130 research outputs found

    Auditory Self-Motion Simulation is Facilitated by Haptic and Vibrational Cues Suggesting the Possibility of Actual Motion

    Get PDF
    Sound fields rotating around stationary blindfolded listeners sometimes elicit auditory circular vection, the illusion that the listener is physically rotating. Experiment 1 investigated whether auditory circular vection depends on participants\u27 situational awareness of "movability", i.e., whether they sense/know that actual motion is possible or not. While previous studies often seated participants on movable chairs to suspend the disbelief of self-motion, it has never been investigated whether this does, in fact, facilitate auditory vection. To this end, 23 blindfolded participants were seated on a hammock chair with their feet either on solid ground ("movement impossible") or suspended ("movement possible") while listening to individualized binaural recordings of two sound sources rotating synchronously at 60 degrees. Although participants never physically moved, situational awareness of movability facilitated auditory vection. Moreover, adding slight vibrations like the ones resulting from actual chair rotation increased the frequency and intensity of vection. Experiment 2 extended these findings and showed that nonindividualized binaural recordings were as effective in inducing auditory circular vection as individualized recordings. These results have important implications both for our theoretical understanding of self-motion perception and for the applied field of self-motion simulations, where vibrations, non-individualized binaural sound, and the cognitive/perceptual framework of movability can typically be provided at minimal cost and effort

    Future challenges for vection research: definitions, functional significance, measures, and neural bases

    Get PDF
    This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment). However, vection is increasingly being used to also refer to non-visual illusions of self-motion, visually-mediated self-motion perceptions, and even general subjective experiences (i.e. feelings) of self-motion. The common thread in all of these definitions is the conscious subjective experience of self-motion. Thus, Challenge 2 (Significance of Vection) tackles the crucial issue of whether such conscious experiences actually serve functional roles during self-motion (e.g., in terms of controlling or guiding the self-motion). After more than 100 years of vection research there has been surprisingly little investigation into its functional significance. Challenge 3 (Vection Measures) discusses the difficulties with existing subjective self-report measures of vection (particularly in the context of contemporary research), and proposes several more objective measures of vection based on recent empirical findings. Finally, Challenge 4 (Neural Basis) reviews the recent neuroimaging literature examining the neural basis of vection and discusses the hurdles still facing these investigations

    Auditory Induced Vection: Exploring Angular Acceleration Of Sound Sources

    Get PDF
    Vection designa a terminologia para self-motion illusions. Um exemplo comum para esta sensação é quando se está sentado num comboio parado e, ao lado do mesmo, outro comboio igualmente parado começa a marcha, dando a sensação que é o comboio do observador que se move.Apesar de esta sensação estar maioritariamente ligada ao estímulo visual, estudos demonstraram que é possível induzir vection através do sistema auditivo.Grande parte dos estudos relacionados utilizaram reprodução binaural, devido à sua eficácia na indução desta ilusão de movimento. Neste estudo propomos estudar os efeitos da aceleração angular na indução de vection auditivo, através de um sistema multi-canal de 8 colunas dispostas em círculo.Vection effect is the body movement sensation, when there is no movement occurring. The main example given for this vection sensation is when someone is sitting in a stationary train and another train starts moving alongside of the stationary train where the perceiver is, providing an illusion of movement. Although this sensation is mostly associated with the visual system, studies demonstrated that brain has a movement-sensitive area in the auditory cortex and that it is possible to induce auditory vection.Related studies uses binaural reproduction, which has been shown to be effective on AIV. However, in this project, we aim to test factors of angular acceleration reproduced by an 8 speaker array, circularly disposed

    Moving Sounds Enhance the Visually-Induced Self-Motion Illusion (Circular Vection) in Virtual Reality

    Get PDF
    While rotating visual and auditory stimuli have long been known to elicit self-motion illusions (“circular vection”), audiovisual interactions have hardly been investigated. Here, two experiments investigated whether visually induced circular vection can be enhanced by concurrently rotating auditory cues that match visual landmarks (e.g., a fountain sound). Participants sat behind a curved projection screen displaying rotating panoramic renderings of a market place. Apart from a no-sound condition, headphone-based auditory stimuli consisted of mono sound, ambient sound, or low-/high-spatial resolution auralizations using generic head-related transfer functions (HRTFs). While merely adding nonrotating (mono or ambient) sound showed no effects, moving sound stimuli facilitated both vection and presence in the virtual environment. This spatialization benefit was maximal for a medium (20 degrees × 15 degrees) FOV, reduced for a larger (54 degrees × 45 degrees) FOV and unexpectedly absent for the smallest (10 degrees × 7.5 degrees) FOV. Increasing auralization spatial fidelity (from low, comparable to five-channel home theatre systems, to high, 5 degree resolution) provided no further benefit, suggesting a ceiling effect. In conclusion, both self-motion perception and presence can benefit from adding moving auditory stimuli. This has important implications both for multimodal cue integration theories and the applied challenge of building affordable yet effective motion simulators

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    Human-Computer interaction methodologies applied in the evaluation of haptic digital musical instruments

    Get PDF
    Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications
    • …
    corecore