,1',_1,1;,]) _

li=1

The shorthand [e], notation is also used to implicitly indicate the dependence of a
stochastic array in period ¢ on the occurrence of the outcomes implied by [e], in periods 1
through ¢ — 1. Let wl(f) represent the period ¢ outcome with index I;, 1 < I, < L., and let

[o]t = [l~1, ey Zt_1:| represent a node in periodt,1 <t < T. Then, for example,

Wk =w (wgt_l)

L

LD @ wg)) ,

Lo 77" 7R 0

represents the conditional recourse matrix at node [e],.
The conditional probability that the outcome with index l;, 1 < I, < L;, 1 <t <
T — 1, is observed at the t-period node [o], given the indicated outcomes Iy,...,%_; in

periods 1 through ¢ — 1 is pE:]‘, ie.,

Py =P (wz(f)

(t-1)  (t-2) @ M
Wi W e W WL ),

[o] 1

where 3 (o) is the probability operator and p;;* = B (wfll ) w((,o)) =B (wz(ll)) = pH

The compound (or, joint) probability, f)[‘]t, that the process enters the period ¢ node [.]t =

[l], cee, l~,¢_1] , 1 <t < T, is the product of the conditional probabilities of the outcomes
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along the indicated path to that node:

t—1

Alo NN [; Gd2yeenlt— o],
pole =l dicalin] =pgpl[21],_, zlilz S § P

lj’

j=1
where pi*h = pll = i, i.e., the single first period node ié always entered.

Either labeling scheme may be used to label problem arrays, e.g., x[4r-k-1] = xl*l =
x(®M)_ The path vector scheme, especially with the shorthand [#], notation, is used most
often. A combination of the two schemes will sometimes be used to improve clarity and
explanations for such cases are always provided. The notational conventions established
above are used below to develop the formulation for a multi-period stochastic linear pro-

gram.

2.3 Multi-Period Stochastic Linear Programs

Formulations for a stochastic linear program with recourse over a planning h01;izon divided
into multiple periods can now be defined. The first formulation below is referred to as the
primal formulation of the multi-period problem and the second formulation i‘s the dual to
the primal formulation. Formulation development is followed by a discussion comparing

the two formulations.

2.3.1 Primal Formulation

‘The primal formulation of the multi-period stochastic linear program is an extension to the

two-period problem [2.3]. The following grand LP formulation is referred to as problem
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PMPGLP:

L1 L2
ZP = max cl[]x[] + ZPE]]. [CI[.]2X[.]2 + Zpl[;]2 [cl[.]ax[.]a + - +
1=1 lo=1
Ly

3 pirnt [¢exde] ]

lp_1=1

s.t. . Axl bll,

IA

Bl -+ Wlelx[el:

IA

[o]; = =
BUl, he=1,.. Hy t=2...T, e

o
x[']t

(AVAAY)

0, he=1,....H, t=2,...,T,

where equation [2.7] is used to determine [o], given (%, h;) in the second and fourth sets of
constraints. The coefficient matrices in the first two sets of constraints above form a special
staircase structure that is difficult to demonstrate for the general problem due to the sheer
size of the problem. Composite matrices formed by separately combining all transition
matrices and then all recourse matrices for a period into two matrices for that period will
be used for the demonstration. Let x;, ¢t = 2,..., T, be the vector formed by stacking the

recourse decision vectors for each node in period ¢ in breadth-first node order, i.e.,

[ x(txl) . [~ x[lrli'“1171] T
— t.h — 11,02, l1—2,lt—
x; = | x(the) = | xlhd2li—2,le-1] ,
i x(t,Hg) i i X[LI,L2,---,Lt—2,Lt-—1] ]

and let x; = x!l. Define B; as the matrix obtained by stacking the transition matrices for

each node in period ¢ in breadth-first node order, in columnar blocks to conform with x;_;,
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and with empty blocks filled with zeros. Then, for example, Bsx, will be

[ Bl1.1] ]
BlL.L2
B[2’1] x[]-]
x[2]
Bsx; = Bl2.L2] : ’
x[Ll}
B[L111]
N :'B[L1,Lz]_J

where the empty blocks in B3 above are appropriately sized zero-matrices. Similarly, let

W, be the block-diagonal matrix formed by combining the recourse matrices in period £ so

that W3x3 will be
- wiLy 11 bl
WitLe] l1.L2]
Wix; = :
W[L111] ‘ x[Llrl]
WiaLal | | lZslal

Figure 2.5 then illustrates the staircase structure formed by the composite coefficient ma-
trices of the first two sets of constraints in problem [2.8].

The multi-period deterministic equivalent problem for the primal formulation is cre-
ated by defining value functions and expected value functions for each period after the

first in the planning horizon. Define the period ¢ expected value function, Q; (x[']t—l), for
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Figure 2.5: Staircase Structure of Problem PMPGLP [2.8]
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L¢y

Q, (x™-1) = 3 prif), (x[-lt - 5-1t>,

l1=1
where the period T' value function, 7 (x[‘]T—l, £ [elr

O (x[-JT_L, gl-lr> = max gl
s.t. Wllrxlelr

xlolr

) , 1s defined as

< blelr —B[’]Tx[.]T—l’
2 0,

and the period ¢ value function, £, (xMt—l ¥3 Mt) ,fort=2,...,T—1is

Qt (X[.]‘_1,€[.1‘> = max c’[’]tx[’]z

s.t. W[']:x[’]t
x[']t

Then the multi-period DEP is

2 =max cUxll +
st. Axll <

+ Qt+1 (x[']t)
b[.]t — B[']tx[.]t—l’

<
> 0.

Q5 (x[])
bll,
0.

The DEP then resembles a sequence of two-period problems due to the recursive nature of

the period ¢ value function fort =2,...,7 — 1.

The deterministic equivalent problem may be

reformulated by redefining the value

functions to remove the functional dependence on the expected value functions. A value

function, referred to as a nodal value function, can be

defined for each node in periods after

the first in the decision tree. The nodal value function for a period T node is

Qblr (xllr1) = [T]f' max  c/elrxlelr
st Whlrglelr
x[']T

38
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and the function for a node in period¢,2 <t < T — 1, is

Qe (xdthet) = pltt max Ml 4 5 bl (i)

le=1
st. WihlxPl < bl — Blelex*les [2.10]
x[']t Z 0.

Note that no random component argument, &§ [ele, is required since the stochastic data are
treated as being assigned to the nodes of the decision tree. The multi-period DEP, referred

to as problem PMPDEP, is then

L
2F = maxc/Ux!! + ZD['b (x[]) [2.11]
=1
st. Axll < bl
x!! > 0.

2.3.2 Dual Formulation

The dual formulation to problem PMPGLP [2.8] is called problem DMPGLP:

Ly Lo L,
zD — m1nb’“1r“+z b’[’]zﬂ-[']z + Zb’[’]sﬂ-[']a + ...+ Z b,[.]Tﬂ'[.]T
5 l2 lr_1
Ly
st. Al + S Bllglh >
=1
L —
Went S gt > g, ol
[2.12]
W/l glelr > ﬁ[.]TC[.]T, hr=1,...,Hy,
ll > 0,
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where- equation [2.7] is used to determine [e], given (¢,h;) in the applicable constraints.
The constraints of problem DMPGLP, like those of problem PMPGLP [2.8], also exhibit
a staircase structure. Figure 2.6 shows the staircase structure of problem DMPGLP using
the composite matrix notation defined above.

A deterministic equivalent problem for the dual formulation is not defined since one
is not used in any of the solution procedures to be developed in Chapter 4. These procedures

will directly exploit the staircase structure of problem DMPGLP [2.12].

2.3.3 Comparing Formulations

Figures 2.5 on page 37 and 2.6 on page 41 demonstrate both the major similarity between
the primal and dual formulations and the major difference between the formulations. Both
formulations exhibit staircase structures but the two structures differ significantly. The
primal staircase structure for problem PMPGLP [2.8], Figure 2.5, is transition-supported
since the steps, the composite recourse (W) matrices, are supported by the transition (B)
matrices. On the other hand, the dual staircase structure for problem DMPGLP [2.12] is
recourse-supported since the recourse matrices provide support for the transition matrices.
This structural difference results in diametrical routes for passing information in the two
structures. Problem PMPGLP sends information (the primal x variables) forward from
a period to the next period, whereas problem DMPGLP sends information (the dual 7

variables) backward from a period to the preceding period. These concepts will be applied
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-1

Figure 2.6: Staircase Structure of Problem DMPGLP [2.12]
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in Chapter 4 to develop decomposition procedures to obtain solutions to a stochastic linear

program.

2.4 Block-Separable Recourse

Block-separable récourse isa propérty of some stochastic programs that permits the prob-
lem structure to be manipulated in many ways. This property was first describéd by Lou-
veaux [134] and is also discussed ih Birge and Louveaux [16, Section 3.5]. Let [0] represent
an appropriately sized zero-matrix, then a stochastic linear program is said to have block-
separable recourse when the first period technology matrix and all transition and recourse

matrices can be partitioned as follows:
A 0]
A = [ AQD A2 |

. B(lrl)[.]t [0] o W(l,l)[’]g [0] ht =
Bil: — [3(2,1)[4: 0] and W = Wekl, Wl for ‘

1,..., H,
2,...,T,

Equation [2.7] is used to determine [e], given (¢, h:) in the lower sets of partitions above
and where appropriate in the discussion that follows. Note that these partitions differ from
those defined in the two references above since those authors stipulate that W@l = @
fort = 2,...,T. The partitioning of W{*: defined above is more general while still
allowing block-separability as shown below.

Problem vectors are then partitioned accordingly:
. b(l)[']g [o C(l)[.]t . x(l)[']t ht = 1, e Ht
b[ ]t — [ b(z)[.]t R C ]t = c(2)[°]¢ . and x[ ]t = x(z)[.]t fOI' t — 1’ L :T, !
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Louveaux calls the xV*) variables aggregate level decision variables and the x®!*): vari-
ables detailed level decision variables.
Constraints in the primal problem PMPGLP [2.8] may then be written as:

ALY < p®ll

Axll <pl! ®{ ARDXDI; ACD@I < b0 -

and

B[']tx[.]t—l + W[']tx[']t _<_ b[']t o

BADelxDlele—y L WDl Dol <bOF =18,
BVl x Mty 4 WMl WeAslx@lk < p@bl 7y =2 T

Note that the detailed level decision variables at a node in period t — 1 have no effect on
the constraints in period ¢ for ¢ = 2,...,T due to the partitioning of the transition matri-
ces. This characteristic of block-separable programs allows the constraints to be arranged
in many different ways tlhat may prove beneficial in finding a solution. For instance, all
constraints at nodes in periods after the first that incorporate only aggregate level decision

variables, i.e.,
BODelexMieley 4 WkiDlelex (6] < b(l)[-],’ hi=1,...,H, t=2,...,T,

can be moved to directly follow the first period constraints A (LDxMU < b, Then, since
the objective function can be separated accordingly, the rearranged problem structure will
look exactly like a two-period problem. All aggregate level decision variables appear in the
“first’ period and the detailed level decision variables appear only in the ’second’ period.

Similar rearrangements can be performed with the dual formulation. This and other con-
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straint groupings are discussed in detail in Chapter 5 with the application of decomposition

toa multi-period market investment model.

Block-separable recourse is fairly common in stochastic programming. Most multi-
period stochastic programs are inherently block-separable or can be induced to be block-
separable according to Louveaux [134, page 48]. An example of the latter case is observation-
terminated processes with reactive recourse variables in all periods — see the last subsection

of Section 2.2.1 above. Reactive recourse variables correspond to the detailed level decision

variables while discretionary recourse variables correspond to the aggregate level decision
variables. Transition matrices in this type of problem are clearly partitioned as above since
no reactive recourse variables are passed from one period to the next. Recourse matrices
and the first period technology matrix can be induced to have the above partitions when
necessary by adding artificial constraints. Assume, for example, that the matrix Wl at
some node [e], cannot be partitioned as shown above. An artificial bounding constraint on
the discretionary (aggregate level) variables can then be added to the problem at that node
thereby giving W1®: the desired partitioning scheme, e.g.,

1. if x(): are bounded, say xMI*le < x* where all elements of x* are finite, then add

the constraint 1’xM*: < 1/x*_ otherwise

2. xW0el: are unbounded, add a constraint similar to that in item 1 except replace 1'x"

with some arbitrarily large number, say M.
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If any constraint of the type in item 2 above is tight when the solution is obtained, then the
procedure should be repeated with continually increasing values for M until a solution is
obtained such that all such constraints have slack.

Birge and Louveaux [17, page 132] indicate that block-separable recourse should be
exploited in computational procedures whenever possible since it may reduce work by
orders of magnitude”. Results presented in Chapter 6 support this claim. It is therefore
surprising that very few, if any, computational studies on block-separable recourse have

been performed to date — none were found in an extensive literature search.
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Decomposition of Linear Programs

Mathematical decomposition is usually the most efficient method, and often the only
reasonable method, for obtaining solutions to large scale linear programs. Two of the most
widely applied prc')cedures, L—Shaped and Dantzig-Wolfe decomposition, are the focus of
this chapter. Detailed derivations and application algorithms for these two methods are
given in the first two sections below. Decomposition imp}erﬁentation issues are discussed

in the third and final section of this chapter.

3.1 L-Shaped Decomposition

Van Slyke and Wets [196] developed L-Shaped decomposition (LSD) to solve linear pro-

grams with the following structure:

2*= max cOx© + g (3.1a)
S.t. A(O:O)X(O) S b(o), (3.1b) 3 1
AGIKO 4 ALDKD < ) Gly O

x9 >0, j=0,1, (3.1d)

where x(© and x® are termed linking and‘linked variables respectively. The LSD algo-
rithm is an iterative two-phase procedure that determines if problem [3.1] is infeasible or
unbounded; otherwise, it obtains either an exact solution to problem [3.1] or an e-optimal
solution with lower and upper bounds on z* to within a specified tolerance e. The algo-
rithm derives its name from the shape formed by the left-hand-sides of constraints (3.1b-c).

Phase one of the algorithm obtains at each iteration G a solution to the LSD relaxed master -
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problem (RMP), LSD RMP:

28 = max dOx® 4+ ¢ : (3.2a)
st. A0Ox© < bO, (3.2b)
mAWx® + ¢ < PO, k=0,...,K9, (3.2)
8 A 1.0x(0) < bW, k=0,...,K9, 324
x® > 0, (3.2¢)
6 free, (3.2)

[3.2]

where constraint sets (3.2c) and (3.2d) are termed optimality cuts and feasibility cuts re-
spectively. Variable 6 is referred to as a relaxation variable. Problem [3.1] is infeasible if
problem [3.2] is infeasible, otherwise problem [3.2] is feasible and phase two of the algo-

rithm obtains a solution to the LSD subproblem (SUB), LSD SUB:

Q(X(O))= max c’(l)x(l)
st. AGDx(1) < pAO_ALDK0O) [3.3]
x(l) 2 0,

where x(©) is replaced with the optimal solution to the LSD RMP, say x(©9). Function
£(x®) defined by problem [3.3] is known as the relaxation function. The results of LSD
RMP and LSD SUB are analyzed during each iteration to determine if an e-optimal solu-
tion to problem [3.1] has been obtained at the conclusion of the second phase. The algo-
rithm is terminated if an e-optimal solution is available, otherwise either an optimality cut
or a feasibility cut is added to LSD RMP based upon the solution to LSD SUB and the
next iteration is executed. Details of the procedure are presented in the subsections below.

Van Slyke and Wets [196] give a detailed derivation for the LSD algorithm for the
case of a single set of linked variables (x(") above). That version of the algorithm is referred
to as the LSD(single-cut) algorithm since a single constraint, either an optimality cut or a

feasibility cut, is added to the LSD RMP at each iteration. Birge and Louveaux [16] and
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[17, Section 5.3] present a multicut version for the case of multiple sets of linked variables
when the problem is known to be bounded. A multicut version, LSD(multicut), is derived

below with no restriction on the finiteness of the problem.

3.1.1  LSD for Multiple Sets of Linked Variables.

Algorithm LSD(multicut) is developed for linear programs with multiple sets of linked

variables. These linear programs have the special structure illustrated by problem LBALP:

J
z*= max cOxO 4+ 3 0x0) (3.4a)

j=1

s.t. A0,05(0) b, (3.4b) [3.4]
AGOx©0) 4 A(i,i)x({) b®, j=1,...,J, (3.4c)
<@ 0, j=0,...,J (34d)

IV IA N

The matrices of coefficients in constraints (3.4b-c) form the lower block-angular structure
depicted in Figure 3.1.
Problem [3.4] can be represented by an equivalent master-subproblem formulation,

LSD Master-Sub, consisting of the phase one master problem, LSD Master:

J
z*= max cOxO 4+ ¢, (3.5a)
—
st.  A0Ox© < bO (3.5b) 3.5]
—£h(x@) + ; < 0, j=1,...,J, (3.5) ‘
x® > o, (3.5d)
0; free, j=1,...,J, (3.5¢)
and the phase two subproblems, LSD P-SUB(j),j =1,...,J:
L(x®) = max ¢'(j)x
st. AUdx0) < pl) - A6G0x(0) [3.6]
x(7) > 0.
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Figure 3.1: Lower Block-Angular Structure
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The LSD(multicut) algorithm is based upon iteratively solving a relaxed formula-
tion, LSD Relaxed, of the LSD Master-Sub formulation. Formulation LSD Relaxed re-
places constraint sets (3.5¢) with sets of optimality and feasibility cuts. The dual problems,

LSD D-SUBG), j = 1,...,J:

2x®) = min (b - AUOKO)' 70 (3.7) _
s.t. AGDx) > ¢ (3.7b) [3.7]
@ > 0,  (37c)

to LSD P-SUB(j), j = 1, .. ,J, will be refefenced frequently during algorithm develop-
ment. Properties of the LSD P-SUB(j ) relaxation function £ (x(o)) for 5 € J for indexing
set J = {1,..., J} are described in the next subsection. The LSD Relaxed formulation,
LSD(multicut) algorifhm development, and algorithm properties are described in subse-

quent subsections.

3.1.2 Propefties of the LSD Relaxation Function

Define the feasibility sets, X9} (x(?), for the linked variables as:
X0 (x0) = {x9 |AGIxD < b — AGOXO, x>0}, j=1,..., 7

where, by definition, £f (x(?)) assumes the value of negative infinity if X\ (x() is empty
for a given x@, ie., £ (x9) = —oc0 if X¥) (x(?) = @. Define the feasibility sets, X0
for the linking variables as:

© {(x@f (x@) > —0}, . ifje),
X\ =
? {x© |ACOXO® < bO, x® > 0}, ifj=0.
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The following three propositions establish important properties for the LSD P-SUB(j)
functions, £7 (x(o)) j =1,...,J, and they are analogous to Propositions 2-4 of Van Slyke

and Wets [196, pages 644-645].

Proposition 1 For j € J and for all X© ¢ X§0), £8 (x9) is either a finite concave

Sfunction or 2? (x(o)) is identically positive infinity.

Proof Since problem LSD P-SUB()) [3.6] is feasible for.all x@ € X{, it follows from
LP duality theory that problem LSD P-SUB(j) is unbounded if and only if the dual prob-
lem LSD D-SUB(j) [3.7] is infeasible. Therefore, £5 (x(?)) is either finite or identically
positive infinity for all x(© ¢ Xg-o)since problem LSD D-SUB(j) is infeasible if and only
if constraints (3.7b), A’G () > b, are inconsistent. Assume £F (x(?) is finite and let
x§°) , xéo) X(O) Then x = /\x(o) +(1-X) x§°> € X§0)’ for0 < A £ 1, since X§0) isa

convex set. Let x{, x{, and x{ be optimal solutions to problem LSD P-SUB(j) when

©0) (0

x© equals x\”, x{¥, and x{¥

respectively. Then

2 () + (1= G (=) = AeOx 4 (1-0) O
= @ [)\xgj) +(1— A)xgj)]

< ) = gf (xE\O)) _

Where the inequality above is justified by [Axgj Y+ 1=-1xP] e xD (xf\o) ) , 1.e., fea-
sible to LSD P-SUB(5) since X% (xf\o)) is a convex set, but Ax{ + (1 — A)x¥] is not

necessarily an optimal solution to problem LSD P-SUB(j). ®
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Proposition2  Forj € J,letX© € Xg-o) and assume £5(X©) is finite and let %9 be a

corresponding optimal solution to problem LSD D-SUB( 7) [3.7]. Then the affine function
ROMONE (;,/(j) A(j,O)) % ‘ [3.8]
is a support of £ (x©@). .

Proof By strong duality, £2 (X@) = (b®) — AGOZ@)' 7 = gF (X). By assump-
tion and Proposition 1, £ (x@) is finite for all x@ € X§0). Since ) is feasible but not
necessarily optimal to problem LSD D-SUB(3) for all x(© ¢ X§~0), weak duality guarantees

that

(b9 — A(J',O)X(O))’ 7@ > £ (x@) vxO ¢ X§0)_.

Proposition3  For j € J, assume £ (x0) is finite on Xg-o). Then £5 (x©) is a concave

polyhedral function.

Proof There are only a finite number of supports of type [3.8] since there are only a finite
number of ") that are solutions to problem LSD D-SUB(j) [3.7] since each such 7(
corresponds to a basis of A'G:7) = [A’G:), -I], where -I is the negative identity matrix of
coefficients for a vector of slack variables added to constraints (3.7b), and A'G.9) has only
a finite number of square non-singular submatrices. By Proposition 2, there is a support

of type [3.8] for all x© ¢ X§0). Furthermore, there is a support of type [3.8] that meets
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£8 (x@) at x© for all x@ € X§0)_ Therefore, the lower envelope of this finite number of

affine supports coincides with £ (x().

3.1.3 LSD Relaxed Formulation

The iterative LSD(multicut) algorithm is based upon solving a relaxed formulation of the
LSD Master-Sub formulation, problems [3.5] and [3.6]. Formulation LSD Relaxed con-

sists of the phase one relaxed master problem, LSD RMP:

J
Zp= max cOxO 1+ 5740, (3.92)
j=1 .
s.t. A00x© < bO, (3.9b) 39
x©.6,) € C, j=1,....,J, (3.9¢) )
x® > o, (3.9d)
6; free, j=1,...,J, (3.9¢)

and the phase two subproblems LSD P-SUB(j5), j = 1,. .., J, problems [3.6]. The sets of
cuts, C;, j = 1,...,J, in constraints (3.90) contain optimality and feasibility cuts defined
such that if x9), j =0, ..., J, are feasible to the LSD Master-Sub formulation and thus to
the original problem LBALP [3.4], then there exist 6;, j = 1,..., J, such that x(%) and §;
are feaéible to the LSD Relaxed formulation wilth 2 < zyp = ¢/Ox0 E}I=1 6;. Each C;,
J € J,is initially empty and may be augmented with an additional cut during each iteration
pf the algorithm. Coefficient u;, j € J, in objective function (3.9a) is 0 if the corresponding
cut set C; contains no optimality cuts or 1 otherwise.

Let Zys (x9) = /@x© represent the contribution of x(® to the LSD RMP ob-
jective function value. Then each primary type of cut, optimality and feasibility, consists

of two subtypes depending upon the finiteness of Zz (x(o)). The four types of cuts are
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termed feasibility (unbounded), optimality (unbounded), feasibility (finite), and optimality

(finite). The applicability and derivation of each cut is discussed below.

1.

Zup (x(o)) = oo: the simplex algorithm returns an extreme point, xl(,o), and direction,
xgo), which determine a ray, xf\o) = x 4 Axgo) , A 2 0, along which Zp (xf\o) )
increases monotonically with . (Néte that one of the finite subtypes of cuts discussed
in item 2-below is made if LSD RMP is unbouncied due solely to 8; = oo for one or
more j € J.) Then for some j € J and with x© = 'xi(,o)v, solve the modified phase two

subproblem LSD PM-SUB(j):

2«;'\ (X(O)) = max c/(Dx () + (CI(O)XEO))/\
' st. AGIx0) 4 A(j,u)xgo)) A
<

A

b — AUGOKO)
0, :
0,

[3.10]

VIV IA

which corresponds to the modified dual phase two subproblem LSD DM-SUB(5):

S?A(X(O)) — min (b(j)_ A(j,O)x(O))’,r(j) (3.11a)
o el () [3.11]

(A(J’O)Xd )’1‘-(.7) 2 c’(o)xd ) (3_110)

0 > 0. (3.11d)

Note that if x(9) is feasible to problem LSD P-SUB(j) [3.6] for some x(®, then it is
feasible to LSD PM-SUB() and L2(x®) < £P(x©) since x{? is an ascent direction
for LSD RMP [3.9] implying that (¢’@x{”)A\ > 0 for A > 0. The type of cut to be
added to C; depends upon the solution to proialem LSD PM-SUB(3) as follows:

(a) LSD PM-SUB(j) is infeasible = feasibility (unbounded) cut: with x(® = x{0),

solve the following simplex phase one type problem based upon problem LSD
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PM-SUB(j):

WMNx©®) = min 1'v

st. Iv — AGDx0) — (AGOX)\ > AGOx© _p),
x® > 0,
A >0,
v > 0,
[3.12]
which is always feasible and bounded and corresponds to the dual problem:
WHx@) = max (AUOxO) — p») @) (3.132)
s.t. A'GNSE) > 0, (3.13b)
(AGOXOYs0) > 0, (3.13¢) [3.13]
69 < 1, (3.13d)
&9 > 0.

Let the optimal solutions be vy, xg ), Ay, and 6{," ) , and note that
W) (x@) = 1'vy = (A99xO —b@)6D > 0

since problem LSD PM-SUB(j) [3.10] is infeasible. The above inequality and

constraints (3.13c) imply that for A > 0,

( A(j,o)xgo) — bWy 58‘) + X( A(j,o)xgo))/ 5‘(}‘) - ( A(j,o)xl()m + A A(j,O)xgm RO, 58')
= (AGORO _p0)ysd)

> 0,
so that the feasibility (unbounded) cut

(69 AGD)xO) < B g [3.14]
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will not admit the ray xf\o) = xgo) + /\xgo), A > 0, but will not exclude any
x© ¢ Xg.o) since W} (x@) = 0 > (AGOxO — b@)§) because 6 is feasible

but not necessarily optimum to problem [3.13] for all x(¥ ¢ Xgo) .

LSD PM-SUB(j) is feasible and bounded == optimality (unbounded)
cut: let the optimal solutions to problems LSD PM-SUB(j) [3.10] and
LSD DM-SUB(5) [3.11] be x%), Ay, and w%¥). Strong duality implies that
L (xO) = £ (x() = (b — AGIxO Y. Then, by weak duality,
£2(x0) < (b — A G057 )
for all x(© e XS-O) since ) is feasible but not necessarily optimal to problem LSD
DM-SUB(;) for all x(®). Furthermore, constraints (3.5¢) of problem LSD Master
[3.5] indicate that 8; < £5(x(?) for any (x(), 6;) feasible to LSD Master implying
that
8, < (b(j) - A(j’o)x(o)),ﬂ'g)

for any (x(©,9;) feasible to LSD Master. Therefore, the optimality (unbounded)
cut

(x D AGD)XO 1 g, < O 7l [3.15]
will not admit xf\o) = xl(,o) + ,\x§°), A > 0, for arbitrarily large )\ since constraints
(3.11c) imply that A(AGOXOY 20 > 7\cOx O which increases monotonically
with A since x§°’ is an ascent direction for problem LSD RMP [3.9]. Moreover,

cut [3.15] will not exclude any point, say (i(o),gj), that is a part of the optimal
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solution to problem LSD Master since X® ¢ X§_0) and 8; < £2(X©) implying that:
53- < gg(i(o)) < ggz\(i(o)) = gjl?f\(;c(o)) < (bW — A(j,0)§(0))/7rl()i),

by strong duality and m(Jj ) feasible but not necessarily optimum to LSD DM-SUB(35)

for all x(©.
(c) LSD PM-SUB(j) is feasible and unbounded: no cuts are added to C;.

2. Zup (x) < oco: let the optimal solutions to problem LSD RMP [3.9] be X and 6;,
j=1,...,J. For some j € J, solve problem LSD P-SUB(5) [3.6] and the type of cut
to add to C; depends upon the solution as follows:

(a) LSD P-SUB(j) is infeasible = feasibility (finite) cut: with x(© = X©, solve the

following simplex phase one type problem based upon problem LSD P-SUB(j):
W; (x@) = min 1'v

' x? > o, [3.16]
v > 0,
which is always feasible and bounded and corresponds to the dual problem:
W; (X(O)) = max ( A0 (0) _ b(j))’ 5@ (3.17a)
s.t. AGNSE > 0,  (3.17b) [(3.17]
89 < 1, (3.17) ‘
s¥) > 0. (3.17d)

Let the optimal solutions be vy, xl(;j ) , and égj ), and note that
W; (X9) = 1'vg = (AUIZO b®)'6$ > 0
since problem LSD P-SUB(j) is infeasible. Therefore, the feasibility (finite) cut
(8659 AGD)xO) < p'@) g | [3.18]
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will not admit the point X© but will not exclude any x©@ ¢ Xgo) since
W; (@) =0 > (AGOxO — b@)Y6Y) because 6 is feasible but not necessarily

optimum to problem [3.17] for all x(©@ ¢ X§0) .

LSD P-SUBY(j) is feasible and bounded with £5(X(?)) < ; = optimality (finite)
cut: let the optimal solution to the correspbnding dual problem LSD D-SUB(j) [3.7]
be {. Strong duality implies that CEO) = £2(XO) = (b0) — AGOZO) (),
Therefore, by strong duality and Propo‘éition 1,

£x) = £2(x?) < (b — AGIxO)' 1)

for all x(¥ € X§0) since 1rl(3j ) is feasible but not necessarily optimum to problem LSD
D-SUB()) for all x(%. Furthermore, constraints (3.5¢) of problem LSD Master [3.5]

indicate that §; < £5(x(®) for any (x(, 6;) feasible to LSD Master implying that
6, < (b9 — AGOKO) 7
for any (x?, 6;) feasible to LSD Master. Therefore, the optimality (finite) cut
() AGNXO 4 9. < p'O ) [3.19]

will not admit the point (X(®,9;) since §; > £5(X®) but will not exclude any

(x(, 6;) feasible to LSD Master.

LSD P-SUBY()) is feasible and bounded with £5(X©) = 6; or LSD P-SUB(j) is

feasible and unbounded: no cuts are added to C;.

58



Chapter 3 Decomposition of Linear Programs
3.14  Algorithm LSD(multicut)

Algorithm LSD(multicut) is composed of two procedures — initialize and optimize. The
initialization procedure adds at least one optimality (finite) type cut [3.19] to each C;,
J = 1,...,J, if the procedure determines that the original problem LBALP [3.4] has a
feasible and finite optimal solutién. The optimization procedure finds an e-optimal solu-
tion to problem LBALP given that the initialization procedure determined that a finite op-
tirﬁal solution exists. The algorithm is applied to the LSD Relaxed formulation, problems
[3.9] and [3.6], and is detailed below followed by the descriptions for the two contained
procedures. Complementary flowcharts for the algorithm and procedures follow the de-
tailed descriptions. Note that the algorithm assumes a predefined nonnegative value for the
relative difference, €, between the upper and lower bounds on the solution, 2*, to problem
LBALP.

Algorithm LSD(multicut)

Step 0: Initialize the following parameters:

G «— 0,
21 — —00,
20} — o0
'gj — 01 J— ) '7'],
9,7' — oo, .7= ) ',Ja
C:i — 0, J= ’ '7Ja
K9 0, j=1,...,J,
KD« 0, j=1,..,/
feasible « true,
finite <« true,
«— false.

solved

Go to Step 1.
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Step 1: Execute Procedure LSD(multicut)-Initialize. If feasible = false: stop with an
infeasible problem LBALP [3.4]; else if finite = false: stop with unbounded problem
LBALP; else if solved = true: stop with e-optimal solution to problem LBALP; else

go to Step 2.

Step 2: Execute Procedure LSD(multicut)-Optimize. Stop with e-optimal solution to

problem LBALP [3.4].

Parameter G is the algorithm iteration counter and is increased by one in the two
referenced procedures with each attempt to solve problem LSD RMP [3.9]. The best
greatest) lower and best (least) upper bounds on the value, 2*, of problem LBALP found
through the current iteration are recorded by 215 and zyp respectively. For j = 1,...,J,
LSD RMP objective function coefficient u; for variable 6; is initially set to zero and 51-
to positive infinity to represent the optimum value of §;. Coefficient u;, 7 € J, is set to
one in procedure LSD(multicut)-Initialize when the first optimality cut is added to cut
set C; after which §; may acquire a finite value. Parameters K and K record the
number of optimality cuts and feasibility cuts respectively that are in C;, j = 1,..., J, at
the conclusion of each iteration. Logical parameters feasible, finite, and solved indicate
the return status of procedure LSD(multicut)-Initialize as follows:
feasible: state false indicates that no feasible solution exists for problem LBALP [3.4]

while state true indicates that there is a feasible solution;
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finite: meaningful only when fedsible = true and state false means problem LBALP

is unbounded while state true indicates that a bounded solution exists;

solved: meaningful only when feasible = finite = true and state true indicates that an
e-optimal solution to problem LBALP has been determined while state false indicates
that procedure LSD(multicut)-Optimize should be executed to obtain an e-optimal so-

lution.
Procedure LSD(multicut)-Initialize

Step 1: Set G — G +1 and solve problem LSD RMP [3.9]. If LSD RMP is infeasible,
set feasible « false and return to algorithm; else, LSD RMP is feasible, let optimal
solution be @ and G, k = 1,.. ., J, (where 85 = oo if Cj contains no optimality cuts

and X(©) represents an ascent ray if Zy(X(®) = o0) and go to Step 2.

| Step2: Set j < 0, bound — 0, and cuts — 0. If Z(X?) = co (LSD RMP is
unbounded regardless of 9., j= 11, '. .., J, values), let ascent ray be X© = xf\o) =
x;(,o) + ,\_x§°), A > 0, set Si(xf\o)) —.—00, k =1,...,J, and go to Step 3; else,
Zu(X®) < oo, go to Step 4. |
Step3: If j = J, goto Step 5. Set j «— j + 1 and solve problem LSD PM-SUB(j)
[3.10] with x(® = x{. If LSD PM-SUB(j) is infeasible, go to Substep 3a; else if

LSD PM-SUB(j) is feasible and bounded, go to Substep 3b; else, LSD PM-SUB(5) is

feasible and unbounded, repeat Step 3.




Chapter 3 Decomposition of Linear Programs

-

Substep 3a: Set cuts «— cuts + 1, solve simplex phase one type problem [3.12]
with x© = x(® and let the optimal dual multipliers be 6. Construct feasibility

(unbounded) type cut [3.14] and set
G—GC N {x<°> ‘(553') A(j,o>) x© < b,@&g)} -

Set Kf(j) — Kf(j) + 1 and return to Step 3.
Substep 3b: Set'cﬁts — cuts +1 and let optimal multipliers to LSD PM-SUB(j)'

be w{,j ). Construct optimality (unbounded) type cut [3.15] and set

GG N {(0,8) (P 469) %0 +.6, < O,

If u; =0, set u; + 1. Set K9 « K + 1 and return to Step 3.

Step4: If j = J, goto Stép 5. Set j « j + 1 and solve problem LSD P-SUB(j)
[3.6] with x(© = %, If LSD P-SUB(j) is infeasible, go to Substep 4a; else if LSD
P-SUB()) is feasible and bounded with £5(X@) < 8, go to Substep 4b; else, LSD

| P-SUB()) is feasible and either £5(%(®) = 8; or £5(X®) = o0, go to Substep 4c.

Substep 4a: Set cuts — cuts + 1 and recall that £5(X(®) = —oo by definition since
X (%) = . Solve simplex phase one type problem [3.16] with x© = X©and let

optimal multipliers be 6,(3j ). Construct feasibility (finite) type cut [3.18] and set
CGe—GCN {X(O) !(5;3(:') A(j,O)) x© < p/6O)sd }
Set Kf(j) — Kf(j) + 1 and return to Step 4.
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Substep 4b: Let the optimal dual multipliers to LSD P-SUB(j) be ng ). Construct

optimality (finite) type cut [3.19] and set
G <G N {(x(o), 0;) ’(ng)A(j’0)> x4 6; < b’(j)mgj) }

If u; = 0, set u; — 1. Set bound «— bound + 1. Set K9 «— KU) 4+ 1 and return to

Step 4.
Substep 4¢: If £5(X©@) = §; < 0o, set bound « bound + 1. Return to Step 4.

Step 5: Set zyp — Z(X?) + Z]Ll 5j. If cuts = 0 and bound < J, set finite «—
false and return to algorithm; else if bound = J, go to Step 6; else return to Step 1.

Step 6: Set z{? — Zu(X0) + '-]= LHXO). Set 25 « max zLB7ZI(_§) If
j=1"j

(2u — 21B) < |28] €, set solved «— true. Return to algorithm.

Procedure LSD(multicut)-Initialize determines if problem LBALP [3.4] is infeasi-
ble (feasible = false in Step 1) or unbounded (finite = false in Step 5) or, otherwise, is
feasible and bounded (feasible = finite = true). Two courses of action based upon the
state of parameter solved are possible for the last case (feasible and bounded):

solved = true: an e-optimal solution to problem LBALP has been determined and the

algorithm should be terminated, otherwise,

solved = false: procedure LSD(multicut)-Optimize should be executed to determine
an e-optimal solution to problem LBALP — each cut set C;, j = 1,...,J, will contain

at least one optimality (finite) type cut [3.19].
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Note that Step 3 will never be executed after the first execution of Step 4. Step 4 is called,
say at iteration E-‘, when a feasible solution to LSD RMP [3.9] has been found such that
Zup(x®) < co. Executing Step 3 after this event, G > G, would imply a ray of unbounded
increase for ¢/©x(© over a feasible region no larger than the one existing at iteration G
which is ﬁot possible.

Procedure LSD(multicut)-Optimize

Step 1: Set G « G + 1 and solve problem LSD RMP [3.9]. Let optimal solution be

X and@;,j=1,...,J. Set zyp «— Zhg, 7 «— 0 and cuts + 0 and go to Step 2.

i

Step 2: If j = J, goto Step 3. Set j « j + 1 and solve problem LSD P-SUB(j) [3.6]
with x© = X, If LSD P-SUB(j) is infeasible, go to Substep 2a; else if LEO) <,
go to Substep 2b; else, LSD P-SUB(y) is feasible with 2;(52(0)) = 53-, repeat Step 2.

Substep 2a: Set cuts < cuts + 1. Solve simplex phase 1 type problem [3.16] and

let optimal multipliers be égj ). Construct feasibility (finite) type cut [3.18] and set
-GN {xw) |(5g:'> A(j’°)> x© < pO§P } .

Set Kf(j) — f(j) + 1 and return to Step 2.

Substep 2b: Let optimal multipliers to LSD P-SUB(5) be 1r}(3j ). Construct optimality

(finite) type cut [3.19] and set
GG N {(,6) [ (ﬂ-g(j)A(j’O)> x® +6; < pOrl ).
Set K — KU) 4+ 1 and return to Step 2.
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e

Step 3: If cuts = 0: set 20 «— 2z — Y [53 - £§(§(°))] and then set 25
max (zLB, z,(f) ) If (zup — 218) < |#8] €, return to algorithm; else retumn to Step 1.
Procedure LSD(multicut)-Optimize is executed only if procedure LSD(multicut)-
Initialize determines that problem LBALP [3.4] is feasible and bounded. Therefore, pro-
cedure LSD(multicut)-Optimize obtains a bounded solution to the LSD Relaxed formu-
lation, problems [3.9] and [3.6], at each iteration and must return a e-optimal solution for

problem LBALP as shown in the next subsection.

Note that the termination test, (2ys — 218) < |21| €, in Step 6 of procedure
LSD(multicut)-Initialize and Step 3 of procedure LSD(multicut)-Optimize must be mod-
ified if there is a possibility that 2* = 0. Any such modification (e.g., terminate if z;5 > —eg
and zys < €9 Where ¢ is the smallest positive real number possible on the computer) is as-
sumed and is not discussed further.

Flowcharts of algorithm LSD(multicut) and the initialization and optimization pro-

cedures are at Figures 3.2-3.4.

3.1.5  Finite Termination of Algorithm LSD(multicut)

Algorithm LSD(multicut) will terminate in a finite number of iterations with either an
e-optimal solution to problem LBALP [3.4] or with an indication that problem LBALP
is infeasible or unbounded. The proof of finite termination relies upon Propositions 1-3

starting on page 50 and five additional properties of the algorithm and the underlying LSD
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Figure 3.2: Algorithm LSD(multicut) Flowchart
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Relaxed formulation. These ﬁvé properties are stated below as Propositions 4-8 followed
by Proposition 9 formally stating the finite termination property.

First, problem LSD RMP [3.9] is rewritten by replacing each cutset C;, j = 1,..., J,
with an explicit listing of contained constraints and by superscribing the objective function
designator with the current algorithm LSD(multicut) iteration index G. Let K%® and
Kf(j’G) designate the numbers of optimality and feasibility cuts respectively at the conclu-
sion of iteration G with K39 = K%% =  for cut setsl, j=1,...,J. Finite (B) and un-
bounded (U) subscript identiﬁgrs are removed from‘ the épplicable dual multipliers. Then,

at LSD(multicut) iteration G > 1, LSD RMP(G) is:

J
7 = max cOxO® + Y w6,
o]
s.t. A00x© < bO,
. . — G—

ﬂ;c(J)A(j’O)X(O) + 9_7‘ < bl(j)ﬂ.g)’ k= 1,. o aK(EJ 1)1

: j=1,...,J,

5'9) A G095 (0) < pgH k=1 K )

k _’" : = 0%, ji=1,...,J,

X(O) 2 O’
6; free, j=1,...,J,

[3.20]

The dual to prbblerh [3.20] will also be required in the proof of the first proposition below.
Let, 79, 7\, and v be the duals to the first, second, and third sets of constraints of

problem [3.20] respectively. The corresponding dual problem is then:
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JG -1)
331(3 )—m.in OO E E bI(J)ﬂ.(J),r’g)
=1 k=1
7 KtSJ',G—l)
+ Z Z bl(j)(sl(cj)vl(cj)
=1 k=1
g GED L
st A/0OZO L Z Z A/(j,o)ﬂl(ca)m(ca),
- 1
JJ K(JG 1)
+ Z Z AI(J,O)J(J) (.7) > C(O)
_7—1 k=1
K(JG"]-) .
Z "7(J) = Uy, Jj=1 a']7
7‘.(0) > 0,
(J) k = 1, . ,K‘Sj’G_l),
% 20 j=1...,J,
. (j:G_l)
(9 > k_la '7Kf 3
i 2 0, j=1,...,J
[3.21]

Define a feasible iteration of algorithm LSD(multicut) as one with an optimal so-
lution to the current relaxed master problem, say x(®® and 6(®). Denote the LSD Re-
laxed formulation, problems LSD RMP(G) [3.20] and LSD P-SUB(5) [3.6], at iteration
G of algorithm LSD(multicut) as LSD Relaxed(G). Then, Propositions 4-9 formally state
properties of the LSD(multicut) algorithm and the LSD Relaxed formulation that were

implicitly assumed in the development of the algorithm.

Proposition4 At any feasible iteration G of algorithm LSD(multicut) with Z5(x(€)) <
00, at least one optimality cut constraint is tight in each C;, j € J, that has Kéj’G‘l) >

1.
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7o) < oo when Z(x®C)) < oo since either u; = 0 or u; = 1 and

Proof Note that
K{G-D > 1V j =1,...,J. Therefore, for each j € J with KGG=D > 1, the dual

problem [3.21] constraints
KGO
> "71(:]) = 1,
k=1 _
) > 0, k=1,...,KGG-D,

require at least one positive n{’ for 1 < k < K(:6-1. By linear programming com-
plementary slackness conditions, the corresponding primal problem [3.20] optimality cut

constraint must be tight:

7D AG0%06) 4 9§G) =br) m

PropositionS At any feasible iteration G of algorithm LSD(multicut), 9§G) > £§(x(°’G))

Proof  This is clearly true if Zys(x(®)) is unbounded since ££(x(*9)) is set to nega-
tive infinity for j = 1,..., J in Step 2 of procedure LSD(multicut)-Initialize — recall that
Zus(x(9) is never unbounded in procedure LSD(multicut)-Optimize. It is also true when
Z(x(%)) < 0o and u; = 0 for some j € J since 9§-G) = 00. Then for Zi(x09) < 0o
and u; = 1 for some j € J (which implies that K&¢-1) > 1), assume by contradic-
tion that 9§G) < £8(x(®%)). The assumption is obviously not valid if X&) (x©9) = ¢

since £8(x(*?)) = —oo by definition. Therefore, consider the case for a feasible (i.e.,
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XU (x(%9) is not empty) problem LSD P-SUB(j) [3.6] with optimal solution x%® and

optimal dual multipliers w®), The assumption and strong duality imply that
05_0) < (x00) = £2(x09) = (b — AUOK0.)) 70:E),
The corresponding optimality cuts of problem LSD RMP(G) [3.20], -
I ANX0C) _ (D) < D) | =1,... KUCD,

must also be satisfied. However, r;c(j ) Jk=1,...,KUC-1, are feasible but not necessarily

optimal to problem LSD D-SUB(;) [3.7] for all x© .€ X, implying that
9§_G) < (b9 — A(a',O)x(o,G))’,r(a’,G) < (b9 - A(j,O)x(O,G))’ﬂ.g), k=1,...,K¥6-D,

which violates Proposition 4. Therefore, the assumption that 9§G) < 2; (x(O'G)) cannot be

valid. &

Proposition 6 At any iteration G, algorithm LSD(multicut) maintains a valid lower
bound, zg, on the value, z*, of problem LBALP [3.4]. Moreover, zp is the best (greatest)

)
lower bound found by the algorithm through iteration G.

Proof The value z; is initially set to negative infinity and is changed thereafter to 2{? =

/%0 +Z}=1 £8(x(®) only when x) € Xg-o),j =0,...,JGe,x9,5=0,...,J, have

been found that are feasible to problem LBALP) with z{? > 2. W
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Proposition 7 ‘At any iteration G, algorithm LSD(multicut) maintains LSD Re-
laxed(G) as a relaxation of formulatioh LSD Master-Sub, problems [3.5] and [3.6], and

thus the original problem LBALP [3.4].

Proof AssumeX",j=0,...,J, and 5,-, j=1,...,J, are feasible to formulation LSD
Master-Sub. Then X%, j = 1,..., J, are clearly feasible to formulation LSD Relaxed(G)
since the two formulations share the same phase two subproblems LSD P-SUB(j) [3.6].

The point X© ¢ X((JO) in both formulations and X(*) must satisfy any feasibility cuts,
SIAOFO < pW§D g =1, KD j=1,... 1,

in LSD Relaxed(G) since these cuts were formed to admit only x© such that X&) (x(©),
J € J,1is not empty (i.e., problem LSD P-SUB(5) is feasible). Since the constraints (3.5¢)
in problem LSD Master [3.5] require that 5]- < 8(x©), 5 =1,...,J, any optimality cuts

to LSD Relaxed(G),
rDAGOFO 1 7. < bl g - 1., K@% j=1,...,J,

must also be satisfied due to ﬂ';c(j ) ,k=1,...,K §j'G‘1), feasible but not necessarily optimal

to problem LSD D-SUB(5), implying that
0, < EFO) = £2(XO) < (bW — AGOKOYRD k=1 . KOG j=1,.. . J.

Therefore, any x@), j=0,...,J,andb;,j=1,...,J, feasible to LSD Master-Sub is also
feasible to LSD Relaxed(G). Conversely, Proposition 5 indicates that x, § = 0,..., J,

andf;,j =1,...,J, feasible to LSD Relaxed(G) may not be feasible to LSD Master-Sub
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since the latter réquires that 6, < £5(x(?), j = 1,..., J. Since algorithm LSD(multicut)
replaces the value of problem LSD Relaxed(G), 7D with 25 = /OxO06) + Zj:l 6’5-0) )
Proposition 5 also implies that zys > 2*. Therefore, LSD Relaxed(G) is a relaxation
of LSD Master-Sub an;i thus the original problem LBALP [3.4] since the lafter two aré

equivalent. H

Proposition 8 The original problem LBALP [3.4] is infeasible or unbounded if and
only if algorithm LSD(multicut) terminates With an indication that the problem is infeasi-

ble or unbounded respectively.

Proof The algorithm terminates with an indication that the problem is unbounded only
when procedure LSD(multicut)-Initialize finds x%, j = 0,...,J, feasible to problem
LBALP such that ¢/x) is unbounded for at least one j € 0 N J. LSD(@multicut) termi-
nates with an indication of infeasible only when problem LSD RMP(G) [3.20] is found to
be infeasible. The latter implies that problem LBALP is infeasible by Proposition 7. Con-
versely, the algorithm terminates at iteration G with an e-optimal solution only if z;5 > —00
and zyp < 00 indicat/ing that x9, j = 0,..., J, feasible to problem LBALP have been

found with 23 < z* < zyp by Propositions 6 and 7. B

Proposition 9 Algorithm LSD(multicut) terminates in a finite number of iterations
either with an indication that the original problem LBALP [3.4] is z:nfeasible or unbounded

or with an e-optimal solution to problem LBALP given that problems LSD RMP(G) [3.20]
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and LSD P-SUB(j) [3.6], j = 1,...,J, are not degenerate or that the simplex solver

prevents cycling.

Proof Cycling prevention and/or the absence of degeneracy insures that the solutions to
LSD RMP(G) and LSD P-SUB(j), j = 1,...,J, will be obtained in a finite number of
simplex iterations at each iteration of algorithm LSD(multicut). Each ng ) and 5,8 ) coef-
ficient vector in the optimality and feasibility cuts corresponds to a basis of the coefficient
matrix (after adding columns to account for slack variables) of the appropriate problem
[3.6], [3.10], [3.12], or [3.16]. Since each of these matrices has a finite number of square
non-singular submatrices, there are a finite n1_1mber of possible feasibility and optimality
cuts. No wfcj Jor 5§j) will be generated more than once since any subsequent generation
would imply the admission of a solution from outside the current feasible region includ-
ing the cut based upon the initial generation. Therefore, algorithin LSD(multicut) will
terminate in a finite number of iterations.

Assume that the algorithm does not terminate with an indication that the problem
is infeasible or unbounded implying that problem LBALP is feasible and bounded by
Proposition 8. The algorithm concludes each iteration, G, either by adding at least one
cut and starting the next iteration or by terminating with an e-optimal solution. There-
fore, a sequence of nqn-increasing upper bounds are generated since the feasible region
for LSD Relaxed(G) is a subset of the feasible region for LSD Relaxed(G — 1). As- |

sume that the last possible cut is added during iteration G. The algorithm will then gen-
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erate LSD RMP(G -+ 1) solution (x(®G+1), 0(5“)) with objective value zyz = 70T =
@05+ 4 P 0§é+1) at iteration G -+ 1. Each LSD P-SUB(j) must be feasible with

£5 (x(o’é“) ) = 0§é+1), Jj=1,...,J, due to the assumption that the last possible cut was

generated during the previous iteration implying that
-~ J —_—
— (0),(0,G+1) P (L(0G+1)) _
Zip =CcV'x +Z£j (x )—zUB.
j=1

Therefore, by Propositions 6-8, algorithm LSD(multicut) either determines that problem
LBALP is infeasible or unbounded or it generates a sequence of upper bounds and a se-

quence of lower bounds that converge to an e-optimal solution of problem LBALP. M

3.2 - Dantzig-Wolfe Decomposition

Applying L-Shaped decomposition to a given LP is equivalent to applyihg Dantzig-Wolfe
decomposition (DWD) to the dual of that LP. Thus, LSD (DWD) can be ihterpreted as the
dual method of DWD (LSD). The duality of the two decomposition procedures haé been
known since the inception of LSD (see Van Slyke and Wets [196, pagé 653]). For instance,

the application of LSD to problem [3.1] is equivalent to the application of DWD to the dual

problem:
z*= min bOxO® 4+ pOzO (3.22a)
st. AOOx©0) 4 ALOZL) > O (3.22b) 3.9
AGDRD S o) G2 22
=0 > 0, j=0,1. (3.22d)

Constraints (3.22b) are known as linking constraints and constraints (3.22c) are termed

linked constraints. Dantzig-Wolfe decomposition, like L-Shaped decomposition, is an iter-
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ative two-phase algorithm that replaces the original problem with a restricted master prob-
lem (RMP) - subproblem formulation with a subproblem for each set of linked constraints.
Solutions to the restricted master problem (phase one) and the subproblems (phase two)
are obtained during each iteration of the algorithm. These results are then analyzed to de-
termine if an e-optimal solution to the original problem has been found. If an e-optimal
solution is not available, the solutions to the subproblems are used to modify the restricted
master problem by adding one or more activities (columns - as opposed to cuts or con-
straints in LSD) to the restricted master problem and a new iteration is executed. The pro-
cedure continues until an e-optimal solution to the original problem is found or the original
problem is determined to be infeasible or unbounded.

Derivations for DWD for the case of one set of linked constraints similar to problem
[3.22] are given in Bazaraa, Jarvis, and Sherali [6, Chapter 7], Chvatal [34, Chapter 26], and
Nazareth [157, Chapter 12]. That version is termed the DWD(single-activity) algorithm
since the single set of linked constraints induces the addition of at most one activity to the
restricted master problem during any iteration. Dantzig and Wolfe [49] and Dantzig [43,
Chépter 23] provide a derivation for the case of two sets of linked constraints but with at
most one new activity added at each iteration. The algorithm developed in the remainder
of this section is termed the DWD(multiactivities) algorithm since it applies to the case of
an arbitrary (though finite) number of sets of linked constraints and allows the addition of a

new activity for each set of linked constraints. Dantzig and Wolfe [50] also give a version
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of the algorithm for multiple sets of linked constraints, but that version is significantly less

detailed than the one presented below.

3.21 DWD for Multiple Sets of Linked Constraints

Algorithm DWD(multiactivities) is developed to obtain an e-optimal solution to the dual

of problem LBALP [3.4]. The dual problem UBALP:

*

J
z2* = min bl(O)ﬂ.(O) + Zb’(.’l)ﬂ'(])

=1l

; |
st. A0Ox@) 4 3 ACOR0) > O,
j=1
AR > ), j=1....J
11-(.7) 2 O, j=0,...,v]7

(3.232)

(3.23b)

(3.23¢)
(3.23d)
[3.23]

has multiple sets of linked constraints, constraints (3.23c). The matrices of coefficients in

constraints (3.23b-c) form the upper block-angular structure depicted in Figure 3.5.

Define the feasibility sets

no = {ﬂ-(:i) IA'(j’j)ﬂ'(j) > c(j), ) > 0} Ji=1,...,J,

and note that problem UBALP [3.23] is infeasible if 1) = @ for any jelt=A{1,...,J}.

Moreover, for each j € J such that %) #£ @, polyhedral theory (e.g., see Theorem 2.1 of

Bazaraa, Jarvis, and Sherali [6, page 69] and/or Theorem 1.3-2 of Nazareth [157, page 10])

assures that:

1. NY has a nonempty, finite set of extreme points, say ) k=1,... , K9,
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A0 A0 | e © . A’U.0) . . e | A0 A0

ALY

A6

A1)

A

Figure 3.5: Upper Block-Angular Structure
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2. M) has a finite set (which is empty if and only if [1¥) is bounded) of extreme directions,
say 6,(5), k=1,... ,K§j), and

3. w0 € NY) if and only if

K(j) K(J)

Zﬂ.(a) ©) + Z J(J)U(J)

A
o,
S
|

nd > 0,k=1,...,K9,

o9 > 0,k=1,..., KW,

Therefore, assuming that M) £ ¢ for j = 1,. .., J, problem UBALP can be refor-

mulated as the equivalent master problem, DWD Master:

¥ = min bl(O)ﬂ.(O) + E Z bI(J)ﬂ'(J) (.7)

i=1 k=1
(J)
+ Z E bl(j)é(]) (.’l)
7=1 k=1
J K(J)
st. A/00zO S Z A/(,,o)ﬂ.(a)n(z)
=1 k=1
J Kr(]J)
+ > Al(j’j)6§cj)7)§cj) > cO),
j=1k=1
K
Z nI(CJ) = 17 .7 = 17 * ’J7
k=1
ﬂ.(O) > 07
. — ()
OIS k—l,...,Kp,
%2 0 j=1,...,J,
i ©)
,UI(CJ) 2 0’ k "Kd ’
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where the first set of inequality constraints are known as base constraints and the equality
constraints are known as convexity constraints. |

Solving problem DWD Master directly is generally not practicable since the extreme
points and extreme directions are probably not known beforehand and since the numbers
of extreme points, Kéj), and extreme directions, K§j ), for any j € J are usually very large.

However, assume that there are known subsets of extreme points, {%g’) w(Z%J) }, and

extreme directions, {5(3) . 5(2)(1)}, with I?,Sj) > 1and I?§") >0,forNW,j=1,...,J.

Then the restricted master problem, DWD RMP:

K(J)
ng = min b’(©) 5 (0) + Z Z b/(J),’r )] (J)
7=1 k=1
7 RY
+ Z Z b'(J)a(’) ()
7=1 k=1
K(J)
st. A0O7x© 4 Z Z AGOFE ()
i=1 k=1
JJ B
+ > Z A'(J,J)a(’) J’) > c©
i=1 k=1
! K(J)
Zn(a) =1 gJ=1,...,J
1r(0) 2 0,
(4) k=1,...,K0Y),
% 2 0, j=1,...7
i 7 ()
(-7) > k 1""7Kd ’
v 2 0, j=1,....J.
[3.25]

clearly provides an upper bound on DWD Master (i.e., 20, > 2*) since any optimal solu-.

tion for DWD RMP is feasible but not necessarily optimum to DWD Master. Optimality

of DWD RMP requires that, for j = 1,..., J, the reduced costs for all optimum extreme
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point convexity parameters, say ﬁg D k= 1,... ,I?éj), and all optimum extreme direction
parameters, say ?Sf), k=1,.., I?§j), be nonnegative. Let x©® and 6, j. = 1,...,J,
be the optimum dual multipliers to DWD RMP and thus an optimal solution to the dual

problem:

J
25y = max cdOxO + 4,
"
's.t. A0 (0)
FDACRO 4 9,

IA
T -
£

IN

S8
S

M
s

IA
T
S
S -
o

59 AGO%O

x(o) Z 0’
6; free, j=1,...,J.

Nonnegativity of reduced costs at optimality of DWD RMP [3.25] implies that for j =
1,...,J:
bOFD — FDAGOXO g, = (bD — AGIXO) FD _g. >0,k=1,... KD,
BOE _ D A0 = (b9 — AGOX®)' 5P >0,k=1,..., K9,
Moreover, the optimal solution to DWD RMP is optimum to DWD Master only if the re-
duced costs associated with all extreme points and extreme directionsof 19, j =1,..., J,

are nonnegative. The latter condition can be verified by solving the phase two subproblems,

DWD D-SUB(), j = 1,...,J:

@?(X(O))= min (b®) ~ A(j,O)x(O))’ﬂ-(j)
S.t. A.,(J’J)ﬂ(J) 2 c(]) , [3.28]
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which correspond to the dual phase two subproblems, DWD P-SUB(j), j = 1,..., J:

D8(x®) = max ¢(j)x

st AUNx) < pO) — AU0x0) [3.29]
x(® > 0.

Since MY, j = 1,..., J, are assumed to be nonempty, DWD D-SUB(;) either has a finite

optimal solution at an extreme point of N¥) or is unbounded along an extreme direction of

nw,
A bounded DWD D-SUB()) for some j € J with DP(x(?) — 6; < 0 implies an
extreme point solution, say =) = 1"1‘%,.)_'_1, such that
. i,0 ! ~(j
(b — A0 ) w}%m — 9, <0.
Note that 79, ¢ 70 .. ,79)_ L since the extreme points in the subset are included

in DWD RMP and each is associated with a nonnegative reduced cost as shown in the
first relation of [3.271. Therefore, %gl)gj)H is included in the subset of extreme points for
MY and a new activity, say 77%")“ (referred to as an extreme point activity), is eligible
to enter the basis of problem DWD RMP [3.25] for each j € J such that problem DWD
D-SUB(j) [3.28] is bounded with D?(x@) — ¢; < 0. If DWD D-SUB(j) is bounded

with D2(x(®) — g = 0forj = 1,...,J, then 2z = z* and the current optimal solution to

DWD RMP is also optimum to problem DWD Master [3.24] and thus the original problem

UBALP [3.23].
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An unbounded DWD D-SUB(j) for some j € J implies a feasible solution, say

70 =39

J
Eéj) 410 such that

(b — AGIXOY A’giﬁ{'gj)ﬂ <OVA>X

Y =<0 ¥ ¥} . . L
for some A > 0. Note that 5%‘)5541 ¢ {5?), .. ,5(321-)} since the extreme directions in
d
the subset are included in DWD RMP and each is associated with a nonnegative reduced

)

cost as shown in the second relation of [3.27]. Therefore, 5Kéj) 41 is-included in the subset

of extreme directions for M\ a;nd a new activity, say AU%J.)H (referred to as an extreme
direction activity), is eligible to enter the basis of problem DWD RMP [3.25] for each
jed such that problem DWD D-SUB(;) [3.28] is unbounded.

Problems DWD RMP and DWD D-SUB(j), j = 1,..., J, also provide a valid lower
bound on any feasible original problem UBALP [3.23] as shown by the following propo-
sition. |
Proposition 10 Assume problem UBALP [3.23] is feasible and let X© and 5,-, j=

1,...,'J, be optimal solutions to the dual problem [3.26] of the current DWD RMP [3.25].

Then, z* > z 5 where:
LB

J

g = ZBB + Z [g?(i(o)) - Aé_—,] .
j=1
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Proof Let ?r(j), Jj=0,...,J, be any feasible solution to problem UBALP. Then, ;‘.U‘),
J € J, feasible but not necessarily optimum to DWD D-SUB(5) [3.28] implies that:
(b — A(j,O);{(O))';,(J') > DR(X), i=1...,J

— b7 > 70 AG07E) 1 HD(xO) i=1,...,J
>xVA + D2 (xY), J=1...,

— z bOFD > (0 z A/GOFD) 4 z DR (XO).
=1 7=1

Constraints (3.23b) of problem UBALP imply that:

E AGAFD > o) _ A’(O 07
7=1

— Z b/OFD > 0F0) _ (0 A/00)70) 4 Z @D(X(o))
j=1 j=1

J J
= ( A(O,O);C(O))';,(O) + S YOFD > %0 4 ) 53;?(;(0))_
j=1 j=1

The objective function and first set of constraints, A®9x(®) < b, to the dual problem
[3.26] to the current DWD RMP then imply that:

o J J .
bOFD £ 3 pOFD > 2+ 3 [pPEO) ~ 0] . [3.30]

j=1 j=1

Therefore, since inequality [3.30] is valid for all 70, j =0,...,J, feasible to prob-
lem UBALP and since the left-hand-side of inequality [3.30] is the objective function of

UBALP, inequality [3.30] implies that:

XJ: [@D %0y _7g. ] , [3.31]

where z, = 28, by strong duality. W
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3.2.2 Modifying DWD RMP With Additional Activities

The basics of modifying the DWD RMP by adding activities at the conclusion of each iter-
ation of the DWD algorithm are discussed above. However, the above discussion implicitly
assumed that the currexﬁ DWD RMP has a feasible and finite optimal solution. Details of
the DWD RMP modification are now presented including the cases of an infeasible or an
unbounded restricted master problém. .

Let K% and K" be the numbers of known extreme points, {w? D, ﬂgl)gj,c) },
and exﬁemc directions, {6 o8 ., 69 )(J - }, respect'ivelyﬂ for N, j = 1,...,J, at the

conclusion of iteration G. Denote the restricted master problem at the beginning of iteration

G as DWD RMP(G) and reformulate DWD RMP(G) as:

K(JG_]-)
ZglgG) = min bOr©® 4+ E E bl(j)ﬂ.(J)n(J)
=1 k=1
JJ K(JG 1)
+ ) E b/(])a(J) (J)
i=1 k=1
g K$CD
st. A0 4 ) E A’ J,o)ﬂ.(a) (J)
=1 k=1
JJ K§em s
+ 2% A/(~j,0)5(.7),v(.7) > c©
i=1 k=1
? K(JG"I)
E ) = w, j=1,...,J
ﬂ.(O) 2 0,
. — ‘ ,G—1)
(_7) > k—]‘""’KISJ
nk - 0’ j= 17‘ ’J’
. (JvG_l)
(4) > k=1,...,K{
w 20 ji=1,...,J
[3.32]

86



e

Chapter 3 Decomposition of Linear Programs

with corresponding dual problem:

22 = max dOx® 4 S0,
s.t. AG0x© < b,
: . . : = (j’G_l)
7O AGORO o, < bOD F ; _11{ J
- . . (]’G—l)
1(3) A (5,0) 5 (0) < phgh k=1...,K
6, A% < bVYé, ] 21 J
x(o) 2 0,
6; free, j=1,...,J.
[3.33]
The numbers of extreme points and extreme directions are all initially 0, KU0 = K90 =
0,7=1,...,J, and either Kéj’G‘l) or K§j’G_1) may be increased by 1 at the conclusion
(J G-1)
of iteration G. The right-hand-sides of the convexity constraints, Zk o1 n,(j) = uj,

Jj=1,...,J,in DWD RMP(G) are also all initially 0 and u; is changed to 1 when the first

extreme point is added to the subset of extreme points [19), j € J.

©)

KGOD4 Jj € J, created at the conclusion of

Let a new extreme point activity, 7

iteration G be denoted by the vector
bI(J)ﬂ-I(;)(J G—1)+1

A'(J:o) ﬂ-g)(J o 1)+1

1

of its objective function coefficient (first element) and technology matrix coefficients (re-

maining elements). Similarly, let the vector
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- -
b/ma}izj,c_l,ﬂ
i,0) &)
A’6,0) 6;‘?’0—1)"'1
i 0 1

denote a new extreme direction activity, Ug:(lj’c'l)+1’ j € J, created at the conclusion of
iteration G.

Each of the two primary types of activities, extreme point and extreme direction, used
to modify the restricted master problem has two subtypes depending upon the feasibility
of DWD RMP(G). The four types of activities are termed extreme point (infeasible),

extreme direction (infeasible), extreme point (feasible), and extreme direction (feasible).

The applicability and derivation of each activity is discussed below:

1. DWD RMP(G) is infeasible: formulate the following simplex phase one type problem

DWD M-RMP(G) based upon the current restricted master problem:
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J
zg[éc)= min v + lej
J=
st. v +
J Kéjxc_l)
A00 R0 DD Al(j,O)ﬂ.(J)n(J) ”
il
]J K(JG 1)
+ Z Z A’(J’O)J(’) (.7) >C(0)
j=1 k=1
Klgjvc—l)
w.7+ Z nl(c]) = 17 J= 17 )']7
=1
v > 0,
G Z 0, 7= 1, . ,J,
@ > o,
n) > 0, k=1,.. K% j=1..4
oD > 0, k=1,... K(”G‘” e d,
[3.34]

which is always feasible and bounded. Formulate the corresponding subprobléms,

DWD DM-SUB(j),j =1,...,J:
DM(x®) = min _ (AGO%) 7@
| st AGDgl) > ),  [3.35]
7r(.7) 2 0, '
where x© is the vector éf dual muitiplit;rs to the base constraints in problem DWD

M-RMP(G) [3.34]. Solve problem DWD M-RMP(G) and note that zM(G) > 0 since

DWD RMP(G) is infeasible. Let the optimal solution be:

v,
(G)
7r(°G) .
60, k=1, KOS =1,
I(c],G)’ k=1, K(J’G_l) j= L...,d
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with optimal dual multipliers x(>¢) and Hg-G), Jj=1,...,J, to the base and convexity
constraints respectively. Then, for some j € J, solve problem DWD DM-SUB(j)
[3.35] with x(.o) = x(0€) and the type of activity to add depends upon the solution:
(a) DWD DM-SUB(j) is infeasible => stop — pfoblem UBALP [3.23] is in'feasible
since N = @,
(b) DWD DM-SUB(j ).is feasible and bounded ==> let optimal solution be wfcj ) where
k= Klfj’G‘lj + 1 and add new activity based ﬁpon:

i. DM(x0D) — 6D = — (AGOx0D) 70 _ 69 > 0 — no new activity is
added since all extreme points and extreme directions have nonnegative reduced
costs.

ii. DM(x0D) — 49 = — (AGOx0D) 1) _ 6 < 0 = extreme point

(infeasible) activity: create new extreme point activity, nfcj ), with coefficients

3 b/(j)ﬂ.’(cj) 7

AGO7D) | [3.36]

1

and set ng’G) = k.

(c) DWD DM-SUB(j) is feasible and unbounded == extreme direction (infeasible)

activity: let descent direction be ég ) where k = K%°~V + 1 and create new
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extreme direction activity, v,(cj )., with coefficients

[ b;(j)gl(cj) 7

A950) | [3.37]

0

and set K§j’G) = k.

2. DWD RMP(G) is feasible and bounded: Let the optimal solution be:

7(06),
nIE:j’G), k= 17""Klgj,G—1)’j = 1"""]’
W99 k=1, K%Y j=1,...7J

with optimal dual multipliers x® and 0§G), j =1,...,J, to the base and convexity
constraints respectively. Then, for some j € J, solve problem DWD D-SUB(5) [3.28]

with x(9 = x(%6) and the type of activity to add depends upon the solution:

(a) DWD D-SUB(j) is infeasible => stop ~ problem UBALP [3.23] is infeasible since
no = @. |
(b) DWD D-SUB(j) is feasible and bounded = let optimal solution be 7r§cj ) where
k = K{(#¢~1 + 1 and add new activity based upon:
i. D2(x0D) — {9 = (b0) — AGOKOG 70) _ Gg.G) > 0 = no new activity is
added since all extreme points and extreme directions have nonnegativé reduced

costs.
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ii. DP(x0A) - 9§-G) = (b0) — AGOX0E)) 7). 9§-G) < 0 = extreme point
(feasible) activity: create new extreme point activity, n,(cj ) , with coefficients

i b'(j)ﬂ-,(cj) T

Al(j,O)ﬂ.l(cj) , [3.38]

1

and set K}Sj’G) = k.

(c) DWD D-SUB(j) is feasible and unbounded = extreme direction (feasible)

activity: let descent direction be 6;5 ) where k = §j ‘6=1 4 1 and create new

extreme direction activity, vfcj ) , with coefficients
i b/ 6](:.’1') 7
A/(3,0) 5}(3) , [3.39]

0

and set Kéj’G) = k.

3. DWD RMP(G) is feasible and unbounded: stop - problem UBALP [3.23] is

unbounded.

3.2.3  Algorithm DWD(multiactivities)

Algorithm DWD(multiactivities) is composed of two procedures — initialize and optimize.
The initialization procedure adds at least one extreme point (feasible) type activity [3.38]
to the restricted master problem for each feasibility set %), j =1..., J, if the procedure

determines that the original problem UBALP [3.23] has a feasible and finite optimal solu-
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tion. The optimization procedure finds an e-optimal solution to problem UBALP given that
the initialization procedure determined that a finite optimal solution exists. The algorithm
is detailed below followed by the descriptions for the two contained procedures. Comple-
mentary ﬁowcharts for the algorithm and procedures follow the detailed descriptions. Note
that the algorithm assumes a predefined nonnegative value for the relative difference, e,
between the upper and lower bounds on the solution, 2*, to problem UBALP.

Algorithm DWD(multiactivities)

Step 0: Initialize the following parameters:

G «— 0,

Z1B — =00,

2UB — o0

uj — 07 J la- 7']7
KGO 0, j=1,...,/
KO« 0, j=1,..,/
feasible « true,

finite «— true,

solved «— false.

Go to Step 1.

Step 1: Execute Procedure DWD(multiactivities)-Initialize. If feasible = false: stop
with an infeasible problem UBALP [3.23]; else if finite = false: stop with an un-
bounded problem UBALP; else if solved = true: stop with e-optimal solution to prob-

lem UBALP; else go to Step 2.

Step 2: Execute Procedure DWD(multiactivities)-Optimize. Stop with e-optimal so-

lution to problem UBALP.
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Parameter G is the algorithm iteration counter and is increased by one in the two
referenced procedures at the béginning of each attempt to solve the current restricted mas-
ter problem. The best ‘(greatest) lower and best (least) upper bounds on the va;lue, z*, of
problem UBALP found through the current iteration are recorded by 2.5 and ,;:UB respec-
tively. For j = 1,...,J, the right-hand-side, u;, of the corresponding DWD RMP(G)
[3.32] convexity constraint is initially set to zero. The value, u;, is set to one in procedure
DWD(multiacti\"ities)-I‘nitialize when the first ex;reme point activity for MY, j € J, is
added to the restricted master problem. Parameters Kg-"’o) and K}j ) are set to zero to in-
dicate that there are no éxtreme point or extreme direction activities in the initial restricted
master problem DWD RMP(1). Logical parameters feasible, finite, aﬁd solved indicate

the return status of procedure DWD(multiactivities)-Initialize as follows:

feasible: state false indicates that no feasible solution exists for problem UBALP while

state true indicates that there is a feasible solution;

finite: meaningful only when feasible = true and state false means problem UBALP

is unbounded while state true indicates that a bounded solution exists;

solved: meaningful only when feasible = finite = true and state true indicates that
an e-optimal solution to problem UBALP has been determined while state false indi-
cates that procedureA DWD(multiactivities)-Optimize should be executed to obtain an

e-optimal solution.

Procedure DWD(multiactivities)-Initialize
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Step 1: Set G+ G + 1, solve problem DWD M-RMP(G) [3.34] and let the optimum

solution be:
v(®),
(G), i=1,...,J,
7‘-(0 ), ’
W99, k=1, K9S j=1,. ]
v,(cj’G), k=1,.. K(”G D yj=1,...,J,
with optimal dual multipliers x(%) and 9§-G), Jj =1,...,J, to the base and convexity

constraints respectlvely If zM(G) > 0 (at least one artificial variable is positive) go to
Step 2; else, Zn®) = 0 (a feasible solution to problem DWD RMP(G) [3.32] has been

found), go to Step 5.
Step 2: Set j «— 0, acts — J and go to Step 3.

Step 3: If j = J, goto Step 4. Set j «— j + 1, solve modified subproblem DWD DM-
SUB(j) [3.35] with x©@ = %6, f DWD DM-SUB(5) is infeasible, set féasible —
false aﬂd return to algorithm; else, if DWD DM-SUB(j) is feasible and bounded, set
k = K»6=1 + 1, let optimal solution be # and go to Substep 3a; else, DWD DM-
SUB(j) is feasible and unbounded, set k = Kﬁj’G—l) + 1, let descent ciirectionbe 653 )
and go to Substep 3b.

Substep 3a: If DM (x09) — ¢{9 = — (AGOXOD) 7 ) — 659 > 0, set acts —
acts — 1 and return to Step 3; else, DM(x*9) — 9§G) = — (AGOx0.D) 70) _

9§-G) < 0, an extreme point of MY has been found with negative reduced cost, so

create new extreme point (infeasible) type activity, ng ), with coefficients [3.36], set

KU6) =k and'set u; — 1if KU© = 1 and return to Step 3.
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" Substep 3b: An extreme direction of MY has been found with negative reduced
cost, so create new extreme direction (infeasible) type activity, vfg ) , with coefficients

[3.37], set K = k and return to Step 3.

Step 4: If acts = 0,'set feasible — false and return to algorithm; else, acts > 0, return

to Step 1.

Step 5: Set 2, D(G) as follows:

7 K(JG—I) 7 K(JG—l)
D(G) — b/©),(0,6) +Z Z bl(J)W(J)n(JG) +Z Z bl(J)a(J) (J,G)
j=1 k=1 j=1 k=1
If zD(G) = —00, set bound « false and return to algorithm; else, zD(G) > —o0, set

Zup — z&gc), J 0, acts + 0 and go to Step 7.

Step 6: Set G « G + 1, solve problem DWD RMP(G) [3.32]. If 22® = —co, set
bound « false and return to algorithm; else, 2, (G) > —00, set Zyg — z&(ac), and let the

optimum solution be:

206,
n,(c”G), k-l K(JG‘I),]—I A
009, k=1,... K0 =1 ]
with optimal dual multipliers x(>® and Bg-G), j =1,...,J, to the base and convexity

constraints respectively. Set j < 0, acts < 0 and go to Step 7.
Step7: If j = J, go to Step 8. Set j « j + 1, solve subproblem DWD D-SUB(j)
[3.28] with x© = x(®%). If DWD D-SUB()) is bounded, set k = KGG-D 4 1, let
optlimal solution be 7r,(cj ) and go to Substep 7a; else, DWD D-SUB(3) is unbounded, set

k=K, §j’G_1) + 1, let descent direction be 6,(cj ) and go to Substep 7b.
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Substep 7a: Setacts — acts+1. If D?(X(O’G))—Hg-G) = (bW — AGIx(00) )Iﬂ'l(cj)_
0§G) — 0, repeat Step 7; else, 9?(X(O,G))_9§G) — (b(j) — A(j,O)x(o,G))/ﬂgcj)_ 95‘0) <
0, an extreme point of M0 has been found with negative reduced cost, so create new
extreme point (feasible) type activity, ¢, with coefficients [3.38], set KU =k

and return to Step 7.

Substep 7b: An extreme direction of 1) has been found with négative reduced cost,
so create new extreme direction (feasible) type activity, vg ) , with coefficients [3.39],

set Kéj’G) = k and return to Step 7.

Step 8: If acts < J, return to Step 6. Set 2{5) = 2ys + E}"=1 [@?(X(O’G)) - 0§-G)] and
then set 25 +— max (zLB, zﬁBG) ) If (2ys — z8) < |z18] €, set solved « true. Return to
algorithm.

Procedure DWD(multiactivities)-Initialize determines.if problem UﬁALP [3.23]
infeasible (feasible = false in Step 3 or Step 4) or unbounded (bound = false in Step 5
or 6) or, otherwise, is feasible.'and-bounded (feasible = bound = true). Two coursés of
action bas;ad upon the state of parameter solved are possible for the last case (feasible and

bourided):

solved = true: an e-optimal solution to problem UBALP has been determined and the

algorithm should be terminated, otherwise,
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solved = false: procedure DWD(multiactivities)-Optimize should be executed to de-
termine an e-optimal solution to problem UBALP — each feasibility set M), j =

1,...,J, will be represented by at least one extreme point (feasible) type activity [3.38].

Note that Steps 1-5 are not execﬁted after the first execution of Step 7 and Steps 6-8 are
executed until problem UBALP is determined to be feasible and bounded (i.e., a ﬁni-te
lower bound is established in Step 8). Problems DWD D-SUB(j), j =1, .. , J, are known
to be feasible up(;n the ﬂrst e;ntry to Step 7 since the feasible regions to problems DWD
D-SUB(5) [3.28] and DWD DM-SUB(;) [3.35] are the same (.e., N forj =1, o
Iﬁ addition, for j = i, . ,' J, NY) is represented by at least oﬁe extreme point (infeasible)
type activity [3.36] at the first entry to Step 7 (since artificial variable wg-G) = 0) implying
that u; = 1 and that D?(x(*%) — 9§-G) < 0 in Substep 7a.

Procedure DWD(multiactivities)-Optimize

Step 1: Set G «— G + 1 and solve problem DWD RMP(G) [3.32]. Let the optimum

solution be;

206)
O k1 KD, 1,
N Z R

with optimal dual multipliers x®) and 65”, j = 1,...., J, to the base and convexity

constraints respectively. Set zyp «— z&(;a)’ j <0, acts + 0 and go to Step 2.

Step2: If j = J, goto Step 3. Set j «— j + 1, solve subproblem DWD D-SUB(j)

[3.28] with @ = x(©G). If DWD D-SUB(;) is bounded, set k = KG:G-1) + 1, let
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optimal solution be 7r,(cj ) and go to Substep 2a; else, DWD D-SUB(j) is unbounded, set
k= K§j’G_1) + 1, let descent direction be 5,(3 ) and go to Substep 2b.

Substep 2a: Setacts «— acts+1. If D?(x(O’G))—()gG) = (bl) — AGOXOG) 7)_

9§G) = 0, repeat Step 2; else, DP (x©)) —0§-G) = (bY) — AGOx0R)Y’ ) —0§-G) <

0, an extreme point of MY has been found with negative reduced cost, so create new

extreme point (feasible) type activity, ng ) , with coefficients [3.38], set Kéj’c) =k

and return to Step 2.

Substep 2b: An extreme direction of 1) has been found with negative reduced cost,
so create new extreme direction (feasible) type activity, chj ), with coefficients [3.39],
set K§j ‘%) = k and return S£ep 2.
Step 3: If acts = J: set 29) «— zyp + P [CD? (x0&)) — 9§G)] and then set z;5 «—
max (zLB, zl(g)). If (2us — 218) < |218| €, return to algorithm; else return to Step 1.

Procedure DWD(multiactivities)-Optimize is executed only if procedure
DWD(multiactivities)-Initialize determines that problem UBALP [3.23] is feasible and
bounded. Therefore, problem DWD RMP(G) [3.32] is feasible and bounded and problems
DWD D-SUB(j) [3.28], j = 1,..., J, are feasible at every iteration G of the optimization
procedure. This procedure must then return an e-optimal solution for problem UBALP as

shown in the next subsection.
Flowcharts of algorithm DWD(multiactivities) and the initialization and optimiza-

tion procedures are at Figures 3.6-3.8.
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0, j=1.....0
uj(—Oj 1

K;J O 0,joLt
KO0 o,
\
Jeasible— true
Sinitee true

solved « false

ey

y

Execute
Procedure
DWD(multiactivities)-Initialize

Stop With
Infeasible

ible =
Sfeasible = false Yes: Problem

No

Stop With
Unbounded

Problem finite = false

No

solved = true

No

4

Execute Yes
Procedure
DWD(multiactivities)-Optimize

Stop With
£-optimal
Solution

Figure 3.6: Algorithm DWD(multiactivities) Flowchart
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Figure 3.7: Procedure DWD(multiactivities)-Initialize Flowchart
(continued on next page)
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Figure 3.8: Procedure DWD(multiactivities)-Optimize Flowchart
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3.24 Finite Termination of Algorithm DWD(multiactivities)

Algorithm DWD(multiactivities) will terminate in a finite number of iterations either with
an e-optimal solution to problem UBALP [3.23] or with an indication that problem UBALP
is infeasible or unbounded. The finite termination property is stated formally after the

following proposition concerning the feasibility and finiteness of the original problem.

Proposition 11 The original problem UBALP [3.23] is infeasible or unbounded if and
only if algorithm DWD(multiactivities) rerminates with an indication that the problem is

infeasible or unbounded respectively.

Proof The algorithm terminates at iteration G with an indication that the problem is un-
bounded only if procedure DWD(multiactivities)-Initialize (Step 5 or 6) finds #(® and
extreme points w0, k=1,..., K @G-, and extreme directions 6, k = 1,..., K#¢,
 of the feasibility sets [19), j = 1,. .., J, that are feasible to problem DWD RMP(G) [3.32j
such that DWD RMP(G) is unbounded. Problem DWD Master [3.24], and thus the equiv-
alent problem UBALP [3.23], is then also unbounded since any solution feasible to DWD
RMP(G) is feasible to DWD Master. DWD(multiactivities) terminates at iteration G
with an indication of infeasibility only if the initialization procedure determines infeasibil-
ity at Step 3 or Step 4. This occurs at Step 3 only if M%) = () for some j € J indicating
that DWD Master and UBALP are infeasible. Infeasibility is indicated at Step 4 only if

the optimal solution to the simplex phase one type problem DWD M-RMP(G) [3.34] has
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at least one positive artificial variable and no extreme points or extreme directions of M%),
j=1,...,J,are eligible to enter the basis implying that DWD Master, and thus UBALP,
is infeasible. -Conversely, the algorithm terminates at iteration G with an e-optimal solu-
tion only if the initialization procedure (Step 5 or 6) or the optimization procedure (Step
1) finds 7(© and extreme points w,(cj), k=1,..., Kéj’G‘l), and extreme directions chj),
k=1,...,K%™D, of the feasibility sets N9, j = 1,..., J, that are optimum to prob-
lem DWD RMP(G) with —oco < 23 < 2zyp < oo. This implies that DWD Master, and
thus UBALP, is feasible and bounded with z* < 2z since any optimal solution to DWD

RMP(G) is feasible but not necessarily optimum to DWD Master. B

Proposition 12 Algorithm DWD(multiactivities) terminates in a finite number of it-
erations either with an indication that the original problem UBALP [3.23] is infeasible or
unbounded or with an e-optimal solution to problem UBALP given that problems DWD
RMP [3.25] (or DWD RMP(G) [3.32]), DWD M-RMP [3.34], DWD P-SUB(j) [3:28],
and DWD PM-SUB(5) [3.35),j = 1,.. .rr, J, are not degenerate or that the simplex solver

prevents cycling.

Proof Cycling prevention and/or the abseﬁce of ;iegeneracy insures that the solutions to
each applicable LP will be obtained in a finite number of simplex iterations at each iteration
of algorithm DWD(multiactivities). Since there are a finite number of extreme points and
extreme directions for each feasibility set 1), j = 1,..., J, there are a ﬁniteinumber of

possible extreme point and extreme direction activities that can be added to the restricted
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master problem. No extreme point, 71";3 ) , or extreme direction, 6;3 ), will be generated more
than once since those already generated are in the restricted master problem corresponding
to activities with nonnegative reduced costs. Therefore, algorithm DWD(multiactivities)
will terminate in a finite number of iterations.

Assume that the algorithm does not terminate with an indication that problem UBALP
is infeasible or unbounded implying that the problem is feasible and bounded by Proposi-
tion 11. The algorithm concludesi each iteration, G, either by adding at least one activity
and starting the next iteration or by terminating with an e-optimal solution. Therefore, a se-
quence of non-increasing upper bounds are generated' since' an optimal solution for DWD
RMP(G — 1) is feasible but not necessarily optimum to DWD RMP(G). Assume that the
last possible activity is added during iteration G. Problem DWD RMP(G + 1) is then prob-
lem DWD Master [3.24] so that the solution at iteration G + 1 is the solution to problem

UBALP. Furthermore, since optimality implies nonnegative reduced costs, the solutions of

problems DWD D-SUB(j) [3.28], j = 1,..., J, must yield
9? (x(0,5+1) _ 95_5'*'1) =0

where x(%G+1and 95-6"'1) ,j =1,...,J,are the optimal dual multipliers to the base and con-
vexity constraints respectively of problem DWD RMP(@ + 1) [3.32]. Proposition 10 then
implies that zjp = 2yp at iteration G+ 1. Therefore, algorithm DWD(multiactivities) ei-

ther determines that problem UBALP is infeasible or unbounded or it generates a sequence
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of upper bounds and a sequence of lower bounds that converge to an e-optimal solution of

problem UBALP. &

3.3 Implementation Issues

Several implementation issues need to be addressed when considering the use of one of the
decomposition techniques examined in this chapter. Seven of the more important issues

are:

1. the decision to use decomposition on an LP or to solve the LP in its natural, or grand

LP (GLP), formulation;
2. the choice between the Dantzig-Wolfe and L-Shaped decomposition algorithms;

3. the possible availability of more efficient initialization procedures for the decomposition

algorithms;
4. the number of subproblems to employ in the decomposition procedure;

5. the removal of cuts (LSD) that are not tight or of extreme points/directions (DWD) that

are not basic - referred to simply as removing inactive additions;

6. the use of a greedy approach, when there are multiple subproblems, in which only a

subset of subproblems are solved during some iterations;

7. the accuracy of the solution, i.e., find an exact, ¢ = 0, or approximate, € > 0, solution.
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Each of the above issues is discussed in a problematic framework below. Empirical
information is given on each issue in Chapter 6 with the application of decomposition to a

stochastic programming formulation of a market investment model.

3.31 Grand LP Versus Decomposition

Decomposition may be used on any linear program although such use may require extensive
array paﬁiﬁoning and/or artificial variables and constraints (e.g., see Chvatal [34, page 425]
and Nazareth [157, Section 12.1]). Problem decomposition is most effective when the LP
naturally exhibits, or is easily transformed to, one of the special, lower or upper, block-
angular structures illustrated by problems LBALP [3.4] and UBALP [3.23]. Solving the
problem as a GLP or by using decomposition is not always a clear-cut decision even for
linear programs having a special structure. The method that provides a solution with the
available resources in the shortest period of time is generally the desired option. However,
the problem (or some instances of the problem) may be so large that a grand LP approach is
not practicable. Decomposition procedures are particularly attractive in such cases because
they generally require significantly less of the active memory of a computer than do GLP
solution approaches. A major disadvantage of decomposition methods is that they usually
require a significant amount of computer programming especially considering that they are
most effective when tailored to a specific problem or class of problems. This disadvantage
may be outweighed by the possible greater efficiency of decomposition methods especially

if problem instances must be frequently solved over an extended period of time.
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The option of using either or both the grand LP method and decomposition proce-

dures for a given problem or problem class may be desirable for several reasons, including:

1. one approach may be more efficient for a particular range of problem sizes while the

other approach is more effective for problems outside that range;

2. multiple solutions for the same problem obtained with different methods provide

valuable code debugging and validity verification information; and

3. there may not be enough prior problem-specific information on solution times
and memory requirements to make an educated judgement concerning procedural

efficiencies.

332 Dantzig-Wolfe Versus L-Shaped Decomposition

The choice between DWD and LSD seems, at first glance, to be more of a straightforward
decision than does the choice between decomposition and a grand LP. L-Shaped decompo-
sition appears to be the better choice given a problem with the lower block-angular struc-
ture of probiem LﬁALP [3.4]. Dantzig-Wolfe decomposition, on the other hand, seems to
be the obvious choice given the upper block-angular structure of problem UBALP [3.23].
Ho’wevér, the ;lualisﬁc relationshipé between the two problems and between the two pro-
cedures adds some uncertainty to the decision making process. It is not necessarily clear
beforehand that applying LSD (DWD) to problem LBALP (UBALP) would be more effi-

cient than applying DWD (LSD) to the dual problem UBALP (LBALP). The decision is
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often to choose the decomposition procedure that has the fewest number of rows in the ini-
tial RMP (e.g., see Birge and Louveaux [16, page 385] and [17, pages 176 and 243]). For
instance, apply LSD to problem LBALP if matrix A©® in I;roblems [3.4] and [3.23] has
more columns than TOWS; dtherwise, apply DWD to problem UBALP.

L-Shaped decomposition is generally used for stochastic linear programs because the
two-period problem with a discrete probability distribution has a lower block—angulér struc-
ture and ‘the desired results are the primal vmﬁﬁbles-Of this structure — see Birge [11, page
992] and Gassmann [83, pagé 408]. The pref;arred variables should not be a major consid-
eration, however, if the LP solver in usé gives re_ady'aécess to both primal and dual vari-
ables since the primal variables in one decomposition procedure are ihe dual vaﬁal;les in
the other procedure. This primal-dual relationship between the vari)ables in the two proce-
dures is obvious when the DWD restricted master problem and subproblems are compared
with the complementary LSD relaxed master problem and subproblems. The dual prob-
lem [3.33] to problem DWD RMP(G) [3.32] is problem LSD RMP(G) [3.28] and the dual
problems [3.29] to problems DWD D-SUB(j) [3.28] are problems LSD P-SUB(j) [3.6],
j=1,...,J.

Note, however, that the two decomposition methods are theoretically indistinguish-
able when applied to the same problem (primal formulation for one method and dual for
the other) if both the primal and dual simplex algorithms are available (see Birge and Lou-
veaux [17, page 243]). For instance, solving the DWD restricted master problem with the

primal simplex algorithm should give the same results at each simplex iteration as solv-
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ing the LSD relaxed master problem with the dual simplex algorithm. This equivalence
may not actually occur in practice due to particular implementations of the primal and dual
simplex algorithms by the LP solver in ﬁse. Empirical evidence that one decomposition
method may be more efficient than the other for a given class of problems even when both
simplex algorithms are available is given in Chapter 6. The time required to solve subprob-
lems is not a factor because both decomposition methods share the same subproblems in
practice — problems LSD D-SUB(j) [3.7] which are the same as problems DWD D-SUB(5)

[3.28],5=1,...,J.

3.3.3 - Algorithm Initialization

The efficiency of either decomposition algorithm can be significantly increased if the need
to execute the corresponding initialization procedure can be eliminated. Each initialization
procedure has a two-fold purpose: to determine if the original problem is feasible and
bounded and to create at least one optimality (finite) cut (LSD) or extreme point (feasible)
activity (DWD) from each subproblem given bounded feasibility. The original problem
may be known, or easily determined, to be feasible and bounded. Decomposition can be
initiated in such cases by creating initial cuts/activities.
Assume that problem LBALP [3.4], for example, is known to be feasible and bounded.

Then it might be possible to initiate algorithm LSD(multicut) in either of two ways. First,
upper bounds can be placed on each 6; if scalar M; are known for LSD P-SUB(j) [3.6],

j =1,...,J, such that £ (x@) < M; for all x@ € X{¥ implying that 6; < M;.
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Second, optimality (finite) cuts can be created for j = 1,...,J if some x(® & xg") can
be determined such that ¢/@x(® < co and problems LSD P-SUB(j) are feasible with
£ (x(o)) < oo. Algorithm LSD(multicut) can then begin in the optimization procedure.

Similar comments apply to problem UBALP [3.23] and algorithm DWD(multiactivities).

3.34  Number of Subproblems

Problems LBALP [3.4] and UBALP [3.23] can be solved by incorporating less than J

subproblems. For instance, define matrix A9 and block-diagonal matrix A®D as

- A0 - ALD -
A0 _ Aém) and AMLD — T AG) ,
i A(EJ,O) | _ AGD |
and vectors b, &0 and M as
- b T F e T - D) T
b — béj) , e = c(:j) and O = xéi)
i b | | | o |

Then problem LBALP can be reformulated as the L-Shaped problem:

z* = max C'(O)x(o) + ’6/(1)2(1)

s.t. A00x(0 < b,
ALOx©® 4 AWDHRO < HO),
x@ > o,
@ > 0,

with one set of linked variables, X). Problem UBALP can be reformulated in a similar

way to a problem with only one set of linked constraints. The reformulated problems can
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then be solved with one subproblem in each case. Note that the resulting subproblem, say

PxO) = max TORW
st. AGDZO
<)

BM — A00x©

<
2 0,

using LSD as an example, is separable into the original subproblems LSD P-SUB(j) {3.6],
j=1,...,J. The effect of executing algorithm LSD(single-cut) on the reformulated prob-
lem would then be similar to executing algorithm LSD(m;llticut) on problem LBALP but
creating one aggregated cut (either an optimality or a feasibility cut) at each iteration. In the
latter case, a feasibility cut is created if any subproblem is infeasible and all other subprob-
lems are ignored; otherwise, all subproblems are feasible and the individual optimality cuts
are aggregated (summed) into one constraint with 9 replacing EJLI 6;. Clearly, problem
LBALP can be formulated as a problem with J subproblems where 1 < J < J. Similar .
comments apply to problem UBALP and DWD.

Birge and Louveaux [16] and Gassmann [83] report mixed results between single-cut
and multicut LSD algorithms applied to relatively small (few thousand or less constraints
and variables) stochéstic liynear' program; — some problems were solved faster with a single-
cut algodthm while a multicut algorithm worked faster on other problems. Results given
in Chapter 6 indiéate that there may be an optimum number of subproblems for a multicut
algorithm applied to an appropriate class of problems (i.e., multiple sets of linked variables

or constraints).
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3.3.5 Removing Inactive Additions

Murty [155] proved that optimality and feasibility cuts that are not tight can be removed
from the relaxed master problem at any iteration of the LSD algorithm. A similar result
holds for extreme points and extreme directions that are not in the basis of the restricted
master problem in DWD. Reducing the size of the RMP is an obvious advantage of re-
moving inactive additions. A major disadvantage, however, is that removed cuts/activities
may be a part of the optimal solution and will need to be regenerated and reinserted into
the RMP. There is no known method for predicting which additions are required for opti-
mality so that any removal scheme is likely to increase the number of iterations required
for convergence. Wittrock [207, page 83] proposes a procedure for removing an inactive
cut in LSD based upon the number of consecutive iterations for which the cut is not tight.
Removing inactive additions is not examined in detail due to reasons to be explained in

Chapter 6.

3.3.6 Greedy Algorithms

All subproblems do not need to be solved at each iteration of either decomposition algo-
rithm once the algorithm enters the applicable optimization procedure. Assume that only .7,
1< J < J, subproblems are solved at some iteration G > G where G is the index for the
last iteration of the applicable initialization procedure. The relaxed/restricted master prob-
lem atiteration G+1, say RMP(G +1), contains the same cuts/activities present in RMP(G)

plus the additional J cuts/activities created at iteration G. Then an improved (in the ab-
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sence of degeneracy) upper bound will be determined from the solution to RMP(G + 1)
since, for example, 7 activities with negative reduced costs at iteration G have been added
to the problem. Note, however, that a lower bound cannot be determined and“used to up-
date the best lower bound at any iteration in either algorithm unless all subproblems are
solved.

This idea is particularly appealing if some subproblems are simple (e.g., can be
solved without a simplex or other complex algorithm) while the others are hard (require
a complex algorithm). Simple subproblems are sélved at every iteration to obtain im-
proved L;pper bounds in a greedy manner. Hard subproblems are solved only intermittently

to update both bounds. Variations of this procedure are discussed in Chapter 6.

3.3.7 Solution Accuracy

Bazaraa, Jarvis, and Sherali [6, Section 7.1] and Nazareth [157, Section 12.2-2] indicate
that decomposition algorithms often converge fairly rapidly to a neighborhood of an op-
timum solution but then require a substantial number of iterations to isolate the solution.
Results are presented in Chapter 6 showing the time required for convergence as a function

of the relative difference, €, between the lower and upper bounds.
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4 “ CHapter 4 |
Decomposition of Stochastic Linear Programs

This chapter describes the application of the decomposition techniques discussed in
the previous chapter to stochastic linear programs as defined in Chapter 2. Application
of Dantzig-Wolfo and L-Shaped decomposition to two-period, multi-period, and block-
. separable problems are covered in the first three sections below. Implementation strategies
for DWD and LSD are considered in the fourth section. A third decomposition technique,
referred to as myopic decomposition, is introduced in the fifth section. Stochastic data

storage and retrieval is the topic of the sixth and final section.

4.1 | Two-Period Problems

‘Two-period stochastic linear programs have a problem structure t‘hat is ideal for the appli-
cation of DWD or LSD. Each second period node in the SLP is complementary to a phase
two subproblem in either deoomposition method whereas data at the first period node forms
the RMP for either method. Therefore the RMP can be augmented during each algorithm
iteratiop with a cut (LSD) or extreme point/direction activity (DWD) for each node in the
second period or with aggregated cuts/activities for seleoted node groupings. This symme-
try between DWD and LSD and two-period stochastic linear programs is a primary reason

that the two-period problem is the most studied version of stochastic programs.

116



Chapter 4 Decomposition of Stochastic Linear Programs

4.2 Multi-Period Problems — Nested Decomposition

The most common solution procedures for multi-period stochastic linear programs are
based upon the structure of the corresponding decision tree. Each node in periods be-
_ fore the last can be visualized as the root or anchor node for a unique two-period problem
where each post first-period problem appears to be nested within the problem at the par-
ent node. Figure 4.1 demonstrates this concept on a four-period binary outcomes decision
tree. The view from node (1,1) = [] inside the first period problem box shows two macro-
nodes represented by the second period problem boxes — one for each possible ﬁrst period
outcome. A similar view exists at each node in periods two and three. Therefore the over-
all multi-period problem can be treated conceptually as a sequence of nested two-period
problems.

The nested two-period problem concept can be translated into decomposition proce-
dures appropriately named nested decomposition. Dantzig and Wolfe [49, page 110] coined
the term. nested to describe their original outline of this technique. Dantzig [43, Section
23-4] subseguently gave a more detailed des;cription of nested decomposition based upon
DWD. Other early work using DWD was performed by Glassey [90] and Ho and Manne
[102]. Nested decbmposition algorithms using LSD are given in Birge [11], Birge, Dono-
hue, Holmes, and Svintsitski [14], Birge and Louveaux [17, Section 7.1], Gassmann [82],

[83], [84], and Wittrock [207].
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First Period Problem

o 1,11
Second Period Problem Third Period Problem [1,1,1]

Second Period Problem . . - [2,1,1]
Third Period Problem

(2,1]

2]

Figure 4.1: Four-Period Binary Outcomes Decision Tree - Nested Two-Period Problems
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The formulations for the relaxed/restricted master problems and subproblems used in
nested decomposition are given below followed by detailed descriptions of the applicable
cuts and extreme points/directions. This section concludes with an examination of the

procedures employed by nested decomposition algorithms.

4.2.1 RMP/SUB Formulations

Figure 4.1 suggests that nested decomposition will involve a series of RMP and SUB prob-
lems. The data for the first period node inside the first period problem box form the initial
RMP for the overall problem. Data for the eight fourth period nodes are used for the pair
of initial subproblems for each of the four third period nodes. Nodes in the intermediate
second and third periods are then used to form problems that share both responsibilities —
as a subproblem of the parent node in thé previous period and as a relaxed/restricted mas-
ter problem for child nodes in the next period. An intermediate ¢-period node acting as a
SUB receives solution information from its parent node and returns cuts/activities infor-
mation to the parent. Conversely, an intermediate ¢-period node acting as a RMP passes
solution information to its child nodes and receives cuts/activities information from the
children. Problems at the nodes in intermediate periods are then referred to as RMP-SUB
problems. The first period node acts only as a RMP passing solution information to and re-
ceiving cuts/activities information from its child nodes. A terminal period node performs

only the SUB function receiving solution information from its parent node and passing

119



Chapter 4 Decomposition of Stochastic Linear Programs

cuts/activities information to the parent. Figure 4.2 illustrates this work flow for a generic
multi-period problem.

Formulations for the RMP/SUB problems are developed for LSD using the primal
multi-period problem defined in Chapter 2. Complementary formulations for DWD of the
dual problem are defined at each step. These formulations are based upon representing
the nodal value functions *l¢ (x!*le-1) [2.10] on page 39 for t = 2,...,T — 1 with the
equivalent forms:

L
Qlele (x[']t—l) = pE:]_“l'max c/olex(*e 4 Zt gl 4.12)

1
lt=1

st Witlexll < bl — Bltlxl-1, (4.1b)

— bl (xlle) 49l < 0,4, =1,...,L;, (4.1c)

x*l > 0, 4.1d)
0%+ free, I, = 1,. .., L. (4.1e)
[4.1]

Constraints (4.1c) are then replaced by a set of optimality and feasibility cuts for each child
node in period ¢ + 1 in order to define the approximate nodal value function, £l (x*)-1),

t=2,...,T — 1, for problem LSD RMP-SUB([e],):
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RMP

SUB | RMP
“ |3

T_——»
SuB RMP

SuB

Figure 4.2: Nested Decomposition Work Flow — First Period RMP = Final Period SUB
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L
£l (xl#lee1) = pg]_tl—l max clhxlel £ 5 gltlen
‘ ;=1

s.t. W[']tx[']z < b[’]z - B[']zx[’]t—l’

[e],
ﬂ.g.]t+1B[']z+1x[']z + ol < bll.lx]:tﬂ k=1,...,K;*"

- ’ lt=1,...,Lt,
[']z+1

61[.]t+1B[.]’ 1<%l < b[‘]z+1 k=1,... ,K2
k T - 2k ’ lt=1,...,Lt,

x[']z 2 0,

g%+ free, I, = 1,..., L.
[4.2]

Coefficient vectors, ﬁE:]‘“ and 6}:]‘“, and right-hand-sides, b[f,l‘“ and b[;,l’“, for the op-
timality and feasibility cuts are defined in the following two subsections to insure that
Qlele (XMH) < glol (x[-]t_l).

The overall relaxed master problem at the first period node, based upon the deter-
ministic equivalent problem PMPDEP [2.11] on page 39 and referred to as LSD RMP([]),

is:
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Ly
2y =max clxll+ 5 gk
=1

st Ax{l < bl
_ g
W;[.]ZB[.EX[] + 9[0]2 < b:[l"lz, kl—_l’l .. ,Ifi 27
1=4,...,41, [4.3]
. [']2
ol fo]5 ] < b[']z k=1,...,K;72,
(sk B 2y - 2k > ll=17-",L1’

62 free, I, = 1,..., L.

Subproblems at all nodes in the terminal period, LSD SUB([e] ), are simply the final period

nodal value functions [2.9] on page 38 reproduced below for convenience:

i0lelr (x[']T—1) = pE;]fl‘l max c/flrxllr

st. Whlrxllz < blr — Blelrxlelr—: [4.4]
x[®lr > 0,

with function identifier Q! replaced by £l*r.
Restricted master problems and subproblems for DWD are the duals to the comple-

mentary problems above. The dual of problem LSD RMP([]) [4.3] is the overall restricted
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master problem, DWD RMP([]):

g L K2 L K2 S
oo bal 4 £ g ST
1=1 k=1 1=1 k=
. L, K£'12 g'lz
st. A'nll + S 3 B’['271'[']27)[ by Z 3 B’[']26[']2 [-]2 > cll,
: L=1 k=1 =1 k=1
K£']2

Z 7’[.]2 = 17 ll =1,"')L1,

wll > 0,
| 7][']2 > 0 k=1,.. K[']z,
k= =1, 0,
W2 > k=1,.. K[.]za
=T h=1,...,L.

[4.5]
Let the dual multipliers to the base constraints (the first set above) at any node [e], be x[*lt
and the dual multipliers to the convexity constraints (the second set) at that node be 05:]‘“,

ls=1,..., L. The duals to problems LSD RMP-SUB([s],) [4.2] at nodes in intermediate

periods, 2 < ¢ < t ~ 1, are then problems DWD RMP-SUB([s],):
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| Le K[']t+1
Dl :(x[.],_l) — []:- min  (bl*k ——B[']tx[']t—) el 4+ Z Z b[-]m [-]t+1
: L=
| L po S
+ b ® t+1,, ®litra
: [°1t+1
st. W/leglel 4 Z Z B’[']t+11r[.]t+1 [°]t+1
! L=1 k=1
; < Ké.]t-H /[e] [let1, [®]es1 [o]
i + lz—:l l;. B t+16k Uk Z C t,
‘ K{.]H'l
Z T’E:]H-I = 17 lt = 1) cee ,Lt,
; k=1
| lek > o,

[¢]
[.]t+1>0 k=1,...,K1 H'l,
T’k - lt=1,...,Lt,

(*)e1
(41 >0 k= 1,. K + ,
Uk -7 lt=1,...,Lt,
[4.6]

and the duals to problems LSD SUB([e],) [4.4] at nodes in the terminal period are then
|
problems DWD SUB([e] .):
@[-QJT‘ (xlthr-1) = pl[;]fl-l min (bl — Bitlrxl®r-1)’ glolr

st. . - Wlelrglelr
7‘-[']’1‘

clolr [4.7]

2
> 0.

Procedures to determine the optimality cuts (extreme point activities) and feasibility

!

|
cuts (extreme direction activities) are described in the following two subsections.
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422 Optimality Cuts — Extreme Point Activities

Derivation;s are given for the optimality cuts of L-Shaped decomposition of the primal
problem with the corresponding translation to extreme point activities for Dantzig-Wolfe

decomposition of the dual problem. Recall that the RMP is augmented with a new optimal-

|
ity cut whenever a subproblem is solved to optimality. Assume that problem LSD RMP-

SUB([e],) t4.2] with x[*e-1 = %*k-1 at a node in an intermediate period, 2 < t < T — 1,

is solved ait some LSD iteration. Then the vector of coefficients, wl® l[‘,h , and the right-

hand-side, b[ é‘ e, ) for the new optimality cut for the RMP at the parent node in period

t—-1 mustI be determined. Since problem LSD RMP-SUB([s],) has an optimal solution,
| .

the corresponding dual problem DWD RMP-SUB([e],) [4.6] also has an optimal solution.

Let

be the optir:nal solution to the dual problem. Then, by strong duality,

l

: [']t+1
| (bl — Bleleglel-s)’ 70k 4 Z S el
£l (o) = pliles ' =1 Ke=1

t—1 L K[‘]z+1

[']1, A[']t
+ > Z boy g,

li=1 k=1
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Since the optimal dual solutions above are feasible but not necessarily optimum to problem

DWD RMP-SUB([s],) for any x!*:-:, weak duality ensures that
|

(o]t41

L: K3
. (b[.]t — B[‘]tx[‘]t—l) [.]t + E E b:[l;lt+1“L.]t+1 -
[ ) t [ ] t— [.]t— l;—l kt— * ¢
gl (X[ ] 1) S P, ' L K['l:+1

[o] A[°]
T35 kgl
=1 k=1 -

Set K = K[']t+1 let k = K™ and let

i altle — pltlos il

1
77[ ]t+1 pE:]tl 177E;]t+1, kt = 1; Ce K[.]H'l lt = 1; R aLh
'U[ ]t+1 — pg:]gl— A[ ]t+1, kt — 1’ o K[’]t+1, lt = 1, v ;Lt-

Kt
!

|
Then 6l*} '5 Pl (x[*h-1) < glele (x!*le-1) implies the optimality cut

L K[']t+1 L K[']t+1
( ’[']tB[']g) [¢);—1 +9[']: < b’[']gﬂ-[‘]t + Z Z b[ul:“ [*]e41 + Z Z b[2°’1:+1 Ec't]t+1
| =1 k=1 L=1 k=1

!
The right-hand-side of the above cut is the right-hand-side of the new optimality cut at the

" parent nodé in period ¢ — 1 for problem LSD RMP-SUB([s],_,) [4.2]if3<t< T —1lor

problem L;SD RMP([]) [4.3]if t = 2:

L K[']:+1 L K[']t+1

t
b[O]: bl[o]tﬂ,[']g + Z Z b£2:+1 [']t+1 + Z Z b[2.11:+1 ['t]t+1 [48]
L=1 ke=1 =1 k=1
The coefﬁcllents for the new extreme point activity for the corresponding DWD problem
are then
)
: B/l ﬂ.E:]t
| 1

where the first element is the objective function coefficient for the new activity and the
remaining elements are the technology matrix coefficients for the new activity.
I
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Equation [4.8] indicates that the right-hand-side for an optimality cut at some period
t node is é recursive function of the right-hand-sides of all optimality and feasibility cuts
for all deséendent nodes in pen'od_s. t+1,...,T — 1. Therefore, for example, an optimality
cut added fo the single first period node for some outcome, say /1, includes information for
all descendent nodes with a first outcome of !; due to the nested sums in equation [4.8].

The terminal sum in recursive equation [4.8] incorporates the n"ght-hand—sides, bg',lT,
of the optifnality cuts at nodes in period 7' — 1. These values are created when problem
LSD SUB'([o]T) [4.4] at a child node in the terminal period is solved to optimality for
xlr-1 = Zlolr-1, Let #U)7 be the optimal solutions to the corresponding dual problem

DWD SUB([e]) [4.7], then strong duality implies that

;[-]T (i[‘]rq) = pg;-]fl_l (b[O]T - B[°]Ti[']T—1)’7‘i-[']T.

Since #*Ir are feasible but not necessarily optimum to problem DWD SUB([e].) for any

x[*lr-1, wehk duality ensures that

glelr (x[.]T—l) < pg;]fl-l (b[']T — B[’]Tx[.]T—l),ﬁ-[']T.

Set K[.]T — K[']T+1, letk = K[’]T and 1et7r[°]T — p[.]T_lﬁ'[.]T, then g[’]T < Q[‘IT x[‘]T—l <
1 1 1 k lr1

£lolr (x[’]T—jl) implies the optimality cut

(ﬂg-ITB[-JT) xPlr-1 4 gl < plelrgllr
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RMP-SUﬁ([o]Q [4.2] is infeasible with x®-1 = %[*%-1 at a node in an intermediate pe-

nod 2 < t < T -1, at some LSD iteration. Then the vector of coefficients, 6[ le

[']t 1 and

the nght-hand side, Bl é‘ e, ), for the new feasibility cut for .the RMP at the parent node

in period £ — 1 must be determined. Based upon problem LSD RMP-SUB([s],), solve the

following lsimple:x phase one type problem with x[*t-1 = %*le-1:

L K[’]t+1 ['lt+1

W[']g (X[.‘.]t"l) min v+ E E w(lt) + E E w(lt)
! =1 k=1 =1 k=1
st Iv — Whtlxlel > Blelxl*l-1 — bl
(]
w](j:) ;[.]‘+1B[°]¢+1x[']g + 9[’]t+1 2 _b:[l'k]:t+1’ k= 1, e 7K1 H'l,
i lt=1,...,Lt,
| o
: > h [e]
: wgl’:) _ 52.]t+1B[.]‘+1X[°]t > _b[;]l,_H, k= 1’ K t+1’
| lt = 1 Lt7
i x[’]t > 0,
5 s free, I, = 1,..., Ly,
! v>0,
() k=1,..., KW
wlk >O, lt=1,...,Lt,
) k=1,... K
w2k 20, lt=1,...,Lt,
[4.10]

which is always feasible and bounded and corresponds to the dual problem:
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[e]t41

L K
Wil (x[.]t—l) = max (B[']tx[.]t—l - b[']t)16[° Z Z b[.]“*'l .]“*'1
=1 k=1
L
. b.t+1 .t+1
ltz—:l kz—-:
[‘]t+1
st. Wl glel + Z Z B’ °]t+17r[ Je+1 [‘]:+1
L=1 k=1
2
+ Bl't+16.t+1 't+1>0
[4.11]
K{']t+1
> et =0, =1,..., L,
k=1
6[.]t 2 0,

(o]
e s 0 k=E”wK1“,

P 20,

Set K, [, K Il 4 1,letk = K2[°]t and let the optimal solution to the dual problem [4.11]

be
JEC‘]t’
! TL:]:.H — 0, kt — 1 K[‘ :+1’ lt — 1, . Lt7
pL.t]H-l, kt K[.]H-l, lt = 1, ey Lt,
then
Ly K[']z+1
W[O]g (i[']z— ) (B[O tx[']g 1 b[o] O]z Z Z b[2.k]:t+1 L‘]:.H > 0
v =1 k=1
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since the original problem LSD RMP-SUB([s],) [4.2] is infeasible. Therefore, the feasi-

bility cut |
! L, K[']¢+1
(5;[-1!3[-1,) s < pleleglle £ 3 Z b P

=1 k=1

will not admit the infeasible point %[*:-1. Furthermore, W!*k (x*-1) = 0 for any x*le
feasible to problem LSD RMP-SUB([e],) implying that

L, K[°lz+1
W[']t (x[°]:-1) =0> (B[']zx['h_l _ b['] 5[.]' _ Z Z b;ltﬂ [‘]z+1

Li=1 ke=1 :
for any x[*-1 feasible to problem LSD RMP-SUB([e],) since the above solutions are fea-
sible but net necessarily optimum to the dual simplex phase one type problem [4.11]. The
above cut will therefore not exclude any x!*l-1 feasible to problem LSD RMP-SUB( o],
The ﬂght-ﬁand-side of the above cut is the right-hand-side of the new feasibility cut for
problem LiSD RMP-SUB([e],_,) [4.2]if 3 <t < T — 1 or problem LSD RMP([]) [4.3]if
t = 2 at the parent node in period ¢ — 1:

\ L. K[O]:+1
Bk = b'['1:5[°]‘+z Z et plolen, [4.12]

li=1 k=

The coefficients for the new extreme direction activity for the corresponding DWD problem

are then
b[']v.

2k
BI[.]'(SE:]"
0

where the first element is the objective function coefficient for the new activity and the

remaining elements are the technology matrix coefficients for the new activity.

132



Chapter 4 Decomposition of Stochastic Linear Programs

Equation [4.12] indicates that the right-hand-side for an feasibility cut at some period
¢ node is a recursive function of the right-hand-sides of all feasibility cuts for all descendent
nodes in ﬁeriods t+1,...,T — 1. Therefore, for example, a feasibility cut added to the
single first period node for some outcome, say l;, includes information for all descendent
nodes with a first outcome of l; due to the nested sums in equation [4.12].

The :'terminal sum in recursive equation [4.12] incorporates the right-hand-sides, b[z',lT,
of the feasjbility cuts at nodes in period T'— 1. These values are created when problem LSD
SUB([.]Tj [4.4] at a child node in the terminal period is infeasible for x*lr-1 = %[*lr—1,
Based upon problem LSD SUB([s],.), solve the following simplex phase one type problem

with xl®lr—1 — lolr1.

whlelr (x[']T—l) =min Vv

st. Iv— Whlrgllr > Blelrxtlrs — plelr,
X > o, [4.13]
v > 0,
which is al:ways feasible and bounded and corresponds to the dual problem:
W[’]T (x[°]T—1) = max (B[’]Tx[']:r-l — b[.]T),(s[.]T

s.t. Whklzgllr > 0,
j s < 1. [4.14]

6[']7 2 0.

Set Ké’lT = Kg]T +1,letk = Kg]T and let the optimal solution to the dual problem [4.14]

be 6}:]‘, then
WhIT (&le-1) = (Bllrgltlr-: — b[-]T)’ (SL']T > 0

since the original problem LSD SUB([e]) [4.4] is infeasible. Therefore, the feasibility cut
(J;CHTB[-IT) 1 < bl gllr
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will not admit the infeasible point %[*lr-1. Furthermore, Wl*lr (xl*lr-1) = 0 for any x*}r-1

feasible to; problem LSD SUB([e] ) implying that
| ’ .
Wiz (xlelr-1) = 0 > (Bllrxltlr — blelr)’ ltlr

for any x[']IT—l feasible to problem LSD SUB([s]..) since the above solutions are feasible but

not necess%ilrily optimum to the dual simplex phase one type problem [4.14]. The above cut
will therefcg)re not exclude any x*Ir-1 feasible to problem LSD SUB([e).). The coefficients

for the new extreme direction activity for the corresponding DWD problem are then

b'l*lr 65:]'1"

B/[o]T 6Ec°]r
0. .

The right-hand-side of the last cut above coupled with equation [4.12] results in the
recursive ref,lationship:
i
- bls ift="T,

g g F 15]
b e,y = L, K, 't [4.
2(K2 ,+1) b/[o],a[']:] + Zt Z b[']:+1 [°]:+1’ fo<t<T—1,

i K t+1 lg_l k—

for the righlt—hand—sides of feasibility cuts in LSD or the objective function coefficients of
extreme diriection activities in DWD. Note that the derived cuts/activities are based upon
on a boundcied solutioﬁ to the parent relaxed master problem for LSD or a feasible solution
to the parer?t restricted master problem for DWD. Procedures for an unbounded/infeasible
RMP are stiraightforward extensions to the corresponding methods developed in Sections

3.1.3 and 3.2.2.
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4.2.4 Nested Decomposition Algorithms

The n‘estecél decomposition algorithms cited at the beginning of this section are similar to the
multicut algorithms developed in Chaptef 3 — each incorporates distinct initialization and
optimizatiion procedures. Initialization procedures determine if the problem is unbounded
or infeasi‘ti;le, or, otherwise, ﬁnd an initial feasible solution to the problem. Optimization
procedureé then determine an €-optimal solution given the problem is feasible anci bounded.
The proceélures are summarized below using L-Shaped decomposition with straightforward

translations for Dantzig-Wolfe decomposition.

Initialization Procedure

i

|

The ;‘ini.tialization procedure consists of a forward pass followed by a backward pass
through all nodes in the decision tree. The forward pass begins by finding a solution, x!],
to problem{ LSD RMP([]) [4.3] at the first period node. The overall problem is infeasible
if LSD RMP([]) is infeasible, otherwise x!! is passed to problems LSD RMP-SUB([e],)
[4.2] at eac'f:h second period node. A feasibility cut is generated for LSD RMP([]) for each
LSD RMI;?-SUB(\[O]Z) that is infeasible and LSD RMP([]) is resolved a for new solution.
Note that é single feasibility cut may also be passed back if control is returned to LSD
RMP([]) \%vhen the first infeasible LSD RMP-SUB([s],) is encountered. This procedure
is then repeated until all second period subproblems are feasible or the overall pr'oblem is

|
|
determined to be infeasible.
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The steps above are repeated at each node [e], in the decision tree for ¢ = 2,...,T.
|

Problem 'L;SD RMP-SUB([e],),t = 2,...,T — 1, receives a solution vector x*¢<-1 from its

parent nod!e and either returns a feasibility cut to the parent or passes a solution vector x[*l
I

to each of its child nodes. Solution vectors are passed forward only when the problems at

all child no{des with a common parent are feasible. This process continues until the problem
- is determined to be infeasible or feasible solutions are found to problems LSD SUB([e],)
[4.4] at allinodes in the terminal period. The ovérall problem is unbounded if a feasible

solution is fdetermined at all nodes and an-ascent direction is found at any node in the tree
i

with no cofrresponding cut to exclude the resulting ray or admit only a portion of the ray.

1

A lower bo:und on the objéctive‘function of the overall problem is then generated given a

feasible and bounded solution at all nodes in the tree.

[

A baékward pass is executed only if a feasible and bounded solution is found during
|

the forwarcil pass through the tree. The purpose of this pass is two fold: determine an
initial uppefr bound on the overall problem; and place bounds on each 6[*l«+1 at all nodes

i
in periods ¢ = 2,...,T — 1 and generate initial optimality cuts at the first period node.
{

Given a fea'lsible solution, i[‘]T, at a terminal period node [O]T, the corresponding glelr gt
|

the parent n{ode in period T' — 1 is bounded by:
|

glelr < Qlelr (}’([Olr—l) = pg;]_ff‘l—lcr[-]'ri[-]:r_

. L . . .
This bound.is looser than the corresponding cut constraint in the sense that it bounds only

gtz withoﬁt placing restrictions on x!*lr-1, Bounds are used in lieu of the normal cut
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constraint$ since, otherwise, problem LSD RMP-SUB([e],),t = 2,...,T — 1, would need

L : - : : . .
to be reinitialized with each new &[*l-1. Cut constraints at a node [s], in an intermediate

period, 2 g t < T — 1, are dependent upon the feasible solution vector %[*l-1 received

from the p;arent node. Maintaining cuts generated for one solution, say i[l']“l , with 2 new

solution, 52;[2']“1 , would invalidate the procedure. This would be akin to generating cuts for

!
the first period node with one set of values for fixed b!! and keeping these cuts after creating

]
an entirely new problem by changing the right-hand-side values.

The i)ackward pass then continues through the nodes in periods ¢t =T — 1,...,3 by
1

placing boiunds on each 6* with the recursive relation:

L
gl < Qe (%lh) = p§:1_=1-1 Mgl 43 Qblers (%0
le=1

|
This pass and the initialization procedure terminates when the normal optimality cuts are
generated for the first period node by each second period node. An initial upper bound on

the objecti\i/e function of the overall problem is then established as:
| .

| L
| 2 < gl 4 Zl el (x1)
L1=1

!
! Optimization Procedure
C -
The optimization procedure is executed only if the initialization procedure determines
that the ovérall problem is feasible and bounded. Processing starts by finding a solution to
problem LSD RMP([]) [4.3] at the first period node and then moving through the tree by

passing feasible solutions forward or cuts backward. A new upper bound is created each

!
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time probliem LSD RMP({]) is solved (assuming nondegenerency). The lower bound is
updated w;henever feasible solution;c, are found at all nodes in the terminal period implying
a feasible !solution to the overall problem. Processing terminates whenever the relative
difference ‘:between the upper and lower bounds is less than some specified positive value
.

All éxisting cuts, except for the upper bounds on #l*}+:, at problem LSD RMP-
SUB([O]t),é t = 2,...,T — 1, must be removed each time the parent node sends a new
solution veictor. Existing cuts are removed with a new parent solution vector for the reasons

discussed above with the backward pass of the initialization procedure.
|

Seveial sequencing protocols (Birge et al. [14, Section 2.2] and Gassmann [83, page
414]) for ciontrolling the traversal through the tree are discussed in the literature. A few of

|
these proto;cols are described in Section 4.4.2 below.

4.3 BIock-Separable Problems

1
i

Stochastic ;linear programs that have the block-separable property defined in Section 2.4

provide ml;xch greater flexibility in the application of decomposition algorithms than do
l

programs without this property. Given block-separability, the multi-period primal stochas-

tic linear programming problem [2.8] on page 35 may be written in the equivalent form:
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.
# =max <Olx®l 4 Olx@l 4 3 pl] [OFla@iol 4. Dlelax Dbl
1

L=1
L2
+ Zp£°]2 [c’(l)[°]3x(1)[°]3 + c’(2)[']3x(2)[']3
2
=1
Lty
o plir= [¢/DlelrxWlelr 1 /Wil Oielr ]
T—1
lry=
s.t.
A@DR O < b0l
ACDZOD 4 AGIR@1 < p@l
By Wley 4 WLDlelox Dol < bl § = 1’2 féﬁ
B@DhxDils 4 WDkl Ol 1 WEDhx@le < el { Pt = 15- - féﬁ,
. = 1 b

x® x®1 > o,

X Bl %@k > 0, { =1l

[4.16]

where equation [2.7] on page 28 is used to determine [e], given period-index node la-
bel (¢, h:) in the applicable constraints and in the discussion below. Then all constraints
involving only the aggregate level variables, x(DI*l, can be grouped together as can the
constraints that incorporate detailed level variables, x(®[*l:. Problem [4.16] can then be

rewritten as:
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¥ =max /WlxOI 4 Z ol f(l)[-12x<1)[-12+ Z p[-12 (Dol 5 (Do)3
h=1 lp=1
Ly

+ Z p[ lz—1 [ Dl Wbl ]
lT—

Ly .
12)[]4 (] [} [o/(2)[0]a (26l [o]2 [/(2)[0]34-(2)[0];
XN+ ) py [c x + p,2 [c X

=1 lo=1
Lr_y
+ Z pl lr- [Pl @bl ]]
lp_1=1
s.t.
A5 < pOU
B Dol @lele—y 4 WDy D], < Dl he=1,...,H,,
= ’ t=2,...,T,
ACDXOD 4 A2 < HON
B(zal)[.]zx(l)[.]t—l + W(Zal)[']tx(l)[']t + W(2a2)[']tx(2)[']t S b(2)[']t’ { h tz—lé o ’H:Zt_"

xWl, x@10 > o,
x(l)[.]t’ x(2)el; >0, { hs t=_1, .o ,Ht,

[4.17)

Then, with suitable definitions for composite arrays, the multi-period problem [4.17]
can be rewritten to resemble a two-period problem. This means. that the two-phase LSD
(multicut) algorithm defined in Section 3.1.4 can be used in lieu of nested decomposition to
solve a block-separable multi-period problem. Given a phase one solution for the aggregate
level variables, the second pair of constraint sets in problem [4.17] are separable by node
into phase two subproblems for the detailed level variables. The structures of matrices

A®2) and W20l may allow for even more separability so that the indicated constraints
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are also separable into subproblems. This separability provides much greater flexibility
than can be expected with nested decomposition. Similar remarks apply for using algorithm
DWD(multiactivities) from Section 3.2.3 to obtain a solution to the dual formulation of a
block-separable multi-period problem.

A disadvantage of bringing all constraints with only aggregate level variables into
the first phase of the LSD procedure or bringing all aggregate level variables into the first
phase of the DWD procedure is that the size of the corresponding initial RMP can become
very large. Large initial relaxed/restricted master problems can require significant amounts
of processing time in the early iterations of the decomposition algorithms. This can be
a serious drawback since two of the generally expected advantages of decomposition are
relative little memory usage and fast solution times in the early iterations. Note, however,
that the formulation of problem [4.17] is just one of many ways of writing a block-separable
multi-period problem to resemble a two-period problem. Constraints may be arranged by
periods so that constraints involving only aggregate level variables at nodes in a specified
number of early periods are brought into the first phase RMP while those in the later periods
remain as second phase subproblem constraints. This latter arrangement provides for a
smaller initial RMP at the expense of larger, more complicated, subproblems. A smaller
initial RMP can still be advantageous since not all subproblems must be solved at every
iteration — see the remarks on greedy algorithms in Section 3.3.6 on page 114. This and

other issues are discussed in the next section on implementation strategies.
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44 DWD-LSD Implemehtation S‘trétegies

Several implementation strategies are possible when employing one of the decomposition
methods to solve a multi-period stochastic linear program. The best strategy depends upon
the system resources available as well as the structure of the problem. Determining the
most efficient strategy for a given problem or class of problems may requiré extensive
experimentation. Several implementation strategies are examined in this section. Empirical
results for several of the strategies described below are given in Chapter 6.

Terminology used herein relative to that normally found in the literature is discussed
in the first subsection below. The remaining three subsections consider implementation
strategies for nested decofnposition, two-phase decomp;)sition of a block-separable prob-
lem, and the nested decomposition of a block-separable problem. Strategies are described
relative to L-Shaped decbmposition with simﬂle translations possible for Dantzig-Wolfe

decomposition.

44.1 Terminology Issues

The most common term used in the literature on stochastic linear programming is stage.
Problems with a horizon of mulﬁple (three or more) distinct periods are usually called
multi-stage problems versus the term multi-period used in this thesis. L-Shaped and Dantzig-
Wolfe decoﬁposition are often referred to as two-stage procedures instead of two-phase
procedures. Finally, the term multi-stage decomposition is frequently used synonymously

with nested decomposition. The terms periods and stages were used interchangeably in the
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early days of linear programming to describe the different parts of a program that would
be separable except for a f_ew linking constraints or variables, e.g., see Dantzig [42]. Stage
has become the dominant term in stochastic programming. Overuse of the term can be
confusing — does stage refer to a portion of the prqblem or to a part of the decomposition
procedure. This is-not really a problem in the references on nested decomposition cited
at the beginning of Section 4.2. Those.references employ the algorithm so that each stage
of the procedure coincides withia stage or period of the problem. The flexibility provided
by block-separable problems can, however, lead to obscure meanings — multi-stage decom-
position could imply decomposition of a multi-stage problem with a two-stage algorithm.
Therefore, period is used to refer to the distinguishable parts of a linear program in its orig-
inal grand LP formulation and phase is used to differentiate between the two modes of a
decomposition algorithm, i.e., the RMP phase versus the SUB phase. The term stage is used
to identify a portion of the problem structure specifically constructed for a decqmposition
procedure. For instance, each stage may coincide with a period if nested decomposition is
used as described above. On the other hand, a multi-period stochastic linear program with

block-separable recourse may be restructured. with two stages for decomposition.

44.2 Nested Decomposition Strategies

Several sequencing prdtocols are possible for controlling the order in which problems are
solved in the optimization phase of a nested decomposition algorithm. Three of the most

common protocols are described below. One or more of these protocols are discussed in
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i

each of: Birge et al. [14, Section 2.2], Gassmann [83, pages 414-415], and Wittrock [207,
pages 82-83]. The terminology is from Birge et al. and each description terminates with an

enclosed listing of the contributing authors.

Fast Forward-Fast Back (FFFB): The algorithm initially begins with a forward pass
starting with a solution to the first period node. Feasible solutions are passed forward
through the tree as fast as possible returning to a parent node only when a corresponding
subproblem generates a feasibility cut. A backward pass is initiated when all subprob-
rlems at nodes in the terminal period are solved and have generated, where applicable,
either a feasibility cut or an optimality cut for their parent nodes. Cuts are passed back
through the tree as fast as possible in the backward pass, i.e., one per child node (which
may be aggregated in a single-cut algoﬁthm). The backward pass terminates and a new

forward pass is initiated whenever:

(a) all second period nodes have generated a cut for the first period, or

(b) no cut can be generated at some node [o],, ¢t = 2,...,T — 1, because problem LSD
RMP-SUB([e],) [4.2] is optimum given feasible solutions %!, [*lz, ... &[*l-1 —

ie., £k (}'{Mt—l) = ZL‘-l gl

l¢_1=1
Several variants of FFFB are possible and a few are discussed after this listing (Birge et

al., Gassmann, and Wittrock).
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Forwards First (FF): The algorithm moves from nodes in period ¢ to the parent nodes
in period ¢ — 1 only when the solutions for all subproblems in periods ¢,...,T are

optimal (Birge et al. and Gassmann).

Backwards First (BF): The algorithm moves from nodes in period £ to the child nodes
in period ¢ 4+ 1 only when no new cuts for period ¢ — 1 are generated by the nodes in

period ¢ (Birge et al., Gassmann, and Wittrock).

Birge et al., Gassmann, and Wittrock all concur that the FFFB protocol is generally
the most efficient. Birge et al. employ a variant of FFFB in which a node in an intermediate
period is termed blocked during a forward pass if the subproblem at that node is infeasible.
Tht; forward pass is then terminated along the path anchored at the blocked node but is
continued for all unblocked nodes. Feasibility cuts generated at the blocked nodes are
then added to the problems of the parent nodes during the next backward pass. A similar
procedure could be used to discontinue a backward pass only along the paths from those
nodes that do not generate cuts while continuing to pass back cuts along the remaining
paths.

The above descriptions assume that there is a subproblem for each node in each
period. The descriptions still apply if certain consecutive periods are grouped into stages.
A five-period problem, for example, could have the first period in stage one, periods two
aﬁd three in stage two, and the remaining two periods in stage three. Such groupings can

significantly reduce the number of subproblems but at the expense of increased problem
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sizes. These descriptions also apply only to problems that are not block-separable or when
the property is not utilized. Strategies for using nested decomposition with block-separable

problems are discussed Section 4.4.4 below.

4.4.3  Block-Separable Strategies

Many different decomposition implementation strategies are possible with multi-period
problems that have the block-separable property. Strategies based upon arranging the prob-
lem structure to resemble a two-period problem are discussed here. Strategies for using
nested decomposition with block-separable problems are discussed in the following sub-
section.

In addition to the different arrangements possible for problem constraints described
in Section 4.3, »implemqntation strategies .must account for such issues as the number of
subproblems and sﬁbprdblerﬁ solution frequency. The number of subproblems determines
the number of cuts that are possible— one cut for each subproblem. Note that subproblem
as used here iﬁlplies that a single cut is generated for a particular group of constraints
as described in Section 3.3.4. Subproblem solution frequency determines the amount of
improvement in the upper bound and the frequency of updates to the lower bound.

In order to demonstrate these concepts, define aggregate level constraints as con-
straints containing only aggregate level, x(!)*}¢, variables and detailed level constraints as
constraints that incorporate detailed level, x@), variables. Let £, 1 < £ < T, index the

last period containing aggregate level constraints that are brought into the RMP. Then only
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aggregate level constraints from the first period are in the RMP if £ = 1 while all aggregate
level constraints are in the RMP if ¢ = T'. An example of the latter case is the arrangement
of the constraints in problem [4.17]. Detailed level constraints in periods periods 1,...,%
are not in the RMP and form a series of independent subproblems. There can be at least
HO® = Ef:l H, such subproblems, i.e., one subproblem for the detailed level constraints
at each node in periods 1 through ?. Fewer subproblems are created if cuts are aggregated
and more are pdssible if the structures of matrices A2 and W22l ¢ =1 ... % allow
for even more separability. Note that the latter requires a modification to the notation since
the applicable nodes would then be associated with more than one @ value. Each node in
period £4-1 then anchors a subproblem with T'—# periods if £ < T'. Figure 4.3 demonstrates
these ideas on a four-period decision tree with binary outcomes.

It is not possible to list all decomposition strategies for a general multi-period block-
separable problem. Therefore imi)lementation strategies will be defined by a flexible three-
level numeric planning scheme: major strategy, minor strategy, and tactics.

The major strateg}" defines the structure of the initial RMP and such issues as whether
to employ cold (no advance basis) or warm (advanced basis) starts to solve subproblems
and the solutioh frequency for subproblems. For instance, major strategy = 1 might indicate
that £ = T — 1, cold starts are to be used on all subproblems, and all subproblems are to be
solved at each decomposition iteration while major strategy = 2 is the same except warm

starts are to be used with subproblems.
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BMP and Subproblems

1. Constraints with only aggregate
level variables go into the RMP

- - ubproblems Onily
2. Constraints with both aggregate Subproblems On

and detailed level variables form Each third period node
subproblems anchors a two-period
subproblem

Figure 4.3: Four Period Block-Separable Problem With £ = 2
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" The number and formulation of subproblems is designated by the minor strategy. In
other words, the minor strategy dictates how the constraints left out of the RMP are used to
create subproblems and therefore controls the maximum number of cuts that can be added
to the RMP at the conclusion of each iteration. For example, minor strategy = 1 could mean
that only one subproblem is to be employed while minor strategy = 2 indicates that there is
a subproblem for each node in period ¢ and one subproblem for all remaining constraints.

Finally, the tactics control the number and types of cuts actually added to the RMP at
the conclusion of each iteration. For instance, only the cut associated with the maximum
violation (e.g., maximum 6 — gl*l: (x(Dlel) difference) is added when tactics = I while
all possible cuts are added if tactics = 2.

Decomposition method and strategies are then shown as LSD(:.5.k) or DWD(.j.k)
where ¢ indicates the major strategy, j the minor strategy, and k the tactics. This scheme
is used in Chapter 6 to label the decomposition strategies employed with a multi-period
block-separable market investment model. Variations to the scheme are discussed in the

following subsection and where necessary in Chapter 6.

44.4  Nested Decomposition of Block-Separable Problems

Very large multi-period problems may require nested decomposition even if the problems
have the block-separable property. Block-separable problems allow for far more flexibility
in the application of nested decomposition than do problems without this property. Block-

separability may be applied within each stage of the procedure where it is applicable. For
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instance, assume that a four-period problem with binary outcomes is block-separable in
every period. Then the periods can be grouped by stages — séy, for example, period one in
the first stage, periods two and three in the second stage, and period four in the third and last
stage. Aggregate level constraints in period (stage) one go into the first stage RMP while
- the first period detailed level constraints form second stage subproblems. Each second
period node would then anchor a three-period second stage. RMP-SUB. These problems
would act as subproblems to the first stage while in the SUB mode and as second stage
relaxed master problems when in the RMP mode. Nested decomposition could be used
to solve each of these three-period problems. Aggregate level constraints in periods two '
and three would go into the second stage RMP while the detailed level constraints in those
periods form third stage subproblems. Finally, each fourth period node is treated as a single
third stage subproblem. Figure 4.4 diagrams the preceding example.

Nested decomposition cc;uld be applied to the above four-period problem in several
other ways. The number of ways of u‘sing nested decomposition on a block-separable
problem grows with the number of periods iﬁ the plmniﬁg horizon. Variations on the im-
plementation strategy scheme described in Section 4.4.3 are required to account for nested
decomposition of block-separable multi-period problems. For instance, the grouping of pe-
riods into stages and the level of nesting must be deﬁped at one or more of the three strategy

levels. These variations are discussed in more detail in the Chapter 6 with the application

of nested decomposition to a market investment model.
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4.5 Myopic Decomposition

Dantzig-Wolfe and/or L-Shaped decomposition of a multi-period stochastic linear program
offer s;everal attractive qualities versus a grand LP solution to the same program. Decom-
position methods generally require significantly less memory, especfally in early iterations,
than do grand LP approaches. Subproblems may be solvable with simple algorithms ver-
sus complex simplex algorithms. Decomposition algorithms may be terminated once an |
g-optimal solution is available. These qualities generally mean that a decomposition algo-
rithm is much more efficient than a grand LP formulation for large problems.

DWD and/or LSD applied to very large scale problems may, however, require signif-
icant amounts of both computer clock time (actual run time) and central processing unit
(CPU)time. Clock time can be much larger than CPU time on systems that employ some
type of virtual memory in which a portion of the executable code and problem data may
be paged to the external memory system. Such a system allows for much larger size prob-
lems but frequent requests for paged memory, which does not factor into the CPU time, can
greatly increase clock time over CPU time.

One procedure that may provide acceptable results in less time than either DWD or
LSD is myopic decomposition. The primal form of this procedure takes a short-sighted
view of the overall problem by solving decomposed subproblems in each period using in-
formation from the previous periods but neglecting any effects the solution has on following

periods. The dual form is similar except it solves decomposed subproblems in each period
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using information from future periods and neglects effects on previous periods. Either or
both the primal anci dual forms of myopic decomposition can be used to obtain an approx-
imafe solution to the problem. The primal form will provide a lower bound for a problem
whose objective is to be maximized while the dual form will provide an upper bound. My-
opic decomposition is not new approach — Mossin [150, page 223] (1968) described the
concept as a method an investor might employ to maximize expected utility of final wealth
in a period while disregarding the future. Khang and Fujiwara [121] recently investigated
the use of a myopic view in optimizing ordering policies when there is stochastic supply.
Both the dual and primal forms are used in the myopic dual-primal cycling algoﬁ'thm
(MDPCA)developed below. Formulations for the decomposed subproblems used by the
algorithm are described first. Algorithm MDPCA is then described followed by heuristic
modifications to the algorithm. Note that the algorithm is developed assuming that the
multi-period stochastic linear program is bounded and has complete or relatively complete
recourse. Requiring complete recourse is not seen as a serious drawback since, according to
Birge and Louveaux [17, Section 3.1(d)], this property is present in most practical problems
and is often added to problems without complete recourse. In any case, the algorithm
could be easily modified for a general problem by incorporating feasibility and optimalit\y

(unbounded) cuts similar to those defined in Chapter 3.
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4.5.1 Myopic Subproblems

The subproblems used in myopic decomposition are based upon the grand LP formulations
of the primal multi-period problem PMPGLP {2.8] on page 35 and the corresponding
dual problem DMPGLP [2.12] on page 39. A primal phase subproblem at some node in
the decision tree assumes a feasible solution vector is available f}'om the parent node and
ignores the effect its solution has on all descendent nodes. The resulting subproblem is
termed a nodal primal subproblem and is represented as a function, 2. (x*le-1), of the
solution vector from the parent node. The first period nodal primal subproblem is then:

O () = max cUxll

st. Axll < bl [4.18]
xll > o,
and the nodal primal subproblem at any node in period ¢, ¢t = 2, ..., T, is:
mtl[’.]t (x[']t—l) = p[']t max c’[']gx[']t
-s.t. W[']tx[']t S b[']t — B[.]tx[']t—l, [4.19]
x[*) > 0.

A dual phase subproblem at some node in the decision tree assumes a feasible so-
lution vector is available from each child node and ignores the effect its solution has on
all ascendant nodes. The resulting subproblem is termed a nodal dual subproblem and is

L
;1, from

represented as a function, ﬂﬁg l ([—n-[']u,l] Z; 1), of the solution vectors, [71-['1:4,1] L

the child nodes where [7r[']T+1] ILTF‘T__l is simply ignored at nodes in the terminal period. The
nodal dual subproblem at any node in the terminal period, T, is then:
BT () = pllrmin  blelrgllr

st. Whlrgllr > cllr, [4.20]
9llr > 0,
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and 7ltlr = 79T at each node where B is the optimal solution to problem [4.20]
at the corresponding node. The nodal dual subproblem at any node in period, t, ¢t = T —

1,...,2,1s:

o ([ﬂ'[-]m]i;l) =P Blemin byl

L
st. Wlglle > ¢l — 1 S Bl grloless,
- p

ly=1
.19[.]t 2 0,
' [4.21]
the nodal dual subproblem at the single first period node is:
ml ([,,[-12]51: 1) — min b1yl
st. A9 > ol = 52 Bkl [4.22]
=1

9l > 0,

[o]:

and 7rl* = pl*led"* at each node where B is the optimal solution to problem [4.21] or

problem [4.22] as appropriate at the corresponding node.

4.5.2 Algorithm MDPCA

Algorithm MDPCA is an iterative procedure where one pass is made through the nodal
primal subproblems and one pass is made through the nodal dual subproblems during each
iteration. Each iteration is called a cycle and the first pass is termed the lead half-cycle
while the second pass is referred to as the fail half-cycle. Either class of subproblems,
dual or primal, may be in the lead half-cycle and the other class in the tail half-cycle. The

resulting procedure is said to be the primals lead or the duals lead version as appropriate.
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A primal pass starts with a solution to theA first period nodal primal subproblem [4.18].
Solutions are then obtained to the remaining primal subproblems [4.19] in an iterative,
breadth-first, node order through the decision tree. Note that the dual multipliers to the
period T' nodal primal subproblems [4.19] are feasible (after dividing by [*/r) to the period
T nodal dual subproblems [4.20]. Therefore, a dual pass following a primal pass can start
with the nodal dual subproblems in period T' — 1.

A dual pass starts with solutions to the terminal period nodal dual subproblems [4.20].
Solutions are then obtained to the remaining dual subproblems [4.21] and [4.22] by pro-
ceeding backwards through the tree in an iterative node order. Note that the dual multipliers
to the first period nodal dual subproblem [4.22] are feasible to the first period noda‘ll primal
subproblem [4.18]. Therefore, a primal pass following a dual pass can start with the nodal
primal problems in the second period.

Best lower and upper bounds are updated after the completion of each primal half-
cycle and each dual half-cycle respectively. There is no guarantee that the bounds will

converge. Therefore the algorithm is terminated either when:

1. the relative difference between the bounds is less than or equal to some prespecified

positive amount, &, or
2. the difference between the bounds fails to decrease from one cycle to the next.

The primals lead version of the algorithm is initiated by solving the first period nodal

primal subproblem. Cycling iterations then begin with the primal half-cycle starting with




Chapter 4 Decomposition of Stochastic Linear Programs

the second period primal subproblems. Information from the period 7" primal subproblems
is used to start the dual half-cycle with the period 7' — 1 nodal dual subproblems. Once
the first period dual subproblem is solved, information from that problem is used to start
the next cycle with the second period nodal prirhal subproblems. Cycling continues until
at least one of the termination criteria is satisfied. ’

The duals lead version is initiated by solving the period T" nodal dual subproblems.
Cycling iterations then begin with the dual half-cycle starting with the period 7" — 1 dual
subproblems. Information‘ from the first period dual subproblem is used to start the primal
half-cycle with the second period nodal primal subproblems. Once the terminal period
primal subproblems are solved, information from those problems is used to start the next
cycle with the period 7' — 1 nodal dual subproblems. Cycling continues until at least one
of the termination criteria is satisfied.

Myopic decomposition can be an attractive alternative to DWD and LSD even though
the latter two méthods will give a solution to within an arbitrary tolerance while myopic
decomposition will not. All three methods require roughly the same amount of overhead
memory — maintained storage of such items as best solution to date information and house-
keeping variables. Myopic decomposition, on the other hand, generally requires signifi-
cantly less additional active memory (random access memory or RAM) than do DWD and
LSD. At the most memory intensive point in the procedure, algorithm MDPCA needs ac-

cess to enough problem data and executable code to solve the largest subproblem. Dantzig-

Wolfe and L-Shaped decomposition of large problems will generally require the same in-
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formation plus they must maintain the corresponding RMP in active memory. Furthermore,
myopic decomposition may arrive at a bounds gap after the first complete cycle that either
DWD or LSD would take substahtially more time to achieve. Algorithm MDPCA is also
easily modified to act as an initiating procedure for either of the other two decomposition
methods. Empin'cal results that provide insight into these issues are given in the Chapter 6.

The detailed description of algorithm MDPCA is quite lengthy and is placed in Ap-

pendix B along with flowcharts of the algorithm and its contained procedures.

4.5.3 Heuristic Modifications

Heuristic modifications to algorithm MDPCA are based upon changing the formulations of
the tail half-cycle nodal subproblems. Nodal primal subproblems in the duals lead version

of the algorithm are the decomposed nodal problems of the dual to problem DMPGLP

|

[2.12] modified as follows:

Ly Lo LT—l
3P = min b/lixll + }: l:b'[Olzﬂ-[']z + lr}: b/lelslels 4 { o+ {Z b'[°]rﬂ-[°]T:l . :”

b L Ilr—
[4.2
Lo
s.t. Axll > ell = > BI[.]27['[.]2,
lo=1
& he=1,...,H,
18}y (0], slel. clel, — /o], [o], t y ooy LAty
Witk Z e z¢Z=:1B I, t=2,...,T—1,
Wihlrgllr > plelrclelr hr=1,..., Hy,
=l > o,
7‘.[o]t Z , ht = 17 . 7Ht7
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Nodal dual subproblems in the primals lead version of the algorithm are the decomposed

nodal problems of the dual to problem PMPGLP [2.8] modified as follows:

Ly Lo
2P = max c’[]x[] + ZPL]_ [c’[.]2x[.]2 + Zpll:;b [c’[.]sx[.]!i + .. +
L=1 la=1

EEY
> pp [t
Ip_1=1
s.t. Axll < bl
Wil x[el; < bl — B[‘]tx[’]t—l’ h: = 1,... 7Ht7 t=2,... ,T, [4.24]
xl > o,
X[.]t > 0, ht=1,...,Ht, t=2,,T

The primal subproblem for the first period is not required in the duals lead version of
algorithm MDPCA. Heuristically modified nodal primal subproblems for nodes in periods
2,...,T — 1 for the duals lead version are the decomposed nodal subproblems of the dual

to problem [4.23]:

— L /

EDI}[:]‘ (x[']i—l) = ﬁHt max (c[‘]t — ji[_zlt lzt:l B’[.]t+11'r[.]t+1) x[.]t
t:

s.t. W[']tx[°]t < b[.]t — B[‘]txk]g_l,

x[‘]t > 0,

[4.25]
and the terminal period primal subproblems remain unchanged from problems [4.19]. Dual
subproblems for the terminal period are not required in the primals lead version of the
algorithm. Heuristically modified nodal dual subproblems for nodes in periods T—1,...,2

in the primals lead version are the decomposed nodal subproblems of the dual to problem
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[4.24]:

——

([, -

1=

jj[']: min (b[.]t —_ B[’]:x[’]g_l)l 19[']:

. L
s.t. Wil > el — L S5 Bleligrlels,
- p

li=1

19[']: Z 0,
[4.26]

and the first period dual subproblem remains unchanged from problem [4.18].
Objective function values must be corrected after the solutions are obtained at each

node in each applicable period as follows:

L
ml[;]z (X[.]"l) — ﬁ}[:]: (x[']g—l) + XI[.]‘ ZB’[']»+171-[°]:+1
=1

mgha,,[-hﬂ]i;l) = 53}][;1:<[,,[-1,+1]it=1)+,,f[-1gB[-1gx[-1t_1

Nodal subproblems [4.25] and [4.26] are not valid formulations since the problems
they are based upon, [4.23] and [4.24] respectively, are invalid as fémulated. Each of the
latter two problems treats some variables as unknown in the objective function while treat-
ing these same variables as known in the constraints. These unknown-known variables then
become part of the objective function coefficients in the nodal subproblems. Since each set
of resulting subproblems are in the tail half-cycle of the algorithm, the corresponding vari-
ables have been assigned values during the lead half-cycle. The heuristic method proved

to be more effective than the unmodified algorithm on the market investment model de-

160



Chapter 4 Decomposition of Stochastic Linear Programs

veloped in Chapter 5. No theoretical evidence is currently available to suggest that the

heuristically modified algorithm would be more effective on a general class of problems.

4.6 Stochastic Data Storage and Retrieval

Frequent access to stochastic data is a common requirement of each of the decomposition
methods examined herein. Efficient data storage and retrieval procedures are therefore an

imperative component of any effective decomposition algorithm. A Fortran 95 module,

referred to as Stoc_Forest, was developed to implement these procedures. This module.

encapsulates the data structures and functions required to efficiently store and retrieve sto-
chastic data.

Data structures in module Stoc_Forest are based upon the structure of the decision
tree. Problem data are considered to be assigned to the nodes of the tree. A block of nodal
data is either stored or retrieved by traversing the tree with pointers directing traffic from
one node to another. Individual nodes are identified by the path vector, [o], = [I1,. .., 1],
to the desired node. Functions are provided to store data by node in either an iterative
(breadth-first) or recursive (depth-first) order. Both storage orders require that data for all
ancestral nodes be stored prior to storing data for a descendant node. Stored data may be

retrieved in any nodal order and may be retrieved as a block (all data for a given node) or

by array components.
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Module Stoc_Forest allows data to be maintained in active memory or to be stored
in binary direct access files on a nodal basis. In other words, data for some nodes may
be maintained in RAM while data for the other nodes is kept in files. Storing data in files
allows for much larger problems at the expense of significantly decreased storage and re-
trieval efficiencies. The module will also store and retrieve data for a theoretically unlimited
number of independent decision trees. The module is very efficient, generally requiring a

minuscule amount of time relative to the other processes involved in decomposition proce-

dures.




Chapter 5
Market Investment Model

Decomposition procedures developed in Chapters 3 and 4 are applied to a multi-
period market investment model developed by Edirisinghe, [64] and [66], for implementa-
tion at a private investment company. Model development, model properties, and solution
procedures are described in tHis chapter. Solution results and analyses are presented in the
following chapter.

The market investment model is presented in detail in the first section. Model devel-
opment incorporates both primal and dual problem formulations. Required array notation
and properties of model problem instances are described in the second and third sections
respectively. Application of Dantzig-Wolfe, L-Shaped, and myopic decomposition to the
model is covered in the fourth section. Computer implementation of the model is the topic
of the fifth section. Scenario generation procedures used to simulate uncertain data for the

model] are detailed in the sixth and final section.

3.1 Model Development

The goal of the market investment model is to optimize the period-to-period holdings in

a finite number of securities while accounting for the transaction costs of trades and a
specified measure of aversion, or tolerance, to risk. Securities is used herein as a generic

term for financial instruments that may include, but not be limited to, such items as stocks,
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bonds, and mutual funds. Each type of security is quantified in terms of units defined by
the investor. One unit of stock XYZ, for example, may equate to 100 shares of that stock.
The number of units of an individual security that ﬁre held or traded is also referred to as
the number of positions held or traded.

The model is formulated as a multiple period stochastic linear program, MIMPSLP,
to optimize the number of positions of each security to be held in each period of the plan-
ning horizon subject to the uncertainties of future events. Optimality of holdings is based
upon maximizing the expected net return over the planning horizon subject to penalties
assigned during each period for any violations to a specified risk aversion measure. |

Notation is first established for a single-period model and is subsequently expanded
to account for a model with one or more periods. Let V represent the number of securities
andletn € N ={1,..., N} index a specific security. The performance of a given security,

n € N, is measured by:

1. the expected return, 4,,, of each position held in that security,

2. the positive standard deviation, o, of the uncertain return, and

3. the covariances, o,,m, between security n and securities m = 1,..., N, m # n.
Leto =(o1,...,0,) be the vector of standard deviations and let & € RV*¥ represent the
covariance matrix which is assumed to be positive definite. Parameters g = (i, ..., uy)

and X are then assumed to describe a finite joint probability distribution on returns per
position. Let L designate the number of possible outcomes in the joint probaBility space

denoted by the outcomes matrix R € R¥*L where R = [R.1,...,Rai, ..., Rez] and Ry =
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(Ruy -+ Raty - - -, RNl)' is the random vector of individual returns, R,;, for each security
n € N atoutcome ! € L = {1,...,L}. Note that the transpose of the outcomes matrix,
R/, is generally called an observations matrix and R/, is the L x 1 observations vector for
security n € N. Vector p =(p1,...,01,-- -, pL)' represents the probabilities of observing

each outcome [ = 1, ..., L. Mean returns can then be represented as:
e, =ER;.) =pR., Zlenl, n=1,...,N,

where £ denotes the expectation operator.

Model MIMPSLP then consists of two primary components: expected net return and
risk aversion. Procedures for incorporating these two components are described in the first
two subsections below using the notation established above for a single-period planning
horizon. A single-period model formulation follows the descriptions of expected return
and risk aversion. The final subsection defines the notation and formulates the model for a

general planning horizon with one or more periods.

5.11  Expected Return

Expected net return for a given security is determined by subtracting the fixed transaction
cost associated with a trade in that security from the total return expected to be observed
as a result of the trade. Transaction costs, e.g. commissions, are termed slippage and are
a function of the trade amount. Notation and procedures for incorporating expected net

return in a single-period planning horizon are developed below.
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Expected Total Return

Lety = (v1,...,yn) denote the portfolio variables, the vector of the number of
positions held in each security at the conclusion of all trades at the beginning of the planning

horizon. The expected total return, £ (T'R,,), for a given security is then:
E(TR,) =& (yuR) = un€ (RL.) = p¥Un, n €N, [5.1]

and the expected cumulative total return, £ (T'R), for all securities is:

N N N
E(TR) = (Z ¥R > =Y EWRR) =D ynE (RL) =D ot = py. [52]

n=1 n=1

Slippage

Let y© = (y§0) . yI(f,))) denote the vector of the number of positions held in each
security prior to conducting any trades at the beginning of the planning horizon. Transac-
tion costs associated with a trade in secuﬁty n € N are a function of the amount, X", of

the transaction, i.e., the absolute difference in the number of held positions:
XT(LI) = |yn — y£0)| .

Two functions, called slippage functions, are used to determine the transaction costs as-
sociated with trades in each security: a slippage per position function and a total slippage
function. The slippage per position function, &, ( 7(11)), for each security n € N is a
piece-wise linear concave function with two segments called the first and second slippage

regions. Each function &, (X,(Ll) ) is described by four parameters:
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1. k,: the minimum cost per position,
2. X2 the transaction amount that is the boundary between slippage regions,.

3. aj,: the slope of the slippage per position linear function in the first slippage region,

and
4. ap,: the slope adjustment factor that is added to a;, to obtain the slope in the second
slippage region.

These parameters are restricted by the folloWing conditions for all securities n = 1,...,N:

OSK,-,,,<OO,
0 < X" < oo,

05a1n<ooa

0<ay, <0, ifa;, =0,
—a1, < G2 < 00, ifai, > 0.

The last condition on the slope adjustment factor, as,, precludes the unreasonable possi-
bility that decreasing transaction costs are associated with increasing transaction amounts.

Slippage per position function, G, (X,(,l) ) , for security n € N is then:

_ 012 XD + K, 0< X < Xom,
6. (X)) =
(@10 + a20) X + K — aza X, X < X < oo

The total slippage function, &, (z,), for security n € N is obtained by multiplying

the applicable slippage per position function by the transaction amount, G~5n (X,(Ll)) =
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X(I)Gn (X(l))
X (01X + 5n) 0< XxP < X,
S, (X)) = [5.3]

,(Ll) [(aln + aan) XT(LI) + Ky — aan;“‘] , X< XT(LI) < oo.

Graphs for both functions for a typical security n € N are given in Figure 5.1.

Total slippage function én (X,(LI)) is a piece-wise quadratic function and cannot be
incorporated as is into a linear program. Each total slippage function [5.3] is therefore
approximated with a piece-wise linear (PWL) function of the transaction amount. The PWL
function for each security n = 1,..., N consists of K = K; + K, linear functions where
K is the designated number of PWL segments desired in slippage region j for j = 1,2.
Each PWL segment, £ € K = {1,..., K}, for security n € N is bounded by lower and
upper break points ¥(x_1y, and ¥y, respectively where ¥o, = 0 and ¥k, = oo. The last
break point for the first slippage region is assigned to the region boundary, Ug,, = X,
when X;* > 0. Break points Uy,, &k = 1,...,K; — 1, in the ﬁrst slippage region are
assigned values based upon either one of two criteria:

1. nﬁninﬂziﬂg the average absolute error between PWL and actual slippage over the first
slippage region, or

2. limiting the maximum relative error between PWL and actual slippage in any segment
to a specified value ¢; > 0.

Break points ¥y, k = K; +1,..., K, in the second slippage region are assigned values

to limit the maximum relative error in any segment to a specified value ¢, > 0. The linear
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Figure 5.1: Slippage Per Position and Total Slippage for Security n € N
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function in segment k& € K has slope &y, where

o, — é'n. (qlkn) - én (Q(k—l)n) .
n Uin — \I’(k—l)n .

All terminal break points ¥k, for each security n = 1,..., N are set to positive infinity

- after the slopes @, have been determined. Break points and slopes for all securities

n=1,..., N are determined such that:
0=TUop <U1p <+ < Uy, < -+- < Upep, = 00, [5.4a]

O < < Bpp, < -0 < B [5.4b]

Detailed procedures for assigning values to the PWL break points and slopes are given in
Appendix C. A sample graph of the actual and piece-wise linear slippage functions with

two PWL segments in each slippage region is illustrated at Figure 5.2.

Expected Net Return

Expected net return for security n € N is determined by subtracting the actual slip-

page defined by equation [5.3] from the expected total return defined by equation [5.1]:
E(NR*) =& [TRﬂ - &, (X,?))] = £(TR,) — & (XD) = pogn — B (X)) .

Model MIMPSLP cannot incorporate the above expression, however,vsince C:Bn ( ,(Ll)) is
a piece-wise quadratic function of X, Instead, the PWL slippage functions described

above are used to determine an approximate expected net return for each security. Define
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g, (x,{‘) )“
First Slippage Region Second Slippage Region !
Slope=&,,

(4]

Ox

]

g Slope =4,

7]

s

2

Slope=&,,
Slope = &, :
‘POn ‘Pln ‘PZn = X:l:m ll}3" ‘P4n X,(ll)

Transaction Amount

NOTES:
1. Two PWL sections in each slippage region

2. Last PWL break point (¥,,, in figure) changed to positive infinity
after last PWL slope (&,,,) is determined with:

<1> _én(?lm)_én(?(k—l)n) k=l..4
tor ¥, - ‘P(k-l)n , beees

Figure 5.2: Sample Piece-Wise Linear Slippage Approximation for Security n € N
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the slippage variables X/ M) for each security n = 1,..., IV such that:

XO = ZX,&Q, [5.5]
0< X,EQ <Upn — Uiy k= 1,..., K. [5.5b]

Then a pair of constraints in addition to those defined by [5.5b] are required for each secu-

rity to determine X W = 1,..., K, such that equation [5.5a] is satisfied. The additional

kn >

constraints for security n € N are:

ZX“) <40, [5.6a]

Un + Z X5 > 40, [5.6b]

Constraints [5.6a-b] are termed the slippage constraints for security n € N. Constraint

[5.6a] is referred to as the slippage buy constraint for security n since y, > ySf’) if X,(Ll) =

(yn y,(L ) ) while constraint [5.6b] is called the slippage sell constraint since y, < y(o) if
, }(,gl) - (y ygp)_

Total slippage for security n € N is then approximated by:

n (X)) ~ Zq’k Xim»

and approximate expected net return for security n is:

E(NR™) = p_yn — Z@,m xW [5.7]

subject to constraints [5.5b] through [5.6b]. Constraints [5.6a-b] guarantee that

K
X = - 9] = X
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as required by equation [5.5a]. The cumulative expected net return for all securities is

then:

n=1 k=1

N K N
ENR™ =Y (unyn -y <1>an,£33> = puy-> &.,XY. [5.8]
n=1

5.1.2 Risk Aversion

The model currently incorporates only information on the expected performance of each
security without considerfng the uncertainty of security activity. A portfolio, y, maximizing
expected net return would be determined if model construction terminated at this point.
This portfolio could, however, result in an actual net return significantly different from that
predicted by the current model. Markowitz [140, page 77], in fact, rejected the hypothesis
that a model should maximize expected return in favor of an approach that couples expected
return with the variance of return. Based upon this mean-variance analysis concept and
his work on utility of wealth [141], Markowitz [142] proposed methods that measure the
efficiency of a portfolio by the ratio of the expected return to the variance of the return.
These methods equate risk with the standard deviation (square root of the variance) of the
return and reduce risk through variance reduction procedures. Variance reduction methods
have at least two major drawbacks: they are modelled with nonlinear programs and are
therefore computationally expensive and they punish portfolios with significantly higher
returns than expected as well as those with lower returns. Advances in technology as well
as linear approximation techniques such as the mean absolute deviation risk models of

Konno and Yamazaki [128] and Konno and Kobayashi [127] reduce the importance of the
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nonlinear programming requirement of variance reduction methods. Punishing portfolios
with significantly higher than expected returns as well as those with significantly lower than
expected retumns is, therefore, considered the more critical of the two shoﬂconﬂﬁgs. One
procedure for circumventing the high returns punishment problem is the semi-variance
concept of Markowitz [142, Chapter 9] — risk is equated to the variance of only those
returns that fall below the mean value. Fishburn [78] expands on the semi-variance concept
by introducing a range of models in which risk is associated with returns that fall below
some target value.

Model MIMPSLP incorporates the concept of risk associated with below-target re-
turns by including terms in the objective function that penalize only returns with downside
deviation, i.e., those returns that fall below the expected returrll. Models equating risk with
downside deviation have been developed for and implemented by large corporations. Ep-
pen, Kipp, and Schrage [73] describe a capacity planning model developed for General
Motors that .penlalizes s;:enan'os th;t induce profits to fall below a specified target level.
Worzel, Vassiadou-Zeniou, and Zenios [210] discuss a fixed-income assets management
model implemented by Metropolitan Life Insurance Corﬂpany that penalizes downside de-
viations from a fixed-income index. The MIMPSLP model also hedges against risk by
limiting the number of positions that can be held during ény period of the planning hori-

zon. These two risk aversion measures are described below.
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Downside Deviation

The downside deviation 2); (y) of portfolio y relative to outcome | € L is defined as:

%), (y) = max ([(,/y_né@;nxs;)) — ( ly—Z@’ xu))] )

2 (y) =max [(u — R,))y, 0] [5.9]

Theref’ore, the downside deviation of a given ponfolio relative to a specific outcome is pos-
itive only if the net return (or, equivalently, the total return) of the portfolio determined
with the specified butcomcs vectc;r is less than, or dowﬁside of, the expected net (total) re-
turn. The model incorporates downside deviation to control risk by penalizing the objective

function in either one of two modes:

linear downside deviation: the penalty increases with the expected value of the down-

side deviation, or

quadratic downside deviation: the penalty increases with the expected value of the squared

downside deviation - analogous to Markowitz’s semi-variance concept.

The quadratic downside deviation mode requires piece-wise linear approximations to
the function § [2); (y)] = 27 (y). Procedures discussed above for approximating slippage
are easily adapted to detem;ine PWL approximation parameters for § [2); (y)] since this
function can be considered as a special case of the slippage function for some security with
@1n = 1 and ag, = k, = 0. The minimum average absolute error procedure can be applied
if desired by creating two artificial downside deviation regions with a simulated value for

a region boundary analogous to X2". Methods described in Appendix C are then used to
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determine break points ¢,, ¢ = 0,...,Q, and slopes v, ¢ = 1,...,Q), for a specified

number ¢ of PWL segments such that:

0= <oy <+ <pg <+ < pg = 00, [5.10a]

q

T < <Yy < <7g- [5.10b]

Note that the linear downside deviations mode is represented exactly by one segment with

the two break points, ¢y = 0 and ¢; = oo, and slope 7y, = 1.

Define the deviation variables X élz) for each outcome ! = 1, ..., L such that:
L
Di(y) =Y X, [5.11a]
q=1
0< XD <o, —p,a=1,...,Q. [5.11b]

Then another constraint in addition to those defined by [5.11b] is required for each outcome

to determine X ()

arq4=1... , @, such that equation [5.11a] is satisfied. The additional

constraint for outcome ! € L, based upon equation [5.9] and termed a deviation constraint,
is:

N Q
> (o= Ra)yn— Y XP <0, [5.12]
n=1

q
The penalty term in the objective function is then:

L Q
A3 (z %x;f)) , 5.3
=1 g=1

subject to constraints [5.11b] and [5.12]. Risk aversion factor A > 0 in penalty term [5.13]
is used to model different levels of aversion to risk which increases with A. Constraints

[5.12] guarantee that equation [5.11a] is satisfied.
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Limiting Holdings

An additional hedge against uncertainty in performance is provided with the follow-

ing risk budget constraint:

N
o'y =Y outn < B, [5.14]
n=1

where 3;, 0 < B, < 00, is some specified amount of capital. The budget constraint is in-

tended to limit liability if the return for each security drops by an amount equal to the stan-

dard deviation of the return. Portfolio y is also bounded by Y™ = (Yo ... Yma Yy
and Yo5* = (Y&, ..., Y2 ... Y= such that:
—o <Y<y <Y® [5.15]

5.1.3  Single-Period Planning Horizon

Model MIMPSLP with a single-period planning horizon then consists of the expected net
return [5.8] and penalty term [5.13] in the objective function, slippage constraints [5.6a-
b], deviation constraints [5.12], budget constraint [5.14], and‘bounding constraints, [5.5b],

[5.11b], and [5.15]. The primal formulation for the single-period problem is then:

N N K L Q
Z = Imax Z ,unyn—z Z qunX]S,.,,)_/\ Zpl Z 7qX¢§l2)

n=1 n=1 k=1 =1 g=1
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N
s.t. > Onln < B4
n=1 K
Yo — > X < 9, n=1,...,N,
k=1
K
v+ Y X > 4%, n=1,...,N,
=1
N Q @)
> (Bp — Rut) Yn - XXy <0, I=1,...,1L,
n=1 q=1
yor <y, < Yo n=1,...,N

0< XY < Upp = Vgpyn, k=1,...,K,n=1,...,N,
0<XP <0, ~ 9,1, g=1,....,Q,1=1,... L.
The single-period problem [5.16] serves primarily to provide the foundation for the formu-

lation of the problem for a general planning horizon.

5.14  General Planning Horizon

Formulations are developed below for a general planning horizon, i.e., a horizon with one
or more periods. Notation is extended to accommodate a problem with multiple periods
followed by formulations for the primal and dual problems.

Let T dénote the numl;er of periods where 1 < T < oo. Transaction costs are
assumed to remain constant across all periods. Constant transaction costs, or slippage,
is a reasonable assumption given the relative short period lengths; from a few days to a
few weeks, that will be examined. Multiple period problems are constructed and their
components labelled using the decision tree structure and notation described in Section

2.2. For example, y™* is the portfolio vector for a period ¢, 1 < t < T, node [0), =
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[l ..., i—1] = (¢, hs) where [o]; =[] = (1,1) is the single first period node. Equation
[2.7] on page 28 is used to relate a period-index node label, (¢, h;), with the corresponding
path vector label, [o], = [l1,...,/_1], throughout this chapter. Let 3;, A, Y € RN*1,

and Y™ € RV*1 such that
0 < B < o
0 < X : t=1,...,T
—00 < Ymr < ym
be the right-hand-sides of the budget constraints, the risk aversion factors, and the lower
and upper portfolio bounds respectively for nodes in a specified period. Define g;, such

that 0 < g, < 1, as the capital discount factor for period ¢, 1 <t < T, where g; = 1. Let

0, be the compound discount factor for period¢,t =1,...,T":

i
o=]Jopt=1....T.
=1

Table 5.1 summarizes the notation used in the formulation of model MIMPSLP problems.
The formulation of the single-period problem [5.16] can now be extended to accommodate

a general planning horizon.

Primal Formulation

Note that slippage for a node in period ¢ = 2,..., T is a function of |y!*k — yl*le-1]
where [o], € HS ([o],_,), i.e., node [e], is a child of node [s],_;. Then, recalling from

Section 2.2.2 that pl*: represents the probability that the process enters the period ¢ node
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Table 5.1: Model MIMPSLP Notation (continued on next page)

Symbol | Description

G1n Slope of slippage per position linear function in first region: 0 < a3, < o0

azn Slippage slope adjustment factor for the second region: —ay, < @2, < 00

t—1
H; Number of nodes in period t: H; = [] L;
i=1

i
H® | Cumulative number of nodes through period t: H®) = S° H;
ij=1

K; Number of slippage PWL segments in slippage region j = 1,2: 0 £ K; < o©

K Total number of slippage PWL segments: K = K7 + K,

k Index for slippage PWL segment: k € {1,...,K}

L, Number of outcomes at each node in period ¢: 2 < L; < oo
I Index for a specific outcome: I; € {1,...,L;}
N Number of securities in the market investment model analysis: 1 < N < o0
N Set of security indices: N = {1,..., N}
n Index for a specific security: n € N
p!* | Vector of outcomes’ probabilities at node [o],: pl*l: € R%*
p,[:]‘ Probability of outcome ; at node [o],: 0 < pg:]‘ <1
Pl Compound probability of entering node [s], = [l~1, ceny ft_l]: plole = t]'jl pg]’
=
Q Number of downside deviation PWL segments: 1 < Q < oo
q Index for downside deviation PWL segment: ¢ € {1,...,Q}
R!*: | Outcomes matrix of returns at node [e],: RI*l € RN*Z:
RE:II,‘ Return for security n given outcome [; at node {e],: —c0 < RZ],‘ < o0
T Number of periods in the planning horizon: 1 < 7T < oo
t Index for a specific period: £ € {1,...,T}
Xo Boundary between slippage regions for security n: 0 < X2 < oo
x| Transaction amount for security n at node [e],: x Pl yg' e yL’ =
X ,SI) *: | Portion of transaction amount for security n at node [¢], in PWL segment k
X éi) ) | Portion of downside deviation for outcome l; at node [e], in PWL segment ¢

Y™ [ Matrix of maximum number of positions: Y™ € RV*T

Y* | Maximum number of positions for security n in period ¢: -oo < Y;12%

Y™? | Matrix of minimum number of positions: Y™ € RV*T

= | Minimum number of positions for security 7 in period ¢: -co < Y, 3® < Ymax

y'*lt | Vector of portfolio decision variables at node [o],: y!*l € R¥

yg '+ | Portfolio decision variable for security n at node [o],: Y8i® < yL' e < Y, max

y© | Vector of number of positions held at beginning of planning horizon: y® € RV

y,(?) Number of positions held at beginning of planning horizon in security n: —oo < y1(10)
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Table 5.1: (continued) Model MIMPSLP Notation

Symbol Description
By Capital budgeted for risk in period ¢: 0 < 5, < 00
Yq Downside deviation PWL slope in segment ¢: y; <--- <7y, <--- < 7g
Kn Minimum cost per position: 0 < k, < 00
At Risk aversion factor for period ¢: A; > 0
plol Mean returns at node [o],: pl*l: € RV
,uLf]‘ Mean return for security n at node [e],: —o0 < ,ug]‘ < 0
wO)leL, Duals: budget constraint/portfolio upper bounds at node [o],: #©Fl: ¢ RIFV
R Dual: budget constraint at node [o],: 7t "¢ > 0
7r$10) tele Dual: security n portfolio variable upper bound at node (e}, : (0) el >0
wDlel Duals: slippage constraints/X "¢ upper bounds at node [e],: w()*l: € RK+IN
m el Dual: security n buy slippage constraint at node [o],: 75" > 0
wg\l,)[;]‘ Dual: security n sell slippage constraint at node [e],: wg\l,ﬁ;]‘ >0
HOION

2N+('n.—1)(K 1)+k

Dual: X(l)[rupper bound (1 < k¥ < K — 1) at node [e],: "'gv[;](nﬂ)(x ek 20

(2o,

Duals: deviation constraints/X ; ¢ ) *lt upper bounds at node [o],: =@l ¢ RL:

moCh

Dual: outcome l; deviation constramt at node [o],: 7 (2) e > 0

W],
L+ (L, —1)(Q-1)+q

Dual: X( el upperbound (1 <¢g< Q@ -1 at node [o]t "rg,)r(]f.—n(q g =0

o Capital dlscount factor forperiod t: 0 < 9, £ 1,0, = 1
D¢ Compound capital discount factor for period t: o, = H 05
ol*l Standard deviations on returns at node [e],: o!*lc € RN
UL' I Standard deviation on return for security n at node [e],: 0 < ak < o0
® Matrix of slippage PWL slopes for all securities: ® € REXV
Drn Slippage PWL slope for security n in segment k: ®1,, < -+ < @p, < ... < Py
Pq Downside deviation PWL upper break point in segment g:
O=p <y <<, <+ < Pg =00
W Matrix of slippage PWL break points for all securities: ¥ € RUI+H)XN
Ui Slippage PWL upper break point for sccurity n in segment k:
0=V0, < ¥, < <Uppn<- - < Vg, =00
£y Length in days for period t,1 < ¢ < T
o], Path vector to node [o], = |13,...,0;_;
(t, he) Period-index label for node [o],:

see equations [2.6] and [2.7] to relate [e], and (¢, h)
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[¢],, 1 <t < T, the primal grand LP formulation for a general problem is:

z= maxz 2, [Z plle (Z el _ Z Z B X0 _ 3, Z Pl Z ", éi)[-h)]

n=1 n=1 k=1 l=1 g=1
[5.17]
s.t. constraints at the single first period node,
Zo'nyn S ﬁl)
[ S (©) ‘
Y — kZlX,m < ¥, n=1,...,N,
K
+ 3 X! > ¢, n=1,...,N,
k=1
N Q
2
n;( Ell) ] - 2 <0 h=1.m,
constraints at nodes [e], = (¢, h:), he =1,...,H;, t=2,...,T,
iak]t’y?[:]t < ﬂh
=1
K
yL]“ oy — S x ek <0 n=1...,N,
k=1
K
—yhet gl 4 S x Dl >0, n=1,...,N,
k=1
N .
° ° 2)|e
3 (i~ R3:) ui - S <o k-1,

and bounds at nodes [e], = (¢,h:), he =1,...,Hy, t=1,...,T,
ymin < gl < yrmax n=1,...,N,
0< XY <o —Upeiiyn, k=1,...,K,n=1,...,N,
0< X2 <0, — v, g=1,...,Q,1,=1,..., L.

The following simplifying notation is introduced to make the problems more man-

ageable. First, the variable substitution:

xOle =yl Y py=1,... H,t=1,...,T, [5.18]

ol
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is made for the portfolio variables at all nodes. Variables x(@*l are referred to as trans-
lated portfolio variables while variables y!*): are called non-translated portfolio, or simply
portfolio, variables. Introduction of translated portfolio variables results in lower bounds
of zero on these variables and simplifies construction of the dual problem. The portfolio
variables’ substitutions also induce the additive objective function constant:

. T

= Z@t

t=1

H;
3 g ( “/[-ltyggn)] ,

ht=1

T Hy N :
Zn =) _ 0, [Z ph (Z #,[Z]‘Y;T“)
t=1

ht=1 n=1
and the following changes to the right—hand:sides of the indicated constraints at all nodes

[o], = (t,s), ly =1,... H;, t=1,...,T:

IB[-], =B, — oleleyme, budget constraints,
y© — ym, ift=1

AYTR = . . , slippage constraints,
m oy —Yme ifte{2,...,T}

e N ° o : . e “
dEt]‘ =3 (R[ .~ ML]‘) Yo h=1,...,L, deviation constraints,

=
AYTE = ymex .y upper bounds on x@*l;,
Computations are reduced by defining the following variables representing the upper bounds
on the translated portfolio variables and the PWL slippage and deviation variables at all

nodes:
x(Ol): < AYmx — ymax _ ymin,
X,E;)M‘ S AV =V —¥oo1yn, k=1,...,K,n=1,...,N,

2)[e
Xq(lt)[ ]t SA90q=90q—99q—1’ q=1,...,Q,lt=1,-..,Lt.
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Finally, the imaginary period zero portfolio variable:

x(o) [.] 0

=0,

simplifies construction of the problem at the single first period node. Table 5.2 summarizes

this new notation and is provided as a convenient reference.

Primal problem [5.17] is then reformulated as problem PMPGLP:

z=
hy=1 n=1 n=1 k=1 =1 g=1
s.t. constraints at nodes [o], = (¢, k), hy=1,...,H;, t=1,...,T,
N ~[®
3 oDl < g™
n=1
L] L K L H
—3757,0)[ ]:—1 + 13'57.0)[ ]f. _ E Xéi){ ]t S AY":rtun’ n= 1, .
=1
. ® K L] H
1351,0)[ ]:—1 _ SUS;O)[ ]: _ Z XIS;,)[ ]: S ___Aan;m, n= 1’ .
=1
N ° [ [ Q ° Jle
El (#L]t _ RLIJ:) 3751,0)[ ]: E].Xéi)[ ]t S dgt]t, l _— 1, .
n= q=

and bounds at nodes (o], = (¢, h;), h: =1,..., H;, t= 1,...,T,

184
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max$ " b, [Z pele (Z ulel Ol Z Z B X O _ ), Z pg:lt Z 7, Xéltn-]t
t=1

[5.19]
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Table 5.2: Model MIMPSLP Simplifying Notation

Notation |  Description® [ Reason
portfolio induce lower
x (Ol = ylol; — ymin variables’ bounds of
i substitution Zero
T H, objective .
- ~ 5], 1[e], %/ min . variable
Zeon El & [hz_lp (Y Te) } function substitution
= constant
plele o o], % min RHS of budget variable
B =h -G constraints substitution
max __ ~\max _ ~min upper bounds on variable
AYSE =YE - Y3 x (0] substitution
Aymin — y(o)' -Yoe, o t=1 RHS of slippage variable
st Y‘.“(‘;‘_l) -Yor, t=2,...,T constraints substitution
dol, _ DA (ool el vrmin . _ RHS of deviation variable
4" = n; (R"lt fim ) Yot le =1, Ly constraints substitution
AT =Ty — T k=1 K upper bounds on computational
kn = Fhn T F(k-l)n) BT L0 slippage variables convenience
. _ upper bounds on computational
B =¢q=¢g-1,9=1...,4 deviation variables convenience
<Ol = g imaginary period 0 problem
- portfolio variables construction

RHS means right-hand-side
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:L‘S;O)[.]‘ SAYR n=1,...,N,

X;E}L)[']‘SA‘I’M: k=1,...,K—1, n=1,...,N,

Xélzt)[.]tSAsoqi q=1,---,Q—1, li=1,..., L,

:E‘SLO)[.]z 2 0, n = 1’_'_,N,
Xl > k=1,...,K, n=1,...,N,
Xél?[-]tzo, g=1,...,Q, L=1,..., L.

Note that the inequality on the slippage buy constraints (third set of constraints) has been
reversed from the original formulation in order to put the problem in canonical form (e.g.,
sec Bazaraa, Jarvis, and Sherali [é, page 5 and Table 1.1]). Also note that upper bounds
are not included at any node for slippage variables Xl(,(l,)zm‘, n =1,..., N, or for deviation
variables Xézzz),, [']‘, i =1,..., L. These bounds need not be explicitly listed since Apg =
oo and AVUgk,, = oo forn = 1,..., N. Furthermore, the portfolio variables’ substitutions

(equations [5.18]) require that the objective function constant z.,, defined above (or see the

second row of Table 5.2) be added to the above result to obtain the true problem value:

Z =24 Zyp. ' [5.20]

Dual Formulation

Three sets of dual multipliers are defined for each node in order to construct the
dual problem to problem [5.19]. These definitions are valid at each node [}, = (¢, h;),

hi = 1,...,H;, t = 1,...,T. First, let 7O ¢ RN*1, referred to as the dual budger
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variables, be the vector of multipliers for the budget constraint and the upper bounding
constraints on the translated portfolio variables with vector indices corresponding to the

applicable primal constraints:

N e g
Z Uk]‘:vgo)[.]‘ S :8[ ]t: 7T(()0)[ ]:,
= [5.21]

gk < Ayme p=1 N 7O =1 N

nt
Note that no dual budget variable, .7r£,0)[°]‘, 1s required for any primal portfolio variable

upper bounding constraint that has AY, 2> = oo since any such dual variable would always
have a value of zero. Duals to the slippage constraints and upper bounding constraints on
the slippage variables are called the dual slippage variables and are denoted by (el ¢

RE+DN with vector indices:

® ] K [ ] . L
-—IBS,,O)[ Je—1 + $1(r;0)[ le _ Z XISL)[ le <AYmR p=1... N: W_g‘l)[ ]:, j=1,...,N,

nt
k=1

nt

L] (] K [ P ®
IBS;O)[ le—1 —-'E'SzO)[ ]:_ ZXISB[ le < — /\Y/min n=1,...,N: 71_.5.1)[ ]t,j=N+1,...,2N,
k=1

EOICH j=2N+1,...,
i (K +1)N.
[5.22]

X;SB[.]' <Ay, k=1,...,K—-1,n=1,...,N:

Finally, the duals to the deviation constraints and upper bounding constraints on the devi-
ation variables are called the dual deviation variables and are denoted by @) ¢ RL:

with vector indices:

N o [J [ Q [ e [}
) (b — R 2l zlngj[ h<dh =1, L A8 =1, L,
n= q=

HOION i=Li+1,...,
5 QL.
[5.23]

Xéi)['l‘ <lp,q=1,...,Q@ - L1l =1,..., L
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Slippage duals, w(Ml*lr+1 = 0, are also defined for all fictitious nodes in an imaginary
period T' + 1 for problem construction purposes only. Then the dual to problem PMPGLP

[5.19] is referred to as problem DMPGLP and is:

T H N A
5 = min Z Z [B[']:W(()O)[O]t + Z AY;;axW%O)[O]t ' [5.24]
t=1 hy=1 n=1
- AR R (e
min ° 1)[e 1)[e
+ Z AYn (7"511)[ b — WN+nt) + Z A\I,knWZN+(tn—1)(K—1)+k
n=1 n=1 k=1
L L: Q-1
slele, (2)[e] (2)[e]
+ lz dlg tﬂ'lg ‘ + lz: Zl A(pqut'F(ltt_l)(Q_l)"'q]
t=1 t=1 q=

s.t. constraints at nodes [o], = (¢, k), hy =1,...,H;, t=1,...,T,

L
oltlendel 4 x Ol 4 7 Olel _ 7Ol S ( fel. _ RZ]:) bl

l¢=1
Lt 1 1
- Z (ﬂ.gl)[°]t+1 _ ﬂ,gv?mtﬂ) > @tﬁ[.]tuk]t, n=1,...,N,
;=1
Wlele . (Wls] W) » e k=1,...,K-1,
—T = T ANtk 2 0P Pk, n=1,...N,
_ﬂ-g)[']t _ Wg\lfit:rlt > —@tﬁ[.]‘q’Km n=1,...,N,
@)l (2)fe] R g=1,...,Q -1,
T, T Lt (1) (Q=1)4g 2 —&rp! ]t’\tplt o lh=1,...,L,
2)[e ~ ~le °
_ﬂ.l(t el > _Qtp[ ]t/\tpE,]t'VQ’ le=1,...,L,

and lower bounds at nodes [o], = (¢t,h;), by =1,...,H,,t=1,...,T,
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Qe >0, n=0,...,N,
Al >0, j=1,.. (K+1)N,

w20, j=1,...,QL.

The first set of IV constraints at each node are known as the dual composite con-
straints because they incorporate all three types'of dual variables. The next pz;ir of con-
straint sets are referred to as the dual slippage constraints since they involve only the dual
slippage variables. Finally, the last pair of constraint sets ‘are called the dual deviation
constraints since they involve only the dual deviation variables.

Note that similar to the primal problem PMPGLP [5.19], equation [5.20] must be
applied to the objective function value of problem DMPGLP [5.24] in order to obtain the

value for the original problem.

5.2 Model Problems in Array Notation |

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP can be put into the
array notation defined in Chapter 2. Definitions for problem vectors and matrices are given
below followed by the formulations in array notation. The following notational conventions

are used to define problem arrays:

|j]: floor of j — largest integer less than or equal to 7,

[0],7xnt M-by-N matrix of zeros, and
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A (41319, j13j2): array colon notation — the submatrix of A containing elements in rows
11 through 72 and columns j; through 7.
Also recall from Section 1.4 that I, represents the M-by-M identity matrix. All arrays are
defined relative to the primal formulation, problem PMPGLP [5.19], and the transposes of
these arrays are used as appropriate in the dual problem DMPGLP [5.24]. Upper bounding
constraints are included in the definitions for the right-hand-side vectors and the transition

and recourse matrices.

5.2.1 Problem Vectors

Composite vectors xl*k, c[']t, and bl*: are used to represent the decision variables, cost
coefficients, and right-hand-sides respectively for each node [e], in the decision tree. Vector

x*l: € RK+DN+QL ig defined as
x(o)[.]:
x®e = | x@Ml | [5.25]
x(z)[.]t

where x(OF) € R¥ is defined by e(juation [5.18], xXVe € REN guch that

Wl _ 5 Wbl =2 +1 -
z; | Xk"n". where { ki=j—(n- 1K forj=1,...,KN, [5.26]
and x®*l: € RQLt guch that
[ ® j — ‘7;1
2 = X where { L e J 1o tori=1,....0QL. [5.27]
g=J-(;-1)Q
Cost coefficient vector cl*le € R(K+DN+QL: ig defined as
O,
bl = | Bl | [5.28]
@bl;
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where ¢l ¢ RY such that

C(O)[‘]t = @tﬁ[.]tl‘l’[.]t’
cWlle € REN guch that

Wlele _ 5 sfo), gDiele n; =] +1 -
c; 0:D “I’kjn,- where { ki=j—(n—1)K forj=1,...,KN,

and c@[l: € RQL: gych that

) o ;= ‘7;1
C§~2)[ le — @tﬁ[o]tAtpEj]z,yqj where { lJ . 0 +
G=j--1)Q

Right-hand-side vector bl*): ¢ RIH(K+2N+QL: j5 defined as

b(o)[']t
bk = | bl
b(z)[.]t
where b©[*): ¢ R+N gych that
,3[.]’, n=>0

b0Vl —
AYP= n=1,...,N,

nt ?
bl ¢ RE+DN gych that
([ AY®  j=1,...,N,

Jjt o
—-AYF", j=N+1,...,2N,
QMY
! j=2N+1,...,(K+1)N,
 — | d=(2N+1)
where nj [K—l +1 ,
ki=j—2N—(n;—1)(K—1)

‘I’kjnj H

\

and b@[*l: ¢ RQLt guch that
& j=1,...L,

@0k _ _
) j=Li+1,...,QL

BPq,) where g; = j — Ly — [L_é):—lﬂl_‘ (@-1).
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5.2.2 Problem Matrices

Composite matrices B[*}: and W!*l: are used to represent the transition matrices and re-

course matrices respectively. Transition matrix

B[']: = R[1+(K+2)N+Q[4] X[((K+1)N+QL¢—1]

is defined for each node [e], in the decision tree in periods ¢ = 1,...,T and in the imagi-

nary periodt = T + 1 as

[ Olgimyxny [Oarmyxeny  [0asnyx@re s

Bl = | B0l [0](K+1)NxKN [O](KJFI)I\,XQM_1 , [5.36]

| Oloroxy  [Olor,xxn Olor,xgr.;
where BLOM®l: ¢ REFDNXN guch that
B0 (1:N,1:N) = Iy
BOOEk (N + 1:2N, 1:N) = Iy if2<t<T,

B0l (2N +1: (K + 1) N, 1:N) = 0] (g—1) v
[5.37]

BOOU — BAOlras = [0) 1 ey } it =10 T +1

Note that BGOU = BLOklr: — [q] are defined solely for the purpose of simpli-

(K+1)NxN

fying the problem construction procedure.

Recourse matrix
Wl ¢ REHE+FIN+QLIX[(K+1)N+QL:]
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is defined for each node [e], in the decision tree in periods ¢ = 1,...,T as
[ WOl 0] ken [Olasnyxore ]
Wk = [ W@k, Wi, 0] (K+)NxQL:e | » [5.38]
| WEORL (0], oy WAL

where the five non-zero submatrices of W®l: are defined as follows. Submatrix W(©0)l: ¢

RA+NXN js defined as

W(()(:ro){']t — o-’[']t , [5.39]

WOk (1:N,1:N) = I,
submatrix W(L:0)ele ¢ RK+DNXN i defined as

WOk (1:N, 1:N) = Iy,
WOl (N + 1:2N,1:N) = —I, [5.40]
WOk QN +1: (K + 1) N, 1:N) = [0] 4c_1ynuny »
and submatrix W®0)l*le ¢ R@LeXN ig defined as
w0k _ <p,[°]t - R[‘,];)', Lb=1,....L,  [541]
WOkl (L + 1:QLe, 1:N) = [0]ig_1yz,u -

The lower two diagonal submatrices W{l:DI*l: ¢ RIK+DNXKN apq W22l ¢ ROL:XQLt
are defined in Figures 5.3 and 5.4 respectively. Note that the first period technology matrix

is denoted by Wl and not by A as in Chapters 2 and 4.
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Upper Submatrix

Columns Rows
1K co (FN)K+ 10K+« o (N-1)K+ 1:NK
1
~1...-1 )
-1...-1 n
-1...-1 N
-1...—-1 N+
-1...-1 N+n
-1...-1 2N
Lower Submatrix
Columns Rows
1:K

I 0

(n-1)K+ 1:nK = = - (N-1)K+ 1:NK

I, 0

T, 0

NOTES

1. Blank portions of both submatrices filled with zeros

2.1, represents the (K-1)-by-(K-1) identity matrix

3. 0 represents a column vector of (K-1) zeros

Figure 5.3: Recourse Submatrix WLl
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_1 0

Upper Submatrix

Columns
(PNQ+1Q  + o - (L0 + 1:LO
-1 -1
-1... j
Lower Submatrix
Columns

(-1)Q + 1:10

NOTES

Cee(Lne+ Lo

Ip1 0]

1. Blank portions of both submatrices filled with zeros

2.1, represents the (Q-1)-by-(Q-1) identity matrix

3. 0 represents a column vector of (0-1) zeros

Figure 5.4: Recourse Submatrix W22l
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5.2.3  Array Formulations

Problem PMPGLP [5.19] can then be written in the following formulation analogous to

formulation [2.8] on page 35:

T H:
z=max Y. Y., clxlk
t=1 he=1

s.t. wllxl < bll,
Bllxltl-r  Whlxlle < bl p,=1,...,H, t=2,...,T,

x¢: >0, h=1,.. ,H, t=1,...,T.
[5.42]
Similarly, problem DMPGLP [5.24] can be written in the following formulation analogous

to formulation [2.12] on page 39:

T H
Z = min Z Z b/[*le [l

t=1 he=1
st Whlabl 4 5Bt > deh, B beoH
= =1,...,T -1,
Wl lolr > cfr, hp=1,..., Hy,
ﬁm > 0, f;jf:,;?’
[5.43]
where wl* € RI+HE+AN+QL: gch that
- O], T
o= |z | [5.44]
| @ |
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5.3 Properties and Sizes of Model Problems

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP possess several of
the stochastic programming properties described in Chapters 2 and 4. Each problem has
complete recourse, is block-separable, and models a sequential decision-observation sto-
chastic process that terminates with an observation in each period of the planning horizon.
These three properties are discussed below and additional properties of the model are in-
troduced where appropriate. This section concludes with comments on the sizes of the two

grand LP formulations.

5.3.1 Observation-Terminated Process

Model MIMPSLP mathematically describes a observation-terminated stochastic process
as defined in Section 2.2.1. The end of each period in the planning horizon is simulated by
the observation of the vector of random returns and the simultaneous determination of the
downside deviation. Deviation variables X([*l: at each node [¢], in the decision tree are
reactive recourse variables since they model a automatic reaction of the system to a realized
outcome. Translated portfolio variables x([*}: and slippage variables XMl at each node
in the tree are considered to be discretionary recourse variables. The translated portfolio
variables simulate investment decisions that must consider the fixed costs, or slippage, but
must be made prior to the observation of the uncertain returns in the applicable period.
The observation-terminated market investment process requires two modifications

to the notational conventions developed in Chapter 2 for stochastic linear programs that
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model decision-terminated processes. One modification results from the presence of ran-
dom returns in the first period of the pieﬁming horizon. The first period technology matrix is
treated as a recourse matrix, denoted by W1, since it contains stochastic elements whereas
this matrix is fixed in a decision-terminated process. Termination of the final period with
an observation induces the second modification which is to assign a number of outcomes,
Lz, to each node in the terminal period. No outcomes are assigned to nodes in the final pe-
riod of a decision-terminated process. Each of these modifications has been incorporated

in the formulations developed in the previous section.

5.3.2 Complete Recourse

(o],

The primal budget constraints, o”*:xOll: < B , insure that problem PMPGLP [5.19]

is bounded since (see the third row of Table 5.2)
AUR /[e],~min
Bt =06,—0"tY < o0
for all nodes [o], in periods t = 1, ..., T. In addition, if
| B[-]t =4, __‘a,l[o]tYTtin >0 a_l[o]tY?tin <B,

at each node, then there exist translated portfolio vectors x(O[*l: > 0 such that the primal
budget constraints are satisfied. The above condition is checked as soon as the input data
for the model is known and the program is terminated if the condition is violated at any
node. Therefore, no solution procedure is initiated unless there exist values for the primal

portfolio variables that satisfy the budget constraints.
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Then note that given translated portfolio variables, there exist primal slippage vari-
ables XM > 0 and deviation variables X®[*le > 0 at all nodes that satisfy the primal

slippage constraints,

nt

K
a0 O $° 0 < Ay
k=1

° ° K - ° . =
xio)[ Jem1 zgo)[ le $ XISL)[ . < —AYan n=1,...,N,
k=1
XM < AT B =1,.. K 1,
and primal deviation constraints,

N Q o

) (Ng]t - RE;]:) xglo)['-]t -3 Xéi)[-lt < dE:]t’ B

n=1 q=1 lt — 1,...,Lt,

2)[e

Xélt)[ ke S A(pq7 qg= 1a-'-7Q_ 1’

respectively. Problem PMPGLP [5.19] is therefore bounded and considered to have com-
plete recourse which also implies that the dual problem DMPGLP [5.24] has a feasible
and bounded solution.

Given the problem array notation defined in Section 5.2 above, the only stochastic
arrays are the recourse matrices W1*l: [5.38], specifically the submatrices W0k [5.41].

Therefore, problems PMPGLP and DMPGLP do not have fixed recourse.

5.3.3 Block-Separable Recourse

Problems PMPGLP [5.19] and DMPGLP [5.24] of model MIMPSLP have the block-
separable recourse property described in Section 2.4 starting on page 42. Block-separability

is demonstrated by examining the left-hand-sides of the second set of constraints in the
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array formulation of problem PMPGLP [5.42]. These left-hand-sides:
B[’]zx[’]t—l + W[']zx[.lt

can be equivalently written with the subarray notation defined in Section 5.2. Transition
matrix Bl*): [5.36] is written in terms of submatrix B0l [5.37] and eight zero submatri-
ces. Recourse matrix W1®l: [5.38] is written in terms of four zero submatrices and the five
non-zero submatrices defined by equations [5.39] through [5.41] and Figures 5.3 and 5.4.
All dimensioning subscripts on the zero submatrices are omitted for brevity. Decision vec-
tor x[* [5.25] is written in terms of the three subvectors x(oj[-], [5.18], x(1ele [5.26], and

x@Ml: [5.27]. The left-hand-sides in subarray notation are:

[ [0] [0] [0] ] [ x©@kls 7 [ WOk [g] [0] 1T ], T
B0, [0] [0] xMlees | 4| WO, W], [0] x Dol
] [0] [0] [0] J ] x @l 1L W (2:0)[e]; 0] W (2.2)[el, 11 x (@], |
[5.45]

Translated portfolio variables x(Ol*l: are treated as aggregate level decision variables
while primal deviation variables x@I*l: « X®!*l are detailed level decision variables. Pri-
mal slippage variables x(M[*l: «—— XM)*) can be treated as either aggregate or detailed level
decision variables. The best (fastest) results are obtained when the primal slippage vari-
ables are considered to be detailed level decision variables and this assignment is adopted
hereinafter. The left-hand-sides given by relation [5.45] can be separated according to these

assignments for aggregate and detailed level decision variables. Similar separations of cost
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coefficient vectors cl*): [5.28] into the subvectors defined by equations [5.29] through [5.31]
and right-hand-side vectors b(*}: [5.32] into the subvectors defined by equations [5.33]
through [5.35] are possible. These array separations allow problem PMPGLP [5.42] to be

equivalently formulated as:

T H T H:
Z = max Z Z c’(o)[.]tx(o)[.]t +Z Z (c’(l)[.ltx(l)[.]t + c,(z)[.ltx(z)[.]t)
t=1 hg=1 t=1 hg:l

[5.46]
s.t. aggregate level constraints at nodes [o], = (¢, h:), by =1,..., H;, t =1,...,T,
WOy @bl < HOWl
xOkL > o,

and detailed level constraints at nodes [o], = (¢,h:), hs = 1,..., H;, t=1,...,T,

B0l O)lele1 4 W(LO)xc O] 4 W]y (Do), < b®ek,
W (2:0)[0];5(0)[s], + W2l x@ll: < p@kel,

x> o,

x@F. > ¢

Recall from equation [5.37] that B&:OU s a zero matrix so that the term BX9)elex (el
in the first set of detailed level constraints of problem [5.46] is absent .in the first period,
t=1.

Dual problem DMPGLP [5.43] may also be equivalently formulated as:

T Hg T Ht
z=min Y ) BOBg@lly S (HOkl g Ol 4 p@elr@i)
t=1 hg=1 t=1 h¢=1 :

[5.47]

s.t. aggregate level constraints at nodes [o], = (¢, hy), h: =1,...,H;,, t=1,...,T,
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W’(Ovo)[°]t7r(o)[°]g -+ W’(lvo)[']zﬂ'(l)[']: + W’(2!0)[.]:7r(2)[']:

L
+ 5 BOOkkag®lE > O,
=1

W(O)[.]t 2 0’
and detailed level constraints at nodes [o], = (¢,h) , e =1,...,H;, t =1,...,T,

WDl 7 (Dls], > ok,
WEIl @l > @bl

W(l)[']t
7r(2) [’]t

0,
0.

VIV

Recall from equation [5.37] that B&:Ollr+: are zero matrices so that the summation term
jn the first set of aggregate level constraints of problem [5.47] is absent in the terminal
period, t =T.

Note that both the primal formulation [5.46] and the dual formulation [5.47] have:
the form of a two-stage stochastic linear program. Aggregate level constraints in both
formulations are in the first stage while the detailed level constraints are in the second stage.
Therefore, algorithm LSD(multicut) described in Section 3.1.4 can be applied directly to
problem PMPGLP as formulated by [5.46]. Simila;ly, algorithm DWD(multiactivities)
described in Section 3.2.3 can be applied directly to problem DMPGLP as formulated by
[5.47]. Block-separable recourse allows for many other structural rearrangements that can
be exploited for decomposition. Additional rearrangements are described in Section 5.4

below.
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5.3.4  Sizes of Problems

The size of a model MIMPSLP primal or dual problém is expressed in terms of four
parameters: number of variables, constraints, non-zero technology matrix coefficients, and
nodes in the decision tree. Size parameters are derived in Appendix D for primal problem
PMPGLP [5.19] and dual problem DMPGLP [5.24]. Table 5.3 summarizes the results

obtained in Appendix D and is provided as a convenient reference.

5.4 Decomposition of Model Problems

Problems PMPGLP [5.19] (or [5.42] in array notation) and DMPGLP [5.24] ([5.43] in
array notation) of model MIMPSLP are especially amenable to the decomposition pro-
cedures described in Chapters 3 and 4. An extensive selection of problem formulations
and decomposition techniques are available due to the three model properties described
in Section 5.3 above. The single-period problem is a stochastic linear program since an
observation-terminated process is simulated by the model. Single-period problems, as well
as problems with multiple periods, may be solved with a grand LP formulation or with
DWD/LSD. Initialization of DWD/LSD algorithms is a simple process since model prob-
lems are bounded and have complete recourse. Complete recourse also insures that there
will Ee no need for feasibility cuts in LSD or extreme direction activities in DWD. Further-
more, myopic decomposition may be an attractive alternative to DWD/LSD due to com-

plete recourse. Block-separable recourse allows for significant flexibility in structuring
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Table 5.3: Sizes of Model MIMPSLP Problems

Parameter Symbol Value Equation
t=—1 0
Nodes (Period)? H, [1Lj, whereHy =[] Lj=1 [D.1]
=1 Jj=1
t t Ji—1
Nodes (Cumulative)® | H®) S Hi= > (T1I Lj, [D.2]
Jj=1 J1=1 \j2=1
T
Primal Constraints #B (14+2N)HD + S H, L, [D.3]
t=1
T
Primal Variables #5 (K+1)NHD 4+ Q 3 HyL, [D.6]
t=1
T
Primal Non-zeros® #2 [@K+5)HTD —2]N+(N+Q) Y HeL: [D.8]
i=1
T
Dual Constraints #2 (K+1)NHD +Q 3" H,L, [D.7]
i=1
T
Dual Variables #9 I+ (K+1)NHD +Q Y HiL: [D.5]
=1
T
Dual Non-zeros? #2 (BK+4)HD 2] N+ (N+2Q-1) Y H:L: | [D9]
t=1

Number of nodes in period ¢, 1 <t < T

Number of cumulative nodes in periods 1 throught,1 <t < T

Number of non-zeros in the primal technology matrix

Number of non-zeros in the dual technology matrix
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problems for DWD or LSD. Any model MIMPSLP probiem may be treated as a two-stage
problem regardless of the number of periods in the planning horizon. Problems involving
three or more periods, on the other hand, may also be solved with nested decomposition
modified to take advantage of block-separability. Each of these solution techniques is de-

scribed in detail in Appendix E.

5.5 Implementation

Model MIMPSLP is implemented with a collection of nine computer code libraries. Linear
programming support is provided by the commercial CPLEX" 6.5 callable library package.
Random scenarios are generated using a Visual C++? 6.0 library, MRScenGen, develc;ped
and provided by a private company. Scenario generation is discussed in detail in the fol-
lowing section. The remaining seven libraries were developed or modified specifically for
the MIMPSLP model. All routines in these latter seven libraries are written in either Vi-
sual C++ 6.0 or Compaq® Visual Fortran 6.1A (CVF). CVF is a Fortran 95 compiler with
language extensions that allow fairly easy intercommunication between Fortran and C/C++
routines.

The seven model MIMPSLP specific libraries as well as the scenario generation

library are listed in Table 5.4 with the library names and sizes for both the source and com-

1 CPLEX is a registered trademark of ILOG, Inc., Gentilly, France
2 Visual C++ is a registered trademark of Microsoft Corporation, Redmond, WA
8 Compagq is a registered trademark of Compaq Computer Corporation, Houston, TX
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Table 5.4: Model MIMPSLP Run-Time Libraries

Source || Compiled

Description Library Name | Size (KB?%) | Size (KB)®
Market Investment Model¢ MIMPSLP 9,568.9 12,134.0
Options Options 378.0 392.6

C-++ Interface C++_Ifaces 508.8 567.0
CPLEX Interface CPLEX_Ifaces 326.2 355.2
Common Common 328.9 552.3

Utilities Utils 2,982.6 3,413.5
Decision Tree Stoc_Forest 1514 105.6
Scenario Generator? MRScenGen | unknown 8,574.4
| Combined Size 14,244 8¢ 26,094.6

Provided by a private company
Without the scenario generator source files

Kilobytes (1 kilobyte = 210 = 1,024 bytes)
Each size includes both the static (.lib) and dynamic (.dll) libraries }
Includes the model routines as well as the routines’ interfaces module arid the version module
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piled files. Figure 5.5 is a schematic of the general calling seqiuence between main pro-
grams and the libraries. Note that library Stoc_Forest encapsulat:es the data and procedures

required to implement the decision tree structure and is described in Section 4.6.

5.6 Scenario Generation

Scenario generation for model MIMPSLP is based upon the foilowing assumptions.

Scenario Generation Assumptions

1. Daily returns for the N securities in each period form indépendent, identically
distributed random vectors from a N-variate non-singular =ilormal probability
distribution. 1

2. The mean and standard deviation vectors and the correlation l'matrix for the daily returns

in the first period of the planning horizon are known.

3. The distribution of daily returns in a given period is dependént on the observed returns

in previous periods with a known dependence relationship.

. L .
Procedures, based upon the above assumptions, for generating random returns in

a given period, creating conditional distributions, and drawinlg a random sample are de-
|

scribed below. The procedural descriptions are followed by a discussion of the method

used to measure sample effectiveness in approximating the derived distributions.

207



Chapter 5 Market Investment Model

A Symbol A designiétes appropriate main or GUI

1
A ! Y
Fortran95 | ________ Options [ ___ Ca+ - . o Graphical User
Main  [€ Data Files »  Main > G”—”aices " Interface (GUI)
i
!
> Options |4 !
[
» ICommon
MRScenGen |« ,‘
Stoc_Forest |«
|
MIMPSLP > CPILEX_/faces
I
Utils < —Y
CPLEX Library
of Functions
Output Reports |

General Calling Sequence
i

1. Mains or GUI may leave default options in place or set all options with optional data flles or set individual options with
in-place code (C++ main or GUI must use C++_Ifaces library)
2. Mains or GUI invoke the MIMPSLP library (C++ main or GU} must use C++_Ifaces Ilbrary) which retrieves options
from the Options library and:
a. Calls the Common library to set common data such as slippage piece-wise linear slopes and break points
b. Creates the decision tree by node by alternately caliing the MRScenGen library to generate the data and the
Stoc_forest library to store the data as required by the number of periods and number of outcomes per period
¢. Solves problem with CPLEX using the intermediate CPLEX _ifaces library
d. Creates any optional output reports using applicable routines in the Utils library |
€. Destroys the decision tree and frees associated memory with call to the Stoc_ Forest library
3. MIMPSLP retums to appropriate main or GUI|

[

Figure 5.5: Schematic of Market Investment M:odel Libraries
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5.6.1 Returns for a Period

The probability distribution for returns in a period is based upon the distribution of daily

returns in that period. The following description for the derivation of the former distribution
given the latter is for a generic period and subscripts/superscripts identifying the period are
omitted for simplicity. ‘

Let y € RY be the vector of held positions and let £,, € RY represent the random
vector of daily returns for day m € {1,..., £} in a period of length £ > 1 days. Total
return over the period is then the random variable

£ !
TR=%ty+  -+E,y+---+8,y= (me> y.
m=1

Returns for the period are therefore represented by the random vector

Let r € RN, & € RN, and I' € R¥N*N be the mean vecto:r, standard deviation vector,

and correlation matrix respectively for daily returns in the périod. Scenario generation

assumption number one implies that the random vector r is normally distributed with mean
I

vector & € RY and covariance matrix ¥ € R¥*N guch th]'at (e.g., see Rencher [173,

property 7, page 100]): i

£
mjl
X =) £=£35,

3
k
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14

where 3 is the covariance matrix for daily returns. Covariance matrices must be determined
using the corresponding correlation matrices and the well known relationship (e.g., see

Rencher [173, equation 3.36, page 69])
¥ =D,I'Ds,

where D, € RM*M represents the diagonal matrix formed with vector v € RM:
1% g
Vi, 1= .7 )
0, i%#7.

Note that matrix-vector multiplication is not required for the product Dy u where u € R

(DV)ij =

is compatible with D,,. The same result may be achieved with the Hadamard product

denoted by the symbol ©:
Dyu=voOu= (v1U1,...,Unlm,---,Upty) . [5.48]

Several properties of the Hadamard product are described by Magnus and Neudecker [139,
Chapter 3, Section 6]. This product will be used in the description of conditional distribu-
tions in Section 5.6.2 below.

The covariance matrix for period returns is then
S = £D,Ds = (V£D,) T (VZD,) = D, 1D,

where o = /£ is the vector of standard deviations for the returns in the period. Note that
the above relationship also demonstrates that the correlation matrix for period returns is the
same as that for the daily returns. Therefore, random vector r, representing the returns for

the period, has the N-variate normal distribution Ay (p., Daf‘Da) .
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5.6.2 Conditional Distributions

The distribution of returns for the first period is determined with the procedure described
above using the parameters for the first period daily returns distribution. First period daily
returns distribution parameters are known by the second scenario generation assumption.
Daily returns distributions for periods after the first are dependent on the observed returns
in previous periods. Procedures for creating the conditional distributions given the depen-
dence relationship int;oduced by the third scenario generation assumption are discussqd
below.

Let il € RV, 6!l € R¥, and T'! € RM*¥N be the known mean vector, standard
deviation vector, and positive definite correlation matrix respectively for daily returns in

the first period. Assume that the columns of history matrix
R‘?_l = [ry,... ,Ti1] € RNx(E-1)

are the observed returns in periods 1 through ¢—1 where 2 < £ < T and period ¢ has lengtﬁ
£: > ldaysfort = 1,...,%. The conditional distribution for returns at some node [o]; in
period ¢ given history matrix R¥ . must now be determined. Conditional distributions in

mode]l MIMPSLP are based upon a dependence relationship that:

1. sets the standard deviation vector and correlation matrix for daily returns at the period £

node equal to the corresponding arrays for the first period node:

&% = &l and Tl*) = f‘“, and [5.49]
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2. sets the mean vector for daily returris at the period ¢ node according to:
ﬂ[’]f = ﬂ[] +f (v —_ ﬂ[]) , [5.50]

where the dependence factor f and the historical conditioning vector v are described

below.

Dependence factor f in equation [5.50] is a constant, 0 < f < 1, that determines
the degree of dependency on the history of the process. Daily returns distributions are
independent of the history when f = 0 since the parameters for the distributions in each
period remain constant at their first period values. Conversely, the mean vector for the daily
returns distribution at a node in period ¢, 2 < t < T, is equal to the historical conditioning
vector v (following description) when f = 1. Otherwise, 0 < f < 1 and the daily returns
mean vector at node [e]; is a function of the historical conditioning vector and the first
period daily returns mean vector.

Historical conditioning vector v is a weighted sum of the columns the history matrix

R} , scaled by the corresponding period lengths:

-1
v=>u, (z—tt) , [5.51]

where,

Zwt = 1. [5.52]

Returns in period £ are considered to be twice as influential as the returns in period ¢ — 1 so

that the additional conditions
Wy =2wyy,t=2,...,t—1 [5.53]
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are imposed on the weights. Equation [5.53] implies that the weights form a geometric

progression with (e.g., see the CRC Math Handbook [39, equation 2.1.4]):

1- g~

t—-1 t—1
Dowe= Y wps = wi——, [5.54]
t=1 t=1

where the second term above simply reverses the order of the weights in the first term.

b=

(]

Equations [5.52] through [5.54] then yield the weights,

1 _
—_—, t=t—-1
2|1-(2)"]’

O
%wt.,.]_, t=f—2,1,

used in equation [5.51] to determine the historical conditioning vector.

Equations [5.49] and [5.50] can now be used to determine the daily returns parame-
ters &1 and ul*k respectively. Random vector rl*z, representing the returns for a node in
period?, 2 < £ < T, then has the N-variate normal distribution Ny (/J,[']f , Da[']ff[]Da[']f)

where [.L[.If = f{ﬂ,{.]f and ol*lt = \/:E—{a'[.]‘-

5.6.3 Sampling

Downside deviation at each node in the decision tree is approximated by sampling from
the IV-variate normal distribution of returns at the node. Assume that the N-variate nor-
mal distribution Ny (p,[']t,DU[.], f‘“Da[.]t) for the returns at a node in period ¢, 1 <
t < T, have been determined as described in Section 5.6.2 above. Covariance matrix
sl = D IA‘”DU[.]t is symmetric and positive definite due to the non-singular normal-
ity assumption. Therefore, there exists a lowef triangular Cholesky decomposition matrix

Cll € R¥*N such that CFL /Il = S0k (e.g., see Golub and Van Loan [93, Section
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4.2.3] or Rencher [173, Section 2.7]). Then, given a véctor u € RN of N independent sam-
ples from a standard univariate normal distribution, DeGroot [52, Section 5.4], Krzanowski

[130, Section 7.2] and Rencher [173, Section 4.2] show that
r = Clthy + ploh [5.55]

is a sample vector from Ny (p,[‘]t, Da[.], f‘[]Da[.],). Since a constant correlation matrix
I'll (see the first dependence condition on page 211) across all periods, equation [5.55] can
be replaced by

r= Da[.], (Cu) + u[‘]t, [5.56]

where C is the lower triangular Choleksy decomposition matrix for I'll. Equation [5.56] is

equivalent to equation [5.55] since,

el — Da[.hf‘”Dar-h
— ok = Da[.hCCIDa[-]:
= CllCth = (Da['h C) (Da"" C) |
— CF:=D &

Use of equation [5.56] in lieu of equation [5.55] saves considerable time since only one
Cholesky decomposition matrix must be determined and operation D _), (Cu) =o'
(Cu) is significantly faster than the Cholesky decomposition procedure.

Assume the next node to add to the decision tree is in period ¢, 1 < ¢t < T, with

length £; > 1 days. Let the path vector to the node be [s], = [[1, e ,l~t__1] which implies
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ol "

the returns history matrix R ; = [R”- .. ’R:'],:l] where Rf = [] (i.e., empty history
matrix if ¢ = 1). Then, the following procedure could be used to draw a sample of L,
returns.
Cholesky Sampling Procedure
Step 1: Derive the unconditional (f = 1) or conditional (2 < t < T) distribution
Nu (p,[']t, D i, f‘[]Do[.]t) using the procedures described in Sections 5.6.1 and 5.6.2.

Set [ «— 0 and go to Step 2.

Step 2: If | = L, return to invoking procedure. Set [ «— [ + 1 and create a vector
u € RM*L* of yniform random numbers from (0,1). Transform u into a vector of
random numbers from the standard normal distribution using the inverse distribution

procedure and go to Step 3.

Step 3: Determine the next column for R[*)::
R[.-l]t — o™ ® (Cu) + ”[.]t.

Return to Step 2.

Methods other than the inverse distribution procedure may be used in Step 2 to obtain a
vector of standard normal values. The National Bureau of Standards Math Handbook [156,
Section 26.8, pages 952-953] summarizes the inverse distribution, sum of uniform deviates,

direct, and acceptance-rejection methods for drawing a standard normal sample.
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5.6.4 Sample Effectiveness

Mahalanobis squared distances (MSD) (see Krzanowski [130, page 234] and Rencher [173,
Séction 3.12]) are used to measure the effectiveness of a sample in approximating the parent
distribution. The MSD between two vectors, v € R and w € R¥, associated with a dis-
tribution with positive definite covariance matrix 3, € RM* js denoted by Mx,, (v, w)

and is defined to be:
Ms,, (v,w) =(v—-w)IZ}(v-w). [5.57]

The MSD for one dimensional components is simply the square of the ratio of the distance

between two points, v and w, and the standard déviatibn, o, of the distribution:

M, (v,1) = (ﬂ)

o
. where ; = [02].

Mahalanobis squared distances, or simply Mahalanobis distances, are used frequently
in statistical data analysis. Bonanno and Griffiths [24] use a multivariate discrimination
technique based upon Mahalanobis distances to discriminate between alcohols. Dai and
Khorram [54] use Mahalanobis distances to detect image misregistration in order to im-
prove the accuracy of multisource data analysis. Kato et al. [119] develop a system
for recognizing handwritten Chinese and Japanese characters based upon modified Ma-
halanobis distances. Lui and Cheng [136] maximize the Mahalanobis distance as part of
procedure to select the number of subimages in an image segmentation problem. Penny

[163] discusses the use of Mahalanobis distances in detecting outliers in multivariate data.
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| Sample éffectiveness in app'roximatingz the parent distribution is measured herein by
comparing the population expected values of selected Mahalanobis squared distances with
the corresponding average values realized from the sample. Three Mahalanobis squared
distances for each of two model random quantities, returns and net returns, are used in the
analysis:

1. MSD between the random quantity and the population mean of that quantity,

2. MSD between the sample average of the random quantity with the population mean of

that quantity, and

3. MSD between the random quantity and the sample average of the random quantity.

Evaluating the mean of a MSD is a necessary procedure in the analysis. Let u € RM
and ), € RM*M be the mean vector and positive definite covariance matrix respectively
for some M-variate distribution. Then, if v € RM represents a random vector from the

distribution, the expected value of the first MSD to be determined is:

£ Ms,, (v,0)] = € [(v— ) S5 (v — ).

Krzanowski [130, Section 7.5, page 212} and Rencher [173, Section 4.2, property 3] show
that My, (v, u) has a Chi-square distribution with M degrees of freedom when the distri-
bution is M-variate normal. Therefore, when the parent distribution is M-variate normal,
the mean and variance, denoted by V (e), of Ms,, (v, &) are (e.g., see Lindgren [132,

Section 6.9]):

EMs,, (v,p)] = M,
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and
v [MEM (V, l‘l')] =2M.

The latter two expressions above could be used in the analysis since library MRScen-
Gen assumes a N-variate non-singular normal distribution. Model MIMPSLP does not,
however, rely upon this condition so that expressions for a more gcnerai distribution are
desired. Evaluations of the three Mahalanobis squared distances described above use the

following three propositions.

Proposition 13 Let v € RM be a random vector from a M-variate distribution with

mean vector u € RM and positive definite covariance matrix X p; € RM*M _ Then,

£ Mz, (v, )] = M. [5.58]

Proof See Ap;;cndix E

Proposition 14  Let ¥ € RM be the average random vector for a random sample of size
L drawn from a M-variate distribution with mean vector u € RM and positive definite
covariance matrix 3y € RM*M_ Thepn,

M

£ Mz, (7, m)] = T, [5.59]
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when sampling is performed with replacerent if the distribution population is discrete.

Proof See Appendix E

Proposition 15 Let ¥ € RM be the average random vector for a random sample of size
L drawn from a M-variate distribution with mean vector p € RM and positive definite
]RM xM

covariance matrix Xp; € . If v is a representative vector from the random sample,

then
L-1

£ [Msz,, (v,¥)] = M, [5.60]

when sampling is performed with replacement if the distribution population is discrete.

Proof See Appendix E
The expected Mahalanobis squared distances for random returns and random net returns

are described below followed by proposed measures for sample effectiveness.

Expected MSD for Random Returns

The expected Mahalanobis squared distances for random returns at a node [o],, 1 <
t < T, in the decision tree are determined with direct applications of equations [5.58]

through [5.60]. Let rl*ls represent a random vector in the sample R!*) (i.e., rl*l represents
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a column from R/*: € R¥*Lt),  be the average of the sample random vectors in RI*:, and
S =D 1, TD
N oot ol
The expected Mahalanobis squared distances at node [o],,1 <t < T,are then:
ACHNS ] _
& [ My, (e, )| = N, [5.61]

y
L ?

£ [ Mg, (2%, “[-It)] - [5.62]

L - N [5.63]

o (ol glel; ] -

E [MEE\,]' (r ,T )
Expected Mahalanobis squared distances for all nodes are evaluated directly with

equations [5.61] through [5.63]. The expected squared distances for each period, denoted

by € (M(t)) j=1,23,fort=1,...,T, are then defined as:

H, H:
£ ( Mgt)) =S pike [ Mg, (x, ”[-lt)] =Ny ph=N,t=1,..,T, [564]

he
O _ T o o o] - VS Y
£ (M )=;p € [ My, (%, o t)]=—5;p t=fot=1...T, [565]
H;
(M(t)) Zp[’]té[ zion (° lt,f['lt)] =£tL_t—1NZﬁ['1t=—L‘L:1N,t=1,...,T,

[5.66]
where equation [2.7] on page 28 is used to determine label [o], given label (¢, h.) throughout

this discussion.
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~

Expected values determined with equations [5.64] through [5.66] are compared with
the corresponding average values realized from the samples to measure the effectiveness
of the samples in approximating the parent distributions. Average values, denoted by
A (Mgt)), j =123, fort = 1,...,T, are determined using equation [5.57] and the

drawn samples:

A(MP) = S5t [LZ e (RGE — l) (=) (RE _,,Lwt)} =17,

l=1
[5.67]

( M(t)) Z el {Zp[ b (glele — by’ (z;h)‘l (Fl*l — ,,J-lz)} ,t=1,...,T,

li=1

A (M?)) Zp[']‘ [ZPM' (RL]: — rl*l )' (25}") - (RE?]: - f['lt)} t=1,....T.

li=1
[5.69]

Expected MSD for Random Net Returns

Expected Mahalanobis squared distances for random net returns at a node [o],, 1 <
t < T, in the decision tree are determined similarly to those for random returns. The
primary difference in the two procedures is that the distributions for random net returns
may not be N-dimensional. Net return for security n € N is not a random variable if the

number of held positions, ylz]‘, is zero since y,[Z]‘RE:l]: =0forl, =1,...,L;. Propositions
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13 through 15 can still be used to determine the expected squared distances for random net
return as demonstrated below.

Define N*} as the index sets

N[.]t={n yi:]t#O}aht=17'°'aHt’t=1""7T’

and let /V1*l: be the number of indices in set Ni*le, ¢ € {1,..., T}. Let yl*k (N[']t) € RV
and pl*l (N Mt) € R¥"™ denote the portfolio vector and mean returns vector respectively
that include only securities with non-zero held positions at node [e] +» 1 <t < T. Similarly,
let RI*): (N M:) € RVFexLe pe fhe matrix of sample returns that includes only securities
with non-zero held positions at each node. Define vectors [lf[;,l‘ e R and uE:]‘ € RV

as:
l?"[r.gt = y[.]t (N[.]t) O] I-"[.]t (N[.]t) yhe=1,... H,t=1,...,T,

and
UE:]t = y[.]‘ (N[.]‘) © R'[:l]: (N[.]‘) , lt = 1, ve Lt, ht = 1, v ,Ht, t= 1, ce ,T,

and let ul*l and G'* be a representative vector and the sample average vector respectively

O

at each node. Finally, let )y Aisle

€ RV"xA®% pe the covariance matrix at node [s],, 1 <

t< 'T, obtained by deleting all rows and columns in 23:;‘ with indices n such that n ¢ Nl

[o):

Magnus and Neudecker [139, Theorem 29] indicate that covariance matrices 3 rlele

are positive definite given that the corresponding parent matrices 25:,]' are positive defi-

nite at each node. Furthermore, Rencher [173, Section 4.2, property 4a] states that ul*l

[o]¢

will have a N®-variate distribution with mean vector ﬂ,[']t and covariance matrix 3 rlele -
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Propositions 13 through 15 then imply that the expected Mahalanobis squared distances for

net returns, denoted by £ (Mfit)) ,J=4,5,6,forperiodst=1,...,T, are:

s(Mfﬁ):ip[‘he [M ol (u[ k4 )} Zp[°h Nelet=1,....T, [5.70]

he N[']t

H,
®) _ N Alel, MERPSCAY R o SNE XA
g (M) E}R p S[Migl[:]t (a ,u,m)} - Eht:p KWl ¢=1,...,T, [571]
O\ & L-1&
X = A[.]t ~[o [.]t _[.]t = i A[.]t A[.]t = P .
5(/\46) Eht P S[MEH‘« (ul), & )} 2 §ht:p Nek t=1....T

[5.72]

Note that the expected value expressions use arrays defined for total returns and not

net returns. Covariances for total returns and net returns are the same since a net return vec-

tor is obtained by subtracting constant slippage factors from each corresponding total return

vector. In addition, slippage factors cancel out in net return difference vectors (see equa-

tion [5.57]) since each argument vector includes the constant slippage factors. Equations
[5.70] through [5.72] are, therefore, valid for both total and net returns.

Average values for net return, denoted by A (Mgt) ) ,j=4,5,6,fort=1,...,T,

are determined as:
(M(t)) Z NON [Zp[ le ( [, .[-]t) (2;];%)—1 (uL-]t _ I:lf[x;l‘)] t=1,....T,
- [5.73]
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A (Mgt)) Z slel, [(ﬁ[-], _ /l[;;l‘)l (23:7][:.]!)—1 (ﬁtolt - ,j,,[rﬂ:)] i t=1,...,T,

[5.74]

A(MP) = E:pbh[E:pH:([¢._-Mg (B0) 1(u§“—ﬁM0J,t=lr.wT.

ls=1
[5.75]

Equations [5.73] through [5.75] are also valid for both total and net returns.

Sample Effectiveness Measures

Values defined by equations [5.64] through [5.69] for returns and equations [5.70]

through [5.75] are then used to defined the following sample effectiveness measures:

g0 ot W) e )|
& (MP)

Random samples that approximate a parent distribution reasonably well should yield small

6,t=1,...T. (15.76])

EJ@ values since each of these measures represents a percentage absolute difference be-
tween an expected population MSD and an average sample MSD. Empirical results for

model MIMPSLP are reported in the next chapter.
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‘C;h"apter 6
Model MIMPSLP Results and Analyses

Analyses of the results obtained by applying the decomposition procedures developed
and described in Chapter 4 to the market investment model, MIMPSLP, formulated in
Chapter 5 are provided in this lchapter. Two-stage decomposition of model MIMPSLP
problem instances based upon the block-separability property is compared with nested and
myopic decomposition of those problem instances. Results and analyses for measuring the
effectiveness of the underlying random samples and for model applications are also given.
All results were obtained on a Pentium II* 400 megahertz machine with 384 megabytes of
RAM running under Window NT 4.0° with service pack six installed.

Material in this chapter is organized into seven sections. Constant data values and
representative problem instances are described in the first section. Implementation strate-
gies for two-stage and nested Dantzig-Wolfe and L-Shaped decomposition are given in the
second section. Dantzig-Wolfe and L-Shaped decomposition results are analyzed for sin-
gle period problems in the third section and for multiple period problems in the fourth
section. Myopic decomposition results are analyzed and compared with Dantzig-Wolfe
and L-Shaped decomposition results in the fifth section. Section six contains results and

analyses for measuring sample effectiveness with the Mahalanobis squared distance mea-

4 Pentium II is a registered trade mark of INTEL Corporation, Santa Clara, CA

5 Windows NT is a registered trademark of Microsoft Corporation, Redmond, WA
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sures developed in Section 5.6.4. Managerial insight through application is the topic of the
seventh and final section.
See the two-page Table 5.1 starting on page 180 and Table 5.2 on page 185 for a

review of the notation deﬁned for the market investment model.

6.1 Constant Data and Problem Instances

An infinite number of model MIMPSLP problem instances can be constructed. A repre-
sentative sample of these instances is used as the basis for the material in this chapter. The

representative sample is built under two conditions:

1. certain problem parameter data is kept constant for all problem instances, and

2. limits are placed upon the number of periods in a planning horizon and on the number

of outcomes that may be generated for any period.

Constant problem data is described first, followed by a description of the sample of problem

instances constructed based upon the two conditions above.

6.1.1 Constant Data

Fixed transaction costs, or slippage, data (see Section5.1.1 starting on page 165) and sce-
nario generation distribution data (see Section 5.6 starting on page 207) are kept constant
for all problem instances. These data are controlled by data files that are input to the
scenario generator code library described in Section 5.6. The data files utilized for the

problem instances described below are applicable to set of N = 68 securities. Slippage is
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approximated with 4 piece-wise linear segments in each of the two slippage regions so that
K = 4 + 4 = 8. Piece-wise linear approximation break points and slopes are assigned to
minimize average absolute error in the first slippage region and to limit the maximum rela-
tive error to ten percent in the second slippage region. Only the linear deviations model is
examined so that deviation is modeled exactly with a single linear function (Q = 1). All
problem instances are based upon zero position holdings (y(® = 0) at the beginning of the
planning horizon. Positions for each security are not bounded from above (Y™* = co) and
no short positions are allowed (Y™ = 0) during any period, £, in the planning horizon.
Problem instances described in the next subsection span planning horizons of from
one to five periods. Each period, ¢, will have a length, £, .in days selected from six pos-
sible values. The risk aversion factor, ), capital discounting factor, 0;, and risk bﬁdget
amount, (3,, are also held constant for periods of the same length. Selected period lengths
and the dependent problem parameters are described in Table 6.1. Constant discount fac-
tors of 1.0 (no discounting of capital) given in Table 6.1 are considered reasonable given
| the relatively short period lengths. The risk aversion factors shown in Table 6.1 result in
‘ . very low aversion to risk (almost no slack in the risk budget constraints) except when the
applicable period is the first in a multiple period planning horizon. Risk aversion for the
first period in the latter case is considered fairly high to moderate (30 to 50 percent slack in

the risk budget constraint).
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Table 6.1: Period Lengths and Dependent Data

Period Risk Discount Scaled Actual
Length? | Aversion | Factor Budget Budget
£y At 4] ,Btb Bs¢
2 0.0334 1.0 2,000,000.00 | 2,828.427.12
3 0.0784 1.0 2,000,000.00 | 3,464,101.62
5 0.2160 1.0 2,000,000.00 | 4,472,135.95
10 0.5620 1.0 2,000,000.00 | 6,324,555.32
15 0.8350 1.0 2,000,000.00 | 7,745,966.69
25 1.2520 1.0 2,000,000.00 | 10,000,000.00

a

b

In days.

In dollars (US) - the notation ,Bt is new

In dollars (US) — actual budget is: 8, = B,v/Z:
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6.1.2  Problem Instances

Problem instances are constructed for planning horizons with from one to five periods.
Instances for horizons with a single period and those with two or more periods are described

separately below.

Single Period Problem Instances

Planning horizons with a single period give considerable insight into the application
of decomposition techniques. Fairly large single period problems can be solved using both
the grand LP formulation and decomposition procedures in relative short amounts of time.
Most multiple period problem instances considered in this chapter cannot, however, be
solved in the grand LP formulation due to insufficient computer memory resources. There-
fore, single period problems provide a better platform than multiple period problems for
comparing the efficiency of decomposition methods with grand LP solutions. Single pe-
riod problems are also critical components in the most efficient decomposition strategies
discussed in the next section.

All planning horizons with a single period that are considered below have period
(horizon) lengths of 5 days. Only the number of random outcomes generated during the
period differentiates single period problem instances. Specific instances are given with

applicable results and analyses in Section 6.3 below.
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Table 6.2: Scenario Generation Data for Multiple Period Problem Instances

Number Periods’ Outcomes by Problem Size and Number of Periods
Periods Lengths Small Medium Large
T [£4] 10* Scenarios | 10° Scenarios | 10° Scenarios
2 [525] [100 100] [500 200] [1000 1000]
3 [51015] [502010] [80 50 25] [100 100 100]
4 [231015] [2520102] [4025 20 5] [80 50 25 10]
5 [2351010] | [2010552] | [252010102] | [502520104]

Multiple Period Problem Instances

Multiple period problem instances have planning horizons of from 2 to 5 periods.
Individual problems are generated with 10%, 10°, or 10° scenarios and are classified as
small, medium, or large respectively. Period lengths and the numbers of outcomes by
period are shown in Table 6.2 based upon the number of periods, T, in the planning horizon.

Problem instances are labelled as PT-Small, PT-Medium, or PT-Large where T
is replaced with the number of periods in the planning horizon. Problems are copied to
CPLEX using nine arrays to transport problem data. The copy process can require a con-
siderable amount of memory since CPLEX creates its own memory block (see function
CPXcopylp in the CPLEX reference manual [109]) doubling the amount of memory re-
quired to copy probvlem data. Memory allocated for the original problem data arrays cannot
be freed until the copy process has completed. Problem size information based upon the
formulae in Table 5.3 on page 204 and the memoxiy r(;,qﬁired for the copy process is given
in Table 6.3 for each of the 12 multiple period problem instances.

The entries in Table 6.3 demonstrate that model MIMPSLP problems can be ex-

tremely large. Over 23 gigabytes of RAM would be required to copy the primal grand LP
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Table 6.3: Sizes of Multiple Period Problem Instances (Primal Grand LP Formulation)

Problem Number of Copy Size
Label Nodes? | Constraints | Variables | Non-zeros” | Memory® | Rank?

P2-Small 101 23,937 - 71,912 840,992 12.6 12
P2-Medium 501 169,137 407,112 7,649,792 106.3 10
P2-Large 1,001 1,138,137 1,613,612 | 70,498,292 907.9 5
P3-Small 1,051 155,037 654,262 2,263,142 49.5 11
P3-Medium 4,081 663,177 2,601,652 13,009,052 245.3 9
P3-Large 10,101 2,393,937 7,191912 | 84,120,992 1,261.1 4
P4-Small 5,526 772,587 3,397,437 8,962,217 223.2 8
P4-Medium | 21,041 3,003,657 | 12,998,132 | 38,398,172 903.8 6
P4-Large 104,081 15,363,177 | 64,801,652 | 224,809,052 4,909.6 2
P5-Small 6,221 868,497 3,823,472 | 10,002,632 250.2 7
P5-Medium | 55,526 7,762,587 34,137,437 90,022,217 2,242.5 3
P5-Large 276,301 39,129,537 | 170,372,512 | 482,622,392 11,595.6 1

Cumulative nodes in all periods

In the technology matrix )
Memory in megabytes required to copy to CPLEX ~ effectively doubled during copy process
By descending order of copy memory required — rank 1 requires the most memory

231



Chapter 6 Model MIMPSLP Results and Analyses

formulation of problem P5-Large to CPLEX. Large scale problems are a characteristic of
most stochastic linear programs. The size rank indices (last column) in Table 6.3 will be
used to characterize the relative size of the 12 problem instances, e.g. P5-Large is the

largest while P2-Small is the smallest.

6.2 DWD and LSD Implementation Strategies

Implementation strategies for Dantzig-Wolfe and L-Shaped decomposition are defined us-
ing the major strategy, minor strategy, and tactics planning scheme described in Section
4.4.3. Seven major strategies are available in the model MIMPSLP library. Major strategy
levels 1 through 6 are described in the first three subsections below. Only two-stage decom-
position based upon the block-separable property of model MIMPSLP problems is used
under major strategies 1 through 6. Major strategy 7 is defined in the fourth subsection. -
Both two-stage and nested decomposition procedures are possible under major strategy 7.
Preliminary decomposition results are discussed in the fifth and final subsection.

Tables are used in the first three subsections to define the minor strategies and tac-
tics levels for the applicable major strategies. The term eligible is used in these tables to
describe decomposition subproblems that may be used to generate a new optimality cut
(LSD) or extreme point activity (DWD). An eligible DWD subproblem yields an extreme
point with negative reduced cost. An eligible LSD subproblem has a relaxation function

value that is less than the corresponding relaxation variable value. The subproblem yield-
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ing the most negative reduced cost (DWD)/relaxation function minus relaxation variable

difference (LSD) during any iteration is said to be the mosi eligible subproblem.

6.2.1 Major Strategies 1 and 2

Major strategies 1 and 2 may be used with problems having an arbitrary number of periods.
The initial RMP is formed with the primal budget constraints (LSD) from all nodes in the
decision tree or with the dual variables to these constraints (DWD). Major strategies 1 and 2
are the same except for the values assigned to the right-hand-sides (LSD)/objective function
coefficients (DWD) of the initial optimality cuts (LSD)/convexity activities (DWD). Major
strategy 1 assigns zero to each of these quantities (see Section E.1.1). Major strategy 2
uses the feasible solution returned from the first half-cycle of the duals lead version of the
myopic dual-primal cycling algorithm (see section 4.5 and Appendix B) to assign these
values. The minor strategies and tactics that are available for the first two major strategy

levels are shown in Table 6.4.

6.2.2 Major Strategies 3 and 4

Major strategies 3 and 4 may only be used with problems that have two or more periods.
The initial RMP is formed with the primal budget constraints (LSD) from the nodes in all
periods except the last or with the dual variables to these constraints (DWD). Major strate-
gies 1 and 2 are the same except for the manner in which the subproblems associated with

nodes in the terminal period are copied to CPLEX. Each nodal component subproblem (see
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Table 6.4: Minor Strategies (Minor) and Tactics for Major Strategies 1 and 2

Minor Tactics
Value Minor Description Value Tactics Description

1 1 SUB for all slippage/deviation 1 Add if eligible [1]*

2 1 SUB for all slippage and 1 Add most eligible [1]
1 SUB for all deviation 2 Add all eligible [2]

1

2

3 1 SUB for slippage for each Add most eligible [1]

period and 1 SUB for deviation ' Add most eligible among slippage and most

for each period eligible among deviation [2]

3 Add all eligible among slippage and most eligible
among deviation [T + 1]

4 Add all eligible [2T7]
4° 1 SUB for slippage at each 1 Add most eligible [1]
node and 1 SUB for 2 Add most eligible among slippage and most
deviation at each node eligible among deviation [2]

3 Add most eligible among slippage during each
period and most eligible among deviation [T" + 1]
4 Add most eligible among slippage during each
period and most eligible among deviation during
each period [2T7]

5 Add all eligible among slippage and most eligible
among deviation [H(T) + 1}

6 Add all eligible among slippage and most eligible
among deviation during each period [H(T) + T
7 Add all eligible [2H*7]

4° 1 SUB for slippage at each 1 Add most eligible [1]
security and 1 SUB for deviation 2 Add most eligible among slippage and add
for each of G = 1 or U? deviation if eligible [2]
outcomes’ groupings ' 3 .Add most all eligible among slippage and add

deviation if eligible [V + 1]
>4 Add all eligible [V + U1

¢ [Al: A is the maximum number of constraints/activities that can be added at any iteration
For problems over 2 or more periods 6nly '

¢ For problems over a single period only

¢ U is the Minor Strategy value when this value is greater than or equal to 4
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Appendix E) is copied in whole to CPLEX under major strategy 3. Each subproblem in
major strategy 3 is then solved with a cold start (no advance basisj. Only the first nodal
component subproblem, node (T', 1), is copied in whole under major strategy 4. Subprob-
lems at the remaining terminal period nodes are created by changing only CPLEX problem
data that differs from the previous subproblem. The latter procedure is fairly efficient since
nodal component subproblems in the same period are the same size and share a significant
amount of common data. Major strategy 4 then uses a cold start only on the first nodal com-
ponent subproblem while warm starts (with an advance basis) are used with the remaining
subproblems. The minor strategies and tactics that are avaiiable for major strategies 3 and

4 are shown in Table 6.5.

6.2.3 Major Strategies 5 and 6

Major strategies 5 and 6 are the same as major strategies 3 and 4 except the final period
nodal component subproblems are not solved during every decomposition iteration. In-
stead, a greedy procedure (see Section 3.3.6 starting on page 114) is used in _thch these
subproblems are solved intermittently. The minor strategies and tactics that are available

for major strategies 5 and 6 are shown in Table 6.6.

6.24 Major Strategy 7

Major strategy 7 may be used only with problems that have two or more periods. This ma-

jor strategy is similar to major strategy 5 except that nodal component subproblems may
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Table 6.5: Minor Strategies (Minor) and Tactics for Major Strategies 3 and 4

Minor Tactics
Value Minor Description Value Tactics Description
1 1 SUB for all 1 Add if eligible [1]*
2 1 SUB for slippage/FPN° 1 Add most eligible [1]
and 1 SUB for all deviation 2 Add all eligible [2]
3 1 SUB for slippage for each 1 Add most eligible [1]
t < T, 1 SUB for FPN, and 2 Add most eligible among slippage/FPN and
1 SUB for deviation for each most eligible among deviation [2]
t<T 3 Add all eligible among slippage/FPN and
most eligible among deviation [T" + 1]
4 Add all eligible [2T — 1]
4 1 SUB for slippage at each 1 Add most eligible [1]
nodeineacht < T, 1 SUB 2 Add most eligible among slippage/FPN and
for each FPN, and 1 SUB most eligible among deviation [2] .
for deviation at each node in 3 Add most eligible among slippage during each
eacht < T t < T, most eligible among FPN, and most
eligible among deviation [T + 1]

4 Add most eligible among slippage during each
t < T, most eligible among FPN, and most
eligible among deviation during each
t<T[2T -1]

5 Add all eligible among slippage/FPN and most
eligible among deviation [H(T) + 1]

6 Add all eligible among slippage/FPN and most
eligible among deviation during each
t<T[HD +T-1]

7 Add all eligible [HY—1) + HT]

5 1 SUB for slippage at each 1 Add all eligible [NH(T=1) 4 H{T)]
security at each node in each
t < T, 1 SUB for each FPN,
and 1 SUB for deviation for
eachnodeineacht < T

¢ [A]: A is the maximum number of constraints/activities that can be added at any iteration
> FPN stands for final period nodes

236




Chapter 6 Model MIMPSLP Results and Analyses

Table 6.6: Minor Strategies (Minor) and Tactics for Major Strategies 5 and 6

Minor Tactics
Value Minor Description Value Tactics Description
3@ 1 SUB for slippage for each 1 Add most eligible [1]°
t < T, 1 SUB for FPN¢, and 2 Add most eligible among slippage/FPN and
1 SUB for deviation for each most eligible among deviation [2]
t<T 3 Add all eligible among slippage/FPN and
most eligible among deviation [T + 1]
4 Add all eligible [2T — 1]
4 1 SUB for slippage at each 1 Add most eligible [1]
nodeineacht¢ < T, 1 SUB 2 Add most eligible among slippage/FPN and
for each FPN, and 1 SUB most eligible among deviation [2]
for deviation at each node in 3 Add most eligible among slippage during each
eacht < T t < T, most eligible among FPN, and most
eligible among deviation [T" + 1]
4 Add most eligible among slippage during each
t < T, most eligible among FPN, and most
eligible among deviation during each
t<T[2T -1]
5 Add all eligible among slippage/FPN and most
eligible among deviation [H(T) + 1]
6 Add all eligible among slippage/FPN and most
eligible among deviation during each
t<T [HD +T 1)
7 Add all eligible [HY=1 4+ HT)]
5 1 SUB for slippage at each 1 Add all eligible [NHT-1) 4+ H(T)]
security at each node in each
t < T, 1 SUB for each FPN,
and 1 SUB for deviation for
eachnode ineacht < T

a

b

Minimum allowed Minor Strategy is 3 to be consistent with other Major Strategies

[A]: A is the maximum number of constraints/activities that can be added at any iteration

FPN stands for final period nodes
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be created for nodes in periods prior to the last but later than the first. The resulting nodal
component subproblems may be solved in the grand LP formulation (two-stage decompo-
sition) or with a recursive application of ﬁajor strategy 7 (nested decomposition). Cold
starts are used for all grand LP solutions ~ there is no complementary warm start major
strategy for reasons given in the next subsection.

Risk budget constraints in periods Ag = 1 through Cr = t are used to form the
initial RMP for a specified , referred to as the RMP cutoff period, such that 1 < £ < T
(also see Section 4.4.3 starting on page 146). Note that major strategy 7 is the same as
major strategy 5 if the RMP cutoff period is one less than the terminal period. The RMP
cutoff period is set equal to the value of the minor strategy.

Two-stage decomposition is applied if the value of tactics is between 1 and 4 inclusive
and nested decomposition is applied if the value of tactics is between 5 and 12 inclusive.
The primary subproblem anchor period is defined as Ap = { = £ + 1 and the primary

subproblem cutoff period, Cp, is defined as

T, if 1 < tactics < 4,
Cp=19 |TF]+1 if5 < tactics <8,
T-1, if 9 < tactics < 12.

If the tactics value is between 5 and 12 inclusive, the secondary subproblem anchor period,
As, and cutoff period, Cg, are defined as As = Cp+1 and Cs = T'. Figure 6.1 summarizes

these concepts.
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Figure 6.1: Major Strategy 7 Schemetic and Description
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The value of tactics also determines the problem formulation-simplex solver combi-
nation that will be applied to the grand LP for applicable nodal component subproblems
— primary subproblems when 1 < tactics < 4 or secondary subproblems when 5 < tac-.
tics < 12. Four combinations are possible and are shown in Table 6.7 relative to the tactics

value.

Table 6.7: Majdr Strategy 7 Subproblem Formulation-Simplex Solver Combinations

Tactics Value Formulation-Solver Shorthand Notation
1,5,0r9 Primal Formulatjon - Primal Simplex (PE-PS)
2,6,0r 10 Primal Formulation - Dual Simplex (PE-DS)
3,7,0orl1l Dual Formulation - Primal Simplex (DE-PS)
4,8,0r 12 | Dual Formulation - Dual Simplex (DF-DS)

6.2.5 Preliminary Decomposition Results

The major strategy controls the amount of problem information that is used to construct the
initial RMP and, therefore, dictates how much of the problem structure must be accounted
for by subproblems. In general, increasing majof strategy levels lead to smaller initial re-
laxed/restricted master problems and to more or larger subproblems. Dantzig-Wolfe and
L-Shaped decomposition routines were developed and implemented in the sequential or-
der of the major strategy indices. Routines based upon major strategy 7 were developed
last using information collected from studies of decomposition results obtained with major

strategies 1 through 6. Similarly, the development of routines based upon major strategies
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5 and 6 (3 and 4) was m&ivated by the results obtained with routines based upon major

strategies 1 throﬁgh 4 (1 and 2).

Minor strategy and tactics indices within a given major strategy level (1 through 6)
determine the detail of the information used from one decomposition iteration to modify
the RMP for the next iteration. Smaller minor strategy indices yield fewer, fairly large ag-
gregated subproblems while larger minor strategy levels result in separation of aggregated
subproblems into more, smaller subproblems. The maximum number of optimality cuts
or extreme point activities that may be added to the RMP increases with the tactics level
within a major-minor strategy combination.

Studies of the results obtained with routines based upon major strategy levels 1
through 6 inspired the eight rules of thumb described in the following list. Applicability of
these rules is effected by such factors as available comiputer memory, efficiency of the sim-
plex solver that is employed, and the structure of the stochastic program under study. The
rules are considered, however, to provide a good basis for the types of issues that should
be addressed in order to construct an efficient sc;lution algorithm for a general stochastic
linear program.

1. A small initial RMP is more efficient for larger problems (hundreds or more nodes)
while a larger initial RMP is better for smaller problems (tens of nodes or less). Note
that the size of the initial RMP refers to the amount of problem information used to
construct the RMP — a small initial RMP for a large problem may be significantly larger

than a large initial RMP for a smaller problem.
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2. More, smaller subproblems are more efficient than fewer, more aggregated

subproblems. This rule is especially important if separation of large subproblems yields

smaller, more easily solved subproblems.

. Addition of multiple cuts/activities to the RMP during an iteration is more effective

than using fewer cuts/activities. More problem information is added to the RMP with

multiple cuts/activities than can be added with fewer, more aggregated cuts/activities.

4. No significant advantage is gained by removal of inactive cuts (not tight) or activities

(not basic). RMP solution times are more dependent on the number of additional
cuts/activities than on the size of the RMP since all solutions after the first iteration use
an advanced basis. Any advantages gained by increasing the available active memory
through removal of cuts/activities is, in general, more than offset by the overhead
involved in the removal process. This rule is, of course, effected by the amount of

available computer memory.

. No advantage is gained by using the myopic dual-primal cycling algorithm to generate

initial optimality guts/extreme points. The simple initialization procedures described in
Appendix E require significantly less ﬁme than initialization procedures based upon the
MDPCA. Moreover, the two initializatic')nl methods generally do not yield a significant
diﬁerencc in the number of decomposition iterations required to achieve a specified gap

tolerance.
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6. Solving grand LP formulated subproblems with cold starts is generally as or more
effective than solving these subproblems with warm starts. Information obtained with
the CPLEX preprocessing algorithm (see the CPLEX user’s manual [110, pages 72
- 73]) applied during a cold start solution procedure appears to more than offset any

advantages gained by using advance basis information.

7. Grand LP based solutions can be obtained more efficiently than decomposition based
solutions when the underlying problems are relatively small. The simplex solver that is

employed can greatly influence the applicability of this rule.

8. Greedy algorithms are more efficient than algorithms that solve every subproblem
during each decomposition iteration. Significant time savings with relative little loss
of information is realized when larger, more complicated subproblems (generally

embedded deep in the decision tree) are solved on an intermittent basis.

The eight rules of thumb motivated development of solution routines based upon ma-
jor strategy 7. These routines proved to be significantly more efficient on problems with
two or more periods than routines based upon the smaller major strategy levels. Conse-
quently, all results for problems with multiple periods that are reported in the next section

were obtained using major strategy 7.
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6.3 DWD and LSD Results — Single Period Problems

Thirteen single period problems that differ only the number of outcomes generated during
the period are examined. The number of outcomes vary from a low of 2 to a high of
100,000. Table 6.8 lists the thirteen problems by size (number of outcomes L) and shows
the times required to obtain grand LP solutions. Times are given for each of the four
possible formulation-solver combinations using the shorthand notation of Table 6.7 on page
240. Note that the primal formulation is best for only the five smallest problems while the
dual formulation is best for the larger problems. Data in Table 6.8 also indicates that there
can be large variations in solution time relative to the choice of a simplex solver. The
overall effect can be drastic — the slowest time for the largest problem is almost 25 times
greater than the fastest time for that problem. Figure 6.2 illustrates the fastest grand LP
solution times relative to the size ranking of the 13 single period pfoblems.

Each of the 13 single period problems was also solved with Dantzig-Wolfe and L-
Shaped decomposition. Only major strategy 1 applies to single period problems and minor
strategy 4 for single period problems (see Table 6.4 on page 234) is the best applicable
minor strategy. Each problem was solved under nine different tactics values to determine
the effect of varying the number of subproblems. The Dantzig-Wolfe decomposition re-
stricted master problem was solved with the dual formulation-primal simplex combination
at each iteration while the prirrial formulation-dual simplex combination was applied to the

relaxed master problem of L-Shaped decomposition. These two formulation-solver combi-

244



Chapter 6 Model MIMPSLP Results and Analyses

Table 6.8: Single Period Grand LP Solution CPU Times (Minutes)

QOutcomes Formulation-Solver Combination?
L (PF-PS) | (PF-DS) | (DF-PS) | (DF-DS)
2 [ 0.0005° | 0.0005 0.0008 0.0008
10 | 0.0010 0.0008 0.0013 0.0013
20 | 0.0018 0.0010 0.0022 0.0018
50 | 0.0030 0.0017 0.0072 0.0023
100 | 0.0062 0.0033 0.0103 0.0033
500 { 0.0604 0.0250 0.0616 0.0113
1,000 { 0.2333 0.0988 0.1611 0.0324
2,500 | 1.330 0.6848 | 0.5873 0.2140
5,000 | 4.830 3.700 1.890 0.8796
10,000 | 9.340 8.120 3.750 3.270
20,000 | 42.41 32.53 8.450 9.930
50,000 | 235.7 204.6 32.48 49.86
100,000 | 1,803 1,525 72.59 1114

@ Using the shorthand notation defined in Table 6.7 on page 240
b Bold face times in each row are the fastest times for the individual problem

245




CPU Time (Minutes)

10° ¢

10' |

—
o
o

—
Dl

-
[om]

10

10

v
[ 2]
T

Chapter 6 Model MIMPSLP Results and Analyses

¥
/
1 / ]
/
-
2 4 6 .8 10 12

Increasing Size Rank (Smallest to Largest)

Figure 6.2: Fastest Grand LP Single Period Solution Times
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nation versus type RMP matches proved to be the best in all model MIMPSLP problems
that were examined. All decomposition procedures for the single period problems em-

ployed an acceptable termination relative tolerance of 5 x 1078:

Upper Bound — Lower Bound

-8
LowerBound <9 x 107

Solutions satisfying the above termination tolerance are considered exact since the default

value for all CPLEX LP simplex solver tolerances is 1076 (see the CPLEX user’s manual
[110, éages 85 - 86]) and the default tolerances were used in all calls to CPLEX. Table 6.9
contains the solution times required for the Dﬁntzig—Wolfe and L-Shaped decomposition
procedures.

The solution times in Table 6.9 indicate that eacﬁ decomposition method-problem
combination has an optimum number of subproblems. Therefore, increasing ﬁle number,
and thus decreasing the size, of subproblems is beneficial to some threshold beyond which
this process becomes detrimental to the decomposition algorithm. Note also that data in
Table 6.9 show that Dantzig-Wolfe decomposition consistently outperforms L-Shaped de-
composition. |

The CPU times in Tables 6.8 and 6.9 demonstrate that obtaining solutions with the
grand LP formulation is more efficient for problems with less than about 1,000 outcomes
while either decomposition method is more efficient for larger problems. Table 6.10 con-
tains the ratios for the fastest grand LP solution times to the fastest Dantzig-Wolfe and

L-Shaped decomposition times and for the fastest DWD times to the fastest LSD times.
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Table 6.9: Single Period DWD/LSD Solution CPU Times (Seconds)

Outcomes DWD(1.4.U)/LSD(1.4.U)? for U°:
L 1 5 7 10 [ 20 | 25 | 50 ] 75 ] 100 | 125
2 | 0.0921¢ -4 - - - - - - -
0.1202 - - - - - - - -
10 | 0.0962 | 0.0781 | 0.0801 - - - - - -
0.1202 | 0.1042 | 0.1262 - - - - - -
20 | 0.1662 | 0.1442 | 0.1402 | 0.1522 - - - - -
0.2464 | 0.2383 | 0.2424 | 0.2363 - - - - -
50 | 0.2283 | 0.2002 | 0.1723 | 0.1863 | 0.1903 | 0.1943 - - -
0.3405 | 0.2403 | 0.3805 | 0.3205 | 0.3405 | 0.2904 - - -
100 | 0.3805 { 0.3004 | 0.2403 | 0.2804 | 0.3004 | 0.3104 | 0.3004 | 0.3805 -
0.7811 | 0.5708 | 0.5107 | 0.5608 | 0.4807 | 0.5708 | 0.5608 | 0.4907 -
500 | 0.8813 | 0.5708 | 0.6810 | 0.7010 | 0.6810 | 1.052 1.222 1.512 | 1.652
1.502 1.142 1.212 1.322 1.592 2.233 2.534 2.784 | 2.664
1,000 1.823 | 0.9614 | 1.022 1.001 1.242 1.723 2434 2.544 | 2.954
2.774 1.783 2.113 2.233 2.694 3.655 5.107 6.089 | 7.351
2,500 | 5.838 2764 | 2.163 | 2.363 2.233 3.365 3.755 4.787 | 5.718
7.521 4,216 3.705 4.607 4.527 7.391 9.243 11.76 | 14.65
5,000 | 11.72 5.198 | 4.356 | 4.166 | 3.935 5.027 5.548 7.731 | 8.562
: 13.67 7.230 6.820 7.521 7.010 10.13 12.65 17.19 | 19.52
10,000 | 19.40 10.32 | 7.611 6.630 | 7.541 8.082 | 9.434 11.61 | 12.62
20.88 12.87 10.03 10.01 11.86 1542 19.31 26.05 | 28.14
20,000 | 27.98 17.14 15.35 13.51 12.76 13.60 16.04 18.38 | 18.45
28.53 18.89 18.30 18.17 18.73 23.87 30.06 38.06 | 43.59
50,000 | 92.81 55.82 45.36 38.34 36.37 34.37 38.30 43.28 | 39.70
93.40 57.93 49.99 | 4578 | 45.42 | 47.38 60.21 77.6 80.01
100,000 163.7 114.2 96.37 79.56 79.56 72.69 70.45 67.92 | 71.54
163.0 117.1 102.0 89.13 88.67 96.10 101.4 106.9 | 125.0

DWD solution times are above LSD solution times in each cell

U is the number of outcomes’ groups — see Table 6.4 on page 234

Bold face times in each row are the fastest times for the individual problem

Nonapplicable entries are indicated with a dash, —
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Table 6.10: Single Period Solution CPU Time Ratios

Outcomes Ratios of Fastest Solution Times
L GLP‘/DWD | GLP/LSD | LSD/DWD

2 0.3257 0.2496 1.305

10 0.6146 0.4607 1.334

20 0.4280 0.2518 1.700

50 0.5920 0.4245 1.395

100 0.8240 04119 2.000

500 1.188 0.5937 2.001

1,000 2.022 1.090 1.855

2,500 5.936 3.466 1.713

5,000 13.41 7.738 1.733

10,000 29.59 19.60 1.510

20,000 39.73 27.90 1.424

50,000 56.70 4291 1.322

100,000 64.13 49.12 1.306

¢ Grand Linear Program
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These ratios clearly demonstrate that decomposition can be a very attractive procedure for
solving large scale linear programs. Dantzig-Wolfe decomposition of the lérgest single pe-
riod problem is, for example, more than 64 times as fast as the best grand LP solution

procedure. Figure 6.3 'graphically illustrates the ratios contained in Table 6.10.

6.4 DWD and LSD Results — Multiple Period Problems

Two-stage and nested decomposition procedufes were applied to the 12 multiple period
problem instances defined in Section 6.1.2 and listed in Table 6.3 on page 231. Major strat-
egy 7 as defined in Section 6.2.4 and illustrated in Figure 6.1 on page 239 was used to
define the employed decomposition procedures. Individual procedures are labelled accord-
ing to the scheme described in Section 4.4.3 starting on page 146 —- DWD(i.5.k)/LSD(i.j.k)
where ¢ = 7 is the major strategy, j is the minor strategy, and k& is the tactics.
Dantzig-Wolfe decomposition restricted master problems were solved with the dual
formulation-primal simplex combination at each iteration while the primal formulation-
dual simplex combination was applied to each relaxed master problem of L-Shaped decom-
position. All decomposition procedures for each multiple period problem except P5-Large
employed an acceptable termination relative tolerance of 5 x 10~8. The decision tree for
each problem except P5-Large was stored in random access memory. Problem P5-Large
required special handling due to its size and solution procedures for this problem are de-

scribed in Section 6.4.3 below.
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An overview of the grand LP and decomposition solution results for the multiple
period problems is given in Section 6.4.1. Two-stage and nested decomposition results
are analyzed in Sections 6.4.2 and 6.4.3 respectively. Section 6.4.4 contains concluding

general comments concerning Dantzig-Wolfe and L-Shaped decomposition.

64.1 Overview

Exact solutions (5 x 1078 relative tolerance) were obtained on all problems except P5-
Large using two-stage decomposition techniques. Nested decomposition was used to solve
problem P5-Large to a relative tolerance of 10~2. Grand LP solutions, on the other hand,
could be determined for only the three smallest multiple period problems. Available com-
puter memory prevented some problems (not enough memory) from even being copied to
CPLEX in the grand LP formulation. Some problems could be cdpied to CPLEX as a grand
LP but not solved in a reasonable amount of time due to a drain on the available memory
(insufficient memory). A problem in the insufficient memory category can be identified by
the very low (0 - 20) percentage of CPU usage registered by the Windows NT Task Man-
ager (see the Windows NT resource guide [146, Chapter 11]) after the problem has been
copied to CPLEX. The fastest solution times using decomposition and grand LP formula-
tions are shown in Table 6.11.

Problem P4-Large is the largest known stochastic linear program to Be solved on a
computer not in a mainframe or higher class. The largest solved problem found in an ex-

tensive literature search has a grand LP formulation of approximately 5 million columns
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Table 6.11: Multipie Period Problems’ Fastest Solution CPU Times (Minutes)

Problem Grand LP DWD and LSD Times

‘ Label Combination® | Time | Method(Strategy) | Time® | Ratio®

P2-Small (DE-DS) 5.9492 DWD(7.1.2) 2.0423 | 2.9130

P2-Medium (DF-DS) 226.91 DWD(7.1.2) 43.742 | 5.1875
P2-Large Not Enough Memory? LSD(7.1.4) 894.75 | NA¢

P3-Small (PF-PS) | 58.385 DWD(7.2.2) 10.291 | 5.6734
P3-Medium Insufficient Memory’ DWD(7.2.2) 73.960 NA
P3-Large Not Enough Memory DWD(7.2.2) 366.87 NA
P4-Small Insufficient Memory DWD(7.2.2) 30.786 NA
P4-Medium | Not Enough Memory DWD(7.2.2) 492.80 NA
P4-Large Not Enough Memory DWD(7.2.2) 48539 | NA
P5-Small Insufficient Memory DWD(7.3.2) 58.336 NA
P5-Medium | Not Enough Memory DWD(7.3.2) 608.57 NA
P5-Large Not Enough Memory DWD(7.2.10) 4,086.1 NA

Formulation-solver combination — shorthand notation defined in Table 6.7 on page 240
P5-Large relative tolerance gap is 10~2 — all others use 5z10—8

Ratio of grand LP time to decomposition time

Not enough memory available to copy problem in grand LP formulation to CPLEX

Not available ~ grand LP formulation is unsolved

Insufficient memory available to solve problem in Grand LP formulation once copied to CPLEX
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and 700,000 constraints (exact dimensions and density information not provided) and is de-
scribed in Birge, et al. [14, page 346, problem SCAGR(P5S16)]. That problem was solved,
however, with a parallel implementation of a nested L-Shaped decomposition algorithm on

a network of eight RS/6000% workstations.

6.4.2 Two-Stage Decomposition

Solution CPU times as a function of relative tolerénce for selected two-stage decomposition
strategies applied to the 11 smallest multiple period problems are shown in Table 6.12.
Times for two or more strategies applied to the same problem are shown for some problems
in order to demonstrate the variations that exist between these strategies. Dantzig-Wolfe
decomposition is more efficient than L-Shaped decomposition on all problems except P2-
Large. The greatest relative time difference (approximately 93 percent) between the two
methods occurs for problem P3-Large. Graphs of the CPU time as a function of relative
tolerance for the decomposition of these two extreme problems are shown in Figure 6.4.
A similar graph for each of the 11 smallest multiple period problems, including full page
reproductions of Figures 6.4(a) and 6.4(b), is at Appendix G. The best DWD strategy is
20.77 percent faster than the best LSD strategy when averaged over all 11 problems and
15.46 percent faster on average when the two extreme problems are omitted. Reasons for

the superior performance of DWD over LSD are examined below.

6 RS/6000 is a registered trademark of International Business Machines Corporation, Armonk, NY
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Table 6.12: Two-Stage Decomposition Solution CPU Times (Minutes)

Solution Relative Tolerance
Problem | Strategy Dantzig-Wolfe L-Shaped

Label Triplet® | 10~“ | 10™* [ 10~° | Exact’ | 10~ [ 10~% | 10~° | Exact
P2-Small (7.1.2) | 0.4822 | 1.786 | 1.917 | 2.042¢ | 0.5124 | 1.576 | 2.527 | 2.527
P2-Medium | (7.1.2) | 6.235 | 21.90 { 39.14 | 43.74 | 6474 | 24.29 | 46.14 | 52.65
P2-Large (7.14)° | 97.74 | 313.3 | 606.5 | 927.7 | 98.46 | 3199 | 620.2 | 894.7°
P3-Small (7.1.2) | 9.506 | 31.84 | 46.90 | 46.90 | 9.613 | 32.18 | 49.75 | 49.75
(722) | 5985 | 8.113 | 10.01 | 10.29 | 6.115 | 9.249 | 10.84 | 11.39
P3-Medium | (7.1.2) | 2050 | 638.1 | 910.8'| 910.8 | 204.8 | 637.6 | 1020 | 1130
(7.2.2) | 32.70 | 56.87 | 70.10 | 73.96 | 44.07 | 84.37 | 104.9 | 110.7
P3-Large (7.2.2) 1334 | 262.5 | 330.1 | 366.9 | 186.0 | 436.2 | 676.0 | 707.7
(7.1.2) | 41.52 | 202.6 | 318.0 | 318.0 | 41.06 | 223.9 | 296.0 | 296.0
P4-Small (72.2) | 8063 | 1847 [ 28.75| 30.79 | 8.195 | 18.78 | 29.10 | 31.16
(7.32) | 32.90 | 41.53 | 47.84 | 51.51 | 33.80 | 50.35 | 55.97 | 59.99
P4-Medium | (7.2.2) 107.1 | 255.7 | 434.0 | 492:8 | 108.0 | 286.8 | 463.4 | 522.1
(7.3.2) | 360.0 | 456.3 | 502.2 | 530.7 | 673.0 | 1,014 | 1,083 | 1,096
P4-Large (7.2.2) 1,004 | 2,382 | 4,031 | 4,854 | 1,007 | 2,401 | 4,056 | 5,156
(7.2.2) 17.46 | 56.82 | 89.68 | 1029 | 1746 | 50.20 | 89.70 | 116.0
P5-Small (7.3.2) 1143 | 23.65 | 45.89 | 58.34 | 13.57 | 29.31 | 44.97 | 63.39
(742) | 96.54 | 121.3 | 1309 | 133.0 | 88.53 | 121.3 | '130.2 | 1329
P5-Medium | (7.3.2) 138.2 | 276.7 | 483.2 | 608.6 | 183.2 | 354.9 | 562.5 | 685.6

P5-Large Cannot be solved in reasonable amount of time with two-stage decomposition

See Section 6.2.4 and Figure 6.1 on page 239

5210~8 is considered exact
Bold face time is the fastest exact time for the individual problem

Only problem for which formulation-solver (DF-DS) is best, rest use (PF-DS) — see Table 6.7
Only problem for which LSD is fastest to exact — DWD is fastest for the rest
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The work history of the different strategies expressed in terms of the number of it-
erations and the number of added cuts/activities is given in Table 6.13. This history does
not explain why DWD generally out;;erforms‘ LSD. For example, by comparing the com-
plementary best strategies:

o five problems (the first four in Table 6.13 and P3-Large_) have more LSD cuts than

DWD activities added during an average iteration,
e one problem (P3-Medium) has the same average number of each, and

e the remaining five have fewer LSD cuts than DWD activities added on average.

Similar results hold for the other statistics listed in Table 6.13. An explanation for the per-
formance difference between the two methods can be found, however, by a more detailed
examination of the iterations data.

Two major types of iterations exist when decomposition is performed using major

strategy 7:
complete — all subproblems, including grand LP nodal subproblems, are solved and
both bounds can be updatc;,d, and
partial — only the simpleldeviation and slippage subproblems (i.e., no nodal subprob-
lems) are solved and only the upper bound can be updated.

A complete iteration is performed as the first iteration of every decomposition procedure
in order to obtain valid upper and lower bounds. Execution of complete iterations after the

first is controlled by an options value provided to the MIMPSLP code library. This option
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Table 6.13: Two-Stage Decomposition Cuts/Activities Statistics

Solution Dantzig-Wolfe L-Shaped
Problem Strategy | Total Added Activities Total Added Cuts

Label Triplet” | Iters® | Total’ | Max® | Avg® | Iters | Total | Max | Avg
P2-Small (7.1.2y 180 1,881 102 | 1045 184 1,992 102 | 10.83
P2-Medium | (7.1.2) 287 8,058 502 | 28.08 | 288 9,631 502 | 33.44
P2-Large (7.1.4) 278 15449 | 1,002 | 55.58 | 276 | 15,513 | 1,002 | 56.21
P3-Small (7.1.2) 99 1,263 551 1276 107 1,314 58 | 12.28
T (7.2.2) 70 | 23,307 | 1214 | 3329 69| 23570 | 1,173 | 341.6
P3-Medium | (7.1.2) 124 1,674 84 | 13.50 130 1,845 83 | 14.19
7.2.2) 107 | 60,951 | 4,239 | 569.6 109 | 62,083 | 4,239 | 569.6
P3-Large (7.2.2) 149 | 123,024 | 10,298 | 825.7 147 | 123,783 | 10,298 | 842.1
(7.1.2) 65 651 27 | 10.01 65 636 27 | 9.785
P4-Small (7.2.2) 64 | 12,490 575 | 195.2 67 | 12421 575 185.4
(73.2) 61 | 98,778 | 6,525 | 1,619 59| 98512 | 6,521 | 1,670
P4-Medium | (7.2.2) 79 | 23,720 | 1,120 | 300.3 80 | 23,381 | 1,120 | 292.3
(713.2) 73 | 307,900 | 22,709 | 4,218 72 | 307,855 | 22,709 | 4,277
P4-Large (7.2.2) 94 | 68,145 | 4,240 | 724.9 95| 68,190 | 4,240 | 717.8
(7.2.2) 65 8,002 363 | 123.1 69 8,019 357 | 116.2
P5-Small (7.3.2) 92 | 42438 | 2,620 | 461.3 93 | 42494 | 2,627 | 456.9
(7.4.2) 60 | 166,470 | 14,029 | 2,775 62 | 166,322 | 14,024 | 2,683
P5-Medium | (7.3.2) 78 | 131,687 | 6,532 | 1,688 78 | 131,258 | 6,489 | 1,683

PS-Large Not solved with two-stage decomposition

See Section 6.2.4 and Figure 6.1 on page 239

Total number of iterations for relative tolerance of 5210—8

Total number of cuts/activities added over all iterations

Maximum number added during any iteration (minimum varies from 1 to 16)

Average number of cuts/activities added over all iterations

Boldface type indicates the fastest strategy for the individual problem
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value indicates that a complete iteration is to be performed at every ™ iteration where 7 >
1. Complete iterations are also automatically executed whenever the upper bound shows
no improvement from one iteration to the next. The best results for model MIMPSLP
problems are obtained with 4 set to a very large number so that complete iterations (after
the first) are only performed after an iteration at which the upper bound fails to-decrease
in value. Partial iterations occur between complete iterations and serve to improve the
upper bound in a greedy fashion since these iterations are significantly faster than complete
iterations.

The numbers of complete and partial jterations, with the average time for each type,
required for two-stage decomposition of the 11 smallest multiple period problems are
shown in Table 6.14. Note that the number of partial iterations significantly exceeds the
number of complete iterations in each case. In addition, the LSD procedure has a sub-
stantially greater average partial iteration time than the complementary DWD procedure
for each of the 11 fastest strategy triplets. The average best DWD partial iteration time
is 131.6 percent faster than the average best LSD partial iteration time ranging from a
minimum of 18.7 percent (P3-Small) to a maximum of 240.6 percent (P4-Large) relative
difference in favor of DWD. Times for complete iterations compare much more equably
because these iterations are dominated by the time required to solve the grand LP nodal
subproblems and the two decomposition methods use the same set of solution subroutines

for these subproblems.
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Table 6.14: Two-Stage Decomposition Average Iteration CPU Times (Seconds)

Solution Dantzig-Wolfe L-Shaped
Problem® | Strategy Partial Complete All Partial Complete All

Label Triplet? Time #)° Time )¢ | Time* Time (#) Time (#) Time
P2-Small (7.1.2y | 0.0335 (164) | 7.3149 (16) | 0.6808 | 0.1022 (166) | 7.4824 (18) | 0.8242
P2-Medium | (7.1.2) | 0.4829 (260) | 92.55(27) | 9.144 | 1.4615(259) | 95.87(29) | 10.97
P2-Large (7.1.49) 1.233(243) | 1,581 (35) | 200.2 | 3.437(243) | 1,601(33) | 1945
P3-Small (7.1.2) 0.0176 (80) | 148.0(19) | 2842 | 0.0452(87) | 149.1(20) | 27.90
(7.2.2) 6.947 (56) | 16.32(14) | 8.821 8.243(55) | 16.44(14) | 9.907
P3-Medium | (7.1.2) 0.307(107) | 3,214 (17) | 440.7 | 0.0919 (109) | 3,227 (21) | 521.3
(72.2) 28.75(93) | 126.0(14) | 41.15 52.89(94) | 111.5(15) | 60.95
P3-Large (72.2) 69.26 (136) | 968.7(13) | 147.7 | 211.5(132) | 969.2(15) | 288.8
(7.1.2) 0.0065 (51) | 1,362(14) | 293.5 | 0.0123(52) | 1,366 (13) | 273.3
P4-Small (7.2.2) 0.5054 (49) | 121.5(15) | 28.86 | 0.8360(52) | 121.7(15) | 27.90
(7.3.2) 50.04 (45) | 52.42(16) | 50.66 65.83(42) | 49.09(17) | 61.00
P4-Medium | (7.2.2) 1.379(62) | 1,734 (17) | 374.3 2.646 (62) | 1,731(18) | 391.6
(73.2) - 469.2(57) | 318.9(16) | 436.2 1,090 (57) | 242.3(15) | 913.2
P4-Large (7.2.2) 7.846 (76) | 16,146 (18) | 3,098 26.72 (76) | 16,176 (19) | 3,256
(7.2.2) 0.2510(49) | 385.0(16) | 94.96 | 0.3652(51) | 385.7(18) | 100.9
P5-Small (7.3.2) 7.930(63) | 103.5(29) | 38.05 1142 (62) | 99.86 (31) | 40.90
(74.2) 156.2 (45) | 63.48(15) | 133.0 153.3(46) | 57.60(16) | 128.6
P5-Medium | (7.3.2) 7291 (56) | 1,474 (22) | 468.1 154.2(56) | 1477(22) | 5274

P5S-Large Not solved with two-stage decomposition

All data for decomposition termination at relative tolerance of 5z10~8

See Section 6.2.4 and Figure 6.1 on page 239

Average time in seconds for (number of) partial iterations (nodal subproblems not solved)

Average time in seconds for (number of) complete iterations (all subproblems solved)

Average time in seconds for all iterations

Boldface type indicates the fastest strategy for the individual problem
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A second contributing factor to the pgrformance difference between DWD and LSD .
is the time required by each of the two decomposition stages. Time distribution data for
the stégc one and stage two procedures of each iteration type are given in Table 6.15.
L-Shaped decomposition spends a significantly greater percentage of time than Dantzig-
Wolfe decomposition in stage one during the partial iterations of each of the fastest strategy
triplets. Dantzig-Wolfc decomposition, on the other hand, is in stage two for both iteration
types for a larger percentage of time than L-Shaped decomposition. Time spent in stage
one modifying and solving the RMP is critical to the performance variation between two
complementary decomposition procédures (same strategy triplet) because DWD and LSD
share the same set of subproblerhs in stage two.

The supeﬁor performance of two-stage DWD of model MIMPSLP problems relative
to two-stage LSD can then ‘Qe mostly attributed to CPLEX. Adding variables to an existing
problem of this class and resolving with an advanced basis is evidently a more efficient
procedure in CPLEX than resolving the dual of that problem with a warm start after the

addition of constraints.

6.4.3 Nested Decomposition

Nested decomposition was applied to the last 9 problem instances (those with three or
more periods) defined in Section 6.1.2 and listed in Table 6.3 on page 231. The nested de-
composition strategies used on these problems are described in Sections 4.4.4 and E.1.5.

These strategies are based upon the block-separability property of model MIMPSLP prob-
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e

Table 6.15: Time Percentages Devoted to Stages of Two-Stage Decomposition

Solution Dantzig-Wolfe L-Shaped
Problem Strategy Partial® Complete® Partial Complete
Label Triplet® | RMP? | SUB° | RMP | SUB | RMP | SUB | RMP [ SUB
P2-Small (7.1.2y | 4.291 | 0.196 | 0.548 [ 94.966 | 11.041 | 0.145 | 2.153 | 86.660
P2-Medium | (7.1.2) 4.725 | 0.059 | 0.653 | 94.563 | 11.931 | 0.053 | 3.062 | 84.954
P2-Large (7.1.4) 0.533 | 0.005 | 0.251 | 99.210 | 1.550 | 0.005 | 0.864 | 97.580
P3-Small (7.1.2) 0.484 | 0.002 | 0.034 | 99.916 | 0.129 | 0.003 | 0.095 | 99.773
(7.2.2) | 62.838 | 0.169 | 4.519 | 32475 | 66.181 | 0.144 | 4.401 | 29.274
P3-Medium | (7.1.2) 0.006 | 0.000 | 0.002 | 99.992 { 0.015 | 0.000 | 0.008 | 99.977
(7.2.2) | 60.125 | 0.120 | 8.291 | 31.464 | 74.755 | 0.081 | 2.907 | 22.257
P3-Large (7.2.2) | 42,708 | 0.085 | 4.738 | 52.469 | 65.719 | 0.041 | 3.033 | 31.207
(7.1.2) 0.002 | 0.000 | 0.001 | 99.997 | 0.003 | 0.000 | 0.002 { 99.994
P4-Small (7.2.2) 1.318 | 0.228 | 0.507 | 98.152 | 2.302 | 0.023 | 0.409 | 97.266
(7.3.2) | 72.697 | 0.162 | 4.724 | 22417 | 76.683 | 0.130 | 2.677 | 20.509
P4-Medium | (7.2.2) 0.286 | 0.003 | 0.094 | 99.617 | 0.520 | 0.003 | 0.197 | 99.279
(7.3.2) | 83.916 | 0.062 | 5.237 | 10.786 | 94.439 | 0.033 | 0.862 | 4.666
P4-Large (7.2.2) 0.203 | 0.002 | 0.082 | 99.713 | 0.655 | 0.001 | 0.091 | 99.252
(7.2.2) 0.196 | 0.004 | 0.089 | 99.712 | 0.264 | 0.003 | 0.101 | 99.631
P5-Small (7.3.2) | 14.214 | 0.059 | 3.057 | 82.670 | 18.558 | 0.055 | 1.348 | 80.039
(74.2) | 87.966 | 0.104 | 3.278 | 8.653 | 88.333 | 0.107 | 2.385 | 9.174
P5-Medium | (7.3.2) | 11.164 | 0.017 | 1.765 | 87.054 | 20.980 | 0.016 | 1.664 | 77.340
P5-Large Not solved with two-stage decomposition

Percentage of time in iterations during which nodal subproblems are not solved

Percentage of time in iterations during which all subproblems are solved

See Section 6.2.4 and Figure 6.1 on page 239

Percentage of time spent in smge one

Percentage of time spent in stage two

Boldface type indicates the fastest strategy for the individual problem
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lems. Sample procedures for three- and four-period problems are respectively illustrated
by Figure E.1 on page 382 and Figure 4.4 on page 151. Only nested Dantzig-Wolfe de-
composition algorithms were employed due to the generally superior performance of DWD
versus LSD of this class of problems.

Solution CPU times as a function of rélative tolerance for selected nested decompo-
sition strategies applied to the subset of multiple period problems are shown in the mid-
dle portion of Table 6.16. All second stage nodal subproblems were.solved to a relative
tolerance equal to one-tenth of the specified termination relative tolerance for the overall
problem. Nested decomposition of nodal subproblems for problem P5-Large was then
terminated at a rel.ative tolerance of 10‘3;; Decomposition of all other nodal subproblems
terminated at a rglativc tolerance of 5 x 10~°. The solution CPU times for the fastest two-
stage decomposition strategy for each problefn instance are given in the last four columns
of Table 6.16. |

Two-stage DWD is significantly more efficient than nested DWD at each relative
tolerance level for all problems except the two largest, P4-Large and P5-Large. Problem
P5-Large is so large that the decision tree must be stored in a file and two-stage DWD
cannot be applied with a minor strategy. (cutoff period Cr = £ for the first stage RMP) of
3 or greater under major strategy 7. Sufficient compu.ter memory was not available to store
the initial RMP and ancillary data for two-stage decomposition under major strategy 7 with
t > 3. Smaller major strategy levels are also incompatible with this problem since £ must be

4 or 5 at those levels. Nested decomposition of problem P5-Large is faster than two-stage
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Table 6.16: Nested Dantzig-Wolfe Decomposition Solution CPU Times (Minﬁtes)

Solution Relative Tolerance
Problem Strategy Nested Dantzig-Wolfe Best Two-Stage

Label Triplet® | 107° | 10=% [ 10=° [ Exact® [ 10=2 | 10~% [ 10~° | Exact
P3-Small (7.1.6) | 10.14 | 37.59 | 47.63 | 50.15 | 5.985 | 8.113 | 10.01 | 10.29¢
P3-Medium | (7.1.6) | 75.55 [ 2825 | 392.6 | 392.6 | 32.70 | 56.87 | 70.10 | 73.96¢
P3-Large (7.1.6) | 687.9 | 2,420 | 3,114 | 3,457 | 133.4 | 262.5 | 330.1 | 366.9¢
(7.1.6) | 43.52 | 3405 | 385.2 | 407.7
P4-Small (7.1.10) | 2648 | 168.8 | 266.9 | 266.9 | 8.063 | 18.47 | 28.75 | 30.79
(7.2.6) | 24.17 | 5547 | 86.97 | 99.56
P4-Medium | (7.1.10) | 2654 | 998.2 | 1,449 | 1,539 | 107.1 | 255.7 | 434.0 | 492.8¢
' (7.2.6) | 130.3 | 3332 | 569.2 | 636.7
P4-Large (7.2.6) | 934.2 | 2,405-| 3,859 | 4,591 | 1,004 | 2,382 | 4,031 | 4,854*
(7.1.6) | 65.83 | 613.4 | 883.4 | 8834
(7.1.10) | 66.61 | 584.5 | 960.9 | 960.9 .
P5-Small (7.2.6) | 56.48 | 180.5 | 323.7 | 323.7 | 11.43 | 23.65 | 45.89 | 58.34
(7.2.10) | 33.17 | 103.7 | 173.6 | 196.5
(73.6) | 32.14 | 81.98 | 151.1 | 185.5
P5-Medium | (7.2.10) | 687.5 | 1,525 | 2,526 | 3,362 | 138.2 | 276.7 | 4832 | 608.6/
(73.6) | 3385|7759 1 1,348 | 1,629
P5-Large (7.2.10) | 4,086 | Stoppedate = 10~2 NA*

See Section 6.2.4 and Figure 6.1 on page 239

52108 is considered exact

Best two-stage exact time for P3-Small uses DWD(7.2.2)
Best two-stage exact time for P3-Medium uses DWD(7.2.2)
Best two-stage exact time for P3-Large uses DWD(7.2.2)
Best two-stage exact time for P4-Small uses DWD(7.2.2)
Best two-stage exact time for P4-Medium uses DWD(7.2.2)
Best two-stage exact time for P4-Large uses DWD(7.2.2)
Best two-stage exact time for P5-Small uses DWD(7.3.2)
Best two-stage exact time for P5-Medium uses DWD(7.3.2)
Not available — PS-Large was not solved with two-stage decomposition
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decomposition when the first stage cutoff period is 2 or less because decomposition of the
resulting 3- (¢ = 2) or 4-period (¢ = 1) nodal subproblems is more efficient than a grand LP
approach. Even nested decomposition of this problem was limited to a termination relative
tolerance of 10~2 since that procedure required over 68 hours (see the last row of Table
6.16). The size of nodal subproblems generally tends to increase with the size of the overall
problem and, at some point, it is faster to solve these subproblerhs with decomposition than
with a grand LP formulation. Therefore, nested decomposition becomes more efficient
than two-stage decomposition as the size of a problem increases. Data in Table 6.16, in

particular for the three 4-period problems, support the latter observation.

6.4.4 General Comments

Decomposition of stochastic linear programs in particular, and large scale linear programs
in general, is clearly an attractive alternative to grand LP solution procedures. Available
computer resources will limit the size of any LP that can be solved in a grand LP formula-
tion so that some form of decomposition will often be required. Decomposition may also
be significantly more efficient than a grand LP approach even for relatively small prob-
lems. The option to terminate a solution procedure at some specified bounds’ gap that is
less than what may be considered ’exact’ is also a beneficial property of decomposition
algorithms. Solution times in Table 6.12 on page 255 demonstrate, for instance, that de-

composition of the 11 smallest multiple period problems can, on average, be terminated at
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a relative tolerance of 1072 in less than one third (0.27) of the time required for an exact
solution.

Dantzig-Wolfe decomposition proved to be more efficient than L-Shaped decom-
position for mode] MIMPSLP problems over planning horizons of one to five periods.
Employment of CPLEX software may be a critical factor in this performance variation.
The difference in efficiencies may also not be present, or even reversed, in other problem
classes. It is important to realize, however, that such differences may exist between these
two decomposition methods. Knowledge of the relative efficiencies of Dantzig-Wolfe and
L-Shaped decomposition for a given class of problems may be necessary to the design of
the most effective solution procedures. ‘

‘Two-stage decomposition is generally more efficient than nested decomposition when
sufficient resources are available to execute both procedures. Many stochastic linear pro-
grams possess the block-separability property and can be structured for two-stage decom-
position. Nested decomposition, however, may be required or may be more efficient than
two-stage decomposition for very large problems. Block-separability, if present, can also

be incorporated to optimize the design of nested decomposition algorithms.

6.5 Myopic Decomposiﬁon Results

Myopic decomposition as described in Section 4.5 starting on page 152 was applied to

the 12 multiple period problem instances defined in Section 6.1.2 and listed in Table 6.3
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on page 231. Both the primals lead and duals lead algorithms detailed in Appendix B
were applied to each problem instance. Only the results for the primals lead algorithm are
discussed below since this version significantly outperformed the duals lead version in all
cases.

Myopic decomposition terminated for each problem instance after the completion of
a full cycle with no improvement in the bounds’ gap from the previous cycle. Performance
data at termination and after the first complete cycle are shown in Table 6.17. The lzist three
columns of this table list data for the fastest two-stage decomposition method and strategy
triplet for each problem.

Data in Table 6.17 indicates that there was no significant improvement in the bounds’
gap of any problem after the first cycle. In fact, there was no improvement after the first cy-
cle for 6 of the‘ 12 pr;)blems (teﬁninatioﬁ aftér 2 cycles). Néte, however, that the first cycle
data for myopic decomposition compares very favorably with the data for the fastest two-
stage décomposition procedures. Myopic decomposition achieved the first cycle bounds’
gap significantly faster than achieved by the fastest two-stage decomposition method for
all problems except P2-Large for which the two times are nearly equal. Myopic decompo-
sition required, on average, 27 percent of the time required by two-stage decomposition to
obtain the first cycle bounds’ gap.

Myopic decomposition lower and upper bounds at termination and after the first com-
plete are shown in Table 6.18 along with the fractional gap between the lower bound and the

exact objective function value obtained with Dantzig-Wolfe and L-Shaped decomposition.
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Table 6.17: Myopic Decomposition Solution CPU Times (Minutes)

Myopic Decomposition Data Two-Stage Data®
Problem Termination Data 1st Cycle Data Method Nearest | Time
Label % Gap | Time | Cycles’ | % Gap | Time | (Strategy)° Time? | Ratio®

P2-Small 1.129 | 0.3009 1.129 | 0.1524 | DWD(7.1.2) | 04822 | 0.3161

P2-Medium | 1.598 | 5.083 1.828 1.703 | DWD(7.1.2) 4.621 0.3685

P2-Large 2.158 155.7 2210 | 51.91 LSD(7.1.4) 51.63 1.005

P3-Small 2.496 | 0.9470 2496 | 0.4635 | DWD(7.2.2) 5.367 | 0.08636

P3-Medium | 2.448 | 5.242 2448 | 2.603 | DWD(7.2.2) 32.70 | 0.07960

P3-Large 2726 | 34.72 2726 | 17.39 | DWD(7.2.2) 107.0 | 0.1625

P4-Small 3.266 | 4.160 3.266 | 2.067 | DWD(7.2.2) 5.923 0.3490

P4-Medium | 3.610 | 16.75 3.610 | 8333 | DWD(7.2.2) 77.58 0.1074

P4-Large 4.026 136.3 4244 | 45.14 | DWD(7.2.2) 728.5 | 0.06196

P5-Small 4.865 | 7.967 4944 | 2.647 | DWD(7.3.2) 7.008 0.3777

P5-Medium | 4.903 | 85.86 5.559 | 2144 | DWD(7.3.2) 79.39 | 0.2701

WA W] W ] N I ] | W] w]

P5-Large 5.582 | 341.9 5.823 1133 | DWD(7.2.10) | 1,862 | 0.06085

Data for the fastest two-stage Dantzig-Wolfe or L-Shaped decomposition procedure
Index of cycle at which there was no improvement in bounds gap from previous cycle
Decomposition method acronym and strategy triplet

Time required for two-stage method to achieve the 1 cycle myopic bounds gap or better
Ratio of the 1 cycle myopic time to the two-stage time

»
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Myopic Decomposition
Exact -1st Cycle Bounds Termination Bounds | Fractional Gap
Problem Value Lower Upper Lower Upper | To Lower Bound
Label 0Obj° MLB; MUB, MLBy MU Bg 1st’ Term°®
P2-Small 2,822,734 | 2,804,928 | 2,836,588 | 2,804,928 | 2,836,588 | 0.5624 | 0.5624
P2-Medium | 2,596,361 | 2,568,460 | 2,615,418 | 2,574,269 | 2,615,418 | 0.5942 | 0.5942
P2-Large 2,472,811 | 2,445419 | 2,499,485 | 2,446,677 | 2,499,485 | 0.5066 | 0.5066
P3-Small 3,022,102 | 2,992,621 | 3,067,329 | 2,992,621 | 3,067,329 | 0.3946 | 0.3946
P3-Medium | 2,496,515 | 2,476,574 | 2,537,189 | 2,476,574 | 2,537,189 | 0.3290 | 0.3290
P3-Large 2,152,676 | 2,127,553 | 2,185,548 | 2,127,553 | 2,185,548 | 0.4332 | 0.4332
P4-Small 4,326,598 | 4,272,048 | 4,411,582 | 4,272,048 | 4,411,582 | 0.3909 | 0.3909
P4-Medium | 3,972,196 | 3,916,018 | 4,057,380 | 3,916,018 | 4,057,380 | 0.3974 | 0.3974
P4-Large 3,692,139 | 3,624,752 | 3,778,584 | 3,632,340 | 3,778,584 | 0.4381 | 0.4089
P5-Small 3,927,228 | 3,843,899 | 4,033,935 | 3,846,775 | 4,033,935 | 04385 | 0.4299
P5-Medium | 3,696,311 | 3,618,894 | 3,820,076 | 3,620,336 | 3,797,832 | 0.3848 | 0.4291
P5-Large 3,588,547% | 3,520,603 | 3,725,592 | 3,525,459 | 3,722,253 | 0.3315 | 0.3206

Exact DWD/LSD objective function values (5 x 102 relative tolerance) except for problem PS-Lérge

Obj—MLB,
MUB,—MLB,

Obj—MLB
MUBp—MLBg

Lower Bound at 1 percent relative gap with DWD(7.2.10)
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The exact objective function value is nearer the lower bound (fractional gap is less than
0.5) for all problems except the three two-period problems. Future research should then be
directed toward improving the tail (dual) half-cycle results in order to obtain smaller upper
bounds at each cycle.

The biggest drawback to the current myopic decomposition algorithms is their inabil-
ity to guarantee a specified relative tolerance. They can, however, be very efficient relative

to Dantzig-Wolfe and L-Shaped decomposition in obtaining fairly good solutions.

6.6 Sample Effectiveness Measures

The Mahalanobis squared distance based measures developed in Section 5.6.4 starting on
page 216 may be used to supplement traditional methods of judging the effectiveness of
a random sample in approximating a known distribution. Mahalanobis squared distance
values and sample effectiveness measures for six model MIMPSLP problem instances
are described below. Only problems with a single period are evaluated since the scenario
generator library (see Section 5.6 starting on page 207) employs a multivariate normal dis-
tribution to generate random outcomes in each period of the planning horizon. Therefore,
no additional insight into the value of the proposed measures is gained by examining model
MIMPSLP problems with more than one period.

Three random seed values were used to generaté outcomes for each of the six prob-

lems which, otherwise, differ only in the number of outcomes in the random sample. The
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resulting expected population and average sample Mahalanobis squared distance values
defined by equations [5.64] through [5.75] starting on page 220 are listed in Table 6.19.
These values were then used to determine the six sample effectiveness measures deﬁnéd by
equation [5.76] on page 224 and the results are given in Table 6.20.

Several interesting conjectures may be formulated based upon the data in Table 6.207

Measures based upon comparing the population expected return with the sample average

return (Eél) ) and the expected population net return with the average sample net return

(Eél)) do not appear to be useful since they are uniformly relatively large and exhibit sub-
stantial variations. Each of the remaining four measures are based upon comparing sample
returns and net returns vectors with the cﬁrrespbnding population expected and sample av-
erage returns and net returns vectors. These measures tend to behave as expegted since
they genefally decrease 1n value With increasing sérhp‘le size. Measures based upon Maha-
lanobis squared distances between sample net returns vectors and the population expected
net returns vector (E‘gl) ) and the sample average net returns vector (Eél)) are considered
the more important pair. The latter two measures characterize the results of the model’s
investments decisions whereas measures E§1) and Eél) provide information only for the
generated sample.

Values in Table 6.20 for measures E‘gl) and Eél) indicate that a sampie size of from
20 to 50 outcomes is probably too small to provide investment decisions that are robust
for different seed values. Values of these measures for samples of 100 to 1,000 outcomes,

on the other hand, vary little across both the seed values for the same sample size and the
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Table 6.19: Mahalanobis Squared Distance Values for Single Period Problems

Outcomes | Random Returns?® Net Returns®
L Seed M MY MY M ME MY
20 100 68°¢ 3.40000 | 64.60000 26 1.30000 | 24.70000
68.66788¢ | 2.26265 | 66.40523 | 27.16844 | 1.04168 | 27.77348
1,000 68 3.40000 | 64.60000 26 1.30000 | 24.70000
67.30189 | 2.84333 | 64.45857 | 25.84362 | 1.05348 | 26.20875
10,000 68 3.40000 | 64.60000 24 1.20000 | 22.80000
67.00530 | 3.94039 | 63.06491 | 22.93230 | 1.31420 | 21.52928
50 100 68 1.36000 | 66.64000 23 0.46000 | 22.54000
67.59106 | 0.94155 | 66.64951 | 23.08775 | 0.25904 | 20.75519
1,000 68 1.36000 | 66.64000 23 0.46000 | 22.54000
68.11555 | 1.46123 | 66.65432 | 24.28390 | 0.59530 | 24.74113
10,000 68 1.36000 | 66.64000 27 0.54000 | 26.46000
68.18476 | 1.49929 | 66.68547 | 27.34499 | 0.59303 | 24.07765
100 100 68 0.68000 { 67.32000 29 0.29000 | 28.71000
68.59674 | 0.49566 | 68.10108 | 29.84762 | 0.16944 | 29.40369
1,000 68 0.68000 | 67.32000 25 0.25000 | 24.75000
68.18315 | 0.78266 | 67.40049 | 25.56521 | 0.32157 | 24.77922
10,000 68 0.68000 | 67.32000 28 0.28000 | 27.72000
67.99100 | 0.59751 | 67.39349 | 28.69767 | 0.20103 | 26.12339
500 100 68 0.13600 | 67.86400 31 0.06200 | 30.93800
69.09147 | 0.16018 | 68.93129 | 31.86859 | 0.08689 | 31.64606
1,000 68 0.13600 | 67.86400 27 0.05400 | 26.94600
68.39446 | 0.18370 | 68.21076 | 27.46871 | 0.09001 | 27.09422
10,000 68 0. 1360|0 67.86400 31 0.06200 | 30.93800
68.47139 | 0.14105 | 68.33034 | 31.29956 | 0.08562 | 30.64816
1,000 100 68 0.06800 | 67.93200 29 0.02900 | 28.97100
68.37054 | 0.05637 | 68.31417 | 29.20934 | 0.02507 | 29.04360
1,000 68 0.06800 { 67.93200 27 0.02700 | 26.97300
68.32987 | 0.08138 | 68.24849 | 27.31412 | 0.04526 | 27.47360
10,000 68 0.06800 | 67.93200 28 0.02800 | 27.97200
68.00626 | 0.05797 | 67.94829 | 28.05830 | 0.03036 | 27.52237
100,000 100 68 0.00068 | 67.99932 28 0.00028 | 27.99972
67.97271 | 0.00063 | 67.97209 | 27.98512 | 0.00032 | 27.98232
1,000 68 0.00068 | 67.99932 28 0.00028 | 27.99972
68.03666 | 0.00069 | 68.03597 | 27.99650 | 0.00023 | 28.00022
10,000 68 0.00068 | 67.99932 28 0.00028 | 27.99972
68.02099 | 0.00071 | 68.02027 | 27.99423 | 0.00040 | 27.99423

See equations [5.64] through [5.69] starting on page 220
See equations [5.70] through [5.75] starting on page 223
Population expected value is in the top half of each cell

Sample average value is in the bottom half of each cell
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Table 6.20: Sample Effectiveness Measures for Single Period Problems

a

b

See equation [5.76] on page 224 with j =1,2,3
See equation [5.76] on page 224 with § =4, 5,6
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Outcomes | Random Returns® Net Returns®
L Seed E EY EY EY | EY EY)

20 100 | 0.98218 | 33.451 2.7945 4.4940 19.871 12.443

1,000 1.0266 16373 | 0.21893 | 0.60146 | 18.963 6.1083

10,000 1.4628 15.894 | 2.3763 4.4488 | 9.5167 5.5733

50 100 | 0.60138 | 30.768 | 0.014271 | 0.38152 | 43.687 7.9184

1,000 | 0.16993 | 7.4434 | 0.021489 | 5.5822 | 29.413 9.7654

10,000 | 0.27171 10.242 | 0.068232 1.2777 | 9.8204 9.0036

100 100 | 0.87756 | 27.109 1.1602. 2.9228 | 41.572 2.4162

1,000 | 0.19338 15.097 | 0.11956 2.2608 | 28.628 | 0.11806

10,000 | 0.013235 | 12.131 | 0.10917 2.4917 28.204 5.7598

500 100 1.6051 17.779 1.5727 2.8019 | 40.145 2.2886

1,000 | 0.58009 | 35.074 | 0.51096 |- 1.7360 | 66.685 0.54999

10,000 0.69322 | 21.074 | 0.68717 0.96632 | 38.097 0.93684

1,000 100 | 0.54491 17.103 | 0.56258 | 0.72186 | 13.552 | 0.25060

1,000 | 0.48510 19.676 | 0.46589 1.1634 | 67.630 1.8559

. 10,000 | 0.0092059 | 14.750 | 0.041652 | 0.20821 | 8.4286 1.6074
100,000 100 | 0.040132 | 7.3529 | 0.040045 | 0.053143 | 14.286 | 0.062144
1,000 | 0.053912 | 1.4706 | 0.053898 | 0.012500 | 17.857 | 0.0017857
10,000 | 0.030868 | 4.4118 | 0.030809 | 0.020607 | 42.857 | 0.019607
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different sample sizes. Samples with 100,000 outcomes exhibit uniformly small Eél)

and
Eél) (also Ef) and Eél)) values for all random seeds and should be more than adequate for
the model.

The above observations can be used to supplement information gathered from a more
traditional approach such as judging model robustness to different sample sizes and random

seed values. For example, the net return for each random seed and sample size combina-

tion used above is listed in Table 6.21. Note that net returns for samples with 100 or more

Table 6.21: Net Returns for Single Period Problems

Outcomes Random Seed
L 100 1,000 10,000
20 | 143,739.8 | 126,506.0 | 110,304.0
50 | 162,2304 | 161,596.1 | 125,322.9
100 | 161,194.9 | 168,310.9 | 151,691.2
500 | 166,963.7 | 169,969.2 | 165,991.1
1,000 | 170,199.4 | 173,320.0 | 168,129.2
100,000 | 170,683.7 | 171,146.0 | 171,328.0

outcomes vary much less than the smaller samples across seed values. In addition, the net
returns for samples with from 100 to 1,000 outcomes are relatively close to the fairly uni-
form results for a sample with 100,000 outcomes — a maximun; difference of 11.5 percent
between net returns for 100 outcomes and 100,000 outcomes with a common seed value
of 10,000. These observations agree those based upon the Mahalanobis squared distance

sample effectiveness measures. This agreement suggests that the proposed measures could

prove to be very useful analysis tools.

274



Chapter 6 Model MIMPSLP Results and Analyses

6.7 Model Application Results

Model MIMPSLP incorporafes uncertainties about future securities’ performances to for-
mulate investment decisions that reflect the individual investor’s aversion to risk. Model
results may be used to 'create analysis tools to aid in the final decision making process. Two
such commonly used tools are the efficient frontier and the Sharpe ratio.

Markowitz [142] introduced the efficient frontier in 1959 as a method to-identify the
portfolio with the highest rate of return at a given level of risk. The efficient frontier is
a concave curve that is the upper boundary on the rate of return for a coliection of risky
investments. The Sharpe ratio is used to measure the reward to risk performance of a
particular investment. First in&oduced by Sharpe [187, page 123] in 1966 as the reward-to-
variability ratio, the measure has commonly become known as the Sharpe ratio (sée Sharpe

[188, page 688]). These two tools are illustrated in Figure 6.5.

A Efficient Frontier
£ A
=
[
o
Riskless d
Retumn A,
0,
Slope is the
Sharpe Ratio
Risk

Figure 6.5: Efficient Frontier and the Sharpe Ratio
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The portfolio with the maximum possible rate of return among all poﬂfoliosvwith a
given level of risk is the one that lies on the efficient frontier boundary depicted in Figure
6.5. Sharpe ratios are commonly used to determine the investment with the maximum rate
of return relative to some riskless investment. For example, given the riskless investment in
Figure 6.5 with return Ry, the line through R, and tangent to the efficient frontier identifies
the desired portfolio as the one with risk o, and return R;. The corresponding Sharpe ratio,
SR, is then:

sp= T

%51

Problem P3-Small is used as a basis to demonstrate the coupling of these two analysis
tools with results of the market iﬁvestment model. Fifteen problem instances with gradu-
ated aversion to risk levels were created. The analysis in Section 6.6 above indicates that
a sample of 50 first period outcomes generated for a problem P3-Small instance probably
does not adequately represent the population. Therefore, a post solutiop simulation option
available in the MIMPSLP library is utilized to estimate risk data based upon a sample of
1,000 first period outcomes for each problem instance. Risk is determined as the product
of the expected value of the displacement below the mean return (expected shortfall devi-
ation) with the fraction of the risk budget that is at risk (one minus the fraction of slack in
the risk bddget constraint). This risk measure then combines both of the model’s risk com-
ponents — the risk budget constraint and the shortfall from the mean return. The first périod
efficient frontier based upon expected net returns and this risk measure is illustrated in Fig-

ure 6.6. The concave shape of the efficient frontier depicted in Figure 6.6 agrees with the
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Figure 6.6: Problem P3-Small First Period Efficient Frontier
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classical shape illustrated by Figure 6.5. Decreasing aversion to risk values (increasing risk
measures) yield increasing expected net returns but at higher levels of risk.

The MIMPSLP code library currently evaluates Sharpe ratios based upon a riskless
return rate of zero. Sharpe ratios, scaled to daily values, for the expected net returns of
the 15 problem P3-Small instances are plotted in Figure 6.7 versus the same risk measure
(scaled to daily values) used in the efficient frontier illustration at Figure 6.6. Note that the
resulting curve clearly indicates that there is an optimal (relative to Sharpe ratios) level of
risk. The optimal risk level from Figure 6.7 is very small indicating that a high éve;sion to
risk is warranted. This result is expected since a riskless return rate of zero yields a steep
efficient fronﬁef tangent line with a small risk level at the point of tangency (see Figures |

6.5 and 6.6).
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Figure 6.7: Problem P3-Small First Period Sharpe Ratios
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Chapter 7
Summary and Conclusions

Stochastic linear programming is an effective and often used tool for incorporating
knowledge of uncertainties into decision making processes. Problems based upon stochas-
tic programming techniques are generally quite large and require sophisticated solution
procedures. Developing and implementing such procedures are the primary goals of this
thesis.

Effective solution algorithms require efficient structures and procedures for data stor-
age and retrieval. Analysis tools for measuring the effectiveness of a random sample and
judging a model’s results are also necessary components of a comprehensive mathematical
model. Efficient methods for addressing each of these areas are secondary goals.

Detailed solution algorithms for multiple period stochastic linear programs are devel-

~ oped based upon Dantzig-Wolfe and L-Shaped decomposition. These algorithms allow for

solutions to within an arbitrary tolerance on the gap between the lower and upper bounds
of a problem’s objective function value. Results obtained by applying the decomposition
algorithms to a multiple period market investment model are reported and analyzed. Very
large market investment problems, with tens of millions of constraints and variables, were
solved on a personal computer. Three, hopefully significant, contributions derived from

this work are described in the following list.
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1. First known application of solution procedures based upon both Dantzig-Wolfe and

L-Shaped decomposition to the same class of problems. The results indicate that one
method may, in practice, be significantly more efficient than the other for certain classes
of problems. This observation counters the generally accepted theory that procedures

based upon the two decomposition methods should have nearly equivalent efficiencies.

. First known computational study of the application of the block-separability property

possessed by many stochastic linear programs. Results indicate that two-stage
decomposition can be significantly more efficient than nested decomposition on
block-separable problems with from 1 to 5 periods and the constaints and variables

number on the order of millions or less.

. First known development of nested decomposition algorithms that take advantage

of the block-separability property. These algorithms allow for greater ﬂexibility in
structuring block-separable problems for decomposition than allowed for by currently
documented algorithms. The resulting nested decomposition procedures are more
efficient than two-stage decomposition procedures on very large problems (tens of

millions of constraints and variables).

A third decomposition technique based upon a myopic view of the future is devel-

oped and applied to market investment problems. Myopic decomposition algorithms can
yield very good solutions in a fraction of the time required by Dantzig-Wolfe/L-Shaped de-
composition algorithms. Inability to guarantee an arbitrary solution tolerance is the major

drawback to the current myopic decomposition algorithms.
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Mahalanobis squared distance based sample effectiveness measures are developed
and shown to be useful supplements to traditional tools such as analysis based upon vari-
ations in the samples’ si;es and generation seeds. Data storage and retrieval procedures
based upon a multiple period decision tree structure are described and implemented. These
techniques are very efficient and require only a fraction (negligible for larée problems) of
the processing time required by the selected solution procedure.

Future research is recommended in two areas. First, Dantzig-Wolfe and L-Shaped
decomposition algorithms should be applied with a broad selection of simplex solvers to
varied classes of problems to study the relative efficiencies of the two methods. Knowledge
of these relative efficiencies could prove to be very beneficial to the design of effective
solution procedures. Second, parallel computing algorithms should be developed to take
advantage of block-separability when present. Extremely large multiple period problems

could then be efficiently solved with two-stage decomposition methods.
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Appendix A
Equivalence of Node Labeling Schemes

Derivations and proofs for the equivalence of the path vector and period-index node
labeling schemes developed in Chapter 2 are given below. Equivalence of the two schemes
is extremely important since they are frequently used together in problem formulations.
Both schemes assume the use of the convention that all nodes in a given period have the
same number of possible outcomes as described in Section 2.2.1. The derivation and va-
lidity of equation [2.6] on page 28 for determining the period-index label given the path
vector are discussed in the first section below. The secoﬁd section contains the derivation
for equation [2.7] on page 28 for determining the path vector given the period-index la-
bel. Relating the two labeling schemes when the decision tree is traversed in a systematic

manner is the topic of the third and final section of this appendix.

A.1 Path Vector to Period-Index

Equation [2.6],
1, ift=1,

hy = -2
i+ > (i —1)LjpaLjye- - Lyq, if2<t< T,
j=1

is used to find the period-index label (¢, k) for a node in period ¢, 1 < ¢ < T, given the
path vector [e], = [I,...,l;_] to that node. The single first period node represented by the
null or empty path vector, [], clearly has a period-index label of (1,1). A simple example

helps to visualize the derivation of the equation for a node in a period later than the first.
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Figure A.1 shows the path vector [2,2, 2] to the last node in a four-period binary outcomes
decision tree as the darkened path through the tree. The within period sequential index,
hys = 8, for this node is a function of the number of nodes above it in the tree. There is
a group of nodes on or above node [2, 2, 2] for each of its three ancestor nodes along the
path. Grbup one consists only of four descendents of the first period node. The second
group contains two descendents of the grandparent node in the second period while the
final group is the older child of the parent node. The number o_f nodes in each of the first
two groups is the index for the outcome associated with the corresponding ancestor node
less one times the product of the number of outcomes possible in the periods between the
ancestor node and node (2,2, 2]. Summing these products and the corresponding outcome

index for the parent node will give the sequential index for the node in question:

hy = (l] — 1) Lol + (lg - 1) L3+ 13

— 2-)@E)+E-1E)+2
|
= 4+2+2 |

The above discussion suggests that the within period sequential node index, h;, for a

node with a path vector of [I,...,};_1] in peﬁod t,2<t<T,is

h,t = (l] - 1)L2L3"'Lt_1 + (lg - 1).’L3"'Lt_1 +...+ (lt—2 - I)Lt_l +lt_1
t—2

= L+ Z (j = 1) Ljy1Ljqo- - L[t—l

j=1

which agrees with equation [2.6]. Induction,is used below to show that equation [2.6] is

valid in the general case. 305
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Figure A.1: Equivalence of Labels for Node [2,2, 2] = (4, 8) In a Four-Period Binary

Outcomes Decision Tree
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Equation [2.6] is clearly valid for the first period.and also for the second period since
hs = l; and the summation term in equation [2.6] is zero. Assume the equation is valid for
any node in period ¢ — 1 for 3 < ¢ < T'. Then given the path vector, [l1, lo, . . . li—a, li1),
to a node in period ¢, the h;_, in the period-index label (¢ — 1, h;_;) for the parent node

[l 02, ..., li—o] in period t — 1 is

t—-3
ht—l = lt—2 + Z (l:, - 1) Lj+1Lj+2 s Lt_g.

=1

Each node (t — 1,k), k=1,...,hs_; — 1, in period ¢ — 1 has L;_, child nodes in period
t that are above node [ly,1s,. .., -9, ;—1] which is child number l;_; of its parent node

implying that

t—3 .
ht = (—1 + lt_.2 + Z (l:, - 1) Lj+1Lj+2 s Lt_2> Lt—l + lt—l
. j=1
t—~3

= Lo+ (lo—1) Ly + E (li =1)Ljy1Ljo -+ - Ly—oLsy
— ,
t—2

= b+ (—1) LisiLija- -+ Ly—pLy .

=1

Therefore, equation [2.6] is valid by inductive reasoning.

A.2 Period-Index to Path Vector

Equation [2.7],

k-1 k-1
he—1= 3 (= \)Li1Lsa--- Loy he = (I — DLj1Lisa - Los
b =1+ =1 = =1
IT L IT L;
j=k+1 =k
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is solved in sequential order for k = 1,...,¢—1 to deteimnire the path vector [Iy, ..., L] to
anode in period ¢ given the period-index label (¢, h;) for that node. Either right-hand-side
term of equation [2.7] may be used. Equation [2.6] is used to derive the above relationship.

Assume that the values [y, ...,l;_; are known for some k such that 2 < k < ¢ — 1.

Then equation [2.6] implies that

k—1
he = Ly + > (l;—1)Ljy1---Ley + (k—=1)Lgpr--- Ly
j=1

t—2
+ > (=1 Ljy1--- Ly
e

Rearranging the above equation yields

t—1 t—2 k-1
=1 I] Li+ba+ > (5= Lga- Loy =he—> (i —1)Lya -+ Loy,

[A.1]
and
t-2
b1+ Z (j —=1) Ljp1--- Lty >0 [A.2]
=kt

since Ly > 1and1 < I; < Ly fort =1, ...,T. Removing the term on the left of inequality

[A.2] from equation [A.1] implies that

k-1
hy — Z (l.‘i - 1)-Z-’:i-+-1L;i+2 RN
j=1
lk —-1< —
I Ly
J=k+1
k-1 :
ht - Zl(l.'l - 1)Lj+1Lj+2 ce Lt—l
J=

t—1
11 L;

J=k+1
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Then, since I, is an integer,

k-1
he = 3 (4 = 1) LjsaLjse- - Ly
j=1
k< | — - [A3]
CIT Ly
j=k+1
Subtracting one from both sides of equation [A.1] results in
t—1 L t—2
(k=1) II Lij+lb—14 > (i —1)Ljy1---Ley
j=k+1 j=k+1
k-1
- ht - 1 — E (l] hand 1)Lj+1 . "Lt—l,
j=1
t—1
and dividing through the above equation by [] L; gives
J=k+1
t—2
lt—l -1+ E (l_, - 1)Lj+1"'Li_1
lh—1+ s,
Il L
j=k+1
k-1
he—1—=3 (I = 1) L1+ Ley
j=1
= t—1 ’
Il L
j=k+1
which implies that
t—2
leq —1+4 Z (lj—1)Ljp1--- Ly
lk _ 1 + .7=’C+1t_1
I Lj
j=k+1
k-1
he=1= % (li=1) Ljs1 -+ Loy
j=1
> = [A4]
II L;
j=k+1
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Now, since the left-hand-side of inequality [A.2] is an integer, subtracting one from the

left-hand-side of that inequality implies that

t—2
liea =1+ > (lj=1) Lz -+ Ly 0. [A.5]

j=k+1

The relations 1 <[, < L;fort =1,...,T imply that

t—2 t—2
1 =1+ Y (=1 Lja- Ly SDiy—1+ Y (Lj—1)Liyy - Lec. [A6]
j=k+1 j=k+1

Let L equal the right-hand-side of inequality [A.6], then

t—2
.i = Lt—l -1+ Z (Lj—l)Lj+1"'Lt_1
j=k+1
t—2  [/t—1 -2 t—1
= Li1—1+ Z (HL1> — Z (H L-,,)
j=k+1 \i=j j=k+1 \i=j+1
t—1 t—-2  /t-1 t—3 t—1
= Lt_1—1+ H L_7+ Z (HL-,,) - Z (H Lc,) —Lt_]_
J=k+1 J=k+2 \i=j J=k+1 \i=j+1
t—1 t—2 t— t—2 t—1
- e [l 5+ 3 (Ts)- 5 (1)
j=k+1 j=k+2 \i=j j=k+2 \i=j
t—1
L = -1+ ] L,
j=k+1
Then inequality [A.6] becomes
t—2 t—1
‘ b =14+ Y (=1 Ly Lea <=1+ ] Ly,
| j=k+1 j=k+1
} or, equivalently,
t—2 t—1
iy — 14 Z (l_, — 1) Lj+1 Ly < H Lj. [A.7]

j=k+1 j=k+1
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Since L; > 1fort =1,...,T, inequalities [A.5] and [A.7] imply that

t—2
b1 —=14 3 (li=1)Ljya -+ Ly
Porwi

0< <1,

t—1
I L

J=k+1
and since the center term above is the fractional term in the left-hand-side of inequality

[A.4], the latter inequality may be simplified to

k-1

he=1— 3 (bj—1) Ljpa - Loy
L>1+ =1 . [A.8]

-1
IT L

J=k+1

Inequalities [A.3] and [A;8] establish respectively upper and lower bounds on /. It
can be shown, however, that the right-hand-sides of inequalities [A.3] and [A.8] are equal.

Define integer m equal to the right-hand-side of inequality [A.3]:

k-1 ‘
. hy — Zl(l.’i - 1)L,1'+1Lj+2 cee Ly
j= ,
m= t—1 H
IT L
j=k+1
then
k—1
he — 3 (lj — 1)LjsaLjto- - - Ly
m-1< =1 — <m,
I Lj
J=k+1
or, equivalently,
=1 k-1 t—1
(m— 1) H Lj < ht—Z(lj — 1)Lj+1Lj+2"'Lt_1 <m H Lj
j=k+1 j=1 ekl
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t—1 ' '
since [ L; > 1. Since all three terms in the above expression are integers, subtracting
j=k+1

one from the middle term yields

t—1 k-1 t—1
(m—1) I Li<he—1-> (5 -1)LjsaLja---Lecs <m [ Ly
j=k+1 i=1 j=k+1
which implies that
k-1
ht - 1 - z (lJ - 1)Lj+1Lj+2 cec Lt_]_
m—1= = t—1 ’
II L
j=k+1
or
k—1 k—1
he = 1= 3 (l; = 1)Ljs1Lja - Ly he = 2 (Li = D) LjtaLjse - Lea
+ t—1 - t—1
IT L; IT L;
j=k+1 j=k+1
[A.9]
Therefore, inequalities [A.3] and [A.8] and equation [A.9] result in
k—1 k—1
he = 1= 3 (lj = 1)Ljs1Ljia- - Les he = 3 (l; = 1)LjyaLjya - Ly
I =1+ = = =
k — t—1 - t—-1
IT L IT L
j=k+1 j=k+1

so that equation [2.7] will determine the path vector given the period-index label.

A.3 Practical Implementation

Equations [2.6] and [2.7] would be useful in relating path vector and period-index labels
when nodes are selected on a random basis. In most practical situations, howéver, the

decision tree is traversed in a systematic manner — generally in an iterative, breadth-first,
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or a recursive, depth-first, node order. Use of equations [2.6] and [2.7] would be both
inefficient and unnecessary in these situations.

Path vectors are used to traverse all decision trees discussed in this thesis. The path
vector scheme 'is the ideal way fo labei the nodes "when a recursive tree traversal is used. A
practical implementation of recursive tree traversal is described in the first subsection be-
low. Périod—index labels, on the otﬁef har‘ld, afe more practical when the tree is traversed
in an iterative order. Implementing a practical period-index to path vector franslation in an
iterative tree traversal without the use of equation [2.7] is the focus of the second subsec-
tion.

The following notation, in addition to that established in Section 2.2.1, will be used
in the following discussions. A path vector is denoted by path and element j will be
designated as path (j). The colon notation of such programming languages as Fortran 95
and MATLAB’ is used to designate a particular array section. Array colon notation can be
summarized as: path(j : k) is the vector formed by elements j,j + 1,..., k' — 1, k where
path(j : k) = []if k < j or the indices are otherwise invalid. Note that path(1 : 0) = [] is
a null or empty vector and designates the first period root node of the tree. Also note that
path(j : j) is a vector with a single element (or a null vector if j is an invalid index) and
not a scalar. The path vector is assumed to be allocated size of at least T — 1 so that the

elements with indices 1,...,T — 1 are accessible.

7 MATLAB is a registered trademark of The MathWorks, Inc., Natick, MA
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A.3.1 Recursive Tree Travérsal

Recursive tree traversal is performed in a depth-first node order as indicated by the bold
and underlined node indices to the left of each node in Figure A.2. The recursive function
pseudo-code below is one way to efficiently implement a depth-first node order traversal.
Argument ¢ is the index for the current period and must be set to one on the initial entry
(i.e., on the call from the driver routine), T is the number of periods represented in the
tree, and path is the allocated path vector. The ellipsis in the argument list represents any
remaining arguments that would be required by the function. The number of outcomes, L;,
possible at any node in period ¢, 1 < ¢ < T — 1, is assumed to be available through shared
memory (such as global in C/C++ or a module in Fortran 95).
recursive function( t,T,path,...)

access the node pointed to by path(l:t—1)
executable command statements

if (t=T)return
for lb=1,...,L,
| path(t) =1
call recursive function ((t+1),T, path,...)

end for

end recursive function
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Figure A.2: Decision Tree Node Indices in a Recursive, Depth-First, Order
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The if (t =T ) return statement is the terminal condition of the recursion.

A.3.2 Iterative Tree Traversal

Iterative tree traversal is performed in a breadth-first node order as indicated by the bold
and underlined node indices to the left of each node in Figure A.3. The pseudo-code block
below is one way to efficiently implement a breadth-first node order traversal. The number
of periods, T', and the number of outcomes, L;, possible at each node in periods ¢t =

1,...,T — 1 are assumed to be accessible.

access the first period node pointed to by path(l:0)
executable command statements

H=1

for t=2,...,T
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Figure A.3: Decision Tree Node Indices in an Iterative, Breadth-First, Order
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do
path (k) = path (k) + 1

if ( path(k) <L; )exit do

path (k) =1
k=k-1
end do
k=j

access the node pointed to by path(l:t—1)
executable command statements

end for
end for
Note that the desired process statements for the data associated with the first period
node are executed outside the for loops to preclude an attempt to access an invalid index of

path, i.e., path (0) in the outer loop.
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Algorithm MDPCA Listings

Detailed listings are provided below for the myopic dual-primal cycling algorithm,
MDPCA, and four procedures referenced by the algorithm. These listings are based upon
properties of the algorithm that are established in Section 4.5.2 starting on page 155. Also
recall that the algorithm assumes a problem that is bounded and has complete or rela- |
tively complete recourse. Algorithm MDPCA is listed first followed in order by the refer-
enced procedures Initialize(Duals Lead), I'nitialize(Primals Lead), Solve(Duals Lead),
and Solve(Primals Lead). Flowcharts for each procedure follow the listings. This appen-
dix concludes with some remarks concerning possible modifications to the algorithm.

Note that the path vector, [e], = Iy, . .., !;~1], and period-index, (t, k;), node labeling
schemes described in Section 2.2.1 starting on page 24 are used interchangeably in the
listings (with the period identification subscript on h; omitted). Equation [2.7] on page 28
can be used to dete;miné'the path vector given the period-index label for a particular node.
The path vector is required in order to obtain stored stochastic data as described in Section
4.6. In practice, the procedures outlined in section A.3 are used to relate the two labeling

schemes and obtain the necessary data.
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B.1 Algorithm MDPCA

\ This listing assumes that the desired version, duals lead or primals lead, and the maximum
‘ desired relative bounds gap, ¢, are prespecified. Explanatory remarks follow the listing.

Algorithm MDPCA

Step 0: Initialize the following parameters:
k « 0,
ZLp +— —O9,
2up oo
diff « oo
Goto Step 1. -
Step 1: If primals lead, execute procedure Initialize(Primals Lead) and go to Step 2;

| :

| else, duals lead, execute procedure Initialize(Duals Lead) and go to Step 3.
|

|

Step 2: Set k + k+ 1 and ¢ « 1. Execute procedure Solve(Primals Lead) and goto

Step 4.

Step3: Setk « k+1andt « T. Execute procedure Solve(Duals Lead) and go to

Step 4.

Step 4: If (2yp — 218) < |218|€, stop with e-optimal procedure; else if (zyp — 2z15) >
dif f, stop with diverging solution; else, set dif f « (zyp — z.5) and return to Step 2 if

primals lead or to Step 3 if duals lead.

Parameter k is the cycle counter and parameters z;5 and 2y record the best found
lower and upper bounds respectively. Parameter dif f records the difference between
bounds, (zys — 218), at the conclusion of the previous cycle. The four referenced pro-

cedures are detailed below.
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B.2 Initialization Procedures

Procedure Initialize(Duals Lead) initializes the algorithm when duals lead by obtaining
a solution to each nodal du‘al subproblem in the terminal period. Solutions to the dual
subproblems in the terminal period are not required thereafter in the duals lead version.
Procedure Initialize(Primals Lead) initializes the algorithm when primals lead by obtain-
ing a sblutioﬁ to the nbdal primal shbproBlem in fhe ﬁrst period. Solutions to the primal
subproblem at the first period node are not required thereafter in the primals lead version.
Procedure Initialize(Duals Lead) is listed first followed by procedure Initialize(Primals
Lead). Each listing is followed by explanatory remarks.

Procedure Initialize(Duals Lead)

Step 1: Set z&) < 0and h « 0. Go to Step 2.

Step2: If h = Hry, return to algorithm MDPCA. Solve the nodal dual subproblem
[4.20] at node (T',h) = [e],, let the optimal solution and objective function value be

wllr and Zg, set z&) — z&) + Zyp and repeat Step 2.

Parameter zg;) records the upper bound for the current cycle, k, by accumulating the
objective function values for the nodal dual subproblems. Parameter h indexes the nodes
in the current period (recall that H; is the total number of nodes in period ?).

Procedure Initialize(Primals Lead)

Step 1:  Solve the nodal primal subproblem [4.18] at node (1,1) = [], let the optimal

solution and objective function value be x!) and zg) and return to algorithm MDPCA.
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Parameter zf';) serves the same purpose for the lower bound at the current cycle as

does parameter zg;) for the upper bound.

B.3 Solution Proceﬂures

Procedure Solve(Duals Lead) executes one complete cycle of the duals lead version of
the algorithm where each cycle starts with the nodal dual subproblems in period T —'1.
Information obtained at the conclusion of each lead dual half-cycle from the solution to the
dual subproblem at the node in the first period is used to start the tail primal half-cycle in the
seéond period. Solution information obtained at the conclusion of each primal half-cycle
for the primal subproblems at the nodes in the terminal period is used to start the next cycle
with the dual subproblems in period T — 1. Procedure Solve(Primals Lead) executes one
complete cycle of the primals lead version of the algorithm where each cycle starts with
the nodal primal subproblems in the second period. Information obtained at the conclusion
of each lead primal half-cycle from the solutions to the primal subproblems at the nodes
in the terminal period is used to start the tail dual half-cycle in period T — 1. Solution
information obtained at the conclusion of each dual half-cycle for the dual subproblem at
the first period node is used to start the next cycle with the primal subproblems in the second
period. Procedure Solve(Duals Lead) is listed first followed by procedure Solve(Primals

Lead). Each listing is followed by explanatory remarks.

Procedure Solve(Duals Lead)
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Step 1: Ift = 2, go to Step 3; else, set t — ¢t — 1, h — 0 and go to Step 2.

Step 2: If h = H;, return to Step 1. Set h — h+ 1 and solve the nodal dual subproblem
[4.21] at node (t,h) = [e],. Let the optimal solution and objective function value be

l*) and Zyp. Set 20 — 2 + Zyp and repeat Step 2.

Step 3: Sett « 1 and solve nodal dual subproblem [4.22] at node (1,1) = []. Let

optimal solution, dual multipliers, and objective function value be #l!, xl1, and Z. Set
\ zg;) — zgﬁ) + Zup, zg;) — Zyp + x'l] El[f:l B'*L27l*2 and go to Step 4.
Step 4: Set zyp = max (zUB, zgf;)) and go to Step 5.
Step5: Ift =T — 1, go to Step 7; else, set tt+ 1, h — 0 and go to Step 6.
Step 6: If h = H,, return to Step 5. Set h — h + 1 and solve the nodal primal subprob-

lem [4.19] at node (¢, h) = [e],. Let the optimal solution and objective function value

be x* and 5. Set 2% — 2 + ., and repeat Step 6.
Step 7:  Set zg;fl) « 0, h « 0 and go to Step 8.

Step 8: If h = Hy,goto Step9. Set h «— h+ 1 and solve the nodal primal subproblem
[4.19] at node (T, h) = [o],. Let the optimal solution, dual multipliers, and objective
(%) (k)

function value be x!*/r, 7wl*lr, and Z5. Set 29 — 2B + 75, 2EHD Y L5+

w'l*lr Bltlrx[*lr and repeat Step 8.

Step 9: Set z 5 = min (zLB, zﬁ?) and return to algorithm MDPCA.
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Cumulative bounding values z{ and z{5™") are initialized in Steps 3 and 8 for the

next primal and dual half-cycles respectively. The best upper and lower bounds found to
date are updated in Steps 4 and 9 respectively.

Procedure Solve(Primals Lead)
Step 1: -Ift{ =T — 1, go to Step 3; else, set ¢ — t + 1, h « 0 and go to Step 2.

Step 2: If h = H,, return to Step 1. Set h < h + 1 and solve the nodal primal subprob-
lem [4.19] at node (¢, h) = [o],. Let the optimal solution and objective function value

be x[*) and Z5. Set z£§> — zﬁ’;) + Z p and repeat Step 2.

Step 3: Set zg;) «—0,t T, h+ 0and goto Step 4.

Step 4: If h = Hr, goto Step 5. Set h — h + 1 and solve the nodal primal subproblem
[4.19] at node (T',h) = [o];. Let the optimal solution, dual multipliers, and objective

(%) (*)

® — 20 55, B — B+ a3+

function value be x[*lz, wl*lr, and 5. Set z;
w/ltlrBllrxl*lr and repeat Step 4.

Step 5: Set 2,3 = min (ZLB, zfg)) and go to Step 6.

Step 6: If ¢t = 2, goto Step 8; else, sett «— ¢t — 1, h «— 0 and go to Step 7.

Step 7: If h = H,, return to Step 6. Set b «— h+1 and solve the nodal dual subproblem

[4.21] at node (t,h) = [o],. Let the optimal solution and objective function value be

wl*l: and Zy5. Set zg;) — zg;) + Zyg and repeat Step 7.
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Step 8: Solve nodal dual subproblem [4.22] at node (1,1) = []. Let optimal solution,

dual multipliers, and objective function value be wll, x“, and Zyg. Set zl(f;) — zgf;) + Zug,

z£§+1) — Fyp + xl Z{f:l B/l*l2rl*)2 and go to Step 9.

Step 9: Set zyp = max (zU'B, zgf;)) and return to algorithm MDPCA.

Cumulative bounding values zgf,) and zl(f;"'l) are initialized in Steps 4 and 8 for the

. next dual and primal half-cycles rcspecti\'/cly.“ The best lower and upper bounds found to
date are updated in Steps 5 and 9 respectively.

Figure B.1 is the flow chart for algorithm MDPCA. Figure B.2 shows the flow-
charts for both initialization procedures with procedure Initialize(Duals Lead) to the left
of procedure Initi;alize(Primals Lead). Flowcharts for procedures Solve(Duals Lead) and

Solve(Primals Lead) are at Figures B.3 and B.4 respectively.

B.4 Algorithm Modifications

Modifications are easily made to algorithm MDPCA depending upon the desired results.
The coded version of the algorithm includes several modifications. Options are available to
force the algorithm to terminate (return to the calling routine) after the first complete cycle
or after the first lead half-cycle (in either the duals lead or primals lead application). The
algorithm will also terminate after a specified number of complete cycles regardless of the

status of the other two termination criteria — £-optimal solution or a diverging solution.
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kek+l1
teT

ke—k+1

e L — Yos—— Primals Lead No—3»

Execute Procedure
Solve(Duals Lead)

Execute Procedure
Solve(Primals Lead)

Yesfétop with g-optimal soluu%

(ZUB _ZLB)Zdlyf

Gtop with divergent solutioBQYes

No

4

diff «(zys -25)

Figure B.1: Algorithm MDPCA Flowchart
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Procedure Initialize(Duals Lead) Procedure Initialize(Primals Lead)
Symbol A Implies Symbo! A Implies
Algorithm MDPCA Algorithm MDPCA

‘ ) o0 Solve nodal prima
subproblem [4.18] at node
he0 (t.h) =[] and let optimal
. solution and objective be

x[]&zg

Yes

No

v

Solve nodal dual subproblem
[4.20] at node (T;h) and let
optimal solution and
objective be

n[']’ & Zyg

1 1 p
)+

NOTE: Use equation [2.7] to determine path vector [e] . given period-index label (T, h)!

Figure B.2: Procedures Initialize(Duals Lead) and Initialize(Primals Lead) Flowcharts
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Algorithm MDPCA

tetr-1 Yes
he0

<>

No

4

h—h+]

Solve nodal dual subproblem
[4.21] at node (t,h) and let
optimal solution and
objective be

L -
T & Typ

Zg‘g i

te1l

Solve nodal primal subproblem [4.19]
at node (1,h) and let optimal solution,
dual multipliers, and objective be

alxl] &z,

Zg‘g “Zgg"'ius

Z,(_’;) — ;-UB + xl[ ]iBl[']x Tt[.]’

L=l

()
iyp & m(ZUB'ZSJg)

<>

No
\ 4
te—1+1 Yes
he0

<o

No

\ 4

heh+l
Solve nodal primal
subproblem [4.19] at node
{t,h) and let optimal solution
and objective be

. -
X" &Zg

(8 (8

i €21y

A 4

+;'LB

he0

50 o

<o

No

\ 4

s hmax(zw,z,(g)

heh+]

Solve nodal primal subproblem [4.19] at
node (T.4) and let optimal solution, dual
muttipliers, and objective be
X allr g Zg
zl(_"B) «— z,(ﬁ +Zi5

zgg-l) - Zg‘;l) + ELB +1|:'[.]7 B[']r x[']r

NOTE: Use equation [2.7] to determine path vector [s], given period-index label (¢,k)!

Figure B.3: Procedure Solve(Duals Lead) Flowchart
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Symbol A Implies
Algorithm MDPCA

. 3
» s <—rmn(z,_8,z,(_8))

No
Yes
re—t+1 No
he0 *
rer-1 Yes
@ heO
+ Yes
- heh+l
Solve nodal primal Yes No
subproblem [4.19] at node +
(t,h) and let optimal solution
and objective be heh+1
*h &3 Solve nodal dual subproblem
X 23] [4.21] at node (t,h) and let
( ) (k) | optimal solution and
—2zp +Zp objective be
&
(3
teT Z{Jg « Zgg +Zyp
> he0
13
. z{,g «0 A 4
Solve nodal dual subproblem [4.22] at
node (1,1) and let optima! solution,
@ dual multipliers, and objective be
Al xl gz
Z
N ) (k) UB
No (_ ZUB
v zg;x) P 15:3,[-1,“[-1,
heh+1 =
Solve nodal pimal subproblem [4.19] :
at node (7,h) and let optimal solution,
dual multipliers, and objective be

Zus emax(zug.zsg)

NOTE: Use equation [2.7] to determine path vector [], given period-index label (r,4)!

£k ol g P

oy zg )z +n,[-1, Bl o)

Figure B.4: Procedure Solve(Primals Lead) Flowchart
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Algorithm MDPCA can therefore be used to obtain an initial feasible solution to
either the primél or the dual problem in a relatively efficient manner. These solutions can

then be used to initiate either Dantzig-Wolfe or L-Shaped Decomposition as appropriate.
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Appendix C
Piece-Wise Linear Approximations

Procedures for assigning slopes and break points for the piece-wise linear (PWL)
approximations to the quadratic slippage function and the quadratic downside deviation
function are developed in this appendix. All derivzitions are based upon the slippage func-
tion since a quadratic downside deviation function can be considered as a special case of
the slippage function. General conditions assumed in the derivations are first established.
Procedures for assigning slopes and break points are then developed for two criteria —
controlling the maximum relative error in any PWL segment and minimizing the average
absolute error over all PWL segments in a bounded region. Procedural descriptions are fol-
lowed by discussions concerning applications of the procedures under general conditions
and under several special conditions. The final section details using the procedures devel-
oped for the slippage function to determine PWL aﬁproximation parameters for quadratic

downside deviation.

C.1 General Conditions

All PWL approximation derivations for slippage are developed for a generic security with
index n where 1 < n < N and N is the number of securities represented in the model. Let
» be the number of positions held in security n at the end of a period (or at the start of

the planning horizon) and let §, represent the number of positions held in security n after
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trading is completed at the start of the next period. Then, z, = |§, — ¥»| is the absolute

transaction amount for security n and the associated transaction cost, or slippage, is:

N Zn (@17Zn + Kn) 0Lz, < X2,
&, (z,) = [C.1]

Tn [(G1n + G2n) T + Kn — @2 X2, XM <z, < 00,

where the parameters are defined in Section 5.1.1. Let K; and K, be the numbers of desired
PWL break points, U,, k = 1, ..., K = K; + K, in slippage regions one, 0 < z, < X2,
and two, X3 < z, < oo, respectively. Derivations are developed assuming the following

general conditions exist:

1 < K < oo, [C.2]
1< K5 < o0,
0 < X" < o0,
0 < a, < o0,

—A1 < Q2 < OO.

Furthermore, break points are to be placed at the origin, ¥y, = 0, and at the region bound-
ary, Vg, » = X;'. Figure 5.2 on page 171 illustrates the PWL slippage approximations for
Ki=K;=2.

Let ¢, and ¢, represent user specified maximum desired relative errors between PWL
and actual slippage for all securities in the first and second slippage regions respectively.

Define the triplet [@15, @2, 3] as:

[a1n7 K‘n,gl] H 0 S Ty < X;:Zul,
@15, G2n, §] = _ [C.3]
[(aln -+ azn) ) (.‘Cn — aan;“‘) ,Cz] , X:Lul <z, < o0,
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so that the slippage function can be represented by:

G (21) = Tp (G1nTn + G2n) - [C.4]
Let the linear functions

éIx:-n (zn) = QpnTpn + Vin, \Il(k—l)n L Zp < Yy, [C.5]

be the slippage approximating functions in PWL segments k = 1,.. ., K. The slope, ®in,
insegmentk € K={1,...,K}is:

U (@12 Wk + Gn) — Y(e—1yn (@10 Y (k—1)n + 82n)

Pin = Uin — ¥(k-1)n
o (\pﬁn — \Ixfk_l)n) + an (Tn — U(p1yn)
- Vin — Uk_1)n
Prn = G1n (Y(k-1)n + Vin) + Gan, [C.6a]

and the vertical axis intercept, vi,, for segment k € K is determined by setting @kn (Ugp) =

67,, (\I/]m)t

Vkn = Ykn (aln\Ilkn + a2n) - [aln (\Ilkn + \I’(k—l)n) + aJ2'n.:| \Ilkn
= a'ln‘:[’%n + E1'1271.\111011. - &1n‘1’zn - aln‘I’(k—-l)n‘I’kn - af2'n.\]:llcn
Vkn = —01n ¥ (k—1)n Uien.- [C.6b]
Note that each term on the right-hand-side of equation [C.6b] is nonnegative implying
that:

Un <0,k=1,... K. ([C.6c))
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Finally, define the absolute error, R, (z,), between the PWL approximate slippage

and the actual slippage at some z,, as:

R (-Tn) = éIm (mn) - én (xn) ’ \Il(k—l)n <z, < \Ilkn- [C7]

Note that the actual slippage function, én (zn) as defined by equation [C.4], is convex in
each slippage region since a3, > 0 in both slippage regions under the general conditions
[C.2] (&, () has a positive second derivative). Therefore, Ry, (¥ (x—1)n) = Rn (¥in) =0
and Ry, () > 0 for Yp_1yn < Tp < Ypp.

The objective of the PWL approximation scheme is to assign break points 0 = ¥y, <
Uiy < -0 < Uy < -+ - < Vg, = 00 such that the slope in each PWL segment is strictly
smaller than the slope in the next segment: @, < - < &y, < -+ < Pg,. Slopes
within the same slippage region will naturally increase in value from segment to segment
due to the convexity of &, (CI)n) in each region. Special atténtion, however, must be given
to the assignment of the first break point, ¥k, 1), in the second slippage region when
the slope adjustment factor is negative, i.e., as, < 0. The actual slippage function is not
convex across the region boundary, X *, when a2, < 0 and care must be taken to insure
that ®(x,41)n > Pk,». Break points are assigned in order to control the approximation

error in either one of two ways as described in the next two sections.
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C.2 Maximum Relative Error Procedure

The goal of the maximum relative error procedure is to assign break points so that no
relative error is greater than some specified positive value. This goal can be achieved
by insuring that the maximum relative error in each PWL segment is no larger tﬁan the
specified value. The procedure may be used in both slippage regions with ¥q, and Vg, ,
preassigned the values 0 and X" respectively.

Define the relative error between the approximate and actual slippage at some trans-

action amount z,, as

where &,, (z,) and Rn (2n) are defined by equations [C.4] and [C.7] respectively. Equa-

tions [C.3] through [C.7] imply that:

_ G (2) — Gp(zn)

R (2n) =
G, (z,)
_ q)knxn + Vkn — alnzi - Z.'1271,:1:71,
aln-’”% + G2 Ty
81022 — (Dpp — G — Vgn
R-,-L (-Tn) — _ Indpn ( kn a2n) Ty Vg . [C8]

alnz-?,, + GgnZy '
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The first derivative of the relative error function with respect to z,, is then:

aRn (mn) (&lnzil'i‘ &2n$n) [2aln$n - ((I)kn - &2n)]

0zn (&mﬂ?% + &2n$n)2
(81722 — (Bin — G2n) T, — Vin) (281nTn + G2n)

(1,22 + &2na:n)2
—281n,3 + G1n (Brn — 3824) 22 + Gon (Brn — G2n) Tn
(61na:% + &2nxn)2

+2&1na:f; — 1, (2®pn — 3024) 22 — [G2n (Prn — G2n) + 2810 Vkn) Tn — GonVkn
(61222 + GonTy)’

67?47. (mn) _&lnq)knzg, + 2&1nvkn$n + EiZ-nfvlcn

_t = ; C.9]
Oz, (&ma:,% + &2nxn)2 [

+

The maximum relative error in PWL segment k € K will occur at z,, = £,, where the

first derivative above is zero implying that:

P —2a1n'u;m + \/4a1nvkn - 4a1na2nvknq)kn
n - ~
2a1nq)kn
—2810Vkn &= 2810 Vkn 1 — PoZin
_ nVkn
201, Pkn

5, = U (1;,/1—‘?"—%) [C.10]
(I)kn A1nVkn

Existence of at least one Z,, satisfying equation [C.10] such that V-1 < Zn < Ygp,
2 < k < K, can be verified by the following theorem (e.g., see Taylor and Mann [193,

page 27]):

Rolle’s Theorem Let § (z) be a function which is continuous at each point of the closed

interval a < x < b, has a derivative at each point in the open interval a < z < b, and is
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zero at the bounds: § (a) = § (b) = 0. Then at least one z, a < z < b, exists such that:

@) _,
T .
Since R, (z,) satisfies the conditions of Rolle’s Theorem for £ = 2,..., K, equation

[C.10] must yield at least o;lé valué for Z,, sﬁch that ¥(x_1yn < Zn < ¥y with %:—"2 =0.
Fufthermorc, there is only one such value for each k € {2,..., K} and it is obtained by
adding the radical value in the enclosed term of equation [C.10]. The latter statement
is justified by noting that £, < ¥(_;), when the radical value in the enclosed term in
equation [C.10] is subtracted from one. If the enclosed term is negative, then Z, < 0 <
¥ (x—1)» by inequality [C.60'] and construction of the break points. Then consider the case
when the enclosed term of equation [C.10] is nonnegative and less than one after subtracting

the radical value from one implying that

which along with the condition £, > ¥ (,_,), requires that:

—%f: > ‘I’(k—l)m

= —Ukn > Prn¥(k~1)n, since slope ®, > 0 by construction,
=  PpaV(k—1n + Ve <0,

— G, (¥ (k1)) = G, (¥(k-1yn) < 0, by construction and equation [C.5].
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The last expression cannot be valid since S, (¥(k-1yn) > Oforall k = 1,..., K. There-

fore, the unique value for £, such that U x_1y, < £, < ¥y is:

in=—ﬂﬂ<L+M1—2£%0,2SkSKl [C.11]
(I>kn G1nVkn

Moreover, R, (Z,) must be a maximum value for the function in the segment Uik—n <
Tn < Wgy since Ry (Y(k-1)n) = Ra (Yin) = 0 and R, (z,) > 0 for all z, such that
Vi—1)n < Tn < Ypp. Given Yx_1y,, k = 2,..., K — 1, the maximum relative error can

then be controlled by assigning a value to W, that insures that
Rn (in) S 6)

where ¢ is the maximum desired relative error as defined by equation [C.3].
Equation [C.11] does not apply for the first PWL segment at k¥ = 1 since the relative

error at the origin is undefined:

o~

m‘n (0) 6ln (0) - én (0)
8. (0) G, (0)

0
-

Hence, the conditions of Rolle’s Theorem are not satisfied at z,, = 0 and equation [C.11]
cannot be used to set a value for ¥;,. The procedure to determine ¥y, is described at the
conclusion of this section.

Assume that ¥, = \flj,,,j =1,...,k—1,2 < k < K, have been fixed so that ¥y,

is the next break point to be determined such that:

7?47, (jn) =g, EI(k,—l)n <Zp,< \Ijkn-
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Equation [C.8] defining R, (z,) then implies that:

_&lnfii + ((I)kn - 6'271.) -'i'n + Vkn = (a'ln-%i + Zi2n£n) 67

= (1 +3) @108 + [(1 +¢) dgn — Pkn) Zn — Vkn = 0.

The next break point, ¥y, is the root of the above equation and can be determined with a

Newton-Raphson/bisection procedure. Define §xn (Ukn), k =2, ..., K, as:
&kn (‘I’kn) = (1 + 6) &lnji + [(1 + 6) Zi2n - q)kn] jn — Ukn [C12]

where,

n a 'n.(b
5, = —Jn (1 +4/1- 920 kn "’") , [C.132]
(I)kn . . A1nVkn
Pin = 1o (Ukn + Tiet)n ) + B [C.13b]

Upn = _a'ln;f’(k—l)nqlkn- [C13C]

Then, Wy, = Efkn is to be determined such that Fx, ﬂ({f!kn) = (. Note that equations
[C.13a-c] are convenient reproductions of equations [C.11] and [C.6a-b] respectively. Each
of the left-hand-side terms in these three equations is treated as a function of Uy, although

functional notation has been omitted for simplicity. The first derivatives of the functions
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defined by equations [C.12]-[C.13c] with respect to Wy, are:

a&kn (\I’kn) ~ ~ A ~ a:i'n - aq)kn a'Ulcn
QAT = 2012y, n} — ¥kn — dn - ) C.14
5T [(1+3) (281nEn + G2n) @k]a\pkn Z 90, 3T, [ ]
n ~ n OV, 0P,
6:cn — Qon i ﬁ q)kna\pin - vknagzn [C 1 5a]
a\pkn 26'171. (q)knin + vkn) Vkn q)kn ’ |
aq)kn -
= Q1n, .15b
50, ~ & [C.15b]
Ovgr, L~
5 ‘I,’;m = —310¥ (b1 [C.15¢]

The next value, \Ilg), for the break point in question at iteration G of the Newton-

Raphson procedure is

Skn ,(‘I’g_l))
OFkn(¥rn)

a‘pkn

G G-1
U9 =95 -

]

Ven= {7

where equations [C.12] through [C.15c¢] are used to evaluate the necessary terms. A switch
is made to the bisection procedure if the Newton-Raphson procedure begins to diverge. The
search terminates with Wy, = \Ilif? when ‘&;m (\Ilg)) ‘ < ¢ for some specified tolerance
e>0.

The maximum relative error procedure starts by finding the upper break point, \Tlln,
for the first PWL segment. The Newton-Raphson/bisection procedure cannot be applied in
this segment since the relative error as defined by equation [C.8] is undefined at the origin.
However, since {Ivl()n = 0, equation [C.13c] indicates that v = 0 so that the first segment

relative error may be redefined as:

= Q1nTn — (q)kn - af277.)
R =— ,0< s
n (xn) alnxn + a2n Sz < in»
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with first derivative:
R, (z,) _ 0%
6‘7:71 : (&lnmn + &277.)2

This derivative is negative for all z,, > 0 implying that R (z,,) decreases monotonically

with z,. Therefore, the maximum relative error in the first PWL segment occurs at the

origin with:
R (0) = n — 0
. 2n
—_ aln (0 + \Illn) + &211. - &21;
a'2'n.
Ra(0) = ‘“Ki [C.16]

using equations [C.3] and [C.6a]. This result suggests the following procedure to determine
aln:
1. define @m as:

~ Kn,

\IJln = —<1, [C17]

Qin

2. if @m < Xt set Efln = (ffm and use the Newton-Raphson/bisection procedure for
\‘Ijkn, k=2,...,K; else, set \Tlln = X" and use the Newton-Raphson/bisection
procedure for the break points in the second slippage region.

Note that there will be allocatcd but unassigned break points if @m > X3* and

K; > 1. Any excess break points may be assigned to the second slippage region or the

associated memory can be returned to the system. On the other hand, there is no guarantee

that the final break point in the first slippage region will coincide with the region boundary

when @m < X3*. Any unassigned break points may be treated as above if the Newton-
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Raphson/bisection procedure determines \ijn > X for some j < Kj. The Newton-
Raphson/bisection procedure cannot be used in the second slippage region, however, if
T Kn < X', This latter condition occurs if the number of break points, K3, assigned
to the first slippage region is incompatible with the speciﬁed maximum desired relative
error, <1, for this region. Any break points already assigned in the first slippage region are
deleted and all first region break points are assigned with the minimum average absolute
error procedure described below prior to assigning break points in the second slippage

region.

C.3 Minimum Average Absolute Error Procedure

The maximum relative error procedure is used to assign a finite number of PWL break
points over either a finite or an infinite domain. The minimum average absolute error
procedure, on the other hand, is applicable only over a finite domain. Therefore, the latter
procedure may be used only in the first slippage region. The minimum average absolute

error algorithm assigns the K break points based upon two criteria:

1. break points must be assigned to the origin and to the region boundary, i.e., ¥, = 0

and ‘IJKln = X:;ut, and

2. any remaining break points are assigned such that the average absolute error over the

first slippage region is minimized.
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Average absolute error between PWL and actual slippage is evaluated using the defi-
nition for the average of a function over a closed region. Given an integrable function § (z)
over a closed region [a, ], b > a, the average function value, § ([a, b]), over this region is

defined to be (e.g., see Taylor and Mann [193, pages 45-46]):

_a/s

Let 2 (W¥,,) represent the average absolute error between PWL and actual slippage in the

T (a, b)) =

first slippage region given the vector of first region break points,
P, = (\IIO'm ) \I’km ceny \I’Kln)l .

Criterion two above then requires that break points Vy,, k = 1,..., K; — 1, be assigned

such that

Xﬁ“!
1
on) = X%m /m‘n(xn)dm
0

be minimized. Equation [C.7] defining the absolute error, R, (z,), implies that

2 (T

K1 \I’kn
1 ~ ~
A(on) = 2 > / [8in (@) ~ &1 (@)] o |,
" ok=l ¥ (k—1)n

and equations [C.1] and [C.5] indicate that

K \I’kn
1
A (‘I’on) Xeut Z / [®knxn + Ukn — ZTn (alnmn + "f'n)] dmn
" ok=1 g
(k=1)n
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Applying equations [C.6a-b] and [C.3] to the integrand results in

QinZn + Vkn — Tn (a;nmn +kn) = [o1m (\I’(k—l)rlz + Uin) + K] T — 010 ¥ (k10 Vkn
—Zp (@1nZn + Kn)
= Gin (Yk=1)n + Yin) Zn + £nZn — 010 P (k-1)n Tin
—Q13T2 — KnTp

= Qn [(\I’(k—l)n + \I’Im) Tn — m?;, - \I’(k—l)n\pkn] )

so that the average error function simplifies to

Ky ‘I’kn

A (‘I’on) = ;?:\:t Z / [(\Il(lc—l)n + \Illcn) Tn — x?;, - \I’(k—l)n\I’kn] dz,
T k=t ¥ (k—1)n

Performing the indicated integrations yields

K ¥
_ G Yot + i 5 15 "
2[(‘1’.1;) — X%ut ; [( 5 z, 3IBn \I’(k—l)n\l’knxn .
Ky
= S 2 [ (Vwm + Vi) (W = W) — 2 (0 — Whery)
7 k=1
—6¥ (k1) Psn (‘I’kn - ‘I’(k—l)n)]
K \
- 66;1;: Z [(\I’kn - ‘I’(k—l)n) (\I’in - 2\11(19—1)'”'\1”‘"’ - \I,%k—l)n)] I
n =1
Q1n < 8
A(Tun) = g2 > (Tin = L)' (18]
7 k=1
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The first partial derivatives of 2 (¥,,) with respect to ¥y, fork = 1,...,K; — 1
(recall that ¥, and Vg, ,, are fixed) are then:

oA (¥e)  a1n O
OV,  6X0Ty,

[(‘I’kn - ‘I’(k-l)n)s + (Y (et1yn — Tkn) 3]

= 6?;;“‘ [3 (Uhn — ‘I’(k—l)n)2 =3 (Ps1yn = Yin) 2]
- 2?’5;;‘" (Vin = 29130 Wi + Wiy — Uoryn + 2¥in T sty — Ui
% = % [2'(\Il(k+1)n - ‘I’(k_1)n) Uin — (‘I’%k+1)n - ‘I’%k—l)n)]
| ' - '
! 82;\(15;:7») = 2?}} (Zertn = Lemsyn) 2% = (Yot + Yrn)] [C.19]
) =0y = Tt Vi g gy

so that the first partial derivatives are zero when the break points in the first slippage region

are equidistant from each other, implying that:

Ty, = iX:;“, k=0,..., K. [C.20]
K,

Therefore,
A\}erage absolute error, equation [C.18], at the point \i.n is then

w ~ an oS [k kE—1Y _,]°
Q[(‘I’.n) = 6X;“‘kz___; [(E_ K, )Xn{l
| _ Q1n X:;,m P&
T 6Xem (Kl ) ;1
cu 2 .
2 ({fln) = % (jf{"l t) . [Cc21]

‘The Hessian matrix for 2 (¥,,) is examined to determine if the point [‘f’.m A (i’.n)]

defined by equations [C.20] and [C.21] is a'maximum, minimum, or saddle point. Second
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partial derivatives of 2 (¥,,) fork = 1,..., K; — 1 are derived from equation [C.19] as:

( _jﬁ:ﬁ (\Ijkn - \I/(Ic—l)n) ’ j=k-1,

U (‘Ilon) _ )i?ﬁ% (\I/(k"'l)n - \Il(k—l)n) , J= k,

OV 0¥ '
o ~ (Yestn = ¥kn),  G=k+1,

L 0, otherwise.

The resulting Hessian matrix, H [2 (¥,,)] € RE1-Dx(E1-1) for general ¥,,, is shown in
Figure C.1. When evaluated at the point ¥,,, = 0., as defined by equation [C.20], the

Hessian matrix is:

2 -1
-1 2 -1

H |2 (%..)] =22 - I

Define H as H = H [91 (\i.n)] and let u € R%:1-1)_ Then Hu is:
2U1 — Ug
—Uy + 2U2 — Us
Hu =— —Up—1 + 2Uup — Upyy ,

—UK,; -3 + 2Uk, 2 — Uk, 1

—Ug,; -2 + 2uk, 1
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WZn lyln ~¥,

lyln _WZA WBn -¥, \yz:n —WSn

H[m(\y"l )] = ;:;:l \y(k-l)n ~¥in \y(k-'-l)ll —\y(k—l)n \ylm _\y(h-l)n

Yk~ F¥ixn Y~ FYg-gn  ¥igo2n ~ Vg

¥~ Pgegne  Xn ~ o

} | Figure C.1: Hessian Matrix for the Average Absolute Error Function
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and u'Hu is therefore:

cut
a" uwHu = (2u; —up)uy + (—uy +2up — ug) ug + -+ - + (—up_1 + 2up — Upy1) U |
1n

+--+ (—UK1_3 +2ug, o — UK1—1) U, —2 + (—’uKl_z + 2’LLK1_1) UK,—1
= 2uf — 2uiug + 2u§ —2usug +---+ 2uﬁ — 2UpUgy1

2 2
+---4 2’LLK1_2 - 2’LLK1_2’LLK1_1 + 2’LLK1_1

= ul + (uf — 2ugup + ud) + -+ + (uZ — 2upupys +udy,)

2 2 2
44+ (uK1_2 — 2’LLK1_2UK1—1 + uKl—l) + uK1—1
cut K12

£ 2,2 2
~uHu = uf+ug,_,+ E (uk — urs1)”.
Q1n k—1

Then, since a;, > 0 and X" > 0 by the general conditions [C.2]:

Ky—-2

~ Q1n -

u'Hu =X1cu: (uf + Uk, 1+ E (ug — uk+1)2> >0Vu#0,
n k=1

and the Hessian matrix, H=H [2[ (E’.n)] , is positive definite by definition. Hence, \f’.n
is a strict local minimum over the first slippage region (e.g., see Theorem 4.1.4 in Bazaraa,
Sherali, and Shetty [7, page 134]). Note, also, that no point, ¥,,,, on a border (i.e., where
one or more break points coincide) can yield an average absolute error less than or equal
to A ({Iv'.n). Border points generate less than K; PWL segments and the resulting aver-
age absolute error will necessarily be larger than that for K; segments. Furthermore, the
point ¥,,, defined by equation [C.20] is the only local minimum for 2 (¥,,,) since it is the

unique solution to equation [C.19] (e.g., see Theorem 4.1.3 in Bazaraa et al. [7, pagel133]).
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Therefore, \i,n is a strict global minimum for the average absolute error function 2 (\,,,),

equation [C.18].

C.4 Application Under General Conditions

Application of the maximum relative error and minimum average absolute error procedures
is straightforward if the géneral éonditions [C.2] hold. The maximum relative error proce-
dure is always applied to the second slippage region. That procedure is also used in the first
slippage region if a positive desired maximum relative error, <1, is specified. The minimum

average absolute error procedure is applied in the first region when:
1. ¢; <0,0r

2. ¢1 > 0 and the maximum relative error procedure does not yield a break point at the
region boundary, X$*.
A problematic situation occurs, however, if the slope adjustment factor is negative,
1.e., agn, < 0. The slippage function, én (z»), is not convex across the region boundary
when a, < 0. Break points may be assigned such that the last PWL slope in the first
region is greater than one or more slopes in the second region when the slippage function

is not convex across the region boundary. For instance, assuming that <I>(K1_1)n < @xin,
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using equations [C.6a-b] and [C.3], and recalling that ¥, , = X" implies:

Q(Kl—l)n S ¢K1‘n
= (al;z + a2n) (X:;,m + \I’(K1+1)n) + Kp — 61'211,)(;:;,“t S. a1n (\I’(Kl—-l)n + X::lt) + Kn
= (a'ln + a'2n) \I’(K1+1)n < aln\p(Kl—l)n

Q1n ’ )
v < —— Vi _ C.22
= Vg 4+1)n < o+ oy, L Ua=Dn [C.22]

The relation depicted in the last expression above is clearly‘possible when az, < 0 (ag, is
never allowed to be less than or equal to —a;,,). This situation is illustrated by the graph in

Figure C.2,

First Slippage Region { Second Slippage Region

Slope = I-‘ ?'/;x v > By

Bl 4

_\/\ Fiaom e =X ¥xenn \/\

Transaction Amount

Figure C.2: PWL Slopes at the Region Boundary When a3, <0

and it can occur regardless of the procedure used to assign break points in the first slippage

region. Non-increasing slopes can cause erroneous results in the market investment model

and must, therefore, be prevénted. If relation [C.22] is found to be true after VU (K +1)n 18
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determined, then that break point is adjusted according to:

a
¥ (k1 +1n = (1 +6) ?f(z_g‘y(’“‘”"
n 1¢1

for some small positive value of 6. Note, however, that this may cause the maximum
relative error observed in the first PWL segment of the second slippage region to exceed
the specified desired value, ¢s.

Piece-wise linéar approximation slopes, ®x,, k = 1,..., K, are determined using
equations [C.6a] and [C.3] once each applicable pair of break points have been set. The
final break point is changed to positive infinity, U, = oo, after the final slope, ®x.,, is

evaluated.

C.5 Application Under Special Conditions

Several special conditions are allowed for by. the coded procedures. For instance:

1. ano slippage model (no transaction costs) is specified by setting the number of break
points in each slippage region to zero, K; = K, = 0,

2. asingle slippage region model is designated when:

(a) there is no region boundary, i.e., X" = 0, in which case the maximum relative error
procedure is applied for all transaction amounts using the second set of values in

equation [C.3], or

351




Appendix C Piece-Wise Linear Approximations

(b) the number of break points in the second slippage region is set to zero, Ko = 0,
in which case the method in 2(a) is applied except with the first set of values in

equation [C.3], or

(c) the slope adjustment factor is set to zero, ag, = 0, in which case the slippage

function is the same for both slippage regions.

One special condition that requires individual attention is the case of no minimum
slippage per position cost (i.e., K, = 0) when the maximum relative error procedure is
specified for the first slippage region (i.e., ; > 0). Equation [C.16] indicates that the
maximum relative error in the first PWL segment approaches infinity as &, approaches

Z€Tr0:

~ U
lim R, (0) = lim 2212 —
knl0 knl0 Ky
Therefore, equation [C.17] cannot be used in this case to determine the first break point,
W1,. This problem is circumvented by assigning the first break point based upon the maxi-

mum absolute error versus the maximum relative error. Maximum absolute error will occur

at the midpoint of the first PWL segment when x,, = 0 since equations [C.3] through [C.7]

indicate that:
amgzixn) B ain (8 (an) = 8. (an)]
= % [®1nZr + Vin — Tp (@10 + G2n)]
= a—i: [alnlllmivn - alnzi]
"’”9‘57(;"79 = a1 U1 — 2017,
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Setting the above derivative to zero yields:

1
n=—wn
T 5 1

which must be a maximum since the second derivative (—2a,,) is negative indicating that
R, (x5) is a concave function over the domain of interest. The maximum absolute error at

the midpoint of the first PWL segment is:

% (Lo, ) =an v (20.) —ap (Lo 2—ﬁ\112
21n“—1nl'n,21n 1n21n—'41n-

The first break point is then set so that the maximum absolute error in the first segment is

equal to the specified desired maximum relative error:
o /<
\Itln =2 —1
Q1n

C.6 PWL Parameters for Quadratic Downside Deviation

Piece-wise linear approximation slopes and break points for quadratic downside deviation
are also determined with the maximum relative error and minimum average absolute error
procedures. Using these procedures is justified since quadratic downside deviation can
be considered a special case of the quadratic slippage function by setting a3, = 1 and
a2, = Ky, = 0. The minimum average absolute error procedure can be applied by creating
two artificial downside deviation regions with a user specified value for the simulated region

boundary.
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Appendix D
Sizes of Model MIMPSLP Problems

Equations for the sizes for model MIMPSLP problems are derived in this appendix
based upon four parameters: number of variables, constraints, non-zero technology matrix
coefficients, and nodes in the decision tree. Equations for the number of nodes in a given
period and the number of cumulative nodes though a given period are listed in the first
section below. The number of primal constraints and dual variables are derived in the
second section. The third section contains derivations for the number of primal variables
and dual constraints. Sizes for the technology matrices (number of non-zeros) are detailed
in the fourth section. Comments concerning problem size appear in the fifth and final
section of this appendix. Size results are summarized in Table 5.3 on page 204 for easy

reference.

D.1 Number of Nodes in the Decision Tree

Based upon definitions in Section 2.2.1, the number of nodes, H;, in period ¢ and the

number of cumulative nodes, H®, through periodt,1 < ¢ < T, are:

t-1 0
H, = HLJ" where H; = HLJ- =1 [D.1]
Jj=1 j=1

‘ and

t t j1—1
HO =Y "H=Y" (JH L,-2> : D.2]

j=1 Ji=1 \jz=1
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The remaining three size parametefs can then be easily determined by summing the results

for a generic node over all nodes in the decision tree.

Let #% and #Z be the number of variables and technology matrix non-zeros respec-
tively for problem PMPGLP [5.19] on page 184. Let #¢. (#£f.) be the number of con-
straints for problem PMPGLP when upper bounds on the decision variables are treated
as bounds (constraints). Denote the corresponding size parametefs for some node [o], in
the decision tree by #1", 45"l (#Z[:]‘), and #2°%. Size parameters for the dual prob-
lem DMPGLP [5.24] on page 188 are representgd similarly except that superscript P is
replaced with a D. Equations for each of the remaining three size parameters are derived

below followed by comments regarding the sizes of model problems.

D.2 Primal Constraints — Dual Variables

One budget constraint, 2V slippage constraints (N buy and N sell constraints), and L; de-
viation constraints are associated with each node in the primal problem PMPGLP [5.19]
when upper bounds on decision variables are treated as bounds and not constraints. There-

fore, for each node [o], = (¢, ht), he = 1,..., H,, t =1,...,T,
#eh = 142N + L

which, with equations [D.1] and [D.2], implies that:
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‘ T
#e=D_ HAp™
t=1

T
=Y H,(1+2N +Ly)

t=1

T T
=(1+2N)Y H+>  HL

t=1 t=1

T
#e=(1+2N)HD + Y " H,L,.

t=1

[D.3]

The number of constraints is significantly larger when upper bounds on decision

variables are treated explicitly as constraints. There are (K — 1) N upper bounding con-

which implies that:

356

#h = 142N+ (K= )N+ Lo+ (Q - )Ly =1+ (K + 1)N + QL,

straints on primal slippage variables and (@ — 1) L; upper bounding constraints on primal
deviation variables. In addition, there is an upper bounding constraint on each translated
portfolio variable that has a finite upper bound. No upper ‘pounding constraints for portfo-
lio variables are accounted for since all prdblem instances analyzed in Chapter 6 assume

unbounded portfolio variables. The number of constraints at some node in this case is then:
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T
# =3 Hapll
t=1

T
=) H[1+ (K +1)N + QL]

t=1

T T
=[1+ (K‘*'l)N]EHt-*'QEHtLt

t=1 t=1

T
#e =1+ (K +1)NHD + QY H,L,. [D.4]

t=1

Dual problem DMPGLP [5.24] is based upon employing upper bounding constraints

in the primal problem so that the number of dual variables is:

T
#o=# =1+ (K + )N HD + QY H,L. [D.5]

t=1

D.3 Primal Variables — Dual Constraints

There are N translated portfolio variables, K’V primal slippage variables, and QL; primal
deviation variables associated with each node for problem PMPGLP [5.19]. Therefore,

for each node [o], = (¢, he),he=1,...,Hy,t=1,...,T,

# = N+ KN+ QL = (K +1)N + QL,
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which, with equations [D.1] and [D.2], implies that
T
= Hag
t=1

=Y H[(K+1)N+ QL

t=1

T T
=(K+1)NY) H,+Q
t=1

H.L,
1

t=

: T
#=(K+1)NHD + Q> HL, - [D.6]

t=1

The number of constraints in dual problem DMPGLP [5.24] is then

T
#e=# =K+ 1)NHD + Q) HL,. D]

=1

D.4 Non-Zero Technology Matrix Coefficients

The number of non-zero technology matrix coefficients are first determined for problem
PMPGLP [5.19] assuming no upper bounding constraints on the decision variables. The

number of non-zero coefficients at each node by constraint type is:
budget: N,
slippage: (1+K)ift=1or(2+ K)is2<t<T,and
deviation: (N + Q).

Therefore, for each node [o], = (¢, h:), bt = 1,..., Hy, t =1,...,T,

# = N Y ON(+ K) + Ly (N +Q),
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i .
where j = 1if t = 1 or j = 2 otherwise. Equations [D.1] and [D.2] then imply that

T
#=D HiAy "
t=1
- T
— #;[] + Z Ht#;[’]:
t=2

T
=N+2N(1+K)+Li(N+Q)+ Y Hi[N+2N(2+K)+L (N +Q)]

t=2

T - T
=[1+20+K)|N+[N+2N2+K)]Y H+(N+Q)> HL

t=2

T
=[1+2(1+K)]N+[1+2Q+ KN (HD -1)+ (N+Q) Y HL,

t=1

T
#r=[2K+5)HD - 2] N+ (N + Q) Z H.L.. [D.8]

t=1

There are an additional (K — 1) N non-zero coefficients for slippage and (Q — 1) L;
non-zero coefficients for deviation at each node when these two sets of decision variables
have explicit upper bounding constraints. Therefore, the number of non-zeros in the tech-

nology coefficient matrix for dual problem DMPGLP is:
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T
H =+ H[K-1)N+(Q-1)L]
= T ' T
=#+(K-1)N> H+(Q-1)> HlL
t=1 t=1
T
=#r + (K - 1) NHT +(Q— 1)ZHtLt
t=1

T
=[@K+5)HD -2+ (K- 1)HDIN+(N+Q+Q—-1))_ HL,

t=1

T
# = [BK+)HD 2] N+ (N+2Q-1)Y H.L. [D.9]

t=1

D.5 Comments

Model MIMPSLP problems, and stochastic linear programs in general, can obviously be
extremely large. For instance, the cumulative number of nodes in the model MIMPSLP
decision tree with the same number of random outcomes, say L, used in each period is
(using equation [D.2]):

T T [t-1 T

HD =3"H,=Y" ( L) =Y L',

t=1 =1 \j=1 t=1
which grows exponentially with L when multiple periods are involved and L > 1. Even
a problem involving only a few periods, say 2-4, could be so large that it is impossible to
store problem data in the active memory of a computer. Decompositionlsolution procedures

help to alleviate complications caused by problem size since they rarely require access to
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all problem data at any one time. Greater detail on this topic is given in Chapter 6 with the

application of decomposition procedures to model MIMPSLP problems.

361



Appendix E

Decomposition of Model MIMPSLP Problems

This appendix contains special problem formulations and procedures used to solve
model MIMPSLP problems. Problem formulations for L-Shaped, Dantzig-Wolfe, and
myopic decomposition are derived in the first section below. ﬁree types of subproblems
— slippage, deviation, and nodal — incorporated by LSD and DWD are also introduced and
defined in the first section. Procedures used to solve the slippage and deviation subproblems
are detailed in the second and third sections respectively. The fourth and final section
contains detailed procedures used to determine uppér bounds for the nodal subproblems.

Note that period-index and path vector node labels as defined in Section 2.2.1 are
used interchangeably below. Equation [2.7] on page 28 can be used to determine the path
vector label, [o], = [Iy,..., L], for a node given the period index label, (t, h;), for that

node.

E.1 Decomposition Procedures

Each of the solution techniques summarized in Section 5.4 are described in detail below.
The first five subsections are devoted to the application of Dantzig-Wolfe and/or L-Shaped
decomposition to model problems. Master problems and subprdblem types are described

in the first two subsections. These descriptions are for example problems based upon as-
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sumed values for the model master strategy, minor strategy, and tactics parameters as de-
scribed in Section 4.4.3. Probiem structuring and DWD/LSD application techniques for
single-period, two-stage, and multi-stage problems are covered in the next three subsec-
tions. Myopic decomposition of model MIMPSLP problems is discussed in the sixth and

final subsection.

E.1.1 DWD/LSD Master Problems

The problem descriptions given below apply to the single first stage master problem of
a Dantzig-Wolfe or L-Shaped decomposition procedure. Formulations for the RMP-SUB
problems in the nested decomposition of a multi-stage problem are similar and are. de-
scribed in Section E.1.5. Three different types of decomposition subproblems are also in-
troduced below. Subproblem types are described in detail in Section E.1.2. All DWD/LSD
procedures are based upon using the block-separable recourse property of model MIMP-
SLP problems.

L-Shaped decomposition relaxed master problems are initiated with the primal bud-
get constrajnté since these constraints involve onl;ll the aggregate level translated portfolio
variables, x@[*}:, Similarly, Dantzig-Wolfe decomposition restricted master problems are
initiated with the dual budget variables (i.e., the dual multipliers to the primal budget con-
straints). The first stage relaxed master problem, LSD RMP, for L-Shaped decomposition
is derived below. The corresponding restricted master problem, DWD RMP, for Dantzig-

Wolfe decomposition is then the dual to LSD RMP.

363



Appendix E Decomposition of Model MIMPSLP Problems

.Recall from Section 4.4.3 that the $trqc£ture for the RMP is determined by the value
of thel major strategy. Using the :notation‘fr(')m that section, assume that the major strategy
sets,1 <t < T, referred to as the cutoff period, as the index for the last period that is
to contribute'budget conétraints to the initial RMP. All primal budget constraints in periods
1 through £ are then accounted for in the RMP while the primal slippage and deviation
constraints at the nodes in these periods must be accounted for in one or more subproblems.
In addition, if £ < T, then all constraints at each node in periods t=%t+1 through T°
must also be accounted for in subproblems. The ﬁumber of subproblems to create and
the manner in which subproblem solution information is used to generate additional cuts
for the RMP are determined respectively by the values of the minor strategy and tactics
as described in Section 4.4.3. Assume that the minor strategy dictates that the slippage
and deviation constraints in periods 1 through # be used to create Jé’h slippage and Jg]t
deviation subproblems at each node [e], for 1 < ¢ < #. Assume that the minor strategy
also requires that all constraints at nodes in periods 7 through T be used to create J,Sf)
nodal subproblems when ¢ < T. Furthermore, assume that the value of tactics dictates
that an optimality cut is generated for each subproblem. This information is used below to
formulate the initial RMP while details on the formulations of subproblems and generation
of cuts are given in Section E.1.2. |

Let G index the current iteration of the DWD/LSD algorithm and let K S[']t(G) , K| ,[;]‘(G) ,

and KISt) @ be the number of cuts at the beginning of iteration G that correspond to slip-

page, deviation, and nodal subproblems respectively. Denote the slippage, deviation, and
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nodal relaxation variables by 85" ¢ R%™, 65 ¢ R%”, and 9@ e RA respectively.

The initial RMP in array notation at iteration G = 1 of the LSD algorithm is then LSD

RMP(1):
ZD = max ZZ ( ’(0)[’]tx(°)[']t+10[']’+10[']‘)+1’0£,) [E.1]
t=1 he=1
s.t. W(OO)[']tx(O)[']t < bOBk ho=1,... H, t=1,...,%
0[']t < 0, he=1,....H, t=1,....%
o5 < 0, h=1,..,H, t=1,...,F
o) < o)™,
xOkl > o, he=1,...,H, t=1,...,1,

Ogl‘ free, he=1,...,H, t=1,...,t,

0,[,']‘ free, he=1,....,H;, t=1,...,¢,
N free,

based upon problem PMPGLP formulation [5.46] on page 201. Note that initial upper
bounding cuts for each relaxation variable are present in the formulation so that K SM‘(l) =
1, K,[;I‘(l) = 1, and Klst)(l) = 1 for all subproblems. These upper bounding cuts are

validated, and ogt)“‘“ defined, in the following subsection. The scalar formulation for LSD

RMP(1) is:
. P e b
9 = max z Z Z ulehz OBl 4 Z 6% + Z o5 | + Z eNJ [E.2]
t=1 hg— n=1 Jj=1
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N , e x
s.t. Z 0'7[-:]th7(7,0)[.]: S IB[ ]t, ht —
n=1
0[']: < 0 =1 J[‘]t h, =
sji = Y J=L . dsg™, =
0[']: < 0 =1 J[']: h, =
Dj = ) J=4....ydp T, (A
i £ ) max . i
o) < o™, j=1,....,
2 Olele > 0, n=1,...N, hy =

gLl free, j=1,...,J%% h =

based upon problem PMPGLP formulation [5.19] on page 184.

The initial RMP for DWD using comparable decomposition strategy values is the

dual of formulation [E.1] or [E.2]. Let

k)

U =171 "":nDKI[)-J:(G)

- o K /
t)(5) t) t)(5) :
nfg) = (TIIS].) ,...7T]()(£)(G)) H .7=17--.
NKN

/
[']:(.7) [']:(.7) ) .
i N Y ,j=1,...
s1 ) sKg“@ J

[ol.(7) __ ( [0 (5) (o] (5) >I, J = 1, .

ey Tl [E.3]

be the vectors of dual multipliers to the upper bounding constraints on the slippage, devi-

ation, and nodal optimality cuts respectively at LSD iteration G. The initial RMP in array
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notation at iteration G = 1 of the DWD algorithm is then DWD RMP(1):

) 0O
7 max '
2% = min 2 Z b/Oeler el 4 Z elgy) Ig)(J)

t=

ot WOk, e, > cOn, Mm=1...,H,
- = t=1,...,%
Thgt)(J) = 1, J= 1,. ,JNt)a
h,=1,..., H,
(0)[e] t ) y 448,
T 20, t=1,...,1
t)(3) . i
T’Ig ) ’ 2 07 J = AR | IS )‘
[E.4]
The scalar formulation for DWD RMP(1) is: i
1 i H 7§
A = > by Frler Ol 4 Z () 0
n=1,...,N,
st ol > ol m=1,. ) H,
t=1,...,1
|
t)(5) . i
T T )
’ W(()O)[.]t > 0.
[E.5]

All model MIMPSLP problem instances defined in Chapter 6 have portfolio variables
that are unbounded from above. Therefore, the corresponding dual multipliers, = ( e ]t
n = 1,..., N, to the upper bounding constraints for portfolio variables at all nodes are

zero and are omitted from the above formulations.
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E.1.2 DWD/LSD Subproblems

One or more subproblems account for the co'nstraints and 6bjective function components
that are not included in the initial RMP. The number of subproblems that are possible
depends upon the degree ‘o‘f separability provided by ﬁe structure of the remainder of the
problem. Derivations for the three types of subproblems, slippage, deviation, and nodal,
introduced in the previous subsection are given below based upon that portion of problem
PMPGLP that is not included in LSD RMP(1).

Let tho) € R¥*H? be the matrix whose columns are the vectors of translated port-

folio variables at all nodes in periods t = 1,. .., £ so that:

X0 = [X(O) 1) O OCH) (OGO (t',Hz)] ,

where period-index labels are used to identify nodes instead of path vector labels. The
problem that results from the portion of problem PMPGLP that is not in the initial RMP
is denoted by LSD LEFT and the associated second stage value function is denoted by
Qf) (XE—O)). Then, based upon the array notation formulations of problems PMPGLP

[5.46] on page 201 and LSD RMP(1) [E.1] on page 365, LSD LEFT is:

t- Hg
o (Xt@) - maxz Z (Dlex Dol el (@)els)

T H T H;
£33 ORIl 1 3™ T (Ollg @i 4 DDl
t=t ht=1 t=t ht=1

[E.6]

s.t. detailed level constraints at nodes [o], = (¢,h:), h: =1,..., H;,, t=1,...,¢,
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W LD[e]ex (1)[e], < bWl — WLO)el,x (0], — B(lio)[.]tx(o)[.]t—l’ .

WeLx @bl < @Ml — WOy Olel,

x®lk > 0,
x@0l > 0, /

aggregate level constraints at nodes [o], = (¢,h;), hs = 1,...,Hy, t =1,...,T,

W(Oio)[.]tx(o)[.]t < b(o)[']:,
" xOl >0,

detailed level constraintsat nodes [o]; = (£, h;) , h;=1,..., H;,

WO Olsl: 1 WDl Dl < bWl — BLOM:xOlslz

WEOelix O]z WeDlix@l: < b0k,

x(l)[']i' 2 0,
x(2)[‘]f 2 0,

and detailed level constraints at nodes [o], = (t,h:), hs = 1,..., H,,t =1t +1,...

B(]'!o)[']tx(o)[.]t—l +W(1so)[‘]1,x(0)[.]: + W(lxl)[.]tx(l)[°]t ’ <

WEOelex O, FWEDlx @bl <

x(l)[.]t Z 0,
x(z)[.]t Z 0.

7T,

bl

bl

Problem LSD LEFT [E.6] can then be treated as a single subproblem or it can be

separated into several subproblems due to the structures of the coefficient arrays in the con-

straints and in the objective function. Regardless of the number of subproblems designated

by the decomposition strategy values, the most efficient method for solving LSD LEFT is

to separate it into independent component problems. The resulting component problems
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are referred to as component subproblems in order to distinguish them from decomposition
subproblems. A decomposition subproblem may then coincide with a component subprob-
lem or it may be a composite of two or more component subproblems. Problem LSD
LEFT, for instance, is a composite of all component subproblerhs. Each component sub-
problem belongs to one of three types which correspond to the three types of decomposition
subproblems introduced in the previous subsection: slippage, deviation, and nodal. Sep-
aration of problem LSD LEFT into the three types of component subproblems and each
resulting type is described below. This subsection then concludes with comments about

combining a group of component subproblems into a decomposition subproblem.

Slippage Component Subproblems

Slippage component subproblems result from that portion of problem LSD LEFT
[E.6] that involve the primal slippage variables and constraints at nodes in periods t =
1,...,t. Let Qg—) (X§0) ), referred to as the slippage value function, denote the problem

formed by this portion:

af (x§-°)) _ maxi i SOy (D],

t=1 hy=1

s.t. slippage constraints at nodes [e], = (¢, k), At =1,...,H,t=1,...,F

W(l:l)[.]:x(l)[.]t S b(l)[.]: — W(lao)[']:x(o)[.]: — B(l’o)[']:x(o)[.lt—l,

xWbl. > 0.
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The slippage value function in scalar notation is then:

t H, N K
af (k) ==Y [ S (3 o)
t=1 he=1 n=1 k=1

[E.7]

s.t. slippage constraints at nodes [o], = (¢, h:), bt =1,...,H;, t =1,...,1T,
S IcH min |, (OFy _ Ol
—-kz=:1an < (AYm + zn —Zn ), n=1,...,N,
I min Oy _ O],
-2 X < —(AYM + gl g ) n=1,...,N,

xWkl < A\ﬁkn, k=1,...,K—1, n=1,...,N,
Xkl z 0, k=1,....K, n=1,...N.

Problem [E.7] is separable into independent subproblems for each security at each
node in periods t = 1, ...,%. These subproblems are the slippage component subproblems
and are denoted by Qg',l‘ (X§0)>. Then, for all securities n = 1,..., N at all nodes [o], =
(t,ht),hs=1,..., H;,inperiods t = 1,... % |

QL (X§-°)> —max —ppk kﬁl B XD

K
s.t. -> X’SL)[']t < (AY;;“’ :1:57,0)[.]‘_1 _ 1'1(7,0)[.]‘) ’
k=1

K
— Z Xé;)[']t < - (Aygn + 11:51,0)[ Je-1 _ IZ,',(q,O)[.]t> ,
k=1

xPh < AU k=1, K1,

x> 0, k=1,... K.
[E.8]
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Note that Q_L,',]; (Xt@) ) < 0 since each factor in the objective function coefficient for
X 1&)[.]" k = 1,..., K, is nonnegative. Therefore, zero is a valid upper bound for each

9;]‘ in the initial restricted master problem [E.2] for LSD. The dual to'problem [E.8] is:

g’l: (thO)) = min (AY:tun + xslo)[.]t-—l _ xglo)[o],) (ﬂ_;l)[o]t _ ﬂ_g\];?gn]':) [E.9]
- W]
1){e],
+ Z A\I;knﬂ-ZN+(n—-1)(K—1)+k
k=1
st —m Qe A ke = 0B, k=1, K —1,
_W;I)Mt _ WS{E: > 0,0k,
W-Szl)[.]t 2 0,
7.[.9)[']:: Z 0,
(Llel, > 0, k=1,...,K—1.

TON+(n—1)(K~1)+k
Primal problems [E.&8] are the slippage component subproblems for L-Shaped decom-

position while dual problems [E.9] are the slippage component subproblems for Dantzig-
Wolfe decomposition. Solutions to these subproblems are easily obtained by evaluating
the primal and dual pair of subproblems for each security at each node in the applicable
. periods. Detailed solution procedures for problems [E.8] and [E.9] are given in Section

E.2.

Deviation Component Subproblems

Deviation component subproblems result from that portion of problem LSD LEFT
[E.6] that involve the primal deviation variables and constraints at nodes in periods t =

1,...,t. The primal deviation component subproblems, denoted by Ql[;,]: (X%O) ) are de-
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rived in 2 manner similar to that for the slippage component subproblems. Then, for all

outcomesl; = 1,..., L; atallnodes [o], = (¢,h), by = 1,..., Hy, inperiodst = 1,. .., &

. A o, 2 .
Q][)l]: (Xg(])) = max _Qtp[o]t)\tpgt]: El,quéi)[ le
3 q=

Q “Te N . . .
SRR (B oY (L P
q=1 n=1

X(z)[.]t P A(pq,q=]_,.__’Q—]_,

qls -

x@Ee >0, g=1,...,0Q.

[E.10]
Note that Q,[;l]: (tho) ) < 0 since each factor in the objective function coefficient for
X 2) Mt, k = 1,...,K, is nonnegative. Therefore, zero is a valid upper bound for each

qle

0][;}‘ in the initial restricted master problem [E.2] for LSD. The dual to problem [E.10] is:

N
o (x9) i [ 3 (- ) e

Q-1
(2)[e] (2)[e],
T, t+z A(’Dq”rLt+(lt—1)((‘2—1)+¢;{
g=1

n=1
[E.11]

(2)[o], 2)[e] ~ ~le ®):

s.t. —m, ] + Wgt).E.(ltt—l)(Q—l)+q > —Qtp[ ]:,\tpgt] Voo 9= 1,...,Q -1,
2)[e ¢ ~ ale °
—m > Al v,
Wl(tz)[.]t 2 0,

7r(2)[.]t > 0 =1 Q -1
Le+(1—1)(Q-1)+q = ? q=1,..., .

Primal problems [E.10] are the deviation component subproblems for L-Shaped decompo-
sition while dual problems [E.11] are the deviation component subproblems for Dantzig-
Wolfe decomposition. Solutions to these subproblems are easily obtained by evaluating the

primal and dual pair of subproblems for each outcome at each node in the applicable pe-
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riods. Detailed solution procedures for problems [E.10] and [E.11] are given in Section

E.3.

Nodal Component Subproblems

Nodal component subproblems result from that portion of problem LSD LEFT [E.6]

that involve the primal variables and constraints at nodes in periods after the cutoff period,

~

1.e.,inperiodst =t,...,T. Note that there are no nodal subproblems if t=%+1> T. The

primal nodal component subproblems, denoted by ng;)t (x(O)[°]f), at nodes [o]; = (£, k;),

hy=1,..., H;, are:

¢ N N K
), (Ot) = max gy (Z e = 303 Xy

n=1 n=1 k=1

L; Q

L] £ 2)[e H

_’\f E pgfl § :’YqXéli)[ ]
;=1 =1

T H: N
+ Z @t I:Z ﬁ[.]t (ZM[;I!:CS}O)M:

t=i+1 he=1 n=1
S (W)le] RIS
PHRECEN )]
n=1 k=1 =1 g=1
[E.12]
s.t. constraints at node [e]; = (£, h;),
$ oltle, Ol <
n=1 - ’
K
A% O < (ava o), et
. P .
K
~a % = S XM < - (avm ), n=1, N,
‘ k=1
N o] o|; 0OR Q ol el . '
Zl (/1'1['1]" — R-Ll];) $1(r;0)[ ]g _ Zqu(i)[ ]1. S dE':]t) lf _ 1, ey Lf,
n= q=

constraints at nodes [o], = (¢,h¢), by =1,..., Hy,, t =t + 1,A. .., T,
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QANOICH 3l
On S IB )
bt
—IESLO)[.]t—I + :1:5;0)[']‘ - Z X(I)Mf- < AY:;"‘, n=1,...,N,

nt

mszo)[.]t—l _ $£;0)[.]t _ Z X}S;_)[.]t < —_AYmn g — 1,...,N,
k=

N Q
Z (/Jvl:'z.]t _ R"[:l]:) .’E-g;,o)[.]t _ Z X(2)[.]t < d[‘]t

qle —= (PR
n=1 =1
and bounds at nodes [o]; = (£, h;) and [o], = (t,h:), e =1,...,H,t=1t+1,...,T,
XEM < AW, k=1,...,K-1, n=1,...,N,

X(z)[.]t A‘pq’ q=17"')Q_17 lt=17""Lt’

2tk > o, n=1,...,N,
X&)['ltZO, k=1,...,K, n=1,...,N,

Xk > o, g=1,...,0, L=1,...,L,.
The dual to problem [E.12] is:

3 N
53122. (x(o)[-]f) = min B[-]awgo)[-]; + Z (AYER 4+ x;o)[.]f) (7&)[.]f _ Wgﬂjﬁ)

n=1
Al (1)[e];
1)|e
2.0 AV en o 4 (n-1)(K -1+
n=1 k=1
R 28 o
+Zdl ’ (A T+ ZZA% L; +(; -1)(Q-1)+q
=1 1=1 g=1
+ Z Z [ ['1: 7Ol +ZAymm (W(l)[']t - (1)[' )
t=t+1 he=1
T & (1)[e]
+ Z Z AV knToN 4 ln-1)(K—1)+k
n=1 k=1
o] (2)[.]1, (2)[e],
+Zdl e+ ZZA% L,+(z,—1)(cz—1)+q] [E.13]
lt—l q-—

s.t. constraints at nodes [o]; = (£,h;) and [o], = (t,h), b =1,..., Hy, t =1+1,...,T,
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) (2)(el,

Lt
oenP 0k — S (- R of

nlt
=1

.
=D (r et ) 2 2, n=1 N,
li=1 i ‘

’

1'0 1)[o], 1)[e] A N k=1,...,K—1,
—m e — gl +7r.(?N[+(tn—1)(K—1)+k > — 0,k By, n=1...N,
—rleh wgﬂﬂ‘ , > _@tﬁ[.]tQK"'" n=1,...,N,

@), 2)le] 5 el ) l°] g=1,...,Q -1,
—m, +7rLt+(ltt—1)(Q—1)+q 2 _gtp[ ]t/\tplt t’yQ’ lh=1,...,L,

(o]

2)[e
D 5

> _@tﬁ[.]tAtp t’YQ’ bk=1,... 7Lt7

and lower bounds at nodes [o]; = (¢, k;) and [o], = (t,hs), by =1,..., H;, t =E+1,...,T,
7r(()O)Mt >0,
Ak >0, j=1,...,(K+1)N,
k>0, j=1,...,QL.

Primal problems [E.12] are the nodal component subproblems for L-Shaped decom-
position while dual problems [E.13] are the nodal component subproblems for Dantzig-
Wolfe décomposition. Solutions to these subproblems are obtained using a simplex solver.

Procedures for obtaining an upper bound, say 5:)5,2, for each nodal component sub-
problem in period ¢ are given in Section E.4. Each upper bound is independent of x(@!*
and can be determined prior to the first decomposition iteration. These upper bounds can
then be used to establish upper bounds on the designated d‘ecomposit.ion subproblems. For

example, assume that the decomposition strategies call for a decomposition subproblem at

each node in period £. There are H; nodal decomposition subproblems with a one-to-one
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correspondence to the nodal component subproblems. The associated relaxation variables

are then bounded by:

0 <o 28 nemt.

N

Upper bounds on the nodal component subproblems may also be combined to deter-
mine upper bounds on decomposition subproblems. Assume, for a second example, that the
decomposition strategies designate one decomposition subproblem for all nodes in period

t. The associated relaxation variable is then bounded by:

o) < o™ zé,s

Combining Component Subproblems Into Decomposition Subproblems

Solution values, say Xéo)(G), are obtained by solving the RMP at each iteration G
of the decomposition algorithm. These are the values of the RMP primal variables in L-
Shaped decomposition or they are the values of the dual multipliers to the non-convexity
constraints in Dantzig-Wolfe decomposition. Solutions for decomposition subproblems are
then obtained by combining solutions to the appropriate component subproblems described
above.

For instance, assume that the decomposition strategies call for a subproblem account-
ing for all slippage at each node in periods ¢ = 1,...,%. Solutions to slippage component
subproblems Q[ l ( (O)(G)), n = 1,..., N, would then be combined for each noae in

the applicable periods to obtain the solutions for the decomposition subproblems. The re-
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sulting solutions to the decomposition subproblems are used to generate a new slippage
optimality cut (LSD) or extreme point activity (DWD) corresponding to each node in pe-
riods 1 through . Let w4 be the vector of solutions to the slippage dual component
subproblems [E.9] at some node [o]; = (%, h;) in period £ € {1,...,} and denote the cor-
responding relaxation variable by 0?15. A new optimality cut for LSD would then have the

fbrm:

N
[Z (WS)[.],-(G) _ 7rg\%i:ls(c)) (_mg)[-]s_l + mg)[.],.)} n eg.];
n=1
3 Wel:(®)
[E (AYM + Z an”2N+('n—1)(K—1)+k)J [E.14]

n=1

A new extreme point activity for DWD would have an objective function coefficient equal
to the right-hand-side of inequality [E.14] and technology matrix'coefﬁéients equal to the
coefficients on the left-hand-side of the inequality.

Numerous decomposition strategies can be devised that take advantage of the flexi-
bility offered by component subproblems [E.8] through [E.13]. Specific examples of de-

composition strategies are given in Chapter 6.

E.1.3 Single-Period DWD/LSD

Model MIMPSLP problems with a single period have a cutoff period of t = T = 1.
These problems can be solved with a grand LP formulation or with decomposition using
the procedures described for two-stage DWD/LSD in the next subsection. Decomposition

procedures treat the primal slippage and deviation variables and constraints as second stage
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components. Grand LP solution procedures may be more efficient (faster) than decompo-
sition procedures when there are a few thousand or less random outcomes to consider.
Single period problems also occur in problems with multiple periods when the de-
composition major strategy dictates that £ = 7' — 1. In this case, there is a single period
problem anchored at each node in the terminal period. This can be an effective strategy

when there are many nodes (hundreds or more) in the final period.

E.14 Two-Stage DWD/LSD

Two-stage Dantzig-Wolfe or L-Shaped decomposition can be applied to any model MIMP-
SLP problem regardless of the number of periods assigned to the problem. The block-
separable recourse property of model problems ;;rovides for signiﬁéant flexibility in struc-
turing problems for decomposition.

One obvious strategy is to assign a cutoff period of ¢ = T" so that the first stage of LSD
consists of all primal budget constraints while all primal slippage and deviation constraints
are accounted for in second stage subproblems. The comparable DWD procedure would
}_1ave all dual composite constraints in the first stage while all dual slippage and deviation
constraints would be in second stage subproblems. All subproblems in this strategy can
be solved by combining solutions of the easily solved slippage and deviation component
subproblems.

A second strategy is to assign the cutoff period such that £ < T'. The resulting de-

composition procedure would then involve sﬁbproblems from all three categories: slippage,
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deviation, and nodal. Initial RMP formulations would be smaller than those with £ = T
since only budget/qqmposite constraints in the first £ periods are present. Second stage sub-
problems would account for the slippagé and deviation variables and constraints in periods
t=1, or ,tas well as all variables and constraints in periods after the cutoff period. Note
that two-stage decomposition can only be applied when grand LP solutions are obtained
for the nodal component subproblems anchored at the nodes in the period following the
cutoff period, i.e., in period t=%f+1. Multi-stage, or nested, decomposition described
in Section E.1.5 below is required when DWD or LSD is applied to the nodal componeﬁt
subproblems.

Algorithms LSD(multicut) and DWD(multiactivities) described in Sections 3.1.4
and 3.2.3 respectively can be applied, with minor modifications, to the resulting two-stage
problems. Each algorithm can be modified for model MIMPSLP problems by replac-
ing the initialization procedures described in the referenced sections with much simpler
and significantly faster procedures. The detailed calculations of the documented initial-
ization procedures are not required since model problems are bounded and have complete
recourse. Procedure LSD(multicut)-Initialize can be replaced By a procedure that sim-
ply sets the bounds on the relaxation variables as illustrated in the formulations of prob-
lem LSD RMP(1) [E.1] (array notation) and [E.2] (scalar notation). Similarly, procedure
DWD(multiactivities)-Initialize can be replaced by a procedure that sets the objective
' function coefficients for the convexity variables as illustrated in the formulations of prob-

lem DWD RMP(1) [E.4] (array notation) and [E.5] (scalar notation).
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E.1.5 Multi-Stage DWD/LSD

Multi-stage, or nested, decomposition procedures described in Section 4.2 starting on page
117 can be applied to model MIMPSLP problems with multiple periods. The nested de-
composition strategies described in Section 4.4.2 can be employed directly if the block-
separable recourse property of model problems is ignored. Strategies described in Section
4.4.4 are applicable, however, if the block-separable recourse property is utilized.

| Block-separable recourse allows for increased flexibility in structuring problems for
decomposition. All master and subproblems would resemble the nodal component sub-
problems described in Section E.1.2 if block—separabilify is ignored. Employment of the
block-separable recourse property, however, also yields subproblems that may be solved us-
ing the slippage and deviation component subproblems also described in Section E.1.2. For
example, Figure E.1 illgstrates nested L-Shaped decomposition applied to a three-period
model] problem when block-separable recourse is utilized. Each of the three periods co-
incides with a stage in a three-stage decomposition strategy. Primal budget variables and
constraints in each period remain in the corresponding stage and are accounted for in the
RMP in the first stage, the RMP-SUB problems in stage two, and the SUB problems of
stage three. Primal slippage and deviation variables and constraints in the first two peri-
ods, on the other hand, are used to form subproblems in the second and third stages. The
latter subproblems are solved easily and efficiently by combining solutions of the slip-

page and deviation component subproblems as appropriate. Specific nested decomposition
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Period 1 Period 2 Period 3

T
//O<\

O<

b 66 &

Deviation
Budget onstraints \O<
Constraint
Slippage &
Budget Deviatipn
Constraints onstraints
All
Constraints
A 4 \ 4 A
RMP <«—>» SUBs RMP-SUBs |« SUBs SUBs
F 3 A A A
Stage 1 Stage 2 Stage 3
NOTES

1. Three-period problem solved with nested L-Shaped Decomposition in three stages.

2. First period budget constraint forms the initial first stage RMP.

3. First period slippage and deviation constraints form second stage subproblems that receive
solution information from and send cuts to the first stage RMP.

4. Budget constraints at second period nodes form initial second stage RMP-SUBs. SUB mode
receives solution information from and sends cuts to the first stage. RMP mode sends solution
information to and receives cuts from the third stage.

5. Second period slippage and deviation constraints form third stage subproblems that receive
solution information from and send cuts to the parent second stage RMP-SUB.

6. Data at each third period node is used to create a third stage single-period subproblem that
receives solution information from and sends cuts to the parent second stage RMP-SUB.

7. Subproblem results in each stage may be used to create individual cuts or aggregated to form
composite cuts.

Figure E.1: Example Nested Decomposition of a MIMPSLP Three-Period Problem
- 382
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strategies that use the block-separable recourse property of model MIMPSLP problems

are described in the Chapter 6.

E.1.6 Myopic Decomposition

The myopic decomposition procedures described in Section 4.5 can be directly applied
to model MIMPSLP problems since these problems have complete recourse. Primal and
dual subproblems are formulated according to the descriptions given in Section 4.5.1. The

myopic primal subproblem, corresponding to problem [4.18] on page 154, for the single

first period node is:

ol () = max Zullm@)ﬂ qu, XU ZP qu

n=1 k=1
ot $° ol 0
n=1

200 5 x@0

k=1
—e@ 3 xOU

N Q
0 _ R0\ 00 _ <k yo
nZ=:1( 7711) qz:l qh

X < AW, k=1,... K -

<

<

X <be, g=1,...,Q-1,

290U > o n=1,...,N,
x> o, k=1,... K,
X§[23[1207 q=17"'7Q’
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Myopic primal subproblems, corresponding to problems [4.19] on page 154, for nodes

[o], = (t,he), he =1,..., Hy, inperiods ¢t = 2,...,T are:

N N K
e (x!*e-1) = max 5%k (Z paP = 3N X [B6)

n=1 n=1 k=1
2){e
Y Z ol Z 7 X h)
lg=1 g=1
N ~fo
st. 5 ol Ok < B

n=1

x;o)[.]t _ E X(l)[o]t < (AY:tnn + m-SLO)[.]t—l) , n= 1, ..
k_..

a0 5 x @ o (avg +22%), n=1,..

N
®le t 0)[e}, 2)[e],
> (ul - REk) 2P — EX()[]

n=1 g=1

d[.]t

IA

Xk < AW k=1,...,K—1, n=1,....N,

X(2)[.]‘<A¢q, q=1,"':Q—'1) lt:l""’Lt’

qle =

m;O)[']t 20, n=1"_.,N,

Xk > o k=1,....,K, n=1,....N,
2)[e

Xélt)[]tZO, g=1,...,Q, lh=1,..., L.
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The myopic dual subproblems, corresponding to problems [4.20] on page 154, for

nodes [o|. = (T, hr), hr = 1, ..., Hr, in the terminal period are:

B () = min T AO [E.17]
= & = ()le]
min . 1)[e 1)[e
+ Z AYyr (Wg){ I — 7"N+11T> + Z Z A‘I’kn7"2N+(€z—1)(1!{—1)+k

n=1 . n=1 k=1
5 3le] (2)[-1 (2)o)
| -3 delon Z Z DTt G -1)(@-Da
|

lT=1 =1 q— )

. Ly o
st lgennanfion_rOlir S (e - B > g, ..

lr=1
|
| (1)fe] )] W] s e k=1,...,K -1,
=T = WNent FToni-nE-Dre 2 ~0rPlr B, n= 1: ..., N,
Dl _ @l > o By, n=1,...,N,
(2)[o] 2)[o] . [o] g=1,...,Q-1,
M L pbir-1)@-bg 2 ~erB TP Y, 1T

—Wl(f-)[.]T _QTp[ ]T,\Tp[ ]Tny, lr=1,...,Lp,

Ol > o
AT >0, j=1,.. (K+1)N,

nr >0, j=1,...,QLr.
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Myopic dual subproblems, corresponding to problems [4.21] and [4.22], for nodes [o], =

(t,he),he=1,...,Hy,inpedodst =T —1,...,1 are:

mgl ([, ) = min B 15
4 (L)fe] = (1)fe]
min P9 1 [ ] t 1 L J t
+ Z AYq (7? 9)[ le — TN+n ) + Z Z A‘I’J'cn7T21\r+(n—1)(K—1)+1rc
n=1 k=1
[-]t (2) [], (2)[e],

+ Zd +ZZAwmt+at-n<e )+

=1 lt=1 q=1

s.t. [°]t7r(0)[ ey Dl _ (1)[.]' + Z ( [o]: _ nlt) o

=1
S [@tﬁ[.]wgh +Z(ﬂ9)mm_ ﬂi)] N
=1
—m e — 7 Dk +7T:(z§\)r[-;](tn—1)(1<—1)+k 2 _@tﬁ[°]tq”°"“ :,z i’, ,,JI\{T_ b
—m el — 7Ok > o dgn,  n=1,...,N,
— Dk > —p o Aplhy, L=1,...,L,

,/T(()O)[']r. > 0,
alth >0, j=1,..,(K+1)N,

M50 = 1,..., QL.
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E.2 Solving Slippage Component Subproblems

The solution to the primal slippage component subproblem [E.8] on page 371 is deter-
mined first. Dual problem [E.9] on page 372 is then solved using the primal solution and
duality theory. The derivations rely upon the fact that each factor in the objective function

coefficients of the primal problem [E.8] are nonnegative:
o, > 0, t=1,...,T,

e > 0, hy=1,...,H;, t=1,...,T,

q)kn
Define I'" such that:

v

0, k=1,....K, n=1,...,N.

[=AY™ 4+ g1 _ {0l [E.19]

then the first two constraints of the primal slippage component subproblem [E.8] imply

that:
ZX(I)[-h —_ [E.20]
The primal upper bounding constralnts on X,/ (Wlek insure that for any & € {1,.. -1}
E
Zx(l)[']t < ZA‘IIkn
k=1 k=1

and since AW, = ¥y, — \'Il(k_l)n for k=1,...,K (see the third row from the bottom of

Table 5.2 on page 185) with ¥y, = 0:

3 B
3 x @k < 3 (Ton = Y(e1yn) = Vg [E.21]
k=1

k=1

Inequalities [5.4b],

Prp < o0 < By <+ -+ < P,
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and the objective function and upper bounding constraints on X, ,SL)[']‘ of problem [E.8]

imply that:
Xkl 0 only if X3, = AUy forany k € {2,..., K}. [E.22]
Define k such that: o
k =maxk € {0,...,K — 1} with ¥, < [T}, [E.23]

which determines the largest Uy, that is less than or equal to |I'| since Wy, increases

monotonically with index k by relationships [5.4a]:
0=, <V, < <V, <+ < Vg, = 00,

so that:
¥z, < |T'| and ‘I’(E+1)n > |T}.
Relations [E.19] through [E.23] then imply the primal solution is:
Upn = Yomiyn = AVpp, k=1,..., k,
xOW _ 4 p| -  k=FE+1 [E.24]
kn - kn° - ’ .

0, . k=k+2,...,K.

The solution to the dual slippage component subproblem [E.9] is solved by examin-
ing the problem under two cases defined by the relationship between ¥z, and I'.
Case 1: ¥z, < T

Note that ¥z,, < |I'| implies that |T'| > 0 due to relationships [5.4a]:
0= < V1pn <+ < P < -+ - < Vg, = 00
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Furthermore, ¥ (B+1)n > IT| by the definition [E.23] of k. Complementary slackness and

primal solution [E.24] then require that

(Do}, — — T
Tont(n-1)(K-1+k = B k=k+1,..., K —1,

since the complementary primal constraints
X8k < AV k=F+1,...,K -1,

are not tight. Complementary slackness also requires that the first (I—c + 1) constraints of

dual problem [E.9] be tight since the complementary primal variables are positive by primal

solution- [E.24] and the case condition, ¥, < |T. In'addition, the objective function of
| | (L], (L)fe],

the dual problem implies that only one of 7" ** and my ,* can be positive in order to

minimize the function value. Therefore, the dual solution under Case 1 is:

@tﬁklt@(,-cﬂ);z, if ' <0,

Dl —
, if ' >0,
0, ifI <0,

T = [E.25)

2@ 11y, T >0,
byl (@(,-Cﬂ)n - cp,m) k=1,...F

0, ‘ k=k+1,...,K—1

(1)[e],

2N+(n—1)(K—1)+k —

Case 2: Uy, = ||
Complementary slackness, primal solution [E.24], and the case condition, ¥, = |T,

require, as in Case 1, that:

(1)[o] 7
ToNt(n-1)K-1)+k = b E=k+1,..., K -1,
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since the complementary primal constraints
XOek < A k=F+1,.. K -1,

are not tight. Complementary slackness also requires that the first & constraints of dual
problem [E.9] be tight since the complementary primal variables are positive by primal

solution [E.24] and the case condition, implying that:
—n Dl — Qe O ety = —2B P, k=1, F [B26]

Strong duality requires that the objective functions of problems [E.8] and [E.9] be equal at

optimality, which, with equations [E.19] and [E.24], indicates that:

k k
D (n P - x Q8 4 3 Al e 1y = —28% > Bun AT, [E27)
k=1 k=1

Equations [E.26] and [E.27] appear to be a system of (k + 1) equations in (k +2) un-
knowns. The objective function of the dual problem [E.9] implies, however, the further

condition:
i > 0and 7P =0, ifT <0,
[E.28]
itk = g and 7% > 0, ifT >0,
in order to minimize the function value. There are, therefore, a balanced number of equa-

tions and unknowns. Multiplying each equation k at [E.26] by AWy, and summing the

results yields:

k & k
° 1)[e], 1)[e}, ~ le
- (”g e+ v ) PAZEDD A‘I'knwgzx)r[ﬁu](n—n(xq)% = 2" ) B ATy,

k=1 k=1 k=1
[E.29]
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Since,

k

E
ZA\I/kn = Z (\Ilkn - ql(k—l)n) = U,
k=1

k=1
equation [E.29] becomes,

E k
— (r @m0 U+ 3 AT ey = ~ 2 Y Ben s Ui
k=1 k=1
[E.30]

The case condition, ¥, = |I'|, and the additional condition [E.28] imply that:
- (W'Sll)[.]t + Wﬁi{jt) ‘I/l—Cn =TI (7["9)[']: — ’/Tgit],t) ,

so that equation [E.30] can be written as:

k E
I (’”1(11)[.]‘ - W%Et) + Z Aqlknﬂg\)l[:-](tn—l)(K—l)+k = ‘@tﬁ[.l‘ Z Pin AV n,

which is equation [E.27]. Therefore, equations [E.26] and [E.27] are not linearly indepen-

dent. The coefficient matrix formed by omitting equation [E.27] and the first two columns

\

of equations [E.26] (since at least one of 7r$11) [l and wg)ﬂ‘ is zero by condition [E.28]

while the other is omitted) is the non-singular k-by-k identity matrix. One of the (k + 2)
variables:

el

Wl or w0 ke{l,...,k},

1)fe a
7r1(1, Jel, or TN 2N+ (n—-1)(K-1)+k’

may then be assigned an arbitrary nonnegative value and the other values will follow. Con-
sequently, dual problem [E.9] has an infinite number of alternate optimal solutions under

Case 2. Solution values under Case 2 are assigned to maintain consistency with Case 1.

391



Appendix E Decomposition of Model MIMPSLP Problems

Therefore, solution set [E.25] is selected if I" # 0, otherwise,
el = ppth @y,
| Ao [E31]
wg;’,[;’gn_'l)(,{_l) w=0k=1.. K-1,

when I' = 0 which implies that k& = 0 by the definition [E.23] of %.

E.3 Solving Deviation Component Subproblems

The solution to the primal deviation component subproblem [E.10] on page 373 is deter-
mined first. Dual problem [E.11] on page 373 is then solved using the primal solution and
duality theory. The derivations rely upon the fact that each factor in the objective function

coefficients of the primal problem [E.10] are nonnegative:

-~

6 > 0, t=1,...,T,
ple > 0, hy=1,...,H, t=1,...,T,

A > 0, t=1,...,T,

ph > 0, ,,=1,...,L, h=1,. H, t=1,...,T,
Y, 2 0, ¢=1,...,0Q.

Define I' such that:

N
D= di 37 (e — RY) 2. [E32]

n=1
Then if I > 0, the optimal solution to the primal deviation component subproblem [E.10]
is clearly X.i)[']‘ = 0 with objective value D,[;,]: (tho)) = 0. Therefore, consider the case

392




Appendix E Decomposition of Model MIMPSLP Problems

when I' < 0. The first constraint to the primal problem implies that:

(2)[']1:
Z qle <T

g=1

Q
=y ng}['“ > 1. [E.33]

g=1

The primal upper bounding constraints on X ; (2 )[ *k insure that for any g € {1,...,Q —1}:

ZXéi”']‘ < Z Ag,
g=

=1

and since Ay, = ¢, — @, forg=1,...,Q (see the second row from the bottom of Table

5.2 on page 185) with ¢, = 0: '

ZX(”[‘]t < Z L) = ¢ [E.34]

q=1 q=1
Inequalities [5.10b],

71 <L e <7q<... <’7Q’
and the objective function and upper bounding constraints on Xa (2 )[ e of problem [E.10]

imply that:

Xéi)[°]‘ > 0 only if X((qz)_[;])it = Ap,_, forany g € {2,...,Q}. [E.35]

Define 7 such that:

g =maxgq € {0,...,Q — 1} with ¢, < [T, [E.36]

which determines the largest ¢, that is less than or equal to |I'| since ¢, increases monoton-

ically with index q by relationships [5.10a]:
0=‘P0<<P1<"‘<<Pq<"‘<SDQ=°°,
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so that:
¢z < || and gy, > |T.
Relations [E.32] through [E.36] and the objective function to problem [E.10] then imply

the primal solution is:

Pg— Pg-1 =A(pq’ g=1,...,q,
x®@k _girr > 0, otherwise, Xéi)m‘ =< |0 - ©g» k=g+1,

ol

0, : k=q+2,... K.
[E37]

The solution to the dual deviation component subproblem [E.11] is solved by exam-
ining the problem under three cases defined by the value of I and the relationship between
w;and I'.

Case1: T'> 0

Strong duality and primal solution [E.37] imply that the dual solution under Case 1
is:

7@l — 0. [E.38]
Case2: o < |I',T' <0

Note that ¢, < |T'| implies that |I'| > 0 due to relationships [5.10a]:
0=<,00<<pl<---<<pq<---<<pQ=oo.

Furthermore, ¢.1y > [T'| by the definition [E.36] of §. Complementary slackness and

primal solution [E.37] then require that

(2)[o] =
TLetle-1)(@-D+g = 9= +1,...,Q -1,
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since the complementary primal constraints
2)[e -
Xélt)[ k < Agoq’q=q+1,"':Q_ 1’

are not tight. Complementary slackness also requires that the first (§+ 1) constraints of
dual problem [E.11] be tight since the complementary primal variables are positive by
primal solution [E.37] and the case condition, ¢, < |I'|. Therefore, the dual solution under

Case 2 is:

= 2Dl Y 111 [E.39]

@tﬁ[']t/\tpg]‘ (’7@+1 - tpq) , g=1...,q,

et

(2)[e] _
Tt (l=1)(Q=1)+g =

0, q=q+1,...,Q —1.
Case3: o, = [, [ <0

Complementary slackness, primal solution [E.37], and the case condition, ¢, = [T,

require, as in Case 2, that:

(2)[e] =
Tt (l-1)(@-14g = H9=7+1,...,Q 1,

since the complementary primal constraints

thi)[.]t S A(,Dq, q= q+ 17' . -7Q —,1,

| are not tight. Complementary slackness also requires that the first § constraints of dual
problem [E.11] be tight since the complementary primal variables are positive by primal

solution [E.37] and the case condition, implying that:

2)[e 2)[e A Al® . -
—mi e e @mtyre =~y g = 1, Q. [E.40]
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Strong duality requires that the objective functions of problems [E.10] and [E.11] be equal

at optimaiity, which, with equations [E.32] and [E.37], indicates that:

g g
(2)le] @), - e [o] '
Fﬂ'lt T+ Z A(‘o‘l’ﬂ-lzt+(lt—1)(Q—1)+q - _gtp[ ]t/\tplt : Z7QA¢Q' [E.41]

Equations [E.40] and [E.41] define a system of (§+ 1) equations in (g + 1) unknowns.

Multiplying each equation ¢ at [E.40] by Ay, and summing the results yields:

q q q
(@)l @] o ol y ]
—m Y D+ Y AL 1oty = —eBTNDLE Y 7 Dp,.  [EA2]

g=1 =1 g=1
Since,

q

q
D Doy = (g~ 0g1) = 05

q=1 q=1
equation [E.42] becomes,
(2)[e] ! (2)[o] (o] !
—m Py D Oty = —UBNBL D1 Dy [E43)
=1 q=1

The case condition, ; = |T'|, ' < 0, then implies that:

q q
(@)l @)l o ol y ]
T, 4 Y Dpm ot 10-1yrg = —2D NP Y 7, A0,

which is equation [E.41]. Therefore, equations [E.40] and [E.41] are not linearly indepen-
dent. The coefficient matrix formed by omitting equation [E.41] and the first column of
equations [E.40] is the non-singular g-by-g identity matrix. One of the (g + 1) variables:

el @ )
7rl(t ]‘ or WL;-E—(]l:—-l)(Q—l)'i‘q’ q € {1, e ,q} .

may then be assigned an arbitrary nonnegative value and the other values will follow. Con-
sequently, dual problem [E.11] has an infinite number of alternate optimal solutions under .

Case 3. Solution values under Case 3 are assigned to maintain consistency with Case 2.
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Therefore, solution set [E.37] is selected if I < 0, otherwise,

P = Aoy, [E.44]
()] o
7rLt+(ltf,—1)(Q—1)+q =0, g= 11 s 7Q -1,

when I' = 0 which implies that § = 0 by the definition [E.36] of 7.

E.4 Bounding Nodal Component Subproblems

Nodal component subproblems must be solved using a simplex algorithm. However, upper

bounds on these subproblems can be used to place bounds on the LSD relaxation (6) vari-

ables or to determine objective function coefﬁéients for DWD convexity (n) variables. An

upper bound on ngi)e (x©)) is established by determining a feasible solution to the dual

nodal component éubproblem [E.13] on page 375. ’i‘he derivations below rely upbn the fact
[s],

that each factor, except the mean returns u»'*, in the objective function coefficients of the

primal problem [E.12] on page 374 are nonnegative:
@t > 03 t=17"')T7
> 0, B=1,...,H, t=1,...,T,

(I)Icn

\Y
e
o
I
\_i—'
=

n=1,...,N,

A > 0, t=1,...,T,

ik >'o, b=1,...,L,, hy=1,....H, t=1,...,T,
Yo =2 0, ¢g=1,...,0Q.

and that all standard deviations ag b are positive.
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Note that

ﬂ-(l)[‘]t = 0,

1r(2)[.]t -0 }[.]t = (E,hf) and [.]t= (t,ht),ht = 1,...,Ht,t=f+ 1,...,T,

[E.45]
are feasible to all constraints in the dual problem [E.13]. A feasible solution to the dual
problem can then be defined by determining a value for 7r(()0) [!lc 5t each node represented in
the problem such that 731, #(Mlle = 0, and 7@k = 0 are feasible to the sets of dual
composite constraints:

Lt
og]tm()o)[f]t + 7r7(11)[o]t _ WSH‘ + Z ( 7[:]t _ R}:l]:) 7rl(t2)[-]:
le=1

L
=3 (e —aQlen) 2 o, n=1,.., N, [E46]
=1

at these nodes.

Define I‘7[: ke such that:

b, o)t ulolt [o],

o if un™* > 0, n=1,..., N at nodes
Ttk = " for [¢], = (£,h;) and
0) lf/‘l"ll:':]tsoa [.]t=(t’ht)’ht=1?"'7Ht’t=t+17“"T1

and nl*l: such that:

nltle = {ne{l,...,N}ng]'ZP_[;]‘,]'=17---1N}
[o]t=(f,hf), and

_ h,t=1,...,Ht,
[o]; =|(t, he) t=t+1,...,T.

at nodes

Then,

mo = Tps,s (o], = (£ hg) and [o], = (t,he) , he =1,..., Hot = +1,...,T,

[E47]
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and 7, w2l a5 defined by equations [E.45] are feasible to the dual composite con-
straints [E.46] and thus to the dual nodal component subproblem [E.13].

(0)[e

Therefore, with 7 Je determined by equations [E.47],

£2 _ Bl 7Ok Z Z s Ol po— 1 H, [E.48]

t=t+1 he=1
establish upper bounds on each nodal component subproblem since the dual variable values

defined by equations [E.45] and [E.47] are feasible but not necessarily optimum to problem
[E-13]. Note that the upper bounds defined by equations [E.48] are independent of x(®l*lz

and can therefore be determined prior to the first decomposition iteration.
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Appendix F
Expected Mahalanobis Squared Distances

Proofs for Propositions 13 through 15 in Section 5.6.4 are given below. These propo-
l sitions establish the expected Mahalanobis sqﬁared‘ distance (MSD) values used in model
i MIMPSLP. Notational conventions and preliminary results required by the proofs are de-
‘ N ' ! I .

veloped first followed by the three proofs.

F.1 Notation and Preliminary Results

Inductive reasoning will be used in all three proofs below. Each proposition will be proven
valid for a M-variate distribution given validity for a (M — 1)-variate distribution where
M > 2. Therefore, let a (M — 1)-variate distribution be described by mean vector p =
(#1--» Har—1)  and positive definite covariance matrix Tpr—; € RM-DXM-D) Tetr =
(r1,-..,7n—1) Tepresent a random vector from the distribution and denote the covariances

in matrix X)s_; by o3, i.e.,
oij =& [(ri—mw) (rj—w)],i=1,.... M-1,j=i=1,...,M -1,
with
oi=E[(ri—p)]=oki=1,...,M~-1,

where £ is the expectation operator.
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Let the notation (v),, represent the vector of the first M elements of vector v when
the dimension of v is greater than or equal to M. Assume a new variable r), with mean
s and covariances oy = (01p, .. ., C(ar—1)0, %) is added to the distribution such that

the new covariance matrix

_ | Bma (UM)M—I]
= | O i

is positive definite. Noble and Daniel [159, problem 13 on page 39] indicate that the inverse

matrix to X,y is:

- AM_1 ) (aM)
k= M-1 | 2
M [ (aM)§u_1 apMmMm [F:2]

where Ajs_; € RM-DXM-1) and ay, = (aypy, . . ., apag)’ such that:
a 1 [F.3a]
MM = - , X
‘7%/! - (UM);VI—l 2Ml—1 (oM)p1
(@) pr-1 = —CnmByr_g (Ondprs > | [F:3b]
_ 1
Ay = EM,I_I + — (aM)M_l (aM);W_l . [E.3c]
apmM

The MSD, Mg, (v, w), for two vectors v € R™ and w € RM associated with the
new M -variate distribution can then be written in terms of Msx,,_, ((v) M1 (W) M—l) and
three constant terms. First, the definition of MSD established by equation [5.57] on page
216 yields:

Mg, (v,w) = (v-w)Z} (v-w).
Equation [F.2] then implies that:

Apot (a)yy ] [ (v — W) }

Mz, (v, w) = [ (v— W);W—l (vm — wy) ] (aM)ZVI—l apmm (var —wpr
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which equates to:
Mz, (v,w) = (v-— W)3\4_1 Ay (v - W>M_1 +(v— w)3\4-—1 (aM>M—1 (vp — wr)
+ (var — war) (@m) yyy (V = W) pr_y + (var — war) anens (Vi — wir) -

Replacing A M—1 with the equivalent expression from equation [F.3c] and combining the

middle two terms results in:

Mg, (v,w) = (v— W);w—l 2;/11—1 (V—=W)p1

(v = W1 (ane)pgr (Ba) by (V= Wpgs

apMmM

+2 (’UM - ’lUM) (aM)QVI_l (V — W>M—1 +apym (’UM - wM)2 .

The first term in the last equation above is equivalent to Ms,,_, ((v)7_1, (W)p_y) im-

plying that:

Mg, (v,w) = MEM—; ((V)M—1 ) <W>M—1) + [(V - W)IM—I (E’lM>M—1]2

apMM

+2 (vy — wiy) (aM>;\4—1 (V= W)y + anene (v — "UM)z-

Finally, expanding the inner products in the middle two terms and squaring the results of

the expansion of the second term yields:

Mgz, (v, W) = Msg,,_, (<V>M—1 J <W>M—1) [F4]
1 M-1 M-2 M-1
+ a,an (’Um — wm)2 +2 Z Z aiMa;M (’U,; - ’U),,) (’Uj - ’lUj)
AMM | T i=1 j=itl
J
M-1
+ 2 Z AmM (’Um - wm) (’UM — wM) + apnr (’UM — ’lUM)2 .
m=1

Equation [F.4] is referenced by each of the three following proofs.
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F.2  Proof of Proposition 13

Proposition 13 on page 218 is reproduced below. The proof follows the reproduction of the
proposition.
Proposition 13 Let v € RM be a random vector from a M-variate distribution with

mean vector p € RM and positive definite covariance matrix Iy € RM*M | Then,

£ [MEM (V’ ”’)] =M

Proof Proposition 13 is clearly true for M = 1 since

£ Mz, (v,)] = € [(v— ) B0 (0= )] = o5& [0~ )] = 5 =1

where 3, = [0?]. Assume the proposition is true for M — 1 where M > 2. Then, equation

[F.4] with w = p implies that:

& [MEM (v, l“')] = [MEM 1 (( )M—l y (1) M—l)]
aMM L; aan )2
M-2 M-1
+2) > amajn (v — ) (v — #j)]
i=1 j=i+l

+2¢ [Z @t (Vm — fm) (Vs — .U'M):l + ap€ [(var — par)’] -

m=1
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The induction assumption implies that £ [Mz,,_, ((V);_1, {(##)ys_1)] = M — 1 s0 that:

M-2 M-1
8[M2M (V,p,)] = M_1+a'MM (Za’ MU +2Z Z azMaJMUzJ>

= =1 j=i+1l
M-1
2
+2 E AmMOmM + AMMOT -

m=1

Writing the first term on the second line of the last equation above as two summations and

regrouping terms yields:

M-1 ,
£ [MEM (V, [J,)] =M-1+ (Z AmMOmM + aMMO'ﬁ,I) ‘ [FS]
m=1
M-2 M-1
+ Z OmMOmp + —— (Z G +2D Y azMaJMUz])
m= 1=1 j=i+1

Set k equal to the sum of the terms on the second line of equation [F.5],
M=-2 M-1
k= Z MO mM + — (Z amMa +2 Z Z azMagMUzj> [F.6]
m=1 m=1 i=1 j=i+1

and set k equal to the second term in the enclosed portion of the expression for k,
M-2 M—1
k=2 Z a,-MajMaz-j.
i=1 j=itl
Figure F.1 illustrates the expansion of the expression for k. Note that the expansion has
been written on M — 2 lines corresponding to the indices of the outer summation term and
M — 1 columns where ’k =" is the first column. Line numbers correspond to the first index

on the covariance terms (i.e., the 7 in 0i;) while column numbers correspond to the second

index. Figure F.1 indicates that the expansion for & can be equivalently expressed as the
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k = 2a,,a,,00 +2a,y 0,y O3+ + 20,8, 0y +- 203,054, Oypgg)  + 284 %0 1 Oyagy)

+28y 830 O3+ + 28500, 0y +0+ 2ay, Ay-2uOam-2) + 28, )31 a1

+ 2a( s Oyt 2a( i m-2m Oi-ym-2) T 2a( (-1 C(i-1)(p-1)

28044 330V 1-200 O u1-3y 11 -2) T 2F1-3y Kaa-1ys Ot -3yp1-1)

+ 28 2411 O —2)(M-1)

Figure F.1: Double Summation Expansion
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sum of two double summations since each term in the figure is multiplied by two:

M-2 M-1 M-1j-1
k= Z Z AiM QM O i + Z ZaiMajMO',;j. [F7]
=1 j=i+1 j=2 =1

The first double summation in equation [F.7] incorporates one complete set of terms
where the inner summation includes all terms in lines ¢ = 1,...,M — 2 of Figure E.1.
The second double summation in equation [F.7] incorporates the remaining complete set
of terms where the inner summation includes all terms in columns i =2,...,M - 1.

Equation [F.7] can be rewritten by swapping indices in the second double summation: -

M~2 M-1 M-1 i-1
E § aipMaiMOi; + E E QM AN O i ‘ [F.8]
1 j=i+l i=2 j=1

Then note that the upper limit on the outer summation in the first double summation in
equation [F.8] can be increased by one since the inner summation will have no terms when
t = M — 1. Similarly, the lower limit on the outer summation in the second summation in
this equation can be decreased by one since the inner summation will have no terms when

1 = 1. Therefore,

M-1 M-1 M-1 i-1
k= A;iMA; MO 5 + § § AiMA5M O jis
=1 j=i+1 =1 j=1

which implies that:

M-1
k: = Z (17374 lz CLJMO'J,, Z ajMO'-,;j] . ‘ [F9]

i=1 j=i+1

The expression for & in equation [F.6] can then be rewritten as

M-1 m—1 M-1
_ amM 2
= aMMamM+amMam+ E ajMa]-m+ E QiMOmj | »
j=1 J=m+1
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or as
M1 -1 M-1
mM 2
k= E - ;MO jm + MOy, + E A;MOmj + AMMOTmM | [E.10]
m=1 MM |55 j=mt1

after rearranging terms. Then, since 0,m; = 0jm, the indices on the covariances in the last

two terms of equation [F.10] can be reversed yielding:

M1 -1 M-1
mM 2
k= E - E ;MO jm + OmMO,y, + E QMO jm + AMMOTMm | » [F.11]
m=1 MM |5 j=mt1 :

Now note that the term in brackets in equation [F.11] is zero forallm = 1,... M — 1 since

m—1 M-1

Z ajMajm+amMa,2n+ Z ajMajm—i—aMMO'Mm = aﬁw (EM).m = (EX/II)M. (EM).m = (.
j=1 j=m+1

In other words, the bracketed term in equation [F.11] is zero foreachm = 1,...,M — 1
since this term is the inner product of row M from £} and column m from Xy, with
m# M.

Therefore, k = 0 and equation [F.5] can be simplified to:

M-1
E[MEM (V,p,)] =M-1+ (Z amMO'mM+aMM0'12W> . [F].Z]

m=1

Then note that the enclosed term in equation [F.12] is one since this term is the inner

product of row M from X7} and column M from 3 M

M-1
Z AmMOmM + aMMO'?VI = a,M (EM)QM = (EX/})M. (EM).M = L.

m=1

Hence,
E Mz, (v, )] =M —1+1=M,

and Proposition 13 has been proven valid by induction. B
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F.3 Proof of Proposition 14

Proposition 14 on page 218 is reproduced below. The proof follows the reproduction of the
proposition.

Propositioh 14 Let ¥ € RM be the average random vector for a random sample of
size L drawn from é M-variate distribution with mean vector p € R™ and positive definite

covariance matrix 3y € RM*M _ Thep,

€ [MEM (‘7: I'l')] =

14

M
L

when sampling is performed with replacement if the distribution population is discrete.

Proof Letvl),l=1,...,L,be the random vectors in the sample such that

1 L
V= ZZZV(Z)
=1

Proposition 14 is clearly true for M = 1 since ¥ = v = v implying that
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where ; = [0?]. Assume the proposition is true for M — 1 where M > 2. Then, equation

[F.4] with v = ¥ and w = p implies that:

S[MEM (‘_’a IJ')] = & [MEM— (<—>M 1’<"">M 1)]

e

aMM m=1
M-2 M-1
+23 > amain (3 — ) (35— #,-)]
i=1 j=itl
+2& [Z A (T m) (Tar — yM)] + annm€ [(On — #M)2] .

The induction assumption implies that £ (Mzrey ((Frr s () pro)] = 252 so that:

£ M, (V)] = L+ Afdz (O — )]
Iz \Y L aym M el mM m T fm
9 M-2 M-1
+aMM ; J_ZH:_I a-LMaJMS [(Uz y’z) ( y’.’l)]

+2 Z amp€ [(Om — 1) (Baz — tiag)] + anene€ [(Onr — 113)?]

or,
M M-~1
& [Ms,, (F,1)] = + aZ [ — 20, (Um) + p2)] [F.13]
m=1
2 M-2 M-1
ain@n [€ (B0;) — pi€ () — 1€ (T5) + patsy)

M-1

+2 ) amyt [€ (OmTpr) — tarE (m) — tinE (01) + Lenting]
m=1

+apm [8 (1_)12‘,1) - 2upE (17M) + [L}‘Zw] .
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Since & (U,) = p,, forallm = 1,..., M, expectations of the form £ (%;7;) must be

evaluated in order to simplify equation [F.13]:

L L
£ (v:3;) = % Y S e (vg“>v§‘f)) . [F.14]

Expectations in the double summation in equation [F.14] may be evaluated with the well

known formula (e.g., see Lindgren [132, Section 4.7, equation (1)]):
& (vivg) = 035+ & (v;) € (v;).

Lindgren [132, Section 7.1] states that random vectors v | = 1,..., L, are independent
and identically distributed since they are from a random sample. Then, since the covari-
ance between two independent random variables is zero (see Lindgren [132, Section 4.7,

Theorem 19]):
oij + € () € (v5), L=l

EW)E(v;), L#l

£ (’U.gli)’v_glj)) —

Equation [F.14] can now be simplified to:

L L
& (v5;) = L2 Z[a,,+8 v;) € (v5)] +ZZS v;) € (v;)
1=1

li=11l;=1

Gt
L2 [LO-‘U + Llu’zy’] + L (L y’uu’]]
_ 1
£ (v:9;) = T4 T Bty [F.15]
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Equation [F.15] is used to reduce the terms in equation [F.13] that involve expecta-

tions as follows:

E (o7) = 20m () + 4y = F0%+ pl, — 2p% + i,

o _ _ 1
€ (0:05) — p;€ () — € (3;) + Bitti = T4 + ity — 25+ pp

1
'ZUij,

o _ _ 1
€ (UmOy) — pag€ Om) ~ b€ (Ona) + Pombiag = FOmM + Prafias = 2Wmbiag + Hmbhg

1
- Zo.mM7

_ _ 1
€ () — 2marf (Onr) + iy = O+ iy — 2y + iy

1
= ZO'?W
Therefore, equation [F.13] can be rewritten as
M _ 1 M-1 M-2 M-1

&M v,u1) = o2 + aiMA5MO 35
(M, (5,40 * o St g 3 3 oo

M-1

1 2
7 Z AmMOmM + 7 OMMT s
m=1

or after writing the first term on the second line of the above equation as two summations

and regrouping terms,

£ M, (¥, )] = 7

M—
M-1+ (Z M Ommr + aMMa§W> [F.16]

m=1

M-2 M-1
+ZamM0mM+— (Z amMa +2 Z Z azMa]Maz])} .

i=1 j=i+l
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Now.note that the bracketed term in equation [F.16] is the same as the right-hand-side

of equation [E.5] on page 404 implying that:

£ [MEM (‘_” l'l‘)] ==£ [MEM (Va l-l')] .

1
L

Proposition 13 then implies that:

b

£ Mz, (7,m)] =

and Proposition 14 has been proven valid by induction. B

F.4 Proof of Proposition 15

Proposition 15 on page 219 is reproduced below. The proof follows the reproduction of the
proposition.

Proposition 15 Let ¥ € RM be the average random vector for a random sample of
size L drawn from a M -variate distribution with mean vector . € R™ and positive definite
covariance matrix 3y € RM*M_If v is a representative vector from the random sample,

then
£Ms, (v,9)] = —=M,

when sampling is performed with replacement if the distribution population is discrete.

Proof Letv® I=1,..., L, be the random vectors in the sample such that
| L
= — ®
V=7 ; v,
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and let v be a representative vector from the sample. Proposition 15 is clearly true for

M = 1since 7 = v¥) = v implying that
£ Mz, (0,0)] =€ [(v-0) B (v—1)] = 5E [(v—v)"] =5 =0

where 3; = [0%]. Assume the proposition is true for M — 1 where M > 2. Then, equation

[F.4] with w = ¥ implies that:

£ [MEM (V,\_’)] = £ [MEM 1 (( )M 1 <->M— )]

e

aMM
M-2 M-1
+2 Z > aagn (v — ) (v —'l')j)]
1 j=i+1
+28 Z ClmM (’UM b ’UM):| + CLMMg [('UM et ’l_)M)z] .

The induction assumption implies that € [Ms,,_, ((v)3_; (¥)y_1)] = 2+ (M ~1) s0

L
that:
o\ L-1 1 9
E Wz (9] = == (M =1+ 2 ) Z @i [(om — Um)’]
9 M-2 M-1
) 8 — U;
aMM 21: J;l AiMAiM ;) (v; — ;)]
M-1
+2 Z amMé' — ’l7m) ('UM — ’l_)M)] + apmé [(’UM — ’l7M)2] s
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(0
£ [Msy, (v,9)] = 22 (M - Za w [€ (42) = 26 (omtm) + £ (2)]
M L aMM i
[E.17]
9 M-2 M-1
aMM ; J;l azMaJM 'Uz'Uj) - (1—)in) - & (’Ui’l_)_—,') +& (’l—)i’l_)j)]
M-1
+2" Gt [€ (Umvar) — € Omvnr) — € (VmBaa) + € (BrnB2)]

m=1 .

+apm [5 (’012‘,!) —-2¢ (’UM’l_)M) + & (/D.JZM)] .

Since equation [F.15] can be used to evaluate expectations of the form £ (7;%;), evaluations

of expectations with the form £ (v;7;) are necessary to simplify equation [F.17]:

£ (viB;) = i ( “)) [F18]

A

Then, since v is a representative vector from the sample, there exists [ such that 1 <ILL
and v = v( ) Remarks in the previous section show that vectors vD | = 1,...,L, are

independent and identically distributed so that:

o+ EW)E (vy), 1=1

-

E (v,-vj(-l)> —

E(w)E (), 1#L
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Equation [F.18] can now be simplified to:

L
_ 1
€ (vity) = 7 |05 +E ()€ (v5) + D E)E (v;)
‘ P
1
= 7 (Lo + paps + (L — 1) papss
_ 1
& (’U,;’Uj) = ZO‘-,;J' + b [E.19]

Equations [F.15] and [F.19] are used to reduce the terms in equation [F.17] that in-

volve expectations as follows:

1
£ (v2) ~ 26 (o) + € (%) = orfn+ufn—2(%afn+ ufn>+zorfn+,ufn

= —0

L ™
_ _ o 1 1
€ (viv;) — € (Dv;) — € (vily) + € (B:0;) = 045 + pyp; — 2 (f%‘ + /‘l'z'tu’j) SN ACRE T
L-1
= —L—Uz’j,
E (Vmup) — € (Umupr) — € (UmBpr) + € (TnByy) =

1
OmM + mby = 2 (Z“’”M + umuM>

1
L—-1

L amM ]

€ (vis) — 2€ (vmur) + € (V%)

1 1
O + by — 2 (za?u+u?u> + T + B
L-1
A
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Therefore, equation [F.17] can be rewritten as

£ Ms,, (v,¥)] = 52—1( * o D Z @ong [€ (V2) = 2€ (vmim) + € (2)]
9 M-2 M-1
+ P ; j§1 QiMOiM [8 (vz-'vj) - & (’l_)i’l)j) - & (’l)i’l_)j) +& (’l—)i’l—ij)]
M-1
+2  amy [€ (Vm¥n1) — € BmVar) — € (UmBn) + € (BmBia)]

+ anpag [€ (v2,) — 26 (vaenr) + € ()]

L-1 2(L——1) —
& Mg, (v,¥)] = M-1)+ aZ 02 + —= aipMaip 0
[ EM( )] L ( aMML Z M aMML ;];1 MWiA U445
2(L—-1 L-1
+¥ Z AmMOmM T i aMMO'%/p

m=1

or after writing the first term on the second line of the above equation as two summations

and regrouping terms,

M-1
L-1
& Mg, (v,¥)] = 5 [M -1+ (Z AmMOmM + aMMafw> [E20]
m=1
M-2 M—-1
+ Z AmMOmM + _— (Z a Ma +2 Z Z azMa]MaU)jl
m=1 m= i=1 j=i+1

Now note that the bracketed term in equation [F.20] is the same as the right-hand-side
of equation [E.5] on page 404 implying that:
_ L-1
£ [MEM (v,9)] = —L—g [MEM (v, )]
Proposition 13 then implies that:
EMs,, (v,¥)] =——M,

and Proposition 15 has been proven valid by induction. B
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Two-Stage Decomposition Graphics

~

This appendix contains graphs illustrating the CPU times required by two-stage de-
composition procedures to achieve selected relative tolerance values. Each figure corre-
sponds to one of the multiple period problems described in Section 6.1.2 and listed in
Table 6.3 on page 231. Note that problem P5-Large is not represented by a figure since
this problem could not be solved with two-stage decomposition methods.

Each figure has a curve representing required CPU time versus relative tolerance
. for each decomposition method that was appligd to the applicable problem. Time units
are shown as part of the 1abefs for tﬁe vertical axes. Relative tolerance values are shown
decreasing from left’to right in a logarithmic. scale along the horizontal axes. The figures

are listed below in their order of appearance.

Figure G.1: DWD(7.1.2) and LSD(7.1.2) applied to problem P2-Small.
Figure G.2: DWD(7.1.2) and LSD(7.1.2) applied to problem P2-Medium.
Figure G.3: DWD(7.1.4) and LSD(7.1.4) applied to problem P2-Large.

Figure G.4: DWD(7.1.2), DWD(7.2.2), LSD(7.1.2), and LSD(7.2.2) applied to prob-

lem P3-Small.

Figure G.5: DWD(7.1.2), DWD(7.2.2), LSD(7.1.2), and LSD(7.2.2) applied to prob-

lem P3-Medium.
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Figure G.6: DWD(7.2.2) and LSD(7.2.2) applied to problem P3-Large.

Figure G.7: DWD(7.1.2), DWD(7.2.2), DWD(7.3.2), LSD(7.1.2), LSD(7.2.2), and

LSD(7.3.2) applied to problem P4-Small.

Figure G.8: DWD(7.2.2), DWD(7.3.2), LSD(7.2.2), and LSD(7.3.2) applied to prob-

lem P4-Medium.
Figure G.9: DWD(7.2.2) and LSD(7.2.2) applied to problem P4-Large.

Figure G.10: DWD(7.2.2), DWD(7.3.2), DWD(7.4.2), LSD(7.2.2), LSD(7.3.2), and

LSD(7.4.2) applied to problem P5-Small.

Figure G.11: DWD(7.3.2) and LSD(7.3.2) applied to problem P5-Large.
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Figure G.1: Two-Stage Decomposition Times for Problem P2-Small
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Figure G.4: Two-Stage Decomposition Times for Problem P3-Small
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Figure G.6: Two-Stage Decomposition Times for Problem P3-Large

Bounds' Gap Relative Tolerance

424




CPU Time (Minutes)

Appendix G Two-Stage Decomposition Graphics

350 1 1 1 1 1 ) 1
-©- DWD(.1.2)
“B- DWD(.2.2)
- DWD{F.3.2) ,.G-—-—-—-{-)—?
—A- LSD(F.1.2) P
30 - LSDF.2.2) A -
—>- LSD({.3.2) fé
K]
/7
/
250+ 7y i
s
/
fg(f
o F
200 & i
£
g,
!y
i
!
150 |- 7 -
¥
it
.
f
100 | /gf i
7 g
7 B ¢
50 - e gl o — S
— R R Sl
’Q_p.’_‘é—/—-ﬂ-—_&_—— it
»»/—;:5"" _g————— 8
- ~—
_ T
_E_ 1 1 1 | i ;)
1 1E-1 1E-2 1E-3 1E-4 1E5 1E6 1E-7

Bounds' Gap Relative Tolerance

Figure G.7: Two-Stage Decomposition Times for Problem P4-Small
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Figure G.8: Two-Stage Decomposition Times for Problem P4-Medium
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Figure G.9: Two-Stage Decomposition Times for Problem P4-Large
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Figure G.10: Two-Stage Decomposition Times for Problem P5-Small
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Figure G.11: Two-Stage Decomposition Times for Problem P5-Medium
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Appendix H
Acronyms

* Table H.1: Acronyms

| Acronym | Description Chapter” |  Page® |
BF backwards first 4 145
CPU central processing unit 4 152
CVF Compaq Visual Fortran 5 205
DEP deterministic_equivalent problem 2 20
DWD Dantzig-Wolfe decomposition 1 3
FF fast forward 4 145
FFFB fast forward-fast back 4 144
GLP grand linear program 2 22
GUI graphical user interface 5 208
LpP linear program 2 21
LSD L-Shaped decomposition 1 4
MDPCA myopic dual-primal cycling algorithm 4 153
MIMPSLP¢ | market investment multiple period stocastic linear program 5 164 and 206
MPS mathematical programming system 1 6
MSD Mahalanobis squared distance 5 216
PWL piece-wise linear 5 168
RAM random access memory 4 157
RMP? relaxed/restricted master problem 3 47 and 77
RMP-SUB?¢ | relaxed/restricted master problem-subproblem 4 119
SLP stochastic linear program with recource 2 22
SUB subproblem 3 47

Chapter number where first defined
Page number where first defined

Bold text for the model or italic text for the code library

First letter represents relaxed for LSD or restricted for DWD

Dual purpose problem at a node in the intermediate stage of a nested decomposition procedure
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