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Abstract 
Recent developments in interactive technologies have seen major changes in the manner 

in which artists and performers interact with digital music technology; this is partly due 

to the increasing variety of interactive technologies that are readily available today. 

Computer music performers are presented with a myriad of interactive technologies and 

afforded near complete freedom of expression when creating music and sound art. In 

real-time, artists can manipulate multiple parameters relating to digitally-generated 

sound, effectively creating gestural interfaces and sound generators that have no real-

world acoustic equivalent. When presented with such freedoms of interaction, the 

challenge of providing performers with a tangible, transparent, and expressive device 

for sound manipulation becomes apparent. 

Digital Musical Instruments (DMIs) present musicians with performance challenges that 

are unique to this form of computer music. One of the more significant deviations from 

conventional acoustic musical instruments is the level of physical feedback conveyed by 

the instrument to the user. Currently, new interfaces for musical expression are not 

designed to be as physically communicative as acoustic instruments. Specifically, DMIs 

are often void of haptic feedback and therefore lack the ability to impart important 

performance information to the user. Moreover, there currently is no standardised way 

to measure the effect of this lack of physical feedback. Best practice would expect that 

there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the 

functionality, usability, and user experience of DMIs. 

Earlier theoretical and technological applications of haptics have tried to address device 

performance issues associated with the lack of feedback in DMI designs. It has been 

argued that the level of haptic feedback presented to a user can significantly affect the 

user’s overall emotive feeling towards a musical device. Previous research has also 

indicated that Human-Computer Interaction (HCI) analysis techniques can be applied in 

the development of unique and creative applications of computing technology.  

Within this thesis, a number of solutions to these problems were explored. To begin, an 

experimental tool was constructed to examine the physiological and psychological 

parameters of vibrotactile feedback. Following this, a combined audio and tactile 

experiment was conducted to further investigate the effect of multisensory feedback in 

auditory frequency detection tasks. In addition, this thesis also proposes an analytical 

framework for DMI evaluation. This framework tackles the multi-parametric nature of 
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musical interactions whilst also assessing the application of haptic feedback in DMI 

designs. Although DMI evaluation approaches exist, they do not consistently apply 

functionality, usability, and user experience aspects of technology in use as is seen 

applied in many HCI analyses. To validate the evaluation framework, an experiment 

was formulated that examined two prototype DMIs, each capable of displaying unique 

aspects of haptic feedback. 

An analysis of vibrotactile feedback was successfully conducted with the developed 

analysis tool and the parameters of vibrotactile feedback were quantified and applied to 

the design and construction of two prototype digital interfaces. The proposed 

framework of analysis was then successfully implemented, evaluating the effect of 

haptic, force, tactile, and no feedback in a functional and explorative context. The 

results of the analysis showed that although haptic feedback had no functional effect 

upon device performance, it did display a number of significant effects upon the user’s 

perception of usability and their experiences with the device. 
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Chapter 1: Introduction 

When physically interacting with the world around us, deliberate actions are performed 

with the purpose of achieving some external effect. When connections with external 

objects are made, the perception of the consequences of these actions upon the senses is 

processed and the body adjusts its effectors accordingly. The senses applied in the 

perception of mechanical displacement and stimulation of the skin are not only 

internally processed, but are used to monitor the behaviour of the body and the response 

of the world around via haptic feedback. The term ‘haptic’ is also applied to machine 

feedback techniques that are capable of combining both tactile and kinaesthetic 

stimulation in response to a user’s input. As a user interacts with this type of 

technology, input gestures are captured and the device responds in return with feedback 

that adheres to the predefined biological parameters of the human body. The research 

contained within this thesis investigates the role of haptic feedback in new technologies 

for musical expression by examining the physiological parameters of feedback and 

applying Human-Computer Interaction (HCI) frameworks for the evaluation of haptic 

feedback devices applied within a digital arts domain. 

1.1 Haptic Interactions 

Haptic technology conveys information to a user by stimulating tactile and force 

receptors within the body. Haptic feedback, in its most basic form, is created by 

transducers that deliver stimulation via tactile and force feedback: tactile feedback 

excites receptors in the skin and force feedback stimulates kinaesthetic receptors deeper 

within the muscles and tendons. To further elaborate, tactile stimuli are associated with 

our sense of touch, such as the perception of different surfaces. Receptors distributed 

within our skin are sensitive to this stimulation, such as thermal receptors for 

temperature and mechanoreceptors that are sensitive to mechanical vibration, skin 

stretching, and compression. Kinaesthetic perception relates to the body’s awareness of 

its own movement. This includes information on position, velocity, and the forces 

supplied by our muscles. Receptors sensitive to this type of stimulation are located in 

the body’s muscles and tendons. Therefore, haptic feedback can be observed in devices 

that stimulate both tactile and kinaesthetic receptors in combination. Contained within 

this thesis are research methodologies that focus on the investigation of devices that 

apply haptic feedback, implemented in the domain of Digital Musical Instruments 
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(DMIs). The outcome of the investigations contained within will inform new haptic 

interface designs, update our current understanding of haptic feedback applied in DMI 

interactions, and assist in devising new methods for the evaluation of music technology. 

 

Haptic feedback in DMI applications delivers performance data that has been identified 

as missing in genres of music that require the implementation of interfaces for musical 

expression, as expressed by Castagné et al. [1]. This communicative technique has been 

acknowledged as embracing an enactive approach to human computer interface design 

and provides the end user with tactile and kinaesthetic stimulation relating to the 

operation of the device in a musical context [2]. When musicians interact with musical 

instruments, they apply their extensive training and experience to execute performance 

related actions, activities that aim to achieve a musical outcome. Throughout the 

musical process, the musician embodies the role of system monitor, scrutinising the 

instrument’s behaviour and adjusting performance actions accordingly. This creates a 

control loop system where the musician directly monitors the output of the instrument 

and the information feedback is used to control or adjust their input gestures in relation 

to this information, see Figure 1.1. DMIs designed to incorporate haptic feedback 

provide the user with continuous information relating to electronic and/or computer-

generated sound produced by the instrument and completing the feedback required for a 

stable closed-loop system. 

Digital music controllers that do not incorporate haptic feedback information bring 

about a divide, or disconnect, between musician and the musical devices used in 

Figure 1.1: Basic control loop for musical instrument interactions. 

User Instrument

Feedback
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contemporary compositions [3]. The relationship between the performer and the 

performance medium presents itself lacking in both form and engagement. Specifically, 

near motionless performances can be observed in some types of laptop music and the 

relationship between the sounds created and the interactions of the performer appear 

arbitrary or the connection between both of these elements is unclear. The introduction 

of haptic DMIs in this context aims to address the divide and devise meaningful multi-

path communicative feedback for electronic musical instruments and digital controllers. 

Areas of interest in this field include performance communications that are a 

characteristic element of traditional instrument interaction and the application of sensor 

technologies that are effective for both gesture capture and machine output. The 

amalgamation of these two areas of study make it possible to map the physical 

interaction of the musician and create resultant and haptic responses that are intuitive in 

their application to the operation of the instrument and its feedback system. 

1.2 Motivation 

Advances in technology have always influenced the field of music technology, 

facilitating the modern musician’s requirement for new devices and encouraging 

creative expression. Music has a deep-rooted history of performance and a close-knit 

relationship with human interactions with musical devices. Through the use of natural 

sound generating objects, such as reeds, bells, pipes, and others, humans have made 

possible the creation of musical instruments. Traditionally, it was the limitations of the 

sound-generating device that determined the design of an instrument. However, this fact 

has never deterred the making of music from most any manmade or naturally resonant 

object. 

An example of how physical sound generation affects form can be observed in many of 

the instruments found in the classical orchestra. For example, in the collective brass 

ensemble of the classical symphony orchestra, the individual instruments of the 

ensemble changes in size determined by the frequency range produced. Examining the 

first instrument, the trumpet, and down through the pitch range of the horn section, 

tenor trombones, bass trombone and the tuba, it can be observed that the instruments 

increase in size as they advance down through the audible frequency range being 

produced. The scientific theories behind the development of brass ensemble 

instrumentation incorporate sympathetic vibration of air in tubular resonator principles. 

This pattern of instrument size augmentation for frequency range and altered timbre can 

be observed in most orchestral instrumentation groups. However, these relationships are 
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no longer apparent when observed in the field of electronic and digital musical 

instruments. 

With the discovery and widespread application of electricity in the early part of the 20th 

century, the number of new mediums for sound generation increased. This relationship 

can also be observed between the increasingly complex progressions made in 

communication sciences. It is apparent that the relationship between developments in 

the field of music technology and advances in many other areas of study can be also be 

mapped, such as materials science and software development. The majority of early 

electronic musical instruments were keyboard based, drawing upon the universal 

success of acoustic instruments such as the piano and harpsichord. Notable exceptions 

that deviated from this design principle are instruments such as the Theremin [4] and 

other instruments that made use of gesture sensitive inputs to control timbre, pitch, 

and/or volume. Another example would be the Trautonium [5], which operated via a 

touch sensitive strip across its length. Of the keyboard-based instruments, advancements 

in functionality were achieved via increasing the devices sensitivity or manipulation 

through the development of additional knobs and buttons, for example, the Ondes 

Martenot [6] and the Electronic Sackbutt [7]. 

It was the designers of early electronic instruments that pioneered the idea of utilising 

the limitations of the user as a design restriction rather than the limitations of the 

physics behind sound generation. Instrument designers became part performer, 

composer, and engineer, creating an interdisciplinary subject embracing many different 

fields of study. Modern mediums of sound generation and control have given inventors 

and musicians unlimited freedom in capturing the nuances of performer movement and 

transforming this into music. For the greater part of the development of electronic music 

controllers, the keyboard, with a number of control knobs, has dominated the interface 

market. Despite the ascendance of the Musical Instrument Digital Interface (MIDI) 

keyboard, many performance tools do not adhere to this model. With the availability of 

multiple sensors increasing exponentially, there is a wide variety of off-the-shelf gesture 

sensing devices available. 

With the development of increasingly sophisticated sound synthesis techniques, the 

frequency and timbre of sounds produced by a sound generator are far less clear than in 

an acoustic instrument; new musical interfaces take the form of most anything 

imaginable. Acoustic instruments are limited by the physics of sound generation and the 

interaction required to produce sound. In contrast, the relationship between input 
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gesture and sound generation with contemporary sound synthesis controllers can be 

ambiguous. The removal of sound generation from gesture interface has created a 

requirement for new gesture capture devices to control these new sound sources. Since 

the nineteen fifties, a broad range of sound synthesis techniques have been developed 

along with ever more elaborate methods of interaction being refined with them. These 

systems afford composers and performers with the tools required for real-time 

manipulation of multiple parameters. Modern sound synthesis engines are no longer 

restricted by the shape, size, or material of the medium of sound generation employed, 

but are capable of high fidelity sound reproduction and the creation of sounds that 

would have been near impossible or impractical to produce before. 

DMIs have very few limits and the potential design possibilities are vast. Beyond 

musical performance, in devices that operate on a one-to-one interaction, new musical 

instruments are also encompassing other jurisdictions of musical composition. Artists 

may become proficient in the use of a singular instrument or they may choose to 

become the master of a multi-instrumental controller. Musicians may concentrate all of 

their efforts into increasing their skill in playing a stand-alone instrument or they may 

choose to master the control of multiple sound sources through digital manipulation. A 

performer can have a direct influence on an installation or live recital, becoming a 

unique and often difficult to control aspect of a performance. Beyond the musician, 

performance itself has also changed. The musical medium is no longer a static 

performance, as a single musician or ensemble on stage, it moves beyond this. It can be 

inclusive of the movements of a dancer, a dance troupe, or even the audience itself. The 

inclusion of multiple free movements into music production paves the foundations for a 

more expansive interaction. 

1.3 Scope of Thesis 

Following in the footsteps of the earlier pioneers, within this thesis, single-player 

instruments are focussed upon. The concepts of one-musician-one-instrument will be 

described and thoroughly explored; however, it must also be acknowledged that the 

effects of haptic feedback may reach further than this. During a musical performance, 

the performer is communicating to the audience some thought or ideal through their 

compositions or arrangement. This may also be true for indirect interactions with haptic 

DMIs. In this circumstance, the audience may be affected in some way when watching 

someone perform with a haptic DMI as opposed to a non-haptic one. In the research 

presented herein, it is the effects of feedback upon the performer that will be focussed 
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upon. By understanding the effects of feedback in this context, we can start to gather a 

greater understanding of the role of haptics in performances that operate on a gesture-to-

gesture basis and in future work the effects of instrument physicality may also be 

explored. 

Outside of the context of this study, a gesture is a movement of the body that is used to 

express an idea or an encoded message that contains some meaning to the recipient. 

Gestures form part of the non-verbal communication channels that humans construct to 

compose wordless modes of expression, messaging, and meaning. In the field of HCI, 

gestures usually originate from the movement of the hands. These intentional 

movements or gestures are captured and interpreted via hardware and mathematical 

algorithms; these then create some form of predefined reaction within the system. The 

application of gesture recognition in HCI requires the operator to perform some task 

that makes use of natural manipulators, such as the hand, and communicate these 

movements to a machine that will in turn control some predefined function contained 

within [8]. 

There are several accepted methods of categorising gestures; however, Quek proposed a 

modified version of the taxonomy in 1994, see Figure 1.2 [9]. The movements of a hand 

or arm are first categorisation as unintentional and intentional movements. As 

unintentional movements convey no further information, they can be ignored. However, 

intentional hand or arm movements can be interpreted as meaningful gestures, which 

can display two modalities. Gestures that manipulate refer to intentional movements 

that are applied to move an object in an environment (such as moving a mouse), and can 

therefore be ignored in the context of gesture recognition in hands-free applications. 

Hand/Arm Movements

Intentional Movements Unintentional Movements

Manipulation Communication

Actual Symbolic

Deictic ModifierMemetic Referential

Figure 1.2: Taxonomy of hand gestures in HCI, adapted from 
Quek (1994) [9]. 
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Movements that intend to communicate some form of information are purposeful and 

can therefore be applied to convey information to an interface device. Communicative 

movements can be used to send information via movements that relate to the 

interpretation of the movement as actual or as symbolic movements. Actual movements 

are either memetic (imitating an action) or deictic (pointing to an object). Symbolic 

movements are referential (referring to an object or action) or modifiers that accompany 

speech and the gesture supplies additional information. 

In computer music, virtually any gesture can be captured and translated into a control 

signal. In the application of DMIs, these gestures are often used as a control source for 

complex sound synthesis modules. With the separation of interface from sound source, 

new musical devices are afforded near endless freedom of form. However, they are 

becoming unrecognisable, as the gestures captured by a device do not require 

resemblance of anything ever applied before. Furthermore, the augmentation of existing 

musical instruments that extend their sound generation beyond recognition can be 

observed. This is achieved through the addition of sensors to traditional musical 

instruments that increase the functional abilities of the instrument in some way. The 

multiple combinations of these styles of interface design have protracted the 

performance techniques that musicians are afforded in performance. This can be 

observed in the increased popularity of DMIs in contemporary music, as they have been 

embraced and accepted as a new means for artistic expression. 

Figure 1.3: Acoustic musical instrument feedback loop. 

User

Feedback

Intention Gesture

Instrument
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Visual
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Gestural
Interface

Sound
Generator
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A model of a musical interface, based upon the playing principles of an acoustic 

instrument, can be seen in Figure 1.3. Both artist and instrument can be observed as two 

separate entities that are independent of each other [10]. The link between user and 

instrument mediates between the components contained within. The relationship 

between these two modules is realised through gestures made and gestures captured. 

The musician or artists are independently providing the intention (attained through 

training and previous experience) and the gestures for capture by the interface. The 

instrument captures physical interactions and processes them into control data. The 

sound generator makes use of the data collected from gestures captured by applying 

control parameters to a physical sound generating design. The physical separation of 

these modules is impossible to achieve in acoustic instruments, as the gesture interface 

is rarely removed from the sound source. DMIs allow us to separate the user from the 

instrument, permitting us to rethink the relationships formed between the two. For 

example, a gesture can be made and the sound generated varies in some way; however, 

the gesture does not necessarily have to relate to a control change in the sound 

generator, as it may also convey performance information that is not audible. 

What has become apparent from such observations is that whilst performers have been 

given absolute freedom of movement in gesture capture, they have at the same time 

eliminated a key feedback channel of information through which they can measure the 

response of the instrument and the accuracy of their movements, Figure 1.4. In the 

realm of gesture capture, synthesis algorithms and control rate data have been separated 

from the sound producing mechanisms along with the performer. The capture of human 

User

Feedback

Intention Gesture

Instrument

Aural
Visual

Proprioceptive
Haptic

Gestural
Interface

Sound
Generator

X

Figure 1.4: Digital musical instrument feedback loop. 
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performance with such devices forces the user to rely heavily on proprioceptive, visual, 

and aural data cues or more simply put “...the computer music performer has lost touch” 

[1]. 

Technology provides musicians with a vast array of sound synthesis techniques; which 

has in itself further increased the distance between sound controller and sound source. It 

is becoming apparent that designing instruments based upon freedom of movement is 

removing musician from music. It is suggested within this thesis that the manner in 

which the human effectors (the hands and lips) control instruments and the information 

re-conveyed by the instrument being played can address the disconnected physiological 

and emotive feel of DMI interactions. 

It is difficult for DMIs to convey comparative tactile feedback to that of acoustic 

instruments, as these instruments possess a vibrating body or mechanism that provides 

feedback to the musician. In DMIs, vibrations are not produced unless there is some 

form of transducing element included in their design, such as a loudspeaker or other 

actuator. If no such design feature is present, then the feedback a performer receives is 

reduced to aural, proprioceptive, and/or visual. The removal of control surface from the 

sound generator has caused a loss in haptic feedback from instrument to musician. The 

feedback provided by electronic and digital instruments is mainly auditory through the 

sounds produced and sometimes visual via screens. Tactile and kinaesthetic feedback 

information relayed from the interface is rarely used, with the touch of a key and the 

manner in which it is pressed being the same irrespective of the sound produced. 

To quantify the importance of this feedback, it is suggested that existing research from 

the field of HCI can be adopted to apply evaluation techniques that can measure and 

quantify the various aspects of musical interactions. Addressing the element of touch 

has helped to restore the relationship between feeling and synthesis in other areas of 

technology, such as in Virtual Reality (VR). Therefore, it is proposed that HCI 

evaluation techniques that have been applied to measure interactions in these fields can 

be used to observe and quantify the same or similar elements in a DMI evaluation 

context. In doing so, a validated framework of evaluation between different interface 

technologies can be built. For example, if a device or product is attributed a System 

Usability Scale (SUS) score of 80 or a Throughput measured at 3.2 bits per second it is 

understood in HCI what these figures represent and how they are applied to compare the 

design of different devices. Other techniques, such as the Subjective Mental Effort 

Questionnaire (SMEQ), have comparative structures prebuilt into their scale. In 
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summary, acquiring data from known products or prototype devices can be useful in 

identifying and understanding relationships that may exist between them. Additionally, 

they may effectively identify any distinguishable or measurable differences between 

devices. 

1.4 Original Research Contributions 

The primary contributions of this thesis to the field of Computer Music research are 

outlined below: 

> The design and construction of an analytical tool for the investigation of 

physiological and psychophysiological parameters of vibrotactile feedback. 

> Validated vibrotactile feedback in signal detection tasks, in terms of 

vibrotactile amplitude, frequency, and timbre 

> Established the significance of concurrent auditory and tactile signals in 

pitch/frequency detection tasks. 

> The development of an analysis framework for the evaluation of interaction 

with DMIs. 

> The design, construction, and analysis of two new DMIs that incorporate 

derivatives of haptic feedback. 

> Developed a set of recommendations for the role of previous user experience 

in DMI design. 

The first contribution of this thesis was the design and construction of a vibrotactile 

research tool, one that was capable of providing continuous vibration feedback in 

isolation to the hands of a participant. The Audio-Tactile Glove was constructed and 

applied to a reductive physiological and psychophysical analysis of vibrotactile 

feedback, specifically, its role in the detection of waveform dynamics, pitch, and timbre 

data. Further to this, an investigation into the combined application of both audio and 

tactile feedback was carried out. This investigation was conducted to examine if 

multimodal stimulation can have some effect upon auditory Just Noticeable Difference 

(JND) measures. 

After exploring the effects of vibrotactile feedback, further research was carried out to 

develop evaluation techniques that could be applied to measure and quantify the 

performance of a DMI displaying derivatives of haptic feedback. This approach differed 



Chapter 1. Introduction 

 11 

from previous research in its application of HCI analysis techniques that include 

consideration of functionality, usability, and the overall user experience when assessing 

haptically enabled DMIs. Two prototype devices were developed that were capable of 

addressing the communicative divide that exists between musicians and digital 

interfaces. These devices, named “Bowls”, were then analysed by applying this newly 

formulated framework of DMI analysis, specifically highlighting the role therein of 

haptics in DMI design. Furthermore, the study applied this analysis to compare the 

Bowl devices’ feedback effect, incorporating specific derivatives of haptic feedback and 

no feedback at all. This allowed for the comparison of functionality, usability, and user 

experience data relating specifically to the individual feedback devices and the design 

techniques applied. Moreover, the context of analysis was performed in both functional 

and explorative conditions, allowing for the comparison of these two different 

approaches to evaluation. 

1.5 Outline of Thesis 

Within Chapter 2 of this thesis, the history of haptics was explored and a review of its 

application to computer music interfaces was conducted. Following this, the findings of 

existing research literature and its relation to the current work were presented. Chapter 3 

drew upon existing physiological studies that highlighted the parameters of the human 

body responsible for processing such information and its role in a musical context. In 

order to explore these concepts, a prototype research tool was developed and applied in 

three experiments. These experiments were conducted to investigate the role of 

vibrotactile feedback in a physiological context. This was then followed by a discussion 

of the potential role of vibrotactile feedback in musical interactions. In Chapter 4, a 

framework of analysis was formulated and discussed. Here, previous HCI evaluation 

techniques were examined to create a formal structure for a flexible rigorous structure 

of analysis. In Chapter 5, the newly formulated framework of analysis was applied to 

prototype DMIs (“The Bowls”), each capable of presenting derivatives of haptic 

feedback. Chapter 6 discussed the implications of these findings in providing musicians, 

composers, and musical interface designers with the methodologies that are necessary to 

accurately evaluate their DMIs and highlighted the role of previous user experience and 

haptic feedback in computer music instrumentation.
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Chapter 2: Discussion of Related Work 

This chapter contains a review of literature and previous research findings relating to 

the history and application of haptics in technology. These topics are discussed to 

provide a broader understanding of haptic interfaces and their application to instrument 

design theories. Familiarity with the subject was attained through the appraisal of 

existing theories and practices in industrial application and digital instrument design 

modelling. The studies focus on the design and use of electronic devices that can be 

applied to technology to convey haptic information to the user. The studies analysed 

relate to the history of haptics and the role haptics has played in industrial applications, 

which have ultimately lead to its inclusion in DMIs. Others highlight the importance of 

haptics in the control of gesture nuances, such as tonality, in a musical context. 

Additionally, studies that analyse the importance of haptic information in the control of 

alternative interfaces are included. Finally, musical device studies that include a variety 

of analysis techniques are discussed. 

2.1 Defining Haptics 

The term haptic refers to our ability to touch and manipulate an object. A haptic 

interaction is bidirectional in nature, enabling the exchange of information between the 

body and the object being explored. In haptic simulations, a user is engaged in an 

explorative interaction with a virtual object. To facilitate the body’s requirement for 

physical stimulation in these simulations, the user manipulates a mechanical device; this 

is known as a haptic display. The term display is applied here to affirm the 

unidirectional transfer of information between the user and the simulation. Haptic 

displays are required to contain two main elements of feedback, tactile and kinaesthetic. 

Tactile and kinaesthetic feedback techniques differ in the manner in which they can be 

applied in both the context of the stimulation of a physical response and the reactive 

capabilities of the virtual system manipulated. 

Tactile stimulation is received via receptors in the skin, with the highest density being in 

the hands and lips. The skin is the only organ responsible for communicating the 

parameters of an external physical interaction, via the stimulation of the receptors 

within. This includes information about an object’s geometry, corrugation, temperature, 

and slippage among others. This is discussed in more detail in Chapter 3. Force 
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feedback receptors are found much deeper in the body, typically in muscles and 

tendons. These receptors present information relating to the forces associated with 

contact and movement of an object: such as weight, mass, and contact force. The 

terminology for discussing such interface parameters is intermixed and can lead to 

confusion when not clearly defined. Therefore, the definitions in Table 2.1 will be 

closely adhered to in this thesis. 

Table 2.1: Definition of key terminology. 

Title Description 

Haptic Relating to the sense of touch, in particular relating to the 
perception and manipulation of objects using the senses of touch 
and kinaesthesia [11]. 

Feedback When the output of a process is routed and returned back into 
the input stage of the same system. 

Tactile Feedback Sensation applied to the skin, typically in response to contact or 
other actions in a virtual world [12]. 

Force Feedback A technique deployed in flight simulation, telepresence, and 
virtual reality systems whereby the controlling device provides a 
form of physical response to the user that corresponds with the 
physical mass of the real or virtual object being manipulated 
[13]. 

Kinaesthetic 
Feedback 
(kinaesthesia) 

Awareness of the position and movement of the parts of the 
body by means of sensory organs (proprioceptors) in the 
muscles and joints [14]. 

Proprioceptive 
Feedback 

Relating to the stimuli arising within an organism. It provides 
information relating to body posture and is based on receptors 
located at the skeletal joints, in the inner ear, and on impulses 
from the central nervous system [15]. 

 

The level of feedback a device is capable of displaying, as derived from the tactile and 

kinaesthetic information feedback, generates five distinct modes of feedback. 

1. Tactile perception via cutaneous stimulation only. 

2. Passive kinaesthetic perception via kinesthesis only. 

3. Passive haptic perception via cutaneous stimulation and kinesthesis. 

4. Active kinaesthetic perception via two-way kinesthesis feedback. 

5. Active haptic perception via cutaneous stimulation and two-way kinesthesis. 
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2.2 Historical Overview of Haptics 

To provide some historical context to the topic of haptic feedback, the earliest 

references to haptics as an academic subject will be discussed. Further information 

about these specific topics can be found in Brent Gillespie’s discussions on haptics 

found in “Music, Cognition, and Computerized Sound: An Introduction to 

Psychoacoustics” by P. R. Cook [16]. 

2.2.1 Aristotle 

Arguably, Aristotle first conceptualised the field of haptics as an academic discipline in 

his treatise De Anima (On the Soul) in 350 BC. As discussed by Polansky in “Aristotle's 

De Anima: A Critical Commentary” [17], Aristotle is credited as the  first person to 

observe and document the sense of touch as a distinguishing feature of animals. That is 

to say, a definition that could be applied and accepted as a functional definition of what 

it is to be an animal; to have the ability to move of one’s own volition. These initial 

suppositions highlighted an important link between movement and the gathering of 

tactile information, such as is observed when a musician exerts control over a musical 

instrument. Further to this, in De sensu et sensibilibus (Sense and Sensibilia), Aristotle 

reported on early definitions of how the individual senses of the body perceive the 

world around it. Here, he defined only four senses: sight, sound, smell, and touch, as 

Aristotle viewed the sense of taste as a specialised sense of touch. These philosophical 

discussions were applied later as the foundation for contemporary research in touch; 

describing the five exteroceptive senses in more detail and separating the sense of taste 

from touch. 

2.2.2 Diderot 

In 1749, Diderot published an essay titled Letter on the Blind for the Use of Those Who 

Can See. As discussed by Jourdain in “Diderot's Early Philosophical Works” [18], 

Diderot observed the sensory perception of congenitally blind men and controversially 

dismissed the assumption that visual imagery was fundamental for the formulation of 

abstract thoughts. This early work was fundamental to the modern theory of sensory 

substitution. This particular theory supports the idea that the brain exhibits plasticity 

when one sense is lost and the other senses have to compensate for this loss. This is 

seen in many contemporary DMI designs that do not incorporate haptic feedback. In 

addition to this theory, Diderot was also engaged in the development of the role of 
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touch processes in information retention. He noted that the memory of a form was 

contingent with the sensation memory created in manipulating the original object. This 

theory also places some emphasis on the previous experiences of the musician when 

performing musically with a new instrument. 

2.2.3 Weber 

In 1834, Weber introduced systematic experimental procedures that were to be applied 

in the study of the haptic senses; procedures that are now considered fundamental to 

modern psychophysical experimentation. Weber’s experiments on cutaneous sensation, 

later used to define Weber’s Law, state that the ability to discriminate differences 

between two stimuli is a function of the magnitude of the first stimuli received [19]. 

This can be observed in the discrimination of weight, where the difference between two 

weights is required to be greater for a large weight than it is for a smaller weight. For 

example, if you add 0.005 kg to a 2 kg weight, there will be little or no perception of 

weight increase. If you keep adding weight to the original 2 kg, the perception of extra 

weight is only realised when it is equal to 0.2 kg. Therefore, from Weber’s Law it can 

be observed that the increment threshold for determining difference in 2 kg weights is 

0.2 kg. This is commonly referred to as Just Noticeable Difference or JND and will be 

applied in the psychophysiological studies presented in later chapters. Weber also 

predicted future developments in the study of haptics, such as the role of intentional 

movement in the perception of hardness and the distance between objects. 

2.2.4 Katz 

In 1925, David Katz published his seminal work Der Aufbau der Tastwelt (The World 

of Touch) [20]. At the time, many psychological studies were being conducted in the 

area of audition and vision, but very few in the field of haptics. Specifically, Katz 

focussed on the correspondence of the internal response to an external stimulus. He also 

maintained the popular theory that the invariants of an object are obtained by specific 

movements over time. In addition, he proposed that an internal impression of an object 

is formed in isolation from the sensory input. These ideas relate back to the movement 

suppositions made by Aristotle many years earlier, as Katz was also interested in the 

role of movement in haptic perception. For example, he postulated that the texture of a 

surface was almost impossible to distinguish if the hand was placed upon it with no 

lateral movement. It is only when movement is introduced that an analysis of textural 

information can be undertaken. 
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Katz also expanded further the findings of Frey, who, in 1894, proposed that touch was 

comprised of four sensory components: pressure, warmth, cold, and pain [21]. Katz 

added to this list by including the sensation of vibration. He observed that the sensation 

of pressure adapted over time, regardless of stability or changes in the stimulus applied. 

For example, the reader does not perceive the weight of glasses upon the bridge of the 

nose nor the weight of clothes upon the back. However, when a hand is passed over a 

surface it is capable of perceiving the texture of the surface, theoretically, indefinitely. 

In his later studies, he concluded that vibration was separated from pressure. Vibration 

is not simply perceived as an oscillation in pressure, but can be treated as a dynamic 

sense similar to that of hearing. Katz performed many experiments that supported the 

function of the skin as a means of extending the reach of the body via tools such as styli 

and other mechanisms. These theories are seen later applied in understanding how 

haptics have important implications in the design and construction of tools that extend 

the natural abilities of the body, such as in the manipulation of musical instruments. 

Katz was also responsible for distinguishing between the operation of active and passive 

touch in haptic interactions. He reported heightened accuracy and detail in independent 

active explorations of texture than when the material being assessed was passively 

passed over or under the fingertip. In modern tactile systems, passive feedback is 

delivered through the physical characteristics of the system, such as switch click, and 

active feedback is produced by the system in response to user actions, such as the 

vibrations produced by a musical instrument. These concepts were further developed in 

the work of Gibson, who explored the concept of active and passive exploration of 

various objects with the hands. Gibson demonstrated how passive haptic stimulus 

resulted in subjective descriptions of an object [22]. However, when subjects were 

allowed to actively explore an object, they were able to identify actual properties of the 

object being held and accurately identify the object. Specifically, when an object is 

explored actively, the object is externalised and prescribed with external real-world 

qualities. An example of this would be the report of weight, texture, pressure, and other 

descriptive sensations when an object is passed over the palm of the hand versus the 

ability to definitively identify an object through the explorative handling of the object. 

2.2.5 Effects on Technology Today 

In modern technology, the application of haptics has many supporters, in both research 

and industrial-backed applications. The proponents discussed so far have endeavoured 

to bring this subject to the forefront of perceptual psychology. From these studies, the 
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function of haptics in static or fixed interactions and the role of active/passive 

exploration have facilitated the development of haptic display metaphors applied to 

interactive technology. It is through these haptic interfaces that users are enabled to 

explore virtual objects. In addition, not all aspects of touch have been suitably addressed 

and certain aspects of this research are still actively explored. For the research contained 

within this thesis these aspects are worthy of exploration in the application of haptic 

feedback, for example, the notion that haptic sensation cannot be removed from an 

assumption of manipulation in activities that involve touch. The designers of DMIs that 

are enabled to convey information through a haptic display are required to acknowledge 

these active/passive feedback principles, and other sensory equivalences, for effective 

devices to be developed. This highlights that the manipulation of a musical device is not 

the result of a sensory process, but a manipulation task undertaken in motion. 

2.3 Early Adaptation and the Application of Haptics in 

Technology 

Following the development of haptics theories in physiological and psychological 

studies, haptic displays have been developed for industrial and academic research 

purposes. Precursors of the widespread application of these theories were seen in 

simulation technologies as early as the 1920s, specifically, as a safer practice method 

for training pilots to fly instrumentally [23]. Later examples of haptic feedback can also 

be observed applied to telerobotic operations. Industrial research and development 

teams have been engaged in the development of haptic telerobotic systems from as early 

as the 1950s. These systems were developed for master-slave arrangements, which 

incorporated the following principles: 

• Master Device: An anthropomorphic mechanical device with Degrees of 

Freedom (DoF) comparable to that of the human arm. 

• Slave Device: Often isomorphic to the master device, but equipped with an 

effecter to perform a specific task. 

In this arrangement, the slave device follows the movements of the master input device 

and interacts remotely within a separate environment, usually in a harmful or hazardous 

space. Early teleoperation devices saw the master-slave mechanisms directly linked, but 

later systems were developed to operate via electrical servomechanisms. These 

mechanisms are able to control the positioning of a device via position sensing and 
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error-correction feedback. The development and inclusion of servomechanisms allowed 

the teleoperator to receive feedback relating to the applied forces of their actions, thus 

allowing the user to virtually feel the manipulative movements of the slave mechanism 

in the master device. 

In 1965, Sutherland theorised that a graphical interface could be directly manipulated 

via a system that included haptic feedback [24]. The ultimate display speculated that a 

virtual environment could be manipulated through simulations. Additionally, Sutherland 

highlighted that the virtual simulations created by a computer need not follow the 

expected rules of the real world, but could be applied in simulating scenarios that are 

physically impossible or difficult to recreate. This idea inspired many researchers to 

investigate the inclusion of haptics in computing. 

Most notable of the early pioneers was Frederick Brooks, one of the founders of the 

GROPE project at the University of North Carolina in 1967. This research group aimed 

to graphically simulate three-dimensional molecular docking forces whilst generating 

haptic feedback for the user. The first GROPE-I system was developed in 1973 and was 

successfully able to replicate two-dimensional force simulations. The second GROPE-II 

device that was constructed used a remote manipulator arm from the Argonne National 

Laboratory for effecting simple wireframe models of construction blocks. The GROPE 

researchers expressed a preference in the application of a finger-hand display rather than 

a hand-arm system, highlighting that the relative manipulation resolution of the finger-

hand was as good as that of the hand-arm system. The final form of this device took 

many years to complete due to speed restrictions in computer hardware. The original 

concept of a three-dimensional docking simulation was not fully realised until 1990 

[25]. 

In 1966, the first glove-based controllers with feedback were developed. Previously, 

with the Argonne Arm and other such devices, the feedback had only been provided to 

the operator’s wrist. In these new designs, a sensing glove was used to capture the 

dexterous movements of the user, information that was then transmitted to a slave 

device. The first of these devices pioneered the application of pneumatic bladders to 

simulate independent forces directly to the fingers of the operator. Errors in position 

between the master-slave were presented to the operator as proportional pressures in the 

pneumatic bladders placed on the back of each finger. The actuators inflated and 

deflated, replicating the forces applied at the slave device. This design concept can be 

seen applied in devices such as the Teletact I and II developed at the Advanced 



Chapter 2. Discussion of Related Work 

 19 

Robotics Research Ltd. [26]. A similar, multi-dexterous design was also patented in 

1981 [27]. This device was housed in a rigid external shell that was connected to an 

inner glove via several actuators. 

2.3.1 Adaptations for Computing 

The devices listed so far were developed for or from telerobotic operations and not 

specifically as In/Out (I/O) control devices explicitly for computer applications. 

However, researchers expanding upon these advances created special purpose tactile 

and force feedback technologies that could be adapted for more imaginative computing 

applications. Early tactile prototypes were customised to present graphic simulations to 

the user. Most notable of these early systems was the Sandpaper system created at 

MIT’s Media Laboratory [28]. This 2-DOF joystick incorporated large electrical 

actuators that created a high bandwidth of tactile and force feedback system (500-1000 

Hz). The Sandpaper interface haptically displayed textural information based upon the 

movements of a cursor over different virtual surfaces, with inertia and damping 

modelled on a two dimensional plane. 

Later developments in desktop systems provided the user with the same high bandwidth 

haptic feedback without the unwieldy actuators that had come before them. However, 

these desktop feedback devices were unable to offer the same DOF found in industrial 

applications. To provide equitable freedom of movement, master devices were required 

to be both lighter and portable for prolonged simulation use. The Rutgers Master was 

one of the first lightweight computer I/O devices to incorporate pneumatic actuators to 

simulate virtual object hardness [29]. This lightweight device contained four pneumatic 

actuators, similar to those seen in the Teletact systems, which could be independently 

controlled to represent the hardness qualities of a virtual object. 

Haptically enabled devices, such as the SAFIRE Master and the Touch Master from 

EXOS Inc. became commercially available in 1993. The PHANToM Arm and the 

Impulse Engine later followed these two devices. Developers were enabled by these 

new devices to create haptically enabled I/O frameworks that harmonized with their 

audio-visual interfaces. The incorporation of these commercial haptic systems has 

become more prevalent as these systems develop more interactive methodologies. 

The application of haptics in computing has in recent years gained momentum in the 

public domain as computers have become ubiquitous. Computers are capable of 

communicating via increasingly sophisticated interfaces, which enable multimodal 
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human-computer interactions. Examples include textual interfaces, auditory displays, 

graphical animations and live video displays. The bimodal communication modes that 

are implemented strive to create a more Aristotelian mode of interactions in artificial or 

virtual environments. 

Indeed, virtual reality is built upon the premise of complete immersion of the user by 

stimulating as many of the senses as possible, as suggested in Figure 2.1. Techniques 

used to achieve this include binocular vision, three-dimensional imaging, binaural 

surround sound, haptic feedback, and even gustatory and olfactory stimulation in a 

small number of applications. By addressing all Aristotelian senses in real-time, VR 

creates an immersive and interactive environment that is manipulable and modifiable 

from within. 

The creation of interfaces that seek to naturalise human-computer interaction are 

influenced by many sociological and anthropological factors that aim to increase 

productivity and the motivation to apply this technology. The application of such 

technology has benefited many fields of academic research as well as commercial 

markets. VR simulations have led to advances in military and surgical training, 

teleoperation, home entertainment, education, and the arts. Consequently, it has 

generally become more readily accepted. However, VR has yet to reach its full potential 

due to two major drawbacks. 

The first of these problems is the requirement for optical realism in the presentation of 

visual data. The perceived reality of visual information is dependent upon the 

Immersion

Interaction Imagination

I3

Figure 2.1: The Virtual Reality Triangle as seen in 
[12]  
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capabilities of the device being operated, often resulting in a sacrifice of visual realism 

for higher frame rates. For ideal visual representations of interactive environments, to 

achieve flicker fusion frame rates are required to be above 15 frames-per-seconds (fps), 

for film 24 fps, TV up to 30 fps, for 3D computer graphics and movies 60 fps, and for 

VR 120 fps. This can present a less than perfect trade-off between scene complexity and 

real-time operation. Currently, a few commercial devices that are being developed will 

address these shortcomings. Most notable are: Sony’s Project Morpheus, HTC’s Vive, 

Samsung’s Gear VR, Oculus’ Rift, Microsoft’s HoloLens, and Carl Zeiss’ VR One. 

The second factor that is negatively affecting VR is that of the lack of physical 

interaction with the virtual environment and objects. In real-world interactions, the 

importance of touch and force processing is paramount to the success of any physical 

interaction. Tactile stimulation is received in all actions of exploration that require 

physical contact, such as the identification of an object’s location and its orientation. 

Secondly, tactile information is applied to manipulate or move objects, such as tools. 

The lack of adequate feedback in computing highlights a major deficiency in 

information that can be presented to the user. Current trends in computer interface 

design favour a more AV interaction style over a tactile one when displaying 

information to the user. However, the application of haptics is becoming more 

commonplace as researchers endeavour to address the physical-digital divide. 

Examples of these failings in the field of music technology can be observed in the 

proliferation of AV software interfaces. In application, AV software interfaces are 

adequate for the majority of musical applications where physical characteristics can be 

neglected, as in Digital Audio Workstations (DAWs). However, tactile information is 

critical for applications that require the user to actively manipulate a digital instrument. 

To create adequate realism within a virtual environment, physical semblance is required 

to represent the real world constraints of the system being manipulated, such as 

stiffness, mass, material, resistance dynamics, and other surface properties. The 

reproduction of these characteristics requires high processor speeds and specialist 

apparatus that a user is required to wear or manipulate. Unfortunately, specialised I/O 

devices are expensive and are often only available in certain application areas. 

2.4 Haptic Technology in Digital Musical Instruments 

Through the amalgamation of digital music technology and electronic musical 

instruments, digital musical instruments have emerged. A digital musical instrument is a 
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musical instrument that is capable of producing sound via digital means. They are 

specifically constructed with a separable control interface and sound generator; 

however, these are not always separate, see Figure 1.4. The mapping of a gestural 

interface to a sound generator translates the input gestures into sound control signals 

that are applied to a sound generator. The separation of these two elements enables 

musicians to approach the creation of music differently from how they would with an 

acoustic instrument, as the physical constraints of sound generation and input gesture 

are no longer inseparable. This approach allows for the sonification of gestures or the 

creation of a sound-generating algorithm that is controlled via an unknown or undefined 

input gesture. 

DMI designs, such as the Rhythm'n'Shoes [30], The Sound Flinger [31], the Haptic 

Carillon [32], The Vibrobyte [33], StickMusic [34], and The Plank [35] have 

demonstrated the successful application of haptics in musical devices. However, the 

majority of commercial interfaces in the field of digital synthesis have focussed on 

simulating the effects of acoustic keyboard instruments (such as the piano, harpsichord, 

or organ) and bowed instruments (such as the violin, viola or cello) [36]. Furthermore, 

previous research has highlighted that many of these DMIs fail to balance complexity 

with usability and that they lose transparency due to the separation of sound generator 

and gestural interface [37]. In the research outlined from here, haptic information that 

can be used to address these issues will be focused on and attempts to resolve 

problematic issues of interaction are also included. 

In the book, New Digital Musical Instruments: Control and Interaction Beyond the 

Keyboard, Miranda and Wanderley discuss musical instruments that utilise computers 

for sound generation [38]. Computer sound synthesisers have historically incorporated a 

piano keyboard as the main controller. Although, in recent years, interfaces have been 

bestowed a near complete freedom of form, the commercial market continues to be 

dominated by this style of interaction. Additionally, as digital sound generation makes 

use of elaborate software packages, the application of the keyboard interface loses 

transparency. Miranda and Wanderley discuss the multitude of new musical controllers 

that are available and specifically examine control and interaction in emerging interface 

designs. With reference to haptics, the authors discuss the use of tactile and force 

feedback information in music. Based upon the materials contained within this 

subsection, the definition of haptics is reinforced as an amalgamation of both force and 

tactile feedback. Moreover, the tactile element of sensing through skin is defined as skin 
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touching against an object's surface. The authors go on to explain that our skin is 

sensitive in this way due to the various receptors distributed within. This array of 

receptors includes mechanoreceptors, which are used to sense mechanical vibration, 

skin stretching, and compression; discussed in more detail in Chapter 3. Therefore, 

tactile sensation can be further elaborated upon to comprise sensations of vibration, 

pressure, texture, thermal properties, softness/hardness, and friction-induced 

experiences. Also discussed is the definition of kinaesthetic sensations and how these 

can be identified as our body’s awareness of its own state, including information 

relating to our muscles position, velocity, and the forces applied to an object through 

them. It is explained that this information is gathered through receptors in our muscles 

and tendons. This further supports our definitions expressed earlier. 

Miranda and Wanderley continue to highlight the importance of this information 

through the comparison of acoustic instruments to digital interfaces. They observe that 

when interacted with, acoustic musical instruments have both aural and mechanical 

responses that are directly related to each other, this is further substantiated by the 

findings of Gillespie [16]. Therefore, the mechanical information conveyed by an 

acoustic instrument to the user is directly related to the instrument’s mechanical sound 

generator, such as vibrating surfaces, resonant bodies, reeds or pipes. Also included here 

is an examination of the forces produced by the mechanical action of the piano. This 

mechanical production of sound, that is inherent in all acoustic instruments, contributes 

to how a musician feels their performance both physiologically and psychologically. Of 

particular interest to Miranda and Wanderley are the force-feedback features provided 

by the weighted mechanisms of the keyboard and the tactile stimulation of receptors. 

With respect to the piano keyboard, other researchers have also modelled keyboard-

based instruments. 

Hans-Joachim Braum and the contributing authors of Music Technology in the 

Twentieth Century cover many of the important technological advances in music 

technology for this period [39]. Specifically, within this piece of research, they discuss 

developments made in the design and construction of keyboard based instruments. 

Braum et al. emphasises the socio-economic factors that led and directed individuals to 

develop new musical instruments. Within this study of music technology, contributor 

Hugh Davies outlines the historical journey of voltage-controlled synthesisers and their 

role in removing sound generator from sound controller [40]. He indicates that the piano 

keyboard, as a musical interface, features some degree of remote control in its acoustic 
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form as the player does not strike or pluck the sound generator directly, but 

mechanically agitates the strings through hammers. This may be evidence of why users 

readily accepted the keyboard as a controller of artificial sound generators. Discussed 

further is research that questions why the keyboard is used in modern music when it 

restricts the user to a twelve-note structure. 

In the same Edition, Pinch and Trocco discuss the pioneer of early synthesizers, Robert 

Moog [41]. Apparently, he saw the keyboard as the only commercially viable option for 

a synthesis controller. This is not to say that the keyboard is the only interface that has 

had commercial success, as many novel interfaces have surfaced over the years. 

However, these interfaces are often the product of composers who perceive the 

keyboard as a restrictive interface. For example, they discuss designers such as Don 

Buchla, who see the keyboard as a repressive interface. That is to say, those who wish 

to escape the twelve-tone structure of traditional musical styles are given very few 

options. Only a minority of non-traditional interfaces have been commercially viable or 

mass produced in comparison to the keyboard. Pinch and Trocco put forward the 

following question to try to explain this phenomenon: “If a new instrument does come 

along, how do people recognise that instrument and its sound, and how does it get 

incorporated into the wider corpus of musical culture?” [41]. In answer to this question, 

they simply highlight that certain social groups of musicians have voiced their 

preference through sales and the personal adaptation of these synthesisers by instrument 

manufacturers. 

In The Cambridge Companion to the Piano are practical and informative essays about 

the world’s most popular instrument: the piano [42]. The authors discuss the history of 

the piano, performance styles, and the vast repertoire of compositions that are available. 

In the first part of this book, the authors discuss the mechanisms and acoustics of the 

piano. In the early nineteenth century, many experiments were conducted on the 

hammer and action mechanisms of the piano. In summary, the overall design of these 

components has been modified over time, but the general concept has remained the 

same. The action of a piano keyboard is the mechanism that converts the musician’s 

keystroke into a hammer blow onto a string. The action is a system of levers used to 

amplify the velocity of the keystroke so that the hammer travels five times faster than 

the initial keystroke. The key components of an acoustic piano are modelled and 

replicated in weighted electronic keyboards. This allows the musician to play a much 

smaller instrument whilst duplicating the action of the original acoustic instrument. The 
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weighted system of an electronic keyboard is designed to give the musician the same 

kinaesthetic feedback as the original without incorporating the complicated hammer 

mechanism. This follows the remote control concept as described by Hugh Davies [40] 

where the musician indirectly controls the sound generator. This is also a good example 

of how the user of a digital interface can be afforded with the physical feedback 

characteristics and interface modelling of an acoustic instrument. 

2.4.1 Haptic Theories in DMI Research 

In 2011, Marshall and Wanderley explored the effects of vibrotactile feedback on the 

feel of a DMI [43]. Their research highlighted the importance of inherent tactile 

feedback in support of AV information conveyed to a performer through traditional 

musical instruments. They found that in the acoustic form, tactile information is used to 

pass performance information to the musician and it creates a bond between instrument 

and performer. Following this principle, an analysis was conducted to measure the 

relationship between tactile feedback and how a performer feels an instrument. 

Systematically providing sound related vibrational feedback into a DMI and measuring 

how this affected a performer’s rating of the instrument quantified this concept. 

Marshall and Wanderley emphasised that DMIs are devoid of this information and as a 

result, lack the popularity of traditional instruments and that vibrotactile information 

allows for the near instantaneous conveyance of an instrument’s state to the performer, 

allowing for increased control of articulation. It is suggested within this research that 

one possible use of a vibrotactile mechanism in a DMI is to model vibrations of the 

sound produced by the sound-generating module. This mode of conveying information 

is exhibited in acoustic instruments and how they communicate tactile information to 

the user, through the direct linking of sound generator to the interface used to control 

the sound. 

Marshall and Wanderley identified four characteristics of vibrotactile actuators for the 

development of a successful tactile interface: 

1. Capable of producing the full frequency range of human tactile sensation. 

2. Offer independent control of frequency, amplitude, and waveform. 

3. Offer a large range of amplitude control (to allow for instrument dynamics). 

4. Be driven by an audio signal, or a control signal easily derived from an audio 

signal. 
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Further to this, the most applicable devices capable of addressing these requirements are 

piezoelectric elements and voice-coil actuators. The voice-coil design is very similar to 

that of a standard speaker unit with the cone removed. Therefore, if a speaker were to be 

included in a DMI’s design, vibrotactile information relating to the sound synthesis 

system can easily be included. 

This design concept can also be applied to address the divide that occurs when sound is 

reproduced externally at some distance away from the DMI. Sound reproduction 

conveys aural information to a performer and the internalised sound generator can also 

be applied in providing tactile substance to a device. With a voice-coil actuator, a full 

audio frequency spectrum is produced. However, a significant point to note is that the 

range of frequencies that the skin is sensitive to is confined to a much narrower 

frequency range than our hearing system. A filtering device may be applied to a signal 

prior to its delivery to an actuator to limit the bandwidth of frequencies produced; 

however, there is no conclusive evidence that indicates that frequencies above this range 

are not detected and processed by the body. In addition, the measurable frequency 

response of the skin sensitivity bandwidth is not flat across its width. Therefore, a 

dynamic model of a tactile feedback system should also be considered. The findings of 

Marshall and Wanderley highlighted an increase in performer engagement and 

entertainment, but also a decrease in performance controllability. Therefore, a balance 

should be found in the level of vibrotactile information allowing for increased feel 

without surrendering controllability. 

Hayes also parallels the idea of vibrotactile feedback in assisted DMI performance, 

highlighting the importance of sensitivity in control that is comparable to that of an 

acoustic instrument [44]. Hayes illustrates how a vibrotactile-enabled interface can be 

applied to address the limitations of current DMI designs in the mediation of a 

performer's control of sound synthesis and musical information. She argues the 

necessity of incorporating haptic enabled controllers in the development of DMIs to 

convey important performance related data back to the operator. Specifically, it is stated 

that although musicians are capable of receiving feedback in the form of resistive forces 

and vibrations, provided by the physics of sound generation in acoustic instruments, 

they are neglected in many DMI designs. It is concluded that tactile feedback can be 

used to support audio and visual cues, so long as the user receives them in near unison. 

Interestingly, Hayes concludes her research stating that she wishes to include non-
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performers in the design of haptic interfaces, allowing for the audience to hear and feel 

the performance they are experiencing. 

2.4.2 New Interfaces for Musical Expression 

The New Interfaces for Musical Expression (NIME) is an interdisciplinary conference 

covering topics in DMI design, research, and applied practice [45]. The proceedings of 

NIME cover topics relating to new and novel controllers for musical systems, ranging 

from new musical devices to theoretical practices. The vast range of disciplines covered 

here include such topics as Computer Science, Electrical Engineering, Human-

Computer Interaction, Musicology, Electro-Acoustic Music, Dance, Composition, and 

Electronic Music. In recent years, the topic of haptics has received attention from both 

designers and researchers. Discussed here are a few unique and interesting applications 

that have been presented. 

The Rhythm 'n' Shoes design of Stefano Papetti et al. is a musical interface that allows 

the user to capture foot gestures and rhythms [30]. What is particularly noteworthy of 

this interface is that the user is provided with audio frequency tactile feedback through 

actuators embedded in the sole of the shoe. Voice-coil actuators are applied in providing 

a wide bandwidth for full audio frequency feedback, creating a tactile display of the 

audio generated by a computer. This device offers spontaneity and expressivity, whilst 

enabling an embodied experience of the interaction for the user. The inclusion of audio 

related tactile feedback in the design closes the interaction loop and achieves an 

embodied interaction. 

Another noteworthy design presented to the NIME conference of 2011 was the Sound 

Flinger [31]. This musical interface was an interactive spatialization instrument that 

allowed the user to touch and move sound in two dimensions. The user manipulated 

motorised faders controlling the location of two virtual sound objects in a quadraphonic 

sound field. The designers made use of a Texas Instruments Beagleboard to enable the 

interface to operate without the use of a portable computer. This created a fully stand-

alone interface that was free from excessive outboard equipment and accessible to 

novices with only a basic understanding of the system. 

Another device discussed at NIME was the Haptic Carillon of Mark Havryliv et al. 

[32]. The authors proposed that as haptic information in acoustic instruments is used to 

physically inform a performer of events occurring during a performance, so too can the 

inclusion of haptics in the design of DMIs for training traditional performers. Havryliv 
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et al. highlight what they consider the two most important justifications for haptic 

feedback in this context: 

1. To replicate and augment the capabilities of conventional instruments. 

2. To assist in the exploration of musical gestures and engage musicians with new 

technology. 

Further to this, Havryliv et al. address the difficulties of gathering information from 

traditional musical instruments. In conclusion, they state that however difficult this may 

be, the dynamic performance of an instrument that is built with the purpose of 

developing musical skill must perform in the same manner as its acoustic form. That is 

to say, the technology applied to accomplish this task should be modelled as closely to 

the original instrument as possible. 

McDonald et al. explored the use of haptic information to assist in the performance of 

remotely located ensembles via The Vibrobyte, a device that conveys haptic information 

using telematics [33]. Telematic performances heavily rely on AV communications and 

generally disregard the use of haptics due to latencies introduced by heavy processing 

requirements. The Vibrobyte addresses these issues and facilitates remote performers 

with the ability to communicate haptic information. This research highlighted the 

computationally complex aspects of haptic feedback and the importance of including 

haptic feedback in multi-musician performances, enabling musicians to interact with 

each other via remotely communicated haptic feedback. 

The application of haptic feedback can also be seen in the design of Stick Music [34]. 

This device applied haptic feedback to a joystick and a mouse. These two familiar 

interfaces were used to control a computer generated synthesis algorithm, which 

generated sounds that the authors describe as being “unidentifiable through traditional 

musical analogies.” The author discussed findings that highlighted how musical 

instrumentation had been freed from the physical constraints of generating sound 

through the application of digital synthesis techniques. From this, any arbitrary interface 

could be mapped to a complex synthesis algorithm. Furthermore, Steiner highlighted 

how feedback applied to an interface closes the information feedback loop that is 

fundamental in acoustic musical instrument interactions, supporting previous research 

in the application of haptic feedback in DMI design. 

Finally, Verplank et al. developed a simple haptic controller (The Plank) made from 

disused computer hard drives [35]. The Plank was designed to evaluate the theory of 



Chapter 2. Discussion of Related Work 

 29 

active force feedback and test its potential for precise and rapid control of synthesis 

software. This DMI took advantage of several tactile communicative factors that 

allowed the device to remain simple while maintaining haptic semblance. The interface 

measured forces applied perpendicular to the device’s motion, permitting for the 

measurement of surface force. The Plank was capable of simulating terrain, friction, and 

dynamics for the control of a scanned synthesis program, that is, a computer based 

synthesiser. It was also capable of replicating the feel of traditional instruments. The 

Plank is an excellent example of a bidirectional interface that incorporates haptic 

feedback into DMI design. 

To summarise, haptically enabled DMIs can incorporate elements of tactile feedback 

through actuators and mechanical means, allowing the user to experience tactile 

sensations in active and passive applications. In reference to the piano examples given 

earlier, it is proposed that although an electronic keyboard may be weighted, addressing 

the kinaesthetic playing feel of an acoustic piano, it cannot reveal any other information 

about the sounds produced that are comparable to that of the acoustic form without the 

inclusion of tactile feedback. Furthermore, researchers have found that the inclusion of 

haptics in instrument design can increase the speed at which an instrument is mastered 

[43]. The performance signals are received by the user's senses at the same time, 

reinforcing the user's understanding of the cause and effect of their actions. 

2.4.3 Vibrotactile Feedback in DMI Design 

The International Computer Music Conference (ICMC) is a prominent annual 

conference that discusses current research in the field of computer music [46]. Of 

particular interest to this thesis is the work of Chafe [47] and Birnbaum and Wanderly 

[48]. In 1993, Chafe presented experiments relating to vibrotactile feedback and 

proposed that future designs for new music controllers should incorporate vibrotactile 

feedback profiles that are based upon physical modelling. In Chafe's studies, it was 

found that the constraints within which instrument vibration are found relate directly to 

timing, amplitude, and spectral weighting and that certain frequencies can be neglected 

due to poor tactile frequency discrimination. 

Chafe highlighted four primary characteristics of tactile feedback [47]. 

1. The fingers and lips are our most sensitive appendages. 

2. Frequency response range is from near 0 to approximately 1000 Hz. 
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3. Frequency discrimination is very poor. 

4. Subjective sensation changes occur across separate frequency bands. 

From Chafe’s studies, it can be concluded that the audible output of an acoustic 

instrument is always going to be the most important mode of communication; however, 

other information feedback loops are also present and convey meaningful information to 

the user. Early in a musician’s training, they learn that feel is an essential supporting 

sense for a successful interaction with their instrument. Pressure and resistance are 

communicated through our kinaesthetic receptors and vibrations are applied to our 

tactile receptors. Together, they address the need for haptic feedback.  

Chafe states that the sensitivity of our bodies to sinusoidal stimulus varies with location 

on the body and that the heightened or increased sensitivity around our hands is relative 

to the area of our brain that processes touch (the somatosensory cortex). In the 

somatosensory region, two of the four known physiological information paths relating 

to the perception of vibration and its overlap with the tactile frequency range. The 

ability to separate the distinctly different modes of instrument communication is integral 

to deciphering the importance of this information. Chafe emphasises that cutaneously 

detectable frequencies fall into a range of 0.3 Hz to 1000 Hz, where the region of 100 to 

500 Hz is the most sensitive. This frequency range is much narrower than that of the 

audible range, with threshold detection being of the order of 20 - 30% higher than the 

reference. Consequently, only certain information can be represented: “Specifically, 

timing, amplitude and spectral weighting, but not precise pitch” [47]. Further to this, it 

has also been shown that humans are able to discriminate between tactile signals with 

the same fundamental, but with different spectral contents [49]. Tactile DMI devices are 

free from the constraints of intrinsic modelling, which is associated with conventional 

instrument design. Physical modelling approaches that have been developed for DMI 

instruments have resulted in unforeseen instrument designs [47]. From these findings, 

Chafe suggests that vibrotactile feedback can assist in directing the use of an 

instrument, enabling the musician to establish a perceptual reference frame of how 

instruments of this type should behave. 

Furthermore, Birnbaum and Wanderly conducted a study to investigate systematic 

approaches to vibrotactile feedback design [48]. Their system also involved the 

application of vibrations in response to sounds generated by a synthesis model. This 

feedback was applied directly through a prototype DMI that incorporated a vibration 
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transducer. This transducer was used to relay performance data to the user via a 

vibration-based cutaneous display. Interestingly, the less integrated the sound generator 

and the interface, the greater the perceived distance between instrument and musician. 

The disembodiment of sound from the musical instrument is in opposition to the 

expected vibrations associated with the performance of an acoustic instrument. 

Removing embodiment essentially ignores the potential of an instrument to incorporate 

touch generation in its design. This information was seen as essential for increased 

control in musical activities. In the case of active haptic devices, these vibrations may 

compliment and strengthen interactions when producing sounds. Many new DMI 

designs do not have the benefit of teletaction or virtual touch communication with 

performers. Therefore, the inclusion of tactile feedback can be applied to include 

embodiment and improve transparency in the use of these devices. 

Birnbaum and Wanderly expand upon this idea by directly comparing vibrotaction to 

audition; concentrating on frequency discrimination within the critical ranges outlined 

earlier [48]. They developed their earlier findings by referencing psychophysical 

discoveries, such as frequency perception being dependant on duration, amplitude of 

skin displacement, and body loci; all of which should be considered as variables of 

vibrational feedback design. Many of the findings they investigated concluded that due 

to the interdependence of frequency and amplitude in vibrotactile feedback, they should 

be considered as a complementary pair. Birnbaum and Wanderly argue that “Pitch 

perception is such a central aspect of musical experience that it naturally tends to play 

a dominant role in feedback, in both auditory and vibrotactile modes” [48]. 

The frequency range of cutaneous detection can be divided further. Earlier, it was stated 

that the range of this cutaneous detection ranges from 0.3 Hz to 1000 Hz, with increased 

sensitivity between 100 to 500 Hz [43]. When incorporating more recent studies, this 

range is further divided to include the following: within the range of 20 Hz to 40 Hz, the 

perception of vibration shows an inability to distinguish between individual vibrational 

frequencies; however, in the range of 40 Hz to 700 Hz our perception is sensitive to 

individual frequencies, with peak sensitivity at 250 Hz. 

With acoustic instruments, this information is tied directly to the sound-generating 

device. The vibrotactile information passed to performers from acoustic instruments has 

an intrinsic relationship with the sound produced. The sound generator, typically a 

device vibrating in response to the performer's actions, is tightly coupled with the 

acoustic properties and affordances of the instrument’s design. However, with respect to 
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DMIs, the addition of active haptic feedback can increase the usefulness of vibrations 

beyond that of the acoustic experience. It can evoke memories of touch (known as 

virtual touch) by building upon the musician’s pre-existing tactile experience. Active 

feedback models can also be applied beyond this, as the content of vibrotactile 

information can be anything that the instrument designer wants it to be, such as score 

data or performance cues. The usefulness of vibration information is dependent upon 

the musician’s ability to process this information whilst performing with the instrument. 

Therefore, it can be said that sound related vibrotaction has a wide range of (perceptual) 

variation to consider when incorporated into new DMI designs. 

Studies published in Music Perception (journal) have investigated vibration perception 

in musical interactions [50] [51] [52]. Some of the multiple disciplines covered in past 

issues have included psychology, computer science, and music theory. Articles that are 

more recent have focused on tone evaluation, voice, memory, empirical studies relating 

to perception, and the conceptualisation of music [50]. In the spring issue of 1992, 

Ronald T. Verrillo published an article, titled Vibration Sensation in Humans, which 

proposed that performing musicians incorporate vibrotactile signals to increase tonal 

control of instruments [51]. Specifically, research findings were presented relating to 

the sensory capacities of skin and how these enable tactile cues to be used by 

performers to control the tone of their instrument. The fundamental characteristics of 

human vibrotactile processing were presented, including the measurement of thresholds 

of detection and subject specific variables that can affect this processing. Human 

physiological characteristics were discussed with regard to the receptor systems 

associated with the cutaneous detection of vibration at different frequencies. Moreover, 

experiments relating to the application of vibrotactile contacts placed upon the right 

hand found that sensitivity increased with frequency, with 40 to 250 Hz being the most 

sensitive range. Verrilo showed that although sensitivity drops considerably outside of 

this range, being near undetectable above 1 kHz, there is no empirical evidence that 

suggests that harmonics above this threshold are not processed. Verrilo concluded that 

the skin’s ability to detect frequency changes was poor when compared to the sensitivity 

of the hearing system. Moreover, he stated that humans can distinguish frequency 

differences of only 20 to 30% cutaneously, whereas the hearing system can detect 

difference changes of as little as 0.3%. This indicates that vibrotactile feedback above 

this sensitivity range (40 to 250 Hz) is of no use to the cutaneous system in support of 

audio interactions. However, vibrotactile feedback outside this range may be important 

for other forms of communication, such as timing with kinaesthetic cues. 
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In the same edition of Music Perception, Anders Askenfelt and Erik V. Janson 

published their findings on vibration sensation and finger touch in stringed instruments 

[52]. They investigated the vibration levels in four traditional stringed instruments 

including the piano. They found that the vibration levels produced by each instrument 

were within the range of tactile detection. They discussed the importance of vibrotactile 

information and its use in the identification of ensemble instruments and the pitches 

they produce. With reference to the piano, Askenfelt and Janson concluded that in 

addition to touch, the kinaesthetic forces perceived in playing the instrument assisted in 

the timing of a performance. They highlighted that the resulting vibrations within an 

acoustic piano are the product of the sound radiating surfaces vibrating in sympathy 

with the sound generating strings. The musician’s contact points detect these vibrations 

at the keyboard and foot pedals. The pianist, via the fingertips and feet, is therefore 

capable of perceiving these vibrations. While the pianist has disjointed contact with the 

instrument, it can be seen that the musician is still able to interact with the sound 

generating strings within the instrument, albeit indirectly. When compared to other 

instruments, these vibration levels are lower. The vibrations at the two points of contact 

of the piano can be seen in Figure 2.2. 

In the 2002 autumn edition of the Computer Music Journal (CMJ) [53], Wessel and 

Write discussed the problems associated with the intimate control of computer music 

[54]. They covered the prerequisites for computer based musical instruments, metaphors 

applicable for musical control, and the tools developed for implementing and exploring 

Figure 2.2: Vibration levels in a depressed piano key (solid line) 
and pedal (dashed line), from Askenfelt & Janson (1992) [52]. 
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these theories. They proposed that the relationship between a gesture and a musical 

event falls into a “one gesture to one acoustic event” paradigm. Wessel and Write 

recommend that latency between a gesture and a musical event should be reduced to 1 

ms, which includes feedback returned to the musician from a sound generator. From 

these findings, relationships that have developed between the intimate placements of a 

performer in relation to their acoustic instrument can be observed. This allows 

performers to smoothly convert musical intention and gestures into musical events. 

Additionally, it was observed how traditional acoustic instruments offer a low entry fee 

with no ceiling on virtuosity. They are difficult to play at first, but not so much as to 

detract from the overall playing experience. The novice is afforded the opportunity to 

develop a higher degree of musicality given time and practice. In comparison to DMI 

interactions, flaws in an interaction’s characteristics are perceived by the user early on 

and the user is often unable to elicit a continuous musical evolution of education in their 

application. 

2.4.4 Haptics in New Music 

In NIME 2011, Verplank and Georg discussed the use of haptics in new music [55]. 

They considered the application of haptic interfaces, which were specifically 

constructed to replicate traditional musical instruments in the making of music. They 

argued that these types of devices could be used to make new sounds and therefore new 

music. Specifically, Verplank and Georg suggested that with inexpensive actuators, 

computer hardware and open-source software, the creation of “high-performance 

haptics” was within the reach of many interface designers. They elaborated upon this 

topic by discussing current devices that could be used to explore new modes of 

expression potentially leading to original music. 

Berdahl et al. explored haptic interfaces with active controllability of force-feedback 

features and found that the best type of haptic assistance is dependent upon the task 

being completed [2]. The authors found that after they had accounted for the finite 

reaction time of the psychomotor system, they could design assistive haptic interfaces 

that were deterministic and easy to implement. From these findings, it was observed 

how an interface that contains sensors for capturing the response of a musician could 

also incorporate actuators capable of exerting force to the user, completing the feedback 

loop required for a responsive and meaningful interaction. They suggested that haptic 

technology could be used to assist performers in making musical gestures through their 

instruments. To be considered an active haptic interface, controllers need to be 
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programmable in such a way that allows the system to determine the appropriate 

feedback to apply to the musician. In conclusion, they state that haptics are innate 

factors of acoustic instrument design, and these design features can be included to 

incorporate kinaesthetic affordances in a digital musical instrument. On a haptics-level, 

a DMI has the potential to mimic any number of conventional acoustic instruments, if 

the haptic feedback of the interface is appropriately programmed. 

2.5 Evaluating Digital Musical Instruments 

A review of existing DMI studies that include HCI evaluation techniques is presented 

here. This appraisal explores the various practises applied in the assessment of DMIs in 

both functional and musical contexts. In HCI, the formal evaluation of a device 

comprises of a rigorous and structured analyses and often involves the use of specific 

analysis methods to ensure the repeatability of a trial. The formality of the process 

guarantees that the findings of one researcher can be applied and developed by other 

researchers. In the field of Computer Music, the testing of DMIs has been highlighted as 

being unstructured and idiosyncratic [56] [57]. However, it is challenging to accurately 

measure and appraise the creative and affective application of technology in creative 

contexts. These aspects of a DMI’s evaluation cannot effectively be represented by 

quantitative techniques alone. In response to these shortcomings, DMI researchers seek 

to gather data using both quantitative and qualitative studies [58] [57]. Another factor 

that has been raised as being problematic for crossover HCI analyses is that of the 

central role of timing in musical interactions. Additionally, the emphasis of an analysis 

may change depending on who is the focus of the study, for instance the performer, 

composer, audience, designer, or even the device manufacturer [59]. Therefore, finding 

an appropriate analysis technique that is formally structured and that incorporates the 

various interaction factors of a musical device is difficult. The requirement for an 

established, rigorous, and flexible technique is highlighted in the studies presented here. 

In 2002, Wanderley and Orio investigated and suggested appropriate device analysis 

tasks in a musical context [60]. The suggested musical tasks focused on examining a 

device’s effectiveness as an instrument in simple exercises, even when these tasks 

appeared to be non-musical or overly simple. These shortcomings are alleviated by the 

application of simple tasks as a formative phase of a more complete device evaluation, 

that these tasks are not considered as an analysis of musicality or as a completely 

standalone examination. It can therefore be concluded that the individual tasks applied 

by Wanderley and Orio, although basic, non-compositional, and non-centric to musical 
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performance in their design, can be used to accurately measure and compare the 

performance capability of a DMI. Further to this, if the evaluation techniques applied in 

a musical device’s analysis are simple enough, they make allowances for the inclusion 

of novice DMI users and early prototype devices in an experiment. Simple tasks are 

complex enough to present meaningful data and an understanding of the device’s 

performance in a musical context can be deduced. Therefore, to present a complete 

study of a DMI, an extra stage of device analysis is required to evaluate the performance 

of a device in an explorative and creative context. Previously, other researchers have 

attempted to analyse devices in musical tasks. However, the majority of these 

evaluation techniques focus on only one aspect of a device and fail to include the 

individual elements that constitute an in-depth and all-inclusive analysis, discussed 

further in Chapter 4. 

Examples of previous DMI Studies that include single elements of functionality, 

usability, and user experience will now be discussed. Investigations that include these 

individual elements have been reviewed, outlined, and executed in many other studies 

of musical devices. The techniques applied and fundamental aspects of device 

examination that these analyses focus on are influential to the framework presented later 

in Chapter 4 and should therefore be discussed. Specifically, they highlight the 

importance of the individual elements in accepted DMI studies and how the data is 

collected and applied. 

2.5.1 Functionality Testing 

The most basic form of device analysis is the testing of its function. Functionality 

testing is used to determine if the device’s features afforded to the user are practical, as 

well as evaluating the performance, consistency, and the sturdiness of the designs used 

[58]. Many examples of this type of analysis applied to DMIs are available; some of the 

most notable are discussed in the following work. 

Many new musical interfaces that are presented for academic analysis incorporate some 

basic form of performance analysis, an important subcategory of functionality, as 

observed in [61]. A recent example of a quantitative study can be seen in the 

implementation and evaluation research of Skogstad et al. in 2011 [62]. In this thorough 

functionality description of the Xsens MVN, Skogstad et al. incorporate operational 

characteristics, latency measurements, and other performance data relating to the 

functional features of their device. They conclude from their collected performance data 



Chapter 2. Discussion of Related Work 

 37 

that the Xsens MVN was capable of presenting useful data for musical applications, 

outlining its potential function in a DMI context. Another good example of performance 

analysis can be found in the development and evaluation research of Torresen et al. in 

2012 [63]. Here, a ZigFlea-based wireless transceiver board for use with a CUI32 USB 

sensor interface was investigated and important performance data was analysed and 

compared. In their analysis, Torresen et al. deduced that the ZigFlea board applied in 

this configuration was not optimal for musical interactions due to latency issues. The 

outcome of these two examples signify the potential application these devices in 

musical contexts, but do not explicitly measure this aspect. That is to say, the 

functionality of the devices are quantified, but not applied in a musical context. 

The application of HCI informed functionality testing has been highlighted in a number 

of previous research investigations, most notably Wanderley and Orio [60]. From this, a 

number of HCI style functionality tests have been described. Most noteworthy are the 

findings of Pedrosa and MacLean from 2009 [64]. The evaluation of three-dimensional 

(3D) haptic rendering in the support of musical timing was interesting because of the 

design and implementation of a target acquisition experiment. The augmentation of a 

common HCI task to focus on a musical undertaking was achieved though the 

requirement of temporal synchrony of movements with a metronome device, addressing 

the requirement of timing controllability, a major characteristic of most musical tasks. 

The participants of this study were required to target and acquire spatial targets in 

sequence, presenting quantitative functional data for analysis. Specifically, the data 

captured represented the precision of targeted movements and the maintenance of 

rhythm whilst transitioning between targets. The acquisition data was then used in 

conjunction with cognitive task-load measurements to conclude that a fixed-reference 

force feedback environment was the most preferable for their participants. Whilst these 

findings in themselves are interesting, the most intriguing part was the augmented 

experimental procedure for the gathering of functionality data. 

2.5.2 Usability Studies 

Usability assessment is used to raise issues of efficiency, effectiveness, and user 

satisfaction in the application of technology. Further descriptions of device 

transparency, learnability, and feedback mechanisms can be drawn from analysing this 

data. The measure of usability is defined in ISO 9241-11 as “quality in use” [65]. 

Known areas of concern for DMI evaluation include the requirements of Learnability, 

Explorability, Feature Controllability, and Timing Controllability [2]. Many examples 
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of usability testing of DMIs can be found; in the following subsection, a few notable 

examples are discussed. 

In their most basic form, DMIs can be described as a combination of the constituent 

components that create a complete musical device. In 2009, Gelineck and Serafin 

undertook an investigation of the basic workings of common DMIs, applying HCI 

usability evaluation techniques in their experiment procedures [66]. Their study applied 

a user centred methodology that evaluated DMI components in creative and exploratory 

tasks. The framework that they applied attempted to analyse the work process of the end 

user and evaluate the interfaces being used to facilitate this procedure. Their research 

did not deal with the expressivity of the interfaces, but focused on their application in 

the composition of computer music. The methodology of this study was conducted 

through a formal questionnaire that established the musical background of the 

participants and through a usability test that was followed by a quantitative 

questionnaire. The usability test was structured in two parts: through a free-play and 

explore session, and through a subsequent series of musical tasks. The musical tasks 

section involved participants listening to reference sounds and then reproducing each 

reference sound through imitation. The reproductions were then evaluated on a Likert 

scale by the authors and by an impartial sound engineer. The post-task questionnaire 

elicited the perceived difficulty of the task by the participants and their overall 

impressions of the instruments. The difference-rating criteria of these questions were 

chosen from traditional HCI evaluations as well as incorporating features associated 

with the framework of creativity and exploration mentioned earlier. The most 

concerning shortcoming of this experiment, as highlighted by the authors, was the 

relatively short time the participants were afforded during the usability test. 

Additionally, the authors acknowledged that self-evaluation of performance by the 

participant would have also presented some interesting data, but this too was lacking. 

Other researchers have also attempted to devise structured design and evaluation models 

for DMI constituent component analysis. Most notable was the 2006 presentation of 

Marshall and Wanderley’s research into the design and creation of interfaces for 

computer music [67]. In this paper, they investigated the suitability of appropriate 

sensors for specific tasks in computer music. In the experimental section of their work, 

they investigated the usability of particular sensors for specific musical tasks. 

Participants were required to manipulate a computer based synthesis system using 

sensors in combination with a button. Data from these experiments was gathered via 
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ease-of-use questioning, time taken for task completion (which was later applied to ease 

of learning, accuracy, and quality of sound analyses), and a final verbal debriefing. 

Quantitative data was presented from the study that indicated that the users displayed a 

preference interfaces for specific musical tasks based upon their usability. The study of 

the fundamental components of a DMI in a usability testing presents data that evaluated 

the constituent interface components, data that can also be applied in a more 

comprehensive interface evaluation. 

2.5.3 User Experience 

Assessing a user’s experience whilst performing musical tasks is a relatively new and 

innovative area of investigation. To surmise, a number of appraisal methodologies exist, 

along with examples of their application in DMI evaluation. However, these techniques 

remain underdeveloped and underused as they are still in the early stages of creation and 

adaptation. In addition, the nature of the relationship between a musician and certain 

types of musical instruments can be idiosyncratic, especially in experiments that have 

only brief introductory and exploratory stages. Moreover, the data collected from user 

experience questioning is ultimately subjective and difficult to objectively process. 

These measurements are difficult to quantify and can be dependent upon a number of 

contributing influences, such as psychological or sociological factors [68]. Here a 

number of studies that have sought to evaluate musical devices via user experience data 

are discussed. 

In 2008, Geiger et al. [69] apply the AttrakDiff system [70] to evaluate their users’ 

opinion of a Theremin-based interface in musical tasks. The AttrackDiff questionnaire 

addresses both the hedonic and pragmatic dimensions of a user’s experience, providing 

quantitative and comparative data for analysis. The experiments of Geiger et al. allowed 

for a brief introduction to the device, followed by two musical tasks. The first task 

consisted of simple scales and the second a free improvisation of a played back 

drumbeat. These methodologies were successfully applied and data was presented to 

analyse the performance of Theremin stylised input devices. Another interesting 

example of the same technique applied in DMI testing can also be seen in the personal 

usability and design testing performed by Poepel et al. in 2014 [71]. Here, the HCI 

AttrackDiff tool was applied to analyse their participants’ experiences whilst interacting 

with a singing voice synthesis system. However, in this case, the data captured was used 

to identify potential device usability improvements. One shortcoming of this system is 
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its lengthy post-task delivery, providing only a reflective assessment of experience, not 

the actual in-task experience. 

Another example of a user experience focussed analysis is that of Overholt and 

Gelineck in 2014 [72]. Their research focussed on user experiences when playing 

hybrid DMIs and explored the application of such devices in interactive performances. 

Their prototypes were qualitatively evaluated in an exploratory focus group session with 

experienced string players. The group session was semi-structured and led by the 

researchers to cover topics that were pre-determined as important. The methodologies 

adhered to throughout this study raised several questions about the participants’ 

experience with the prototype devices. In addition, usability studies were highlighted as 

being imperative for future research in accessible platforms for stringed instrument 

performers. Vandevelde et al. applied group analysis in their co-discovery 

methodologies in 2014 [73]. Here, constructive interaction methods were applied to 

understand the experiences and initial impressions of new products of potential users. 

This study addressed the shortcomings of post-task analysis by focussing on explorative 

sessions with a novel device. Co-discovery research is comparable to think-aloud 

protocols but is less verbose and disruptive to flow. From this data, the researchers 

concluded that tangible musical interfaces are advantageous in comparison to standard 

desktop interactions. 

The most common form of user experience data gathering is via post-task interviews 

and questionnaires. Several examples of data collection in this style can be seen. For 

example, in 2010 Beilharz et al. studied user and audience experience by conducting a 

study that applied data gathering techniques orientated towards experience [74]. Their 

participants were interviewed one-to-one on a daily basis, and finally asked to complete 

a device-orientated questionnaire. Zappi et al. applied a similar technique in 2011 [75], 

where the focus was the evaluation of an audience's experience whilst observing a 

hybrid reality performance. 

Finally, formally structured user experience experiments can also be observed in the 

studies of Barbosa et al. [56] and Johnston [76]. These studies highlighted the lack of 

formality in previously conducted device evaluations in the field of DMIs and suggested 

that a structured device analysis would address many of the shortcomings of current 

device comparison studies. Specifically, Barbosa et al. concentrated their study on 

audience experiences, stating that traditional HCI models have no comparative for this 

mode of focus in their designs, leading to a direct user or performer-centred evaluation 
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[56]. Their study applied previous research techniques that focused on the human-

human communicative aspects of musical interactions and audience perception of cause 

and effect. Important distinctions were made between perceived understanding and 

actual understanding. The authors of this study aimed to create a complete and generic 

evaluation methodology that could be repeated by other researchers. In a similar vein, 

Johnson presented a structured methodology, but acknowledged that the measure of 

user experience is of equal importance to the description of functionality. Johnson’s 

methods of data collection included online diaries, interviews with artists and designers, 

and the examination of software control logs. This methodology was executed in a user 

study that recorded professional musicians playing an instrument, capturing their 

performance and comments on film, and interviewing them with predefined questions. 

These sessions were also observed and noted upon by attendees, adding the audience’s 

perspective to the identification of instrument design criteria failings. Finally, a 

questionnaire was administered to elicit the personal opinion of the instrument’s design 

criteria. The findings of this analysis highlighted the requirements for a much broader 

view of evaluation in musical interface design, effectively bridging practice and theory 

in performance and research. 

2.5.4 Combined Functionality, Usability, and User Experience 

As can be seen from existing literature, the individual analysis of these three factors, 

although unique, should not operate independently of each other if a complete device 

analysis is to be formulated. For example, usability is not a defining device 

characteristic. However, the function of a device and how its functionality is delivered 

to a user has a significant influence on its usability. Additionally, how a device is 

aesthetically presented to a user can influence the perception of usability by a user. Also 

of importance is how a device’s usability can directly influence a user’s experience, as 

poor usability will produce a negative user experience. Therefore, in the assessment of 

each of these areas, it is best to apply multiple techniques and not focus on one alone 

[58]. 

2.6 Chapter Conclusion 

This review of literature has highlighted that although haptic feedback is an integral part 

of acoustic instruments, it is often overlooked in the design of DMIs. A large body of 

research has been conducted in the field of haptics and DMI design and it is hoped that 

all aspects have been addressed. The inclusion of haptics in new musical instrument 
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design has been a topic of interest for many years. However, our most common 

interaction with these devices has taken the form of simulations in VR applications and 

vibration alerts applied in mobile technology. Furthermore, commercial haptic devices 

have also been brought into the home; introduced as video game controllers equipped 

with rumble packs. The acceptance of these haptically enabled devices serves to 

highlight the importance of tactile information in a passive form. The most recognisable 

form of passive feedback is, again, the weighted keyboard. Springs and weights are 

applied to replicate the feel of the action mechanism of a traditional piano, but these 

components do not engage the performer directly or look beyond traditional music 

interfaces. The research goals of this thesis intend to expand upon the passive haptic 

model and give reason to include haptics for improvements in device performance. 

To quantify the effects of feedback in DMI interactions, we must first fully understand 

the physiological and psychophysiological effects and parameters that it must adhere. In 

the following chapter, an analysis of vibrotactile feedback will be presented. These 

experiments incorporated validated and well-practiced methodologies of physiological 

and psychophysiological measurement. An evaluation of pure and complex waveforms 

and their effect upon the tactile system were conducted, founded upon the research 

methodologies discussed earlier. The analyses incorporated measures in simple audio-

related vibrotactile feedback across the frequency ranges discussed. Following this, an 

analysis of combined audio and tactile stimulation was used to support the inclusion of 

tactile feedback in DMI design.
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Chapter 3: Physiological and 

Psychophysiological Studies 

It has been outlined thus far that the human body receives and processes information 

about its immediate surroundings via the sense of touch; however, this is achieved 

through both physical and perceptual means. By applying the historical and 

philosophical understandings of the nature of touch to science and technology, it has 

been made possible to design interactive devices that display enhanced tactile feedback. 

The following chapter describes the variety of ways in which tactile interactions are 

sensed by the body. Herein, parameters of tactile feedback are discussed and an 

exploration of how the perception of this type of stimuli occurs is presented. The 

interpretation of physical stimuli forms the perceptual aspect of touch. The 

physiological workings of the peripheral nervous system are used to gather physical 

information via nerve endings that are sensitive to specific stimuli. This information is 

then passed through the central nervous system to the brain. Within the brain, the 

received information is processed and interpreted. For this chapter, the results of 

previous human-factors experiments were investigated to determine the most favourable 

characteristics for this type of feedback. Thereafter, validated perception measurements 

were explored and applied in terms of amplitude sub-thresholds, bandwidth perception, 

and the acuity of simple and complex waveform detection. 

3.1 Physiology of Touch 

A definition and history of tactile feedback was given in Chapter 2; this will be further 

expanded upon to define the function of touch in a physiological and 

psychophysiological context. As was first presented by Aristotle, the sensation of touch 

is evoked when our skin is subjected upon by some external stimulus. This can be 

described in modern terms as different forms of mechanical displacement, thermal 

changes, chemical reactions, and electrical stimuli [77]. Further to the early history of 

touch presented in the previous chapter, there have been many studies conducted to 

quantify the various elements of touch; however, there still exists some contention 

around certain areas of this research. Despite these concerns, physiological experiments 

were carried out to measure sensory parameters that are pertinent to this thesis. The 
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discussion of these topics presents’ parameters of measurement that can be applied to 

DMI interfaces that wish to relay tactile feedback to the user. 

The cutaneous sense is engaged in providing an awareness of external effects upon the 

body, that is, the stimulation of receptors located in our exterior organ, the skin. Tactile 

perception is achieved when variations in cutaneous stimulation occur. This type of 

perception occurs only when the individual is stationary. If the subject is in motion, then 

the kinaesthetic and proprioceptive senses are incorporated and the interaction changes. 

Therefore, tactile perception is achieved through processing cutaneous information 

alone. Several types of receptor in the skin and subcutaneous tissue act as transducers 

for tactile information and the biophysical nature of these receptors vary with their 

location. For the purpose of our application, the receptor systems that lie in or are 

proximal to the hand are of most interest. The receptors found here respond differently 

depending upon their classification. The tactile system dominates the afferent peripheral 

and central nervous system pathways, culminating in the overall somatic sensory 

system. Previous psychophysical experiments have highlighted the role of 

mechanoreceptors in the perception of tactile stimulation. Receptors that are responsive 

to mechanical displacement can be seen in Figure 3.1. 
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Figure 3.1: The tactile receptors of the skin, adapted from “Force and Touch 
Feedback for Virtual Reality” (1996) [15]. 
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The sensation of touch presents itself within the human body as a hierarchical system. 

When an external effector comes into contact with the skin this system is stimulated, 

such as with heat, pressure, or a vibration source. The skin reacts to contact depending 

upon the magnitude and location of the stimulus. Within the internal structure of the 

skin, there are a number of specialised receptors that respond to these varieties of 

change. For example, thermoreceptors respond to changes in temperature, 

mechanoreceptors to mechanical displacement, and nocioreceptors to pain. Each of 

these receptors has a threshold, that when breached, the receptor exudes an electrical 

discharge. The action potential of this charge is then passed into the connecting afferent 

nerve fibre. Second-order neurons then transmit this signal through the spine and on 

into the thalamus of the forebrain. Finally, third-order neurons deliver the perceived 

sensation to the somesthetic area of the cortex for processing [78]. Further explanations 

of these terms and processes can be found in anatomical bibliographies. 

The most sensitive areas of our skin to tactile stimulus are the hairless regions of the 

body known as glabrous skin (Figure 3.1 – left). The glabrous skin of the lips, palms, 

and fingertips contain the highest density of tactile responsive receptors. This in turn 

also corresponds to a larger area of the sensory cortex required for processing this 

information. Approximately one quarter of the total somatosensory association cortex is 

dedicated to the mapping of receptors in the hands, resulting in an increased sensitivity 

to external stimuli in the fingers. Glabrous skin contains five major types of receptor; 

these include free-nerve endings (which are polymodal), Meissner’s corpuscles, 

Merkel’s disks, Pacinian corpuscles, and Ruffini corpuscles. In comparison to glabrous 

skin, hairy skin also incorporates a hair-root plexus for the detection of hair movement 

around the surface of the skin (Figure 3.1 – right). 

Our free-nerve endings are the closest to the surface of the skin, where they are 

responsible for registering pain and injury. Unlike the other receptors, which respond 

only to mechanical stimuli, free-nerve endings are not encapsulated and appear like tree 

roots in the epidermis of the skin. The Meissner’s corpuscles lie just below the 

epidermis and follow the contours of the skin. These corpuscles are located in the upper 

regions of the skin and are capable of registering light touch stimulation, stretching, and 

texture perception. Over forty percent of the hand’s receptors are made up of these 

receptors. They are also sensitive to movement across the surface of the skin and can 

operate as velocity detectors. Merkel disks constitute twenty-five percent of the total 

number of receptors in glabrous skin. These receptors detect the presence of sustained 
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pressure and low frequency vibrations. Ruffini’s corpuscles lie deeper within our skin 

and are capable of detecting sustained external pressure. Ruffini corpuscles are spindle-

shaped and make up approximately nineteen percent of receptors in the hands. They are 

capable of detecting skin pressure and shear. These receptors are also capable of 

detecting changes in temperature. The Pacinian corpuscles are the largest of the 

mechanoreceptors and are located deep within the subcutaneous tissues. Pacinian 

corpuscles represent thirteen percent of receptors in the hand. These corpuscles fire in 

response to high-speed displacements of the skin, but not sustained pressure. They are 

used to detect deep pressure, high frequency vibrations of approximately 250 Hz in 

frequency, and are capable of responding to light touch. 

Each of the receptors used in tactile detection are constructed around a single sensory 

nerve fibre that is surrounded by a specialised organ. The constituent factors of the 

organ determine the sensitivity and frequency range of the neural channel. As can be 

seen in Figure 3.1, the Pacinian corpuscles are much larger than the other receptors and 

are constructed from multiple layers of tissue that are encapsulated by fluid. This 

layered fluid structure is capable of greatly attenuating vibrations applied externally to 

the skin. The construction of the encapsulating structures serves to protect the nerve 

ending contained within from overstimulation. Each of the encapsulated receptors found 

in our skin are similar in construction, as they all contain a nerve ending that is 

encapsulated. The specialised organ is constructed around the nerve ending in some 

unique manner that serves the function of protecting it and augmenting its stimulation 

pattern. 

Each of the receptors mentioned display temporal adaptation properties that quantify the 

number of potential discharges in response to stimulation over time. Receptors that have 

slow discharge rates are called slow adapting (SA) receptors and receptors that respond 

quickly are known as rapidly adapting receptors (RA). The unit of measurement is the 

number of impulses within a second. With SA receptors, the discharge rate decreases 

logarithmically over a period of 40 seconds. However, RA receptors have such a fast 

response causing the impulse responses to decay in a very short time. A common 

example of this is that of people who wear glasses. The tactile receptors quickly adapt 

and the glasses are no longer felt upon the bridge of the nose or the top of the ears. 

For encapsulated touch receptors, we can further categorise them based upon their 

adaptation rates. The Merkel disks are a SA type I receptor, producing a long and 

irregular discharge when an external force is applied to the skin. Ruffini corpuscles are 
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SA-II receptors that produce a regular discharge for steadily applied forces. The 

discharge rate of the Ruffini corpuscles increases linearly with the logarithm of the 

force applied. Meissner’s corpuscles are RA-I receptors that discharge mainly on the 

onset of the initial stimulus, making them well suited for velocity detection. The 

Pacinian corpuscles discharge only once when stimulated, making them insensitive to 

constant pressure. This property makes them best suited for the detection of acceleration 

and vibration. 

It is in the stimulation of these receptors that tactile feedback is applied. In order to 

attain a better understanding of the parameters required for meaningful interactions, 

information must be communicated in a manner that the human body can understand. 

For example, for all audio interactions, sound must be relayed within a bandwidth of 20 

Hz to 20000 Hz. To allow for a meaningful tactile interaction, feedback designs must 

apply feedback within predefined parameters that our mechanoreceptors are receptive 

to. 

3.2 Threshold of Detection: Pure and Complex Waveforms 

The study of relationships between stimulus and sensation is known as psychophysics, a 

long established and documented field of modern psychology. A fundamental of 

psychophysics is the concept of a sensory threshold. In addition to this, theories of 

signal detection and the measurement of sensory magnitudes are pertinent to 

understanding and quantifying the essential requirements of effective haptic feedback 

and its role in human-computer interactions. 

The absolute threshold or stimulus threshold is the smallest amount of stimulus energy 

required to produce sensation. A number of psychophysiological studies have been 

undertaken to quantify the intensity of touch sensation. That is to say, the point at which 

minimum touch energy is detected by the hand and the absolute threshold of detection 

that is derived from this. It has been found that although the absolute threshold of 

detection varies from person to person, it can be averaged at around 80 mg on the 

fingertips and 150 mg of force on the palm [78]. The intensity at which vibrotactile 

stimuli are detected is normally five to ten times greater than the absolute threshold and 

is dependent on frequency. 

As was discussed earlier, the tactile information processing system operates as a multi-

channel sensory system, one that is capable of cognitive operation through the 

qualitative and quantitative dimensions of sensory activity via experience. The tuning of 
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tactile sensation is finite, yet is still capable of receiving information via unevenly 

distributed mechanoreceptors. As outlined earlier, frequencies that are cutaneously 

detectable fall within a range from 0.3 Hz to 1000 Hz, with a region of 100 to 500 Hz 

being the most sensitive [47]. Further studies have divided this range [79]. Within the 

range of 20 Hz to 40 Hz, the perception of vibration is independent from the vibration's 

frequency. However, between the frequencies of 40 Hz to 700 Hz our sensitivity can be 

dependent on frequency, with peak sensitivity at around 250 Hz [48]. An outline of this 

can be seen in Figure 3.2. 

3.3 The Audio-Tactile Glove 

It is suggested in this thesis that vibrotactile feedback is capable of providing essential 

information in the operation of DMIs. Before applying these principles to DMI designs, 

an experimental tool for the analysis of vibrotactile feedback was developed. The 

Audio-Tactile glove was designed and constructed as a research tool for investigating 

the various techniques used to apply vibrotactile theory to digital interfaces. When 

wearing the glove, the user receives vibrations via actuators distributed throughout. 

These are located so as not to interrupt the physical contact required between user and 

interface. Using this actuator array, vibrotactile information was independently applied 

to six stimulation points across each hand, exploiting the broad frequency range of the 

transducers contained within. The actuators operate with specific sensitivity within the 

tactile frequency range of the hand. It is proposed that within research areas that 

Figure 3.2: The absolute threshold of perception for 
mechanical vibration of the fingertip as a function of 

frequency, taken from Bolanowski et al. [88]. 
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consider the inclusion of vibrotactile feedback in existing devices, it can be 

implemented and explored without altering initial interface or existing design. 

The Audio-Tactile glove is equipped with six independent audio haptic exciters that are 

strategically placed upon the glove, see Figure 3.3. The device presents tactile 

information to the user through the stimulation of the receptors of the skin discussed 

earlier. The exciters are 9 mm miniature transducers capable of delivering a significant 

resonant output at frequencies most sensitive to haptic information. The transducers 

produce a nominally flat frequency response across their audio frequency bandwidth 

[80]. Although the underside of the hand is most sensitive to tactile perception [81], the 

actuators have been distributed on the back of each finger and the palm. This allows for 

direct contact between user and interface device, uninterrupted by the vibrating 

mechanisms. The user is able to freely grasp any master device comfortably whilst the 

glove maintains a consistent pressure against the skin surface. Flexible sub-surfaces run 

from the actuators to deliver tactile information as close as possible to the areas of the 

hand most sensitive to vibrational stimulus. These flexible surfaces produce internal 

structural bending waves, delivering both audio and vibrotactile frequency stimulation 

to the hand. 

Figure 3.3: The Audio-Tactile glove 
[93]. 
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The logical linking of tactile feedback with vibrotactile transducers allows the user to 

sense vibrations through the skin. Tactile localization is achieved through the 

application of audio signals to the glove, correlating aural feedback with tactile 

feedback, reducing latency through computer processing of the feedback channels 

separately, and closing the interaction loop. The transducer array is also capable of 

producing simple vibration sensations such as pulses or more sustained stimulus 

supplied from any audio signal source. The combination of these two methods can be 

used to create complex, virtual tactile patterns, allowing for freedom in designing 

actuation profiles for a variety of applications. 

With the Audio-Tactile Glove it is possible to modify the frequency input so as to create 

differences between vibrotactile feedback and instrument sound production. When using 

similar or atypical signals for sound generation and vibrotactile feedback it should be 

possible to achieve a multitude of special digital audio effects, such as: 

• Filtering of audible frequencies to within the tactile range of human skin 

detection. 

• Simulation of vibrations relating to other instruments within an ensemble. 

• Amplitude compensation between audio and tactile receptors. 

Tactile information is an important factor in VR and Computer-Aided Design (CAD) 

[76]. In these immersive environments, feedback is usually applied through audio or 

visual channels. However, the inclusion of haptic feedback here has been shown to 

improve virtual task efficiency [82]. The Audio-Tactile Glove can easily be integrated 

into such design processes, allowing vibrotactile stimulation to be an issue for 

consideration when doing so. This is especially important when virtual devices are 

models of real-world acoustic musical instruments. Rapid tactile feedback is important 

here due to the inherent nature of vibrating musical devices and the previous experience 

of the musician with real-world instruments. The inclusion of a tactile feedback network 

from a virtual device will allow for faster and more accurate playing [83] [84]. 

The glove offers several advantages over fixed actuator positioning within the 

instrument design processes. For one, the variable physical locating of such feedback 

devices can be overcome by placing the vibrating mechanisms directly in contact with 

the operator. In addition, the glove allows for the use of subtle vibrotactile feedback, 

which is much harder to implement in interfaces that incorporate a touch screen [84] 

[85]. Touch surface/screen devices do not intrinsically contain any tactile or kinaesthetic 
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feedback, as there is no haptic indication of having pressed the screen. Vibrotactile 

feedback can be applied here without having to physically alter the interface 

mechanism. The inclusion of vibrotactile feedback in this circumstance can be applied 

to increase the quality of the user's experience with touch-based devices [76] [43]. 

Recent advances in touch surface technology are investigating the application of 

electrovibration for tactile feedback [86] [87]. These interfaces rely on constant 

movement and continuous contact between device and operator. Whilst this is 

advantageous in applications that require finger gestures, it is restrictive in others that 

require simple finger pressing to engage with the device, for example, a virtual piano 

keyboard. The ability to gauge the level of interaction and contact is complicated by the 

fact that movement of the hand upon the system in use is required. 

3.4 Psychophysical Measurement of Vibration Thresholds: 

Absolute Sensitivity 

The simplest measurement of tactile sensitivity to vibrotactile feedback is to determine 

the smallest amplitude of detection that can be perceived by a subject. Vibrotactile 

thresholds for stimuli have been presented in earlier studies [51] [88]. These findings 

provide us with a four-channel model of mechanoreception, which describes how the 

threshold of a neural channel is thought to change as the frequency of the vibration 

changes. The model presents the psychophysiological threshold of participants 

measured at particular frequencies, where the neural channel with the lowest threshold 

determines the absolute threshold. The threshold of high frequency detection is 

determined to be a product of stimulation of the Pacinian corpuscles, midrange 

frequencies by the Meissner’s corpuscles, and low frequencies by the Merkel disks. In 

the absence, damage, or lack of stimulation of the Pacinian corpuscles, the Ruffini 

corpuscles may be stimulated to detect high frequencies. 

3.5 Vibration Thresholds: Experiment 1 

The measurement of the absolute threshold of vibrotactile feedback served to advance 

the study of the sensory systems used for processing tactile information in haptic 

systems and the transducer technologies that can be used in its application. As 

mentioned earlier, this threshold is determined by a number of factors, such as the 

location of the stimulus, the size of the area being stimulated, and the frequency at 

which it is being vibrated. As our tactile system is susceptible to variation in its 
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sensitivity to external stimuli, an experiment was conducted to confirm the possibility of 

successful vibrotactile feedback via the application of the Audio-Tactile Glove. Several 

measurements of threshold value were collected, averaged, and used to deduce an 

accurate estimation of the absolute threshold. The results of the experiment were 

expected to reinforce the characteristics of tactile sensation and indicate the minimum 

signal magnitude detectable across the frequency range of the glove [51] [88] [81]. The 

findings were used to chart the threshold of just detectable intensity levels of signals 

applied to the glove, outlining the minimum amplitude of frequencies detectable by 

users. 

For this experiment, a variation of the method of limits was applied to determine the 

threshold of detection. Specifically, an up-and-down method was chosen, as it is a 

particularly efficient technique for determining thresholds and also provides satisfactory 

results when appropriate controls are observed. This method is less precise than 

constant stimuli techniques; however, it is less time consuming and can be observed in a 

wide variety of applications, for example, in audiometry. Additionally, when running 

constant stimuli experiments, it is common practice to give consideration of the 

thresholds determined by the method of limits as a general starting point for additional 

investigations. 

3.5.1 Stimuli 

In the experiment, a staircase method of limits (a classical psychophysical procedure) 

was applied to determine the absolute threshold of tactile stimulation for the perception 

of three types of waveform at a variety of frequencies. Three waveforms were applied to 

indicate if the minimum detection level was dependent on the complexity of the wave-

shape. Specific frequencies within the bandwidth of the tactile range, 5 Hz to 1 kHz, 

were presented in random order via the Audio-Tactile Glove by outputting from a signal 

generator sine, saw, and square waveforms. The RMS voltage (Vrms) of the signal was 

measured by an oscilloscope and converted to decibels (dBv). This was repeated three 

times for each of the waveforms presented. The point at which a sensation was detected 

and no longer detected was recorded and the threshold was determined as a physical 

dimension that lay halfway between the last yes or no responses. Participants were 

asked to indicate their minimum perception of tactile stimulation applied across the 

specified vibrotactile range, as outlined earlier, by responding “yes” or “no”. 
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Participants were first presented with stimuli below the threshold of detection. The 

stimulus for the trial was then presented in an ascending series, followed by descending 

when the participant responded “yes”. That is to say, the value of the stimulus was 

increased in measured steps until the participant reported that the stimulus was 

detectable, indicated by the participant responding “yes”. At this point, the direction of 

change was reversed into a descending series, where the participant would respond “no” 

when the stimulus was no longer detected. This process was repeated until a sufficient 

number of response transition points were recorded. By adjusting the stimulus’ intensity 

by increasingly smaller amounts until the threshold of sensation was reached, the 

threshold of detection was determined. The final steps of which the stimulus was 

decreased or increased, determined an estimation of the threshold, which was dependent 

upon an average of the total values collected. 

3.5.2 Participants 

Ten postgraduate students (4 female, 6 male) aged 24 to 45 (M = 34.5) from University 

College Cork participated in the experiment. None of the participants indicated that they 

had had previous experience interacting with DMIs, but all were familiar with 

traditional musical instrument interaction. None of the participants were familiar with 

the Audio-Tactile glove or the term “tactile feedback”. 

3.5.3 Apparatus 

The experiment was conducted in a studio environment with all participants wearing 

audio isolation ear defenders to mask incidental sounds produced by the gloves. The 

vibrotactile stimulus was presented to the participants via the Audio-Tactile Gloves on 

both hands to account for left-right hand dominance. A signal generator was used to 

drive an amplifier, connected to both gloves, with three different waveform types across 

the frequency range defined below. The researcher, via an audio amplifier, gradually 

increased the amplitude of the signal being applied. The resultant input signal to the 

glove was metered and recorded via an oscilloscope with probes placed upon the input 

stage of the left glove. 

3.5.4 Procedure 

Participants were seated with their forearm resting on armrests, with both hands hanging 

loosely at the end. To prevent any visual cues, the participants were positioned facing 

180° from test equipment with a barrier between. Three wave shapes provided the audio 
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stimulus: sine, saw and square wave, presented in counterbalanced order. Each tone was 

applied in a five-second burst, in random order, across a frequency spectrum of 10 to 

1000 Hz in twenty predetermined steps. The frequency of the tone selected was set at 

the signal generator and the amplitude was raised from zero until the participant could 

detect the onset of tactile stimulation. Prior to the moment of detection, no tactile 

stimulation would have been perceived. At the point of initial perception, the signal 

amplitude was lowered until the awareness of the signal was lost. These steps were 

repeated until a definitive threshold was acquired for each of the test frequencies.  The 

amplitude of the signal was recorded and the frequency then adjusted. This procedure 

was repeated for all three wave-shapes. 

3.5.5 Results 

Figure 3.4 shows the mean thresholds for subject sensitivity to each of the waveforms 

tested. All participants presented with increased awareness of sine-wave stimulus across 

the frequency domain recorded. The square-wave signal was deemed to be the most 

difficult to perceive across this range. Participants were able to recognize frequencies 

below 20 Hz, describing them as simple “clicks”. As the applied signal’s frequency was 

increased beyond this point, the perception of vibration was reduced up to the 60 Hz 

mark. At this frequency, the sensitivity to applied signals increased and peaked across 

the range of 100 to 400 Hz, with peak sensitivity at 160 to 200 Hz. Participant 

sensitivity to the perception of applied signals reduced again above the peak sensitivity 

range. Participants indicated uncertainty of detection at higher frequencies as opposed to 

lower, and none were able to detect frequencies above 1000 Hz. 

To test for an overall experimental effect of waveform type, a one-way repeated 

measure ANOVA (used as each subject was measured on the same continuous scale on 

three different occasions) was conducted to compare mean amplitudes for the sine, saw, 

and square waveforms across the frequency range measured. A significant effect for 

waveform type across all frequencies was found. Post-hoc comparisons were then 

implemented to indicate which of the waveforms were significantly different from the 

other. This revealed significant differences between all three of the waveform types, 

with p < .001 in all cases. 
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3.5.6 Discussion of Results: Experiment 1 

The experiment findings support previous research found in tactile perception materials 

discussed. The peak sensitivity range was found to be between 100 to 400 Hz as 

specified earlier. Although our participants indicated no detection of vibrotactile 

stimulation above 1000 Hz, research has suggested that humans are sensitive to 

vibrations at frequencies of 2 to 4 kHz [89]. However, amplitudes for detection in this 

range are required to be much higher than for peak sensitivity. As the actuator choice 

for the Audio-Tactile Glove are capable of producing frequencies in this range, possible 

further applications could be investigated. 

The experiment also indicated that the Audio-Tactile glove can be applied to haptic 

models that require vibrotactile elements. This may be relevant for designers of DMIs 

and digital audio effects researchers who are considering tactile feedback in their 

designs, but are exploring different modes of application. The physical perception of 

tactile information being delivered concurrently with sonic events should allow for 

designers to explore appropriate feedback techniques without augmenting their 

interfaces. It is proposed that this will be particularly useful for researchers and 

designers of new musical interfaces, as it allows the end users to experience tactile 

feedback in a passive or active activity. 

The incorporation of motion capture and wireless interactivity can allow researchers to 

investigate the application of vibrotactile feedback in bodiless interfaces. Virtual fields 

Figure 3.4: Mean threshold for subject sensitivity to sine, saw, and square 
waveforms. 
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can be highlighted via Tactile Simulation Events (TSEs) and with the frequency 

response of the Audio-Tactile glove being much wider than fixed or narrow band 

actuators, 3D spatialisation may be made possible. This will assist in the creation of 

larger interactive spaces for artists to perform in. The Audio-Tactile Glove may also be 

applied to assistive technologies. For example, it may assist in the rendering of complex 

data into tactile information for the visually impaired. Another application in this field 

could be in the creation of tactile cues for the deaf or hearing impaired. This function 

could aid in the inclusion of otherwise ignored or dissuaded musicians. Vibrotactile 

feedback has been successfully applied via fixed vibration matrices for semi-

autonomous wheelchair guidance and hand rehabilitation; the inclusion of a small, wide 

frequency transducer may expand these areas further [90] [91]. Other demonstrations 

and informal observations of the Audio-Tactile Glove have indicated that the increased 

tactile response from DMIs, when wearing the device during operation, can 

significantly increase user engagement. This has been observed as particularly relevant 

for users of new musical devices or devices that produce non-traditional audio outputs. 

3.6 Vibrotactile Discrimination of Pure and Complex Waveforms: 

Experiment 2 

This experiment measured the participants’ ability to discriminate between pure and 

complex waveforms based upon vibrotactile stimulus alone. Subjective same/different 

awareness was captured for paired combinations of sine, saw, and square waveforms at 

a fixed fundamental frequency of 160 Hz (f0). Each arrangement was presented non-

sequentially via the Audio-Tactile glove. Audio and bone conduction stimulus were 

removed via headphones and tactile noise masking respectively. The results from earlier 

experiments have indicated that humans possess the ability to distinguish between 

different instrument timbres via vibrotactile stimulation presented asynchronously to the 

lumbar region [92]. It is proposed within this thesis that this form of interaction may be 

developed further to advance DMI extra-auditory interactions. 

3.6.1 Stimuli 

The vibrotactile stimuli applied during all experiment two conditions were sine, saw, 

and square waveforms of 160 Hz (referred to as S1, S2, and S3 respectively from here). 

This particular frequency was chosen as it was discovered to have the lowest sub-

threshold of perception in our earlier experiments conducted with the Audio-Tactile 

glove [93]. This frequency lies between the musical notes D3# and E3 (equal 
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temperament scale), removing any advantage a musician may have through experience. 

The output amplitude of each waveform sample was adjusted to fit within the tactile 

sensitivity range of 160 Hz (Figure 3.4). Output levels from the test equipment to the 

vibrotactile gloves were pre-set to the following parameters: S1 = -25 dBu, S2 = -17 

dBu, and S3 = -8 dBu. Waveforms were outputted via a digital-analogue audio converter 

(Avid Fast Track C400) with a sampling frequency of 96 kHz and 24-bit resolution. The 

audio output was routed through output channel one of the converter and split to the left 

and right gloves in parallel, as in experiment one. Participants were presented with 

digitally generated waveforms using Audacity (an open source wave editing software) 

at the pre-set fundamental (f0 = 160 Hz). Waveform clips were recorded and then 

randomly selected from an audio library. Each clip consisted of a 2-second waveform 

sample, a one second inter-stimulus time (IST), followed by a second 2-second 

waveform sample. 

Participants wore the Audio-Tactile gloves, with each of the six voice-coil actuators 

activated. Vibrotactile waveforms were delivered to each actuator in unison. The signal 

was applied to both hands simultaneously in order to control for increased dominant 

hand sensitivity and other variances of hand sensitivity that may have pre-existed for the 

participant. In order to mask incidental sound production from the gloves and bone 

conduction through the skeletal structure, a white noise signal was presented over 

Sennheiser HD 215 headphones at 60 dB SPL. The same white noise signal was applied 

to the lower mastoids via tactile exciters contained within a specially constructed collar. 

Validated bone conduction masking parameters were followed as suggested by Wilson 

et al. [94]. 

3.6.2 Participants 

Thirty participants attended the session for this experiment. Physiological pre-testing 

was not performed on individual participants; however, participants self-reported as 

having no reduced feeling or other impairments of their hands. All participants were 

recruited from University College Cork and the surrounding community area. After 

initial pre-testing and set-up, three participants were removed from the study as they 

presented with a reduced sensitivity to vibrotactile stimuli; below that of the average 

levels recorded in the Vibration Thresholds experiment for 160 Hz. However, this was 

expected due to the standard deviations measured around the subthreshold of detection. 

Of the remaining participants, seventeen self-identified as being musicians; having been 

formally trained or regularly performing in the last five years. For this group, the age 
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range was 21 to 35 (M = 25.94, SD = 4.21) consisting of 10 males and 7 females. Of the 

remaining non-musical participants, their age ranged from 23 to 49 (M = 34.08, SD = 

8.23) and the group consisted of 5 males and 5 females. 

3.6.3 Experimental Conditions 

The experiment examined the ability of participants to discriminate between different 

vibrotactile stimuli presented at the appropriate sub-threshold for the waveform type. 

For all experimental conditions, participants were seated in a studio environment with 

forearms resting on armrests and hands placed in a relaxed position. Participants were 

asked to make same-different judgements for each trial. This experimental procedure 

was chosen to remove any ambiguity in participants explaining the differences they 

experienced between the three waveforms presented. Participants were asked to indicate 

if the two stimuli were the same or different by saying “same” or “different”. The 

objective was not to determine the specific cue of the stimuli, but to simply determine 

the discriminability of each waveform. Three blocks of recorded trials followed a 

practice period of two blocks. Each trial consisted of the presentation of two stimuli, 

which were either the same or different. The waveform pairs were presented in 

counterbalanced order. All possible waveform pairs were presented within each block. 

Each block of samples contained three matched and six mismatched pairs. Thus, the 

recorded results consisted of 27 clips in total; 9 matched and 18 mismatched paired 

samples. 

The earlier experiments with the Audio-Tactile Glove presented results in tactile 

detection levels, including the discrimination of complex waveforms [93]. The sub-

threshold of detection for complex waveforms was measured as output amplitudes in 

dBu (Figure 3.4). These values were used to minimise perceived amplitude differences 

in waveforms for our current experiment. The sub-threshold of vibrotactile stimulus 

detection can be divided into distinct sub-ranges, pertaining to the frequencies that are 

cutaneously detectable and the waveform being applied. The stimuli presented during 

experimentation at f0 were delivered with the adjusted output amplitudes dependent on 

the waveform; they were also applied in synchronous phase. 

3.6.4 Results 

To investigate if there were any significant changes in participant responses to 

waveform presentation order, a Wilcoxon Signed Rank Test was carried out (designed 

for use with repeated measures; when participants are measured under two different 
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conditions). This test revealed that there was no statistically significant effect for the 

order of waveform presentation; S1- S2/S2- S1 (z = 0, p = 1), with no significant effect 

size (r = ns); S2- S3/S2- S3 (z = 1.13, p = .26), with a small effect size (r = 0.14); S3- 

S1/S1- S3 (z = 1.73, p = .083), with a medium effect size (r = 0.22). There was also no 

change in the median for each waveform pair. Therefore, it was deemed possible to 

collapse the proportion of correct response results across these complementary pairs. 

Table 3.1 shows the same-different responses for each stimulus pair after collapsing. 

This data was subjected to a Signal Detection Theory analysis and the effects of bias 

were removed. Specifically, hit and false alarm rate data was analysed to calculate a 

sensitivity measure of d` and an unbiased proportion correct probability was determined 

from Table 5.3 in the MacMillan and Creelman textbook [109]. A higher d` indicates 

that the signal could be more readily detected.  

Table 3.1: Proportion correct for same-different independent observations. 

 Response Same-Different (Independent Observation) 

Stimulus Pair Different Same 
Hit 
(H) 

False 
Alarm 
(F) z(H)-z(F) 

p(c) 
unb d' 

S1- S2 or S2- S1 0.89 0.11 0.89 0.07 2.67 0.91 3.33 
S1- S1 0.07 0.93 0.93 0.11 
S2- S3 or S3- S2 0.96 0.04 0.96 0.04 3.57 0.96 4.16 
S2- S2 0.04 0.96 0.96 0.04 
S1- S3 or S3- S1 0.81 0.19 0.81 0.07 2.34 0.88 3.03 
S3- S3 0.07 0.93 0.93 0.19 

 

To compare the adjusted mean percentage of correct answers for the musician and non-

musician groups, a Mann-Whitney U Test was conducted (a technique used to test for 

differences between two independent groups). In this case, a non-parametric statistical 

test was selected due to its robustness for non-normality and the relatively small number 

of participants that were observed. There was found to be no significant difference in 

scores for musicians (Md = 0.98, n = 13) and non-musicians (Md = 0.98, n = 17); U = 

69.5, z = –2.21, p = .086, r = .4. 

3.6.5 Discussion of Results 

The results from the second experiment identified that participants could successfully 

recognise different waveforms (or haptic timbres) based on waveform shape alone (as 

distinct from waveform envelope) when presented in isolation to the hand. These 
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findings support previous research undertaken by Russo et al. relating to the vibrotactile 

discrimination of musical timbres [92]. The experiment here has expanded these 

findings further by applying the stimuli directly to our participants’ hands via the 

Audio-Tactile Glove, compensating for waveform envelope shape, and perceived 

equality of stimulus amplitude. In addition to this, musicians and non-musicians were 

also compared and it was found that there was no significant difference in vibrational 

sensitivity that may have been attained through the extended use of acoustic musical 

instruments. The data gathered from this experiment supports a theoretical operation of 

combined critical band filtering that is carried out by the sensory receptor arrays within 

human glabrous skin; specifically, in the ventral portion the fingers and the surfaces of 

the palms of the hand at a fixed fundamental of 160 Hz. It is predicted that the stimulus 

of the four main types of mechanoreceptors outlined earlier and their individual 

responses to mechanical displacement function as frequency-tuned filters whilst 

experiencing complex tones. This filtering of complex tonality into component 

frequencies, with relative intensities, contributes to the tactile perception of differing 

timbres. 

Studying the subjective, contextual, and physiological gestural characteristics of 

musical instrument interactions, highlights the importance of feedback via primary, 

secondary, and other lesser pathways from instrument to musician. The tactile 

component of haptic feedback, which is considered in this thesis, provides an insight 

into the complexity of primary/secondary and passive/active feedback in multimodal 

communications. During the playing of musical instruments, the auditory system takes 

on the role of primary feedback processor. In this context, the other senses operate as 

secondary feedback signals, primarily relating to the instrument’s physical response to 

gestural inputs. In addition, worthy of note is the difference between active and passive 

feedback, as passive feedback was applied in our experiments. Passive feedback relates 

to the feedback provided through the physical characteristics of the system in use, that 

is, the manner in which the systems input mode responds when affected. Active 

feedback is produced by the system in response to a specific user action, a sound 

produced within for example. Further experimentation applied in DMI interactions may 

reveal supplementary information about the role of active feedback in explorative and 

musical performances. 
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3.7 Auditory Discrimination of Pure and Complex Waveforms 

Combined with Vibrotactile Feedback: Experiment 3 

Here we present a final experiment to investigate the application of vibrotactile stimulus 

in auditory pitch differentiation detection tasks. Extra-auditory information in the form 

of vibrotactile feedback was expected to have some influence upon the frequency 

discrimination of auditory Just Noticeable Difference (JND) detection levels. The 

experiment explored the effects of vibrotactile feedback in combination with auditory to 

discriminate frequency shifts around 160 Hz. The potential for correctly identified 

positive and negative frequency changes for two randomly divided groups was 

measured and compared. The first group was given an audio only JND test and the 

second group was given the same test, but with additional vibrotactile stimulus 

delivered via the Audio-tactile Gloves. The results of the experiment suggest that 

vibrotactile feedback applied in musical interactions that involve the selection of 

specific pitches and the detection of pitch variation may have some effect upon a 

musician’s ability to perceive these changes when presented synchronously with 

auditory stimulus. 

3.7.1 Extended Background: Experiment 3 

The manner in which auditory and haptic cues are integrated into musical performances 

with acoustic instruments are detailed in the findings of a number of studies, outlining 

the role therein of human senses beyond that of the auditory modality [47] [48] [55]. 

Other research has also shown that the neural substrates of both the auditory and tactile 

systems are shared at a much lower level than previously understood [95]. A cross-

modal effect has been demonstrated in the tactile illusions that transpire from the 

modification of related audio stimuli, as seen in the “Parchment-skin illusion” [96]. 

Other auditory-tactile interactions have shown that tactile stimulus can influence 

auditory stimulus and vice-versa [97] [98] [99]. It can therefore be observed that 

auditory and tactile stimuli are capable of modifying or altering our perception of each 

when presented in unison. Although closely related to the work described so far, the 

experiment presented here distinguishes itself from others by primarily focusing on the 

detection of frequency change for both pure tone (sine wave) and complex waveforms 

(saw and square waves); and secondly, the musical ability of the participant was also 

considered. 
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Auditory and tactile feedback occurs in unison for most musical interactions that 

involve acoustic instruments, but tactile feedback itself rarely presents at a cognitive or 

decision making level. The function of vibrotactile cues and their input into the field of 

perceptual materials has been a major contributory factor in how music is perceived. 

These include the influences of tactile and auditory feedback upon a performer, the 

performer’s understanding of the musical structure of a piece of music, and the portrayal 

of a score’s content [35] [100] [101]. The conclusions found in such research suggests 

that multimodal sensory cues are responsible for indirectly augmenting the auditory 

perception of music. Unlike visual scores, haptic cues in a musical performance are 

captured via contact with vibrating sound-emanating objects. During a musical 

performance with an acoustic instrument, the control mechanisms of the performer rely 

on the multi-modal feedback produced by the instrument [10]. Feedback presents itself 

to the musician and they are then able to adjust and maneuver their bodies in response. 

Regardless of the manner of the interaction, via finger, hand, or lip placement, 

vibrotactile feedback remains constant with auditory feedback [10] [51]. The 

transmission of vibrations to the performer in these interactions are an integral feature 

that directly relates to the design requirements of the acoustic instrument in use. 

Acoustic musical instruments provide vibratory feedback that is tightly coupled with the 

sound-generating module of the instrument. The relationship between gestural interface 

and sound generator is almost always inseparable and vibrations that are introduced 

outside of this relationship are considered as distracting or noisy. Digital Musical 

Instruments (DMIs) are capable of extending musical interactions beyond that of the 

acoustic experience and vibrotactile feedback may be applied here to further enhance 

the intercommunications that may be afforded through this medium. 

The findings of Gillmeister and Eimer have highlighted the function of vibrotactile 

intensity enhancements when tactile stimulus is presented synchronously with auditory 

stimulus [97]. The interactions between the two stimuli produce mutual benefits and 

they follow principles of inverse effectiveness and the temporal rule of multisensory 

integration that has been discussed in previous research. It is therefore suggested that 

the parameters of feedback applied in DMI design should also include vibrotactile 

information relating to the sound source being generated. However, the application of 

vibratory data in a DMI interaction will ultimately depend on the musician’s ability to 

process this information in relation to the audio/visual feedback they are already 

simultaneously receiving. 
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3.7.2 Previous Physiological and Psychophysiological Studies 

The examinations presented so far have focused upon combined feedback applied to 

both auditory and tactile systems. Auditory and tactile communications result from 

sensory stimulation via physical mechanical pressure in the form of oscillations [51] 

[102]. Mechanical vibrations within the cochlea and against the mechanoreceptors of 

the skin activate neural impulses that are ultimately processed by the brain. The 

relationship between the neural processing of these two modalities of transduction has 

been discussed in earlier research [102]. Both audio and tactile stimuli overlap in the 

same frequency range. However, one limitation of interactions involving both hearing 

and touch is the increased sensitivity of the ear in comparison to the skin.  

Previous experiments with audio frequency vibrotactile feedback have presented 

absolute thresholds of tactile detection for both simple and complex waveforms [93]. 

From this, the sub-thresholds of vibrotactile stimulus detection can be divided into 

distinct ranges pertaining to the frequencies that are cutaneously detectable and the 

waveforms being applied. This can also be seen in the absolute threshold of hearing, but 

over a much wider range. On average, the ear functions within an auditory range of 

approximately 20 to 20 kHz, while the tactile range of the skin encompasses a much 

narrower range of only 0.3 to 1 kHz. Within the overlapping ranges, vibrotactile 

information has been shown to stimulate the auditory cortex and tactile and auditory 

information may be perceived as interleaved signals [103] [104]. Furthermore, previous 

research has also shown that the auditory and vibrotactile systems combine whilst 

performing objective detection tasks, regardless of the relative phase or the temporal 

synchrony of the stimulus [94]. This indicates that both neural pathways of the auditory 

and tactile systems combine through a common or related network. 

Other studies have shown evidence of interaction between auditory and somatosensory 

systems at a multitude of stages within the human central nervous system [105]. The 

combination of the two sensory modalities exceeds the predicted uni-sensory 

summation of the two stimuli alone, suggesting that multisensory convergences occur at 

a much lower level than previously believed. Enhancements in auditory processing 

through the addition of tactile feedback have been observed and this elevates the 

response speeds to those of suprathreshold stimuli [106]. It has also been observed that 

improvements in the intensity perception of faint tones can be achieved with extra-

auditory stimulus [107]. Other studies have indicated that the detection of a stimulus 

can be enhanced when simultaneously registering with two or more sensory modalities 
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[2]. These findings demonstrate how the reinforcement of neural activity occurs when 

two modalities stimulate in near unison of time and place. More recent psychophysical 

studies have focused on the ability to discriminate between vibrotactile tonalities whilst 

being masked from an auditory source [102] [94] [92]. 

These findings support the theory that the simultaneous combination of tactile and audio 

stimulation positively influences the perceptual frequency discrimination of the sensory 

system. This is mainly attributed to the low-level integration of these two modalities in 

the cortical system. The relationships between the strengths of these two modes of 

stimulus should directly relate to the individual psychophysical models constructed for 

human senses. In this context, numerous examples of singular sensory modality 

interactions have been measured, but it is rarely the case in music that one singular 

sense is operating alone in any one interaction. In music, many events and occurrences 

seek to compete for combined sensory attention and a multitude of these are capable of 

stimulating in several ways at once. We have therefore chosen to focus our current 

study on audio frequency tactile stimulus as a supporting sensory input. Synchronous 

audio-tactile events are particularly ingrained in acoustic musical instrument 

performances where these combined perceptual aspects are innately integrated. 

However, they are rarely included in commercial digital artefacts that are applied in the 

creation of music. It is therefore suggested that vibrotactile feedback may be applied in 

these devices to improve the user’s perception of musical pitch variation. 

3.7.3 Pitch Discrimination of Pure and Complex Waveforms 

This experiment was designed to measure the pitch perception abilities of two groups 

for pure and complex waveforms at a fundamental frequency of 160 Hz. Due to audio 

stimuli being the more appropriate sense applied in music, participants were instructed 

to focus upon the auditory stimulus when making judgements. The experiment was 

undertaken to highlight the effects of extra-auditory vibrotactile stimuli on JND 

measures. The context of this study was to investigate these relationships in a music 

domain; therefore, participants were asked to self-identify as musicians or as non-

musician based upon a strict criterion. 

3.7.4 Experiment Method 

A two-alternative forced choice (2AFC) frequency discrimination task was used to 

measure the participants’ sensitivity to the applied stimuli. This technique is 

theoretically uncontaminated by fluctuations in criterion, but a response bias towards 
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one observations may still exist [108]. Although extreme response strategies are rare in 

2AFC tasks, the forced choice design does not guarantee the complete absence of bias. 

Therefore, to measure true sensitivity, bias must be eliminated. This was achieved by 

calculating d’ from hit and false-alarm data and correcting the proportion of correct 

responses for bias, p(c)unb. 

3.7.5 Participants 

The participants were randomly divided into two groups by coin flip: Auditory-only 

(heads) or Auditory-Tactile (tails). The participants then identified as being musician or 

non-musician based upon having been formally trained and actively performing 

regularly in the last five years.  The Auditory-only group consisted of 10 males and 5 

females aged 22 to 49 (MD = 28; SD = 8.79). In this group, 7 participants identified as 

musicians and 8 as non-musicians. The Audio-Tactile group consisted of 8 males and 7 

females aged 21 to 40 (MD = 28; SD = 6.26). In this group, 10 participants self-

identified as musicians and 5 as non-musicians. Physiological pre-testing was not 

performed on individual participants; however, participants self-reported as having no 

hearing difficulties or other physical impairments. 

3.7.6 Experiment Design 

Participants were seated in a soundproofed studio and asked to evaluate the relative 

pitch of two short audio samples. For the Auditory-only group, dual mono audio stimuli 

were delivered via Sennheiser HD215 headphones at 60 dB SPL (conversational speech 

at 1m). Participants were given the opportunity to adjust the headphone volume for 

comfort, but only if required. For the combined Auditory-Tactile group, dual mono 

audio and vibrotactile stimuli were delivered to both ears and hands in unison via 

Sennheiser headphones and a vibrating glove device. The stimuli were applied to both 

hands simultaneously to control for increased dominant hand sensitivity or other 

variances of hand sensitivity that may have pre-existed. 

3.7.7 Experiment Stimuli 

Digital waveforms were generated using an open source wave editing software 

(Audacity) at a fundamental frequency of 160 Hz. The phase and synchrony of the 

applied waveforms were kept constant by delivering the stimulus with the same onset 

time and with constant stimulus and inter-stimulus times (IST). Samples were arranged 

into five-second clips. Each clip consisted of a 2-second waveform, a one second IST, 
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and a further 2-second waveform. The two waveforms varied in frequency from each 

other by ± 0.25, 0.5, 0.8, 1, 1.5, 2, 3, 4, 6, 8, 12 Hz. Each waveform clip was stored and 

then presented to the participant three times during the experiment in a counterbalanced 

order. Waveforms were outputted via a digital-analogue audio converter (Avid Fast 

Track C400) with a sampling frequency of 96 kHz and 24-bit resolution. The audio-

only signal was routed through output channel one of the converter directly to the 

headphones. The same signal was also routed through output channel 2 and split to the 

left and right hand vibrating devices in parallel. Peak-to-peak measurements of 

amplitude were taken at the input stage of the left-hand vibrating device. 

3.7.8 Waveform Types 

The auditory and vibrotactile stimuli applied during all experiment conditions were 

sine, saw, and square waveforms, with no aliasing for the square waveform. As different 

musical instruments each produce unique timbres, each instrument sounds quite 

different when they present with the same fundamental pitch. Therefore, complex 

waveforms were used in this study to represent the different instrumental tone qualities 

that a listener may be exposed to in a performance. The chosen waveforms displayed no 

harmonics (sine), odd harmonics only (saw), and odd and even harmonics (square) of 

the chosen fundamental. This allowed for the control of multidimensional aspects of 

waveform generation beyond frequency and amplitude while also considering the effect 

of timbre in the experiment. 

The fundamental frequency of 160 Hz was chosen as it was observed as having the 

lowest sub-threshold of perception in earlier experiments. Furthermore, 160 Hz lies 

between the musical notes D3# and E3 (on an equal temperament scale), controlling for 

any advantage the musicians may have had through experience. The output amplitude of 

each waveform sample was adjusted to fit within the tactile sensitivity range for 160 Hz. 

Waveform output levels from the test equipment to the vibrotactile gloves were pre-set 

to the following parameters: sine = -28.02 dBu, saw = -18.5 dBu, and square = -7.91 

dBu measured at the input stage of the left glove. Participants were asked to verbally 

verify that the amplitudes of each of the tactile stimuli were perceptually equal during 

the initial setup period and trial stages of the experiment.  

For each participant, hit and false alarm data was transformed to calculate an 

independent observation for d’. This value was then used to define the unbiased 

proportion of correct ‘Higher’ responses, p(c)unb (Table 5.3 in Macmillan and Creelman, 
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Detection theory: A user's guide” [109]), and averaged across all participants. A logistic 

function of mean p(c)unb was applied to fit data to a psychometric function for each 

waveform, (equation 1), where f = frequency and p = the unbiased proportion of 

responses that f was judged higher than 160 Hz. Following this, JND75 was calculated 

using equation 1. 

!"#$% = ' −	 *
+	 ,-./01.341.34

        (equ.1) 

5 6 − ' = −log *×;;         (equ. 2) 

3.7.9 Results: Experiment 3 

Table 3.2: Descriptive Statistics 

Auditory-only Musicianship PSE JND75 r2 Mean SD 

Sine Non-Musician 160.00 162.34 .86 .75 .09 
Musician 159.97 162.07 .84 .77 .07 

Saw Non-Musician 160.00 162.24 .85 .76 .08 
Musician 159.98 161.85 .8 .85 .09 

Square Non-Musician 160.00 162.04 .85 .8 .12 
Musician 159.97 161.95 .83 .86 .12 

Auditory-Tactile 

Sine Non-Musician 160.00 161.82 .79 .88 .07 
Musician 159.98 161.75 .74 .94 .06 

Saw Non-Musician 160.00 161.97 .83 .83 .16 
Musician 160.00 161.75 .75 .92 .06 

Square Non-Musician 160.00 161.8 .8 .89 .08 
Musician 160.00 161.73 .76 .94 .04 

 

Table 3.3: Two-Way Between Groups ANOVA 

Interaction 
Effect 

Type III Sum 
of Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Grouping* Musicianship < .001 1 < .001 .013 .91 < .001 

Main Effect 

Grouping .205 1 .21 26.08 < .001 .25 

Waveform .025 2 .01 1.56 .22 .04 

Musicianship .078 1 .08 9.954 .002 .11 
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Figure 3.5: Psychometric functions for sine, saw, and square waveforms between 

Audio-only and Audio-Tactile groups. 
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From the results presented, it was observed that the detection of frequency changes in 

the order of ± 12 Hz at a fundamental frequency of 160 Hz can be facilitated by the 

simultaneous cross-modal presentation of auditory and vibrotactile stimuli. When 

auditory-only feedback was combined with vibrotactile feedback there was seen to be a 

statistically significant improvement in the Audio-Tactile group’s ability to discriminate 

between auditory frequency variations above that of levels when auditory stimulation 

was presented alone. 

To explore the impact of test grouping and musicianship on the unbiased proportion of 

correct ‘Higher’ responses, a two-way between-group analysis of variance was 

conducted (a technique that looks at the individual and joint effect of two independent 

variables on one dependent variable). In this experiment, only the main effect for 

grouping reached statistical significance. This meant that the variables of waveform and 

musicianship did not present any interaction effect in the experiment results. In addition 

to this, there was found to be a significant increase in frequency discrimination within 

both groups for musicians, with a medium to large effect size. In many ways this is 

what would be expected from this group, as musicians spend many hours conducting 

pitch exercises as a part of their general training. This presents some indication that 

previous experience should be a factor of analysis in the examination of haptic 

feedback. However, as there was found to be no interaction effect between the 

Figure 3.6: Box plots representing median p(c)unb across all waveforms 
and musicianship (outlying participants indicated by circles) 
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independent variables of grouping and musicianship, this indicated that the number of 

musicians in each group were not responsible for the changes that occurred between the 

two groups. These findings are congruent with studies that suggest that there is a close 

relationship between auditory and somatosensory stimulation in the auditory cortex of 

the brain. This relationship has also been directly observed in fMRI observations that 

capture the mapping of audio-tactile co-activation in the auditory belt areas of the brain 

[110]. 

Interesting results were observed in the participants’ responses to pure and complex 

waveforms. Although the main effect of waveform was not significant, the sinewave 

presented with a much more distinct curve between groups than for both of the complex 

waveforms. This indicated that in the application of extra-auditory vibrotactile feedback 

in pitch detection exercises, the complexity of the waveform has some influence upon 

the perception of pitch; however, this effect is less noticeable for more complex 

waveforms. This does not diminish the potential application of complex waveforms in 

vibrotactile feedback, but suggests that in real-world applications a balance between 

simple and complex waveforms must be explored. This also presents an ideal waveform 

type for examination in later chapters. 

3.7.10 Discussion of Results: Experiment 3 

The experiment presented interesting data relating to expected values of JND75 as the 

JND of the tactile system is observed as being much broader than that of the auditory. 

For example, the expected tactile only JND of a 150 Hz sinusoidal stimulus with 

amplitude held constant has been measured as ± 18% (27 Hz) of the fundamental [111], 

equating to 28.8 Hz at 160 Hz.  In addition, in an auditory only JND experiment there 

would be expected to be a 3 Hz variation in JND for sinewave and 1 Hz for complex 

waveforms below 500 Hz [112]. As can be seen in Table 1, the JND75 results for the 

Audio-only group presented with an average of 2.33 Hz for sine waveforms, 2.22 Hz for 

saw, and 2.06 Hz for square waveforms. In the combined Audio-Tactile group, there 

were observed small improvements in JND75 values. For the sine waveforms, the JND 

was measured at 1.83 Hz and the observed JND for the complex waveforms measured 

as 1.89 Hz and 1.78 for saw and square respectively. This indicates that the JND for all 

waveforms was perceived relatively equal, with only a small improvement when 

vibrotactile information was included. However, although there is a relatively broad 

JND for the tactile system, when combined with auditory stimuli, it appeared to have 

some small practical effect upon this group’s average JND values for all waveforms. 
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In conclusion of this experiment, the role of extra-auditory vibrotactile feedback was 

quantified and items of concern for future DMI design were formulated and studied. In 

respect of these findings and their potential application to musical interactions, it can be 

recommended that the adoption of a combined psychophysical model is required to 

reinforce the role of somatosensory integration in frequency discrimination tasks that 

are to be carried out in the DMI design analysis of Chapter 5. This will allow for the 

creation of multisensory interfaces that are transparent and intuitive for users to operate 

during musical exercises and performances. 

3.8 Influences of Tactile feedback in the Evaluation of DMI 

Design and Computer Music Performance 

As was discussed earlier, acoustic musical instruments convey information to the user in 

the form of audio, visual, and haptic stimulation. The physical properties of vibration 

generation in acoustic instruments cause the interface to vibrate in sympathy to the 

gestures applied to them. These vibrations qualify as tactile feedback, creating a tight 

relationship between the instrument and the person using it. In comparison, the majority 

of electronic and digital interfaces require no direct contact with a control surface, 

returning zero tactile feedback to the user. By combining both tactile with kinaesthetic 

feedback from a digital or virtual instrument, haptic information can be passed to the 

user, allowing for increased control in articulation. As the method of sound synthesis in 

DMIs and virtual instruments is usually dealt with separately, DMIs have been observed 

failing to close the feedback loop. 

DMIs that require no physical contact with a device are often controlled via hand 

gestures; these are captured and then relayed as control data for the control of some 

synthesis parameters within an external audio synthesis engine. Bodiless and open-air 

instruments make use of video cameras and motion capturing (MOCAP) software to 

manipulate synthesis parameters [113] [114]. Other methods include ultrasonic or 

infrared sensors contained within a central transmitter [115] [116]. Historically, the 

most common form of bodiless interfaces incorporates a glove [117] [118]. These 

allowed for the capture of finger, hand, and arm movements. The capture of such small 

movements with no feedback to the performer present some interesting performance 

and design challenges. The performer is presented with visual and proprioceptive 

feedback relating to their body position along with the audio response of their actions. 

This is adequate for most applications, but it has been observed that performers who 
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have mastered their instrument make use of haptic feedback cues in performance [119]. 

Additional to this, instruments that lack haptic feedback can also present a disconnect 

between performer and device, creating a sense of loss in the sound produced and how 

the sounds are derived from the movement [10]. 

The simplest method of introducing tactile feedback (a major factor of the overall haptic 

feedback system) is by allowing the instrument itself to take control of sound 

generation, for example via embedded speakers [10]. The use of vibrotactile feedback 

for the control of physically modelled sounds allows performers to distinguish between 

different modes of vibration, creating a virtual tactile range within which to operate. For 

bodiless controllers, the introduction of vibrotactile feedback creates virtual space for 

determining position, assisting in the positioning of the hand. This has been achieved 

via TSEs as seen in [120]. These techniques highlight that direct audio frequency 

vibrotactile feedback is not necessarily meaningful to the performer, but new vibration 

signals may be introduced to create feedback that is more meaningful. Another negative 

aspect is that in the application of these techniques a fixed or narrow bandwidth of 

frequency actuator retards the application of vibrotactile messaging. 

By observing the similarities between touch and hearing, indication of a cross modal 

sensory interaction has been presented. This is apparent in terms of; the type of physical 

energy captured, the receptors used in their detection, and the relatively short overlap of 

the frequency domains. This is prevalent in most musical performance, the sound 

Figure 3.7: A cortical homunculus (a physical 
representation of the human body, located 

within the brain). 
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generation and tactile analysis frequently occur in tandem. In tasks that involve textural 

analysis of an object, the tactile system is dominant. However, in musical tasks, the 

auditory modality takes precedence. Due to the sensory dominance of hearing over 

tactile, the interaction between both generally goes unnoticed.  

The sensations of tactile signals are bounded to a limited range, and an individual’s 

sensitivity to a stimulus. Following this, it can be said vibrotactile feedback from a 

musical instrument is secondary to that of auditory feedback in a multimodal signal. 

Moreover, vibrotactile feedback in a musical performance is not the primary source of 

feedback, but it operates in support of the auditory cues received. Most musical 

instruments are played with the hands, fingers, or mouth, which happen to have the 

highest concentration of tactile receptors in the body. Enabling fine-grained 

manipulation of the playing of the instrument. Studies have shown that other parts of the 

body are sensitive to vibrotactile stimulus, but to a much lesser extent, see Figure 3.7). 

3.9 Chapter Conclusions 

Recent psychophysical studies have focused on the human ability to discriminate 

between vibrotactile tonalities whilst being masked from an auditory source [78] [121] 

[47]. Many of these experiments concentrate on the amplitude of fundamental sine 

waves and the point of which a subject can sense a vibrotactile signal of this sort. The 

experiments within this chapter distinguish themselves from the earlier works described 

in Chapter 2 by focusing on not only pure waveforms, but also including complex 

waveform detection in addition to combined multisensory experiences. The results of 

these experiments have served to validate findings in tactile detection theory materials, 

whilst including complex waveforms that contain not only the fundamental frequency, 

but also odd harmonics or odd and even harmonics with a controlled amplitude 

envelope shape. 

In Experiment 1, the sub-threshold of detection for each of the wave-shapes presented 

was measured as output amplitudes in dBu. In Figure 3.3, the sub-thresholds of 

vibrotactile stimulus detection can be directly observed. This graph represents how the 

different waveform thresholds can each be divided into distinct tactile ranges, as is seen 

in the other research experiments outlined earlier. These ranges all pertain to 

frequencies that are cutaneously detectable in relationship to the waveform complexity 

of the stimulus. The main range for consideration for this thesis is that from 10 Hz to 

1000 Hz, which corresponds with the accepted response range of the entire tactile 
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system. Within this range, peak sensitivity occurred at around 160 Hz. With the 

amplitude of a tactile signal detection being dependent on not only the frequency, but 

the waveform shape being delivered too. For future experiments, a reduction in the 

participants’ perception of waveform intensity differences will be achieved by using a 

fixed fundamental frequency and adhering to the waveform sub-threshold values 

discovered during our earlier experiments with vibrotactile feedback [47]. Therefore, 

the lowest sub-threshold of detection for 160 Hz will be used in later studies that 

include the active use of tactile feedback in DMI design. 

The conclusions from the second experiment demonstrate how humans possess the 

ability to distinguish between different haptic timbres via vibrotactile stimulation alone; 

when presented asynchronously at a fundamental frequency of 160 Hz. This experiment 

was conducted to confirm that participants were indeed capable of distinguishing 

between pure sinusoidal and complex waveforms with non-sinusoidal periodic shape 

containing odd only (square) and odd and even (saw) harmonic content at 160 Hz. The 

experiment yielded positive results, with participants successfully identifying 92% of 

waveforms when presented asynchronously. 

Finally, in Experiment 3, the role of vibrotactile feedback and its contribution to the 

detection of auditory perception of frequency changes at 160 Hz was investigated. 

These experiments have shown that vibrotactile feedback can affect the ability to 

perceive a positive or negative change in frequency when presented at 160 Hz. The 

sensitivity ranges of both systems were discussed, highlighting the overlap that occurs 

between them. In light of this overlap, research that points to a relationship between 

vibration perception and auditory processing in the brain was discussed. The JND 

abilities of two separate groups of participants was tested to remove any learning curve 

that may have occurred in the presentation of audio only or audio and tactile combined 

procedures. Group A was given an audio only test, whilst Group B was given the same 

test with concurrent tactile stimuli that was directly related to the audio stimuli. It was 

discovered that the group with simultaneous multimodal stimulus were able to correctly 

identify changes in frequency better than the audio only group. Group B identified 91% 

of frequency changes successfully, whilst Group A correctly identified only 79% on 

average. The mean percentile of correct frequency discriminations was then broken 

down for musicians and non-musicians. Musicians were observed as being capable of 

correctly identifying frequency changes beyond that of non-musicians in Group A, as 
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well as observing a significant increase for musicians in the audio and tactile group, as 

would be expected. 

In the final section, the potential meaning of these findings was discussed, as was their 

application in relation to musical interactions and DMI design. It is maintained that the 

adoption of a combined psychophysical model is required to reinforce the role of 

somatosensory integration in frequency discrimination tasks that are carried out on 

digital devices. This will allow researchers and DMI designers to combine multisensory 

interfaces that are transparent and intuitive to operate during a musical performance. 

From the analysis of physiological and psychophysiological studies as presented in 

Chapter 3, informed decisions can now be made with regards to the design and 

development of new interfaces for musical expression. That is to say, the development 

of DMI that are capable of stimulating users in a meaningful way can now be 

formulated for Chapter 5 of this thesis. The parameters of stimuli presented are now 

clearly defined and will be applied in the development of DMIs that display expressive 

feedback for musicians to use in both pedagogical exercises and creative endeavours. 

However, in order to accurately measure the effects of feedback in these contexts, an 

exploration of evaluation techniques is required to formulate an accurate and fair 

portrayal these effects. To achieve this, the previous DMI evaluations that were 

explored in Chapter 2 will be expounded upon to extract significant evaluation data. 

Further to this, the field of Human-Computer Interaction will firstly be investigated for 

appropriate analysis techniques that can be applied in the DMI evaluations of Chapter 5.
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Chapter 4: HCI Methodologies Applied 

in the Evaluation of Haptic DMIs 

In Chapter 4 an analysis of techniques relating to the evaluation methodologies of DMIs 

derived from the field of HCI are presented. From this, choice aspects from existing 

evaluation models are selected and applied to an optimized evaluation for the rigorous 

assessment of new DMIs. 

4.1 The Evaluation of Digital Musical Instruments 

The evaluation of computer interface devices in HCI is a well-documented and 

established topic. There are a number of established and validated HCI evaluation 

techniques; however, none can be said to be fully compatible with respect to DMIs. 

User focused assessment is an integral part of an interface designer’s requirement to 

quantify and evaluate their technology. Recent developments in user studies have 

shown an interest in the relationships that users develop with technology and the overall 

user experience. Previous research has neglected to incorporate and amalgamate these 

vital aspects in their approach to DMI evaluation. As this field is in a constant state of 

change, it is demonstrated here how specific aspects of the aforementioned evaluations 

can be incorporated into existing DMI evaluation strategies and how they can be applied 

to current DMI designs. 

HCI is a highly complex multivariate discipline, which lacks an all-encompassing 

device evaluation framework. In relation to this, a new question is posed: in this 

context, is it possible to accurately evaluate a musical device? A number of researchers 

have endeavoured to answer this question in reference to DMI design and appraisal, 

sparking discussion about their proposed methodologies of measurement and if indeed, 

the performance of a DMI may be quantifiably measured at all. Further to this, 

examples of applied case studies are few, and it appears that designers are cautious to 

take up and apply these models of analysis to their own experimental devices (see 

Tables 4.1 to 4.3). Here some aspects of current and proposed HCI evaluation methods 

for DMIs shall be discussed, and their application to prototype devices explored. 
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Table 4.1: Survey of oral papers presented at NIME [57]. 

 NIME Conference Year 
Evaluation Type 2006 2007 2008 
Not Applicable 8 9 7 
None 18 14 15 
Informal 12 8 6 
Formal Quant. 1 2 3 
Formal Qualit. 2 3 3 
Total Formal 3 (9%) 5 (15%) 6 (22%) 

 

Table 4.2: Analyzing NIME conference publications from 2009 [56]. 

 NIME Conference Year 
Evaluation Type 2009 2010 2011 
Not Applicable 15 25 12 
None 20 20 10 
Informal 7 7 2 
Formal Quant. 5 4 6 
Formal Qualit. 3 5 3 
Total Formal 8 (22%) 9 (25%) 9 (42%) 

 

Table 4.3: Number of “evaluations” reported in NIME publications [122]. 

Evaluates? 2012 2013 2014 
Not Applicable 24 41 56 
No 39 35 41 
Yes 20 29 40 
Total 34% 45% 49% 

 

4.2 Analyses Techniques 

In HCI, a number of tools have been developed to measure design parameters, and the 

use of computers in specific contexts. These tools serve to direct interface designers 

away from generic, single purpose, interface-testing methods. In this vein, computer 

music performers can find themselves as DMI designers in a HCI context when 

evaluating interface technology. This can be observed in the techniques that are applied 

in DMI product design, which are informed through design practices and HCI research. 

Thusly, a strong connection can be seen between the traditions of HCI and DMI 

evaluation. 

Functionality, usability, and user experience are evaluated in HCI studies to create a 

comprehensive representation of a device in use [57] [56]. For example, when playing 



Chapter 4. HCI Methodologies Applied in the Evaluation of Haptic DMIs  

 78 

music on a basic MIDI keyboard, many will agree that, in general, the usability of the 

interface is poor in comparison to that of performing on a grand piano. However, the 

experience may remain believable or natural for the performer. Additionally, different 

manufacturers incorporate various additional features in their products in order to attract 

potential customers with differing requirements. For these reasons, it is suggested that it 

may be possible to evaluate a DMI in terms of the general area of its technology usage. 

Specifically, it is recommended that the evaluation of a DMI device should encompass 

functionality, usability, and the user’s experience using it, all of which are an integral 

part in the proposed evaluation framework. 

Problems arise in DMI evaluation when consideration is given to the wide range of 

variables involved in musical performance. For live performances of computer music 

there are a multitude of contributing factors to a musician’s experience, these include 

the consideration of simultaneous timing and rhythmic patterns, a performer’s previous 

training with a specific instrument and their familiarity with other instruments within a 

collective ensemble. Coupled with this is the requirement to consider the multi-

parametric control afforded at different levels, which are dependent upon the 

mechanical characteristics of the chosen instrument. Proposals have been made in the 

past to make a quantifiable and comparative analysis of devices over a series of short 

representative tasks. Additionally, the categorization of input devices to match tasks has 

also been suggested to adhere to specific and measurable objectives that match the 

operational characteristics of the individual device. 

To appraise all critical aspects of a DMI, each evaluation area must be closely assessed 

for its applicability to the chosen device. There may also be reason to assess one-off 

DMIs with unique and augmentable sets of evaluation methods to achieve this. 

Therefore, it is important to firstly acknowledge that any investigation of a DMI’s 

design may incorporate its own set of unique methodologies and assumptions, 

highlighting the necessity to carefully choose approaches that best fit the device for the 

three evaluation areas outlined earlier. For example, the appraisal of standard Usability 

Evaluation Methods (UEMs), such as time-on-task and number-of-errors for instance, 

cannot be used alone to assess a user’s experience. Similarly, UEMs used to assess a 

device’s functionality are not solely sufficient. In order for an accurate appraisal of a 

device, the evaluation must be careful not to reduce an analysis to any rigid or single 

base form. 
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4.2.1 Previous Evaluation Research 

Notable examples of crossover between HCI-DMI evaluation methods can be seen in a 

number of previous publications. Research focused on the adaption of existing HCI 

tools and methods have been identified [123]. However, in practice the use of 

evaluation techniques, HCI and DMI crossovers or otherwise, are limited to a few 

examples [57] [56] [122]. Orio et al. bring together some of the most appropriate 

evaluation methods that apply to musical devices and discusses them in a musical 

context. They highlight target acquisition as a potential quantifiable evaluation method, 

underlining Fitts’ Law and Meyer’s Law in particular. In a musical context, 

consideration of learnability, explorability, feature controllability, and timing 

controllability were also emphasized as critical aspects in the evaluation of a 

controller’s usability [123]. The mechanical characteristics of a DMI were also 

highlighted as having a categorical impact on device comparisons. Matching devices 

with similar, basic characteristics, or taxonomies is an imperative for organized and fair 

comparisons. 

To organize DMI classifications, there have been a number of potential guidelines 

published. With the propagation of new interfaces for musical expression in digital 

music, it has been noted that the application of hardware interfaces, control surfaces, 

and gesture-based controllers are of considerable interest to musicians. The 

classification of custom devices for musical application has also received increased 

attention. Miranda and Wanderley proposed several distinct categories of DMI [38]. 

Their basic categorizations include instrument-like controllers, extended instruments, 

instrument-inspired controllers, and alternative controllers. Upon further examination, 

two major distinctions can be made between these groups. For instrument-like 

controllers, extended instruments, and instrument-inspired controllers, the instrument 

designer is restricted to a musician’s musically refined motor control ability or 

familiarity of an instrument’s mode of interaction, which is either practiced or is 

inherently familiar. In many alternative controllers, this familiarity is actively avoided, 

allowing for the use of non-traditional gesture vocabularies to be explored by a 

performer. Additionally, as the designer, composer, and performer may be the same 

person, the design of the instrument may be unique, which makes it difficult when 

formally assessing the device’s performance as a DMI. 

Wanderley and Orio further expand on their findings in this paper by introducing 

contextual events to use when comparing categorized devices. The expansion of 
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categorical comparison was achieved by presenting an expanded list of circumstances 

specific to interactive computer music [124]. The contexts in which these categories are 

applied include: note-level control or musical instrument manipulation, score-level 

control, processing control or post-production activities, context related to traditional 

HCI or navigation, and interaction in multimedia installations. Additionally, the authors 

saw fit to include metaphoric situations, where generating music was not necessarily the 

primary focus of the interaction, such as interactions in the context of dance/music 

interfaces and in the control of computer games. These classifications were intended to 

assist in analysis and were not to be considered as fixed. The application of a single 

device in multiple contexts was also considered an important and distinguishable feature 

when contextualizing a device. 

Keifer et al. explored and applied the findings made by Wanderley and Orio in a case 

study experiment on the usability of the Wii controller [125]. They found that whilst 

valuable data regarding their tested device’s use as a music controller was insightful, 

they felt that their data was incomplete, as they did not measure the user’s instantaneous 

musical experiences. Additionally, the concept of the ‘third paradigm’ in HCI was 

discussed in terms of DMI evaluation techniques. This paradigm is used to highlight the 

requirement for an ever-evolving selection of new evaluation techniques that suit the 

ubiquitous nature of computing in daily life. In essence, the third paradigm places 

embodied interaction at its centre. This means that all user actions, interactions, and 

knowledge are experienced and embodied within them and that they find meaning and 

construct meanings in specific contexts and situations [126]. 

Finally, a framework for evaluating DMIs was proposed by O’Modhrain in 2011 [59]. 

O’Modhrain examined the role of the various participants in the evaluation of the design 

process in a DMI context. At each stage in the design and development of the DMI the 

requisite participant (for example the inventor, manufacturer, or musician) was given a 

formative role in the evaluation of a product’s design. As such, the evaluation of a 

design taken from the perspective of an audience, performer/composer, designer, and 

manufacturer is observed. The goal of each stakeholder is different and their means of 

assessment varies accordingly. That said, each perspective is necessary and should 

occur at different stages in an instrument’s design cycle. O’Modhrain provides a 

conceptual scaffolding to bring together the various interested parties invested in the 

design process and explores the possibility of related or similar goals in an evaluation 

process. 
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4.2.2 Potential Assessment Techniques and Considerations 

It is proposed that to accurately assess and compare DMIs, they must first be 

categorized to ensure that the devices being compared have equivalent input capture 

methodologies, resolutions, and establish their suitability for the particular test task 

formulated. A general categorization should be made, identifying the basic elements of 

the instrument and the mechanical principles behind its operation. Following this, the 

characteristics of the DMI being analysed should be extended to include the physical 

variables involved in its manipulation. The Taxonomy of Input Devices should be used 

to refine the classification variables to two basic forms (force and position) and the 

derivatives found from the six possible degrees of freedom of each (translation and 

rotation in three directions) [127]. These include the range of continuous and discrete 

values as generated by the DMI. 

Table 4.4: Key Characteristics of Different Stakeholders in DMI Design Evaluation, 
extracted from O’Modhrain (2011) [59]. 

Possible Evaluation Goals 

Stakeholder Enjoyment Playability Robustness 

Achievement of 
Design 
Specifications 

Performer / 
Composer 

Reflective 
practice, 
development of 
repertoire, long-
term engagement 
(longitudinal 
study) 

Quantitative 
methods for 
evaluation of 
user interface, 
mapping, etc. 

Quantitative 
methods for 
hardware / 
software 
testing 

 

Designer Observation, 
questionnaire, 
informal 
feedback 

Quantitative 
methods for 
user interface 
evaluation 

 Use cases, 
feedback 
regarding 
stakeholder 
satisfaction 

For the second step of an evaluation, contextualization of evaluation goals must be 

stated. The context of an evaluation can shift the focus or perspective of the evaluation 

process, for example, who is evaluating the device and why? For this, the framework 

presented by O’Modhrain in 2011 should serve as a reference guide [59]. Given the 

idiosyncratic design process carried out by most DMI designers, it is suggested that 

evaluation goals from the viewpoint of performer/composer and designer should be 

amalgamated in most evaluations following this framework; however, this is not to say 
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other stakeholders should be ignored. To further clarify, this is not to dismiss the 

perspectives of the audience or the manufacturer, but to highlight that the role a DMI 

designer often plays as both the performer/composer and designer. Table 4.4 highlights 

aspects of device evaluation that best fits for these two stakeholder groups. From 

following these first steps of analysis, an evaluation should be enabled to draw upon 

existing HCI evaluation techniques and augment them to suit the chosen device’s 

categorization, design taxonomy, and consideration of stakeholder requirements. 

After fully categorizing, contextualizing, and identifying the stakeholders, consideration 

of HCI paradigms that are relevant to computing for specific applications should then be 

made. However, given the current state of DMI evaluation, the same evaluation 

techniques as would be applicable to a Windows, Icons, Menus, and Pointers (WIMP) 

system cannot be directly applied. Nevertheless, HCI techniques may still be borrowed 

to assess a musical device’s functionality, usability, and the musician’s overall user 

experience. 

In the evaluation framework proposed, functionality refers solely to the technical 

capabilities of the device, making it possible to quantify what exactly the device does 

and how well it does it. This generally incorporates an analysis of the device’s 

usefulness and reliability. In HCI, the characteristics of a usability analysis seek to 

quantify the interaction between the user and the device in such a way as to ascertain if 

the device is capable of undertaking the tasks it is supposed to. It is important that any 

prototype devices used in an evaluation be close to the final form, both in terms of 

design and functionality. Having a tangible working model of a device is key for a 

successful evaluation. Prototypes need to be functional, where gestures can be captured 

with precision, and in turn they need to be responsive in sound generation without any 

noticeable latency. In contrast to this, the measurement of a user’s experience focuses 

on the qualitative relationship a user develops towards a device. This rests with the 

user’s previous exposure to the device, its derivatives, or similar products that are 

available or the user has been exposed to via the media or advertising. In addition, this 

includes the deeper emotional state of the user in relation to the device in use, for 

example how they felt about their experience and if it meets their expectations of the 

device as a musical instrument. 
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These three factors, although unique, do not operate independently of each other. For 

example, usability is not considered as a defining device characteristic. However, the 

physicality of a device, in terms of its functionality and how it is delivered to the user, 

directly influences its usability. Also, a system’s aesthetic beauty can influence the 

user’s perception of usability and their physical experience with the device before 

actually using it. Finally, a device’s usability directly influences the user’s experience, 

as poor usability will almost certainly lead to a negative user experience. Therefore, we 

see the assessment of each of these areas is best achieved through the application of 

multiple HCI techniques and is not focused on any one alone. 

Functionality assessment is used to determine if the device’s features afforded to the 

user are practical, as well as evaluating the performance, consistency, and the sturdiness 

of the applied design. To validate the functionality of a DMI, it must be capable of 

completing certain performance tasks, in other words, how it might function as a 

musical instrument. Additionally, it must also be considered how a musician might 

evaluate a device during a performance. This includes their own subjective opinion of 

their performance, and the artistic freedoms afforded to them by the device must be 

measured. Therefore, a device that is being used to complete musical tasks for 

functionality testing must also include the incorporation of elements of usability and/or 

user experience in its analysis. 

DMI$
Evalua*on$

Figure 4.1: A framework of DMI evaluation (adapted from 
[124]). 
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Table 4.5: Musical tasks linked with evaluation techniques from HCI. 

Musical Tasks  
Existing HCI 

Functionality Evaluation 
Methodologies 

Selecting an isolated tone: 
simple triggering to varying 
parameters such as pitch, 
loudness, and timbre. 
 
Musical gestures: glissandi, 
trills, grace notes, etc. 
 
Selecting scales and arpeggios 
at different speed, range, and 
articulation. 
 
Creating phrase contours: 
from monotonic to random. 
 
Ability to modulate timbre, 
amplitude or pitch for a given 
note and inside a phrase. 
 
Playing rhythms at different 
speeds and combining tones or 
pre-recorded materials. 
 
Synchronisation of musical 
processes. 
 

 
 
 

 
 

 
Select an existing HCI 
methodology that best 

fits the musical task you 
wish to evaluate 

 

 

 
 

Target Acquisition - 
Fitts’ Law. 
 
Pursuit Tracking - 
Control:Display ratio. 
 
Constrained Linear 
Motion Tracking. 
 
Constrained Circular 
Motion Tracking. 
 
Free-Hand Inking – 
subjective evaluation of 
facsimile signature. 
 
Aimed movements 
composed as sub-
movements - Meyer’s 
Law. 
 
Measuring trajectory 
movements - Steering 
Law. 
 
Circular motion path 
tracking and varying 
trajectories path tracking 

 

The musical tasks used to examine a device’s effectiveness as an instrument, should be 

simple, even if these tasks appear non-musical [128] [129]. This is due to simple tasks 

being only a formative phase of a more complete device evaluation and should therefore 

not be considered in their entirety as a complete evaluation. Evaluation techniques such 

as Fitts’ Law, Meyer’s Law, and Steering Law [124], although basic and somewhat 

reductive and non-music centred in design, can be augmented to accurately measure and 

compare the functional performance aspects of a DMI. 

Given the multiplicity of current DMI designs, to evaluate the functionality of a design 

aspect, what is to be measured must be carefully considered. This is especially relevant 

to device comparison studies where the task must be achievable by all interfaces being 

compared. A list of suggested musical tasks was made by Orio [124], as can be seen in 
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Table 4.5, left column. Additionally, it is suggested here that some HCI evaluation 

techniques can be adapted to test a device’s functionality in simple tasks. The outline 

presented in Table 4.5 is not representative of all musical tasks, and other HCI 

assessment techniques should also be considered. The breadth of both fields cannot be 

easily reduced to fit into so few categorical interactions, but the flexibility afforded in 

both can be manipulated to fit multiple conditions. 

Usability assessment is used in HCI analyses to raise issues of efficiency, effectiveness, 

and user satisfaction. Further descriptions of device transparency, learnability, and 

feedback mechanisms can be drawn from analysing this data. The measure of usability 

is defined in ISO 9241-11 as “quality in use” [65]. Therefore, when investigating 

usability analysis techniques, the following usability definition should be reproduced: 

“… the extent to which a product can be used by specified users to achieve specific 

goals with effectiveness, efficiency, and satisfaction [65].” Beyond the ISO standard, 

there are a number of case studies that outline evaluation methodologies to assess a 

design’s usability. However, care must be taken to choose an appropriate usability 

evaluation technique, which when applied to DMI devices, supports a high level of 

confidence in the findings. The chosen UEM must be capable of extrapolating the 

relevant information from the analysis. Known areas of concern in musical interactions 

include Learnability, Explorability, Feature Controllability, and Timing Controllability 

[123]. These can be expanded upon further to branch out the usability aspects of each to 

include other factors. 

These may include: 

• The demands a device places upon a user, such as cognitive load, physical 

exertion, temporal demands that lead to fatigue and so forth. 

• How a device is perceived to affect a user’s performance, the work involved in 

completing the task, and measuring frustration levels. 

Learnability, as described in ISO 9241-11, is defined as the time required to learn how 

to use an instrument. Learnability also incorporates the user’s familiarity with the 

device or related devices, which is a notoriously difficult parameter to measure. 

However, a contextual study of usability should highlight learnability and playability 

issues that may arise from this. Findings should reflect the performer’s previous training 

with specific instruments and their familiarity with other instruments within a traditional 

ensemble and DMIs in computer music. This type of information can be used to 
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evaluate the amount of effort required to accomplish a task. Additionally, high levels of 

insecurity, discouragement, irritation, stress, and annoyance will reduce how much 

effort a performer will put into learning and applying the intricacies and nuances a 

device may bestow upon them. However, if a device is too easy to learn how to master, 

the user will be as equally dissuaded from its use. 

Explorability represents the number of functions and capabilities afforded to the user 

and how they are implemented. When investigating this element, researchers should be 

aware that all input parameters may be individually assessed for functionality and those 

assumptions could be made for inputs that share the same or similar mechanical 

principles of operation. This should assist in the analysis of any multi-parametric 

control that is given, which is can also be dependent upon the mechanical characteristics 

of the chosen instrument. 

Feature Controllability is the perceived accuracy, resolution, and range of a device. The 

ergonomic implications of a device’s operation in terms of accuracy of movement, 

given the resolution and range of input gestures that are possible, allows designers and 

users to evaluate if they have fully achieved the capabilities of their design 

specifications or musical intentions. If they have not, users will evaluate their success in 

accomplishing a task negatively. 

Timing Controllability is the fundamental difference between classical HCI 

observations and musical interactions, that is, the central role of timing in all actions 

executed. The measurement of input during a time-based exercise and its effect upon 

performance should also consider the simultaneous timing and rhythmic patterns that 

are central to musical performance. The temporal demands of a task should be 

achievable and flexible to a user’s needs. 

From this list of DMI considerations it can be seen that the use of a generic System 

Usability Scale (SUS) derived from existing HCI literature may easily be applied [130]. 

The SUS quickly outputs a number that represents a near instant measure of usability. 

Previously, it has been applied in the investigation and evaluation of many products 

over the last 20 years; it has therefore been successfully applied to validate 

psychometric questioning. However, it can be argued that the standardized questions of 

a SUS analysis do not lend themselves to device evaluation in the 21st century. 

Therefore, it is suggested that it may be necessary to augment and adapt SUS for the 

unique requirements of musical tasks. 
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Further to this, the application of the NASA Task Load Index (NASA-TLX) has been 

observed as an effective measure of usability issues that are unique to DMIs. Therefore, 

this analysis technique may also be considered in usability testing of these devices 

[131]. This assessment technique has also been successfully applied many times to 

numerous studies that have provided a worthy resource for many usability-focused 

activities. Relating specifically to Learnability, Explorability, Feature Controllability, 

and Timing Controllability, the NASA-TLX measures on a number of comparative 

scales. The scales of the NASA-TLX measure the following demands; Mental, 

Physical, Temporal, Performance, Effort, and Frustration Level. Using this set of six 

subscales, the overall workload can be analysed in order to extrapolate information 

pertaining to the individual factors of Learnability, Explorability, Feature 

Controllability, and Timing Controllability. The definition of each subscale can be seen 

in Table 4.6. 

Table 4.6: NASA-TLX rating scale definitions extracted from Hart (1988) [131]. 

Subscale Description 

Mental How much mental and perceptual activity was required? Was the task 
easy or demanding, simple or complex, exacting or forgiving? 

Physical How much physical activity was required? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or laborious? 

Temporal How much time pressure did you feel due to the rate or pace at which 
the task elements occurred? Was the pace slow and leisurely or rapid 
and frantic? 

Performance How successful do you think you were in accomplishing the goals of 
the task set by the experimenter? How satisfied were you with your 
performance in accomplishing these goals? 

Effort How hard did you have to work to accomplish your level of 
performance? 

Frustration How insecure, discouraged, irritated, stressed and annoyed versus 
secure, gratified, content, relaxed and complacent did you feel during 
the task? 

 
Each aspect of usability in HCI can be analysed independently. Specifically, efficiency, 

effectiveness, and user satisfaction data can be collected from a combination of different 

sources. Efficiency can be established by measuring the mental effort required to apply a 

DMI in a specific task; for example, a low mental effort would indicate a high 

efficiency in operation. This data can be collected using a modified post-task self-report 

or a Subject Mental Effort Questionnaire (SMEQ) [132] and a Single Ease Question 
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(SEQ) [133]. Data collected from functionality testing to ascertain device effectiveness 

can also be used. Functionality data can be applied to support additional usability study 

findings, for example, when a user perceives a change in time-on-task when there is no 

actual measured difference. Finally, the satisfaction of a user can also be measured 

using a modified Consumer Product Questionnaire (CPQ) [134]. For a researcher to 

address the areas of concern outlined earlier, they can modify each of these methods of 

HCI usability testing. Additionally, they may also attain specific knowledge depending 

upon the device being tested and the overall aims of the research being undertaken. 

Assessing a user’s experience is a relatively new and innovative area of investigation 

within the field of HCI. A number of appraisal methodologies exist, but they remain 

under-developed due to being in the early stages of their creation. Additionally, the 

evocative nature of the relationship a musician develops with certain types of musical 

instruments can be idiosyncratic and diverse in its formative stages. Moreover, any data 

collected during a user experience testing is altogether subjective in nature. 

Measurements are difficult to quantify and can be dependent on a number of 

contributing influences, such as psychological or social factors [68]. An example might 

include personal opinions on aesthetics, a user’s exposure to advertising, or the social 

desirability of certain technologies. 

User experience can be measured in a number of ways; however, three particular 

methods shall be expanded upon on here. The first method to be detailed is that of a 

simple preference of use report that can be used to summarize a device preference in 

comparison with other devices. Secondly, a post-task User Experience Questionnaire 

(UEQ) can be conducted [135]. Finally, it is proposed that qualitative data should be 

collected relating to the contributing factors of a participant’s experience whilst 

performing both functionality and musical tasks by using a Critical Incidents Technique 

(CIT) analysis [136]. In addition, to link in task data to post-task, empathy mapping 

should also be conducted. The adaptation and implementation of these techniques 

serves to provide a flexible, validated, and constrained user experience measure for 

comparison. 

4.3 Chapter Conclusion 

Models of evaluation exist in both fields of DMI design and HCI that can serve as 

guidelines for future DMI appraisals and comparisons. Currently, DMIs are often 

evaluated idiosyncratically, and structured well-established evaluation methods from 
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other areas are somewhat ignored. In this chapter, the investigation and presentation of 

several existing methods of device evaluation have been suggested. Specifically, a 

number of steps have been highlighted to ensure that a complete and in-depth device 

appraisal can be carried out. In device appraisal, the need for established, rigorous, and 

flexible techniques is stressed. The field of HCI contains many validated techniques that 

have been successfully applied over many years. However, the evaluation of a musical 

device is often far more complex in practice than a conventional computer interface or 

device. Therefore, experimentation must be undertaken to find an appropriate evaluation 

technique that best fits a device. 

A suggested framework of analysis can be seen in Figure 4.2. When applying this 

framework, the initial stages of a device’s evaluation should include the capture of low-

level device characteristics, creating a generalized device description. Following this, a 

device should be reduced to its physical variables in terms of its taxonomy of input. The 

second step should contextualize a device’s evaluation in terms of stakeholder, 

questioning who is evaluating the device and why. These initial steps will serve to 

inform the evaluation and comparison of functionality studies that follow. 

Devices are required to be capable of undertaking the analysis task and must be 

analogous in operation if they are to be compared. A variety of potential HCI paradigms 

exist that can be augmented to best fit the categorization and contextualization outlined 

in the first stage. The main categories to measure include a device’s functionality, 

usability, and the user’s experience with the device. Functionality testing should include 

Overall Context of Analysis

Device Description and Categorisation

Basic 
Description

Low-Level 
Characteristics

Taxonomy of 
Input

Device Analysis

Functional Context

Usability User 
Experience

Musical Context

Usability User 
Experience

Figure 4.2: A framework of analysis devised 
from combining existing HCI and DMI analysis 

techniques. 
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an element of analysis of the usability and user experience, as functionality testing is 

able to highlight any potential issues in this area before a more explorative study is 

carried out in a creative context. Usability and user experience in a musical context 

requires a less structured study than a functional one; as musicians must be given time 

to evaluate a device in a natural setting over time. The application of multiple HCI 

questioning techniques should also be applied to highlight important usability and user 

experience data in a real-world application of the device. 

With the development of an appropriate framework of analysis for the investigation of 

device feedback, it is now fully possible to not only apply the physiological and 

psychophysiological findings of Chapter 3 to the design of a new DMI for evaluation in 

Chapter 5, but to also evaluate the effects of these principles upon the users of DMI in a 

Computer Music context. Therefore, in Chapter 5 of this thesis, the findings of Chapter 

3 and 4 will be applied to design and develop a new DMI and investigate the multiple 

parameters of a DMI in use.
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Chapter 6: User Experience of Haptics 

in DMI Interaction Design 

Within this chapter, the results of the previous experiments will be examined and their 

effects upon user experience in the performance of musical interactions will be 

expounded upon to formulate a set of recommendations for the design of new haptic 

interfaces for musical expression. 

6.1 Implications of Research Findings 

Within the field of Computer Music, audio-visual interface devices dominate 

commercial markets and haptic feedback is neglected or delivered as a novel feature in a 

device’s interaction methodology. Examples of this can be seen in USB piano 

keyboards, basic slider and button controllers, and many of the digital renditions of 

interactive instruments and sequencers that are available as downloadable applications 

on touch-screen mobile devices. The results of the analyses presented in this thesis have 

suggested that there is a potential to improve upon a user’s experience and increase the 

capacity of information that can be physiologically communicated in interactions that 

include haptic feedback. In addition to this, the results of the experiments also suggest 

that neglecting feedback in a DMI’s design has a negative effect upon aspects of a 

device’s perceived usability. 

From the investigations presented within Chapter 2, it was observed how the human 

senses are presented with multimodal information in interactions with acoustic musical 

interfaces. Moreover, it was discussed in Chapter 3 how the sense of touch in this 

context is capable of capturing and presenting complex information that the other senses 

cannot. Further to this, from the experiments conducted in Chapter 5, it was observed 

how interactions with haptic DMI devices present data that is rich in not only 

physiological meaning, but psychological too. Considering each of these individual 

findings, a number of interesting conclusions can be made. 

Throughout this thesis an assessment of how enjoyable and engaging interactive devices 

are to use has been presented, analysed, and discussed. The validated systems of 

analysis that were applied throughout have attempted to resolve usability aspects of 
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DMI feedback methodologies through the application of robust, objective, and reliable 

metrics from the fields of Psychophysics and Human-Computer Interaction. Through 

the application of specific evaluation principles from these subjects, it was possible to 

gain a quantifiable insight into the effects of feedback on a device’s perceived usability. 

In the evaluation of functionality, it was observed that all feedback types were perceived 

to be equally usable. Moreover, in Parts 3 and 4 of Chapter 5 it could be observed how 

the traditional application of device functionality in usability context testing ignores the 

important differences that can occur in a device’s evaluation when the broader concepts 

of cognitive, affective and the other social aspects of an interaction are ignored. This 

highlights the disparities that exist between the actualities of device interaction in 

functional and explorative studies and how they fail to consider the subjective ideals of 

the user. This aspect was also seen to be overlooked in many of the previous DMI 

evaluations that were presented and discussed in Chapter 2. However, this does not 

discredit the application of usability methods in a device’s functional evaluation, but 

highlights how the application of usability methods in isolation ignores the context of 

device applications in real-world artistic endeavours. 

With reference to the findings of Chapter 3, the physiological and psychological effects 

of tactile feedback were seen to have a negligible influence on the quantifiable function 

and usability evaluations of feedback, seen also in Part 3 of Chapter 5. The value of 

usability testing was not diminished, as both the basic functionality evaluations and 

usability data gathered were used as objective comparatives for the assessment of the 

devices studied. Similarly, the user experience data of Part 4 would have yielded a more 

significant effect of feedback without being able to compare results to the quantified 

parameters of the functionality experiment. Comparisons between functionality testing 

and the explorative case studies also highlighted important factors of consideration in 

evaluating the successful completion of a musical task versus a much less constrained 

creative endeavour, as a DMI cannot simply be determined as usable without context. 

Instead, it was observed how a DMI applied as a tool and the experiences of creativity 

can be used as the composite of several qualities that are heuristically discovered and 

determined by the artist. Therefore, it can be concluded that the usability of a DMI 

should not be analysed alone or outside of the context of a specific application. 

Usability can instead be better understood as a factor of user experience that emphasises 

the importance of the context of an evaluation, whereas the overall user experience 

should serve to quantify the factors that influence a user’s application of specific 
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technologies. Particularly to the findings presented within this thesis, regard to the 

senses involved in a musical interaction can be considered as a highly influential factor 

on user experience. However, it should also be acknowledged that touch is 

understandably reduced in importance below that of aural in the musical interactions 

witnessed. 

It is traditionally understood that touching, holding, and physically interacting with an 

acoustic musical instrument is required to effectively quantify its suitability. In contrast, 

for digital technology, an objective assessment of efficiency, effectiveness, and user 

satisfaction when interacting with a device is used to raise potential usability issues 

before mass production and commercialisation takes place [144]. In HCI, a usability 

analysis seeks to quantify an interaction between a user and a device in a specific way to 

ascertain if the device is proficient in undertaking the tasks it was designed for. For 

musical instruments, musicians perform a similar evaluation when appraising the 

potential of an instrument before composing for or performing with it. Further parallels 

can also be observed between qualitative and quantitative usability evaluations between 

both acoustic instruments and digital devices. It has been observed how a person’s 

previous experiences can influence their attitude towards a device before testing; with 

three distinctive processes being attributed to induce pre-use relationships between a 

device’s aesthetics and perceived usability [145]. 

The first of these influences is the role of popular stereotyping; attributing the 

successful design of one instrument with the same, or similar, design implemented on 

another. Secondly, a “bleeding” effect can occur where the aesthetic design perceptions 

of one instrument are applied to similar features on another. Finally, an effective 

response to a design’s aesthetics may improve a user’s attitude and therefore their 

overall evaluation of an instrument. Preconceptions are often formulated before 

interacting with a device and the physiological, psychological, and philosophical 

aspects of being human are applied to bring meaning to them. These intricacies can 

reveal themselves without the actual use of a device occurring [146], placing 

importance of previous experience over the material or functional properties of an 

instrument's usability. 

It is therefore understandable that commercial many DMI devices are not necessarily 

designed with developing new interactive experiences in mind. That is to say, why 

create a device that is pleasing or evocative to touch if it is not necessarily influential in 

creating preconceptions or early impressions of a new device’s usability. However, new 
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interdisciplinary approaches to design are being conceived that integrate methodologies 

that apply an understanding of bodily perception, performance, and presentation of 

information sympathetic to the user’s somatic experience. The field of Somaesthetics is 

one such design approach that is gaining popularity [147]. This approach to design 

applies the philosophies of thinking through the body and designing for interactive 

experience to achieve embodied interactions with technology in an attempt to provide 

pleasurable interactions through the exploration of experience. The applied methods of 

DMI design and testing that were discussed in Chapter 2 present an interestingly similar 

approach. Here, the primacies of previous musical practices were applied in the 

construction and testing of DMIs. This provided a familiar language, quantitative and 

qualitative data, and examples of practical application with design testing 

methodologies. It is therefore suggested in this thesis that the inclusion of multiple 

factors should be a fundamental aspect of any rigorous device analysis. 

Understandably, other attributes in music take president before touch, most importantly 

being the quality of the sound being produced. Additionally, many popular instruments 

have developed an iconic audio-visual standing in the music community by being 

associated with certain popular performers and musical genres, for example Jimi 

Hendrix and the Fender Stratocaster. As early DMI devices were modelled upon 

acoustic devices, they were inevitably evaluated in comparison to them without 

musicians ever interacting with them. An example for electronic musical instruments 

would be the keyboard mechanism of the early synthesisers, discussed in Chapter 2. 

This type of interface is recognisable to many musicians, allowing for the development 

of a pre-use relationship and permitting subjective conclusions to be drawn. When 

measuring a user’s experience with a musical device, researchers are now equipped with 

validated methods of analysis and evaluation that focus on the more philosophical 

relationships that a musician has developed towards an instrument over time. This type 

of measure is sympathetic with a user’s emotional state in relation to a device, for 

example, how the user feels about their experiences when interacting with them and if it 

has met their preconceived expectations. 

6.2 The Intimacy of Music 

Further examples of how digital technology has manipulated and augmented experience 

can be seen in other areas of the music industry. For example, while the number of live 

performances has been steadily increasing since the year 2000, the number of hard copy 

sales of music has dwindled in comparison. Music consumption has moved away from a 
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materialistic ownership of various music formats (such as CD, vinyl, or tape) towards a 

shared communal experience that is brief and momentary. For an audience, a musical 

performance is experienced in the moment and this experience is difficult to reproduce 

via copies of the same performance without context. Digital technology is capable of 

capturing the audio-visual element without question, but it is not capable of capturing 

the feeling or intimacy of an individual member of the same audience. 

Interacting with musical instruments displays a similar augmented form of physical 

intimacy that involves close and informal contact with the body; consider again the 

example in Chapter 3 of the intimate playing style of stringed instruments such as the 

violin, viola, and cello. Physiologically, touch is a modality that results in the 

combination of information gathered from the receptors in the skin, as discussed in 

Chapter 3. In addition to this, from the data gathered in Chapter 5, it must also be 

acknowledged that touch can evoke an emotional response. When regarding technology 

in the creation of music as evocative or representational of an emotional state, it should 

also be observed as something that is poignant to all senses, including the internal 

emotional representations of the interaction. Therefore, investigating the effect of haptic 

stimulation in this context has allowed for a better understanding of the internalised 

experiences of the user. Through the combining of the physiological and 

psychophysiological analyses presented in Chapter 3 and the human-computer 

interaction methodologies discussed in Chapter 4, it has been observed that an 

evaluation of the sympathetic, pervious, and expressive exterior organ in relation to the 

emotive perceptual experiences of the user can be achieved. Understanding the 

conveyance of physiological information, regarding the different elements of haptics, 

can perhaps in turn lead to a more supportive measure of a device’s potential to convey 

psychological detail and potentially achieve embodiment [147] [3]. 

Acknowledging that users are capable of feeling more than physical stimulation allows 

for the measurement of an interior perception of the device being interacted with. 

Through the analysis of haptically enabled devices that are capable of communicating 

similar information as acoustic instruments, insight is gained into how an interaction 

with creative technology is experienced on an emotional level. Haptic feedback may 

prove to bring psychologically passive and uninspiring objects into a personal or 

emotional proximity, and in doing so, enable users to gain a greater understanding of 

them. 
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6.3 Previous Experience 

Digital music and the technology used to create it is as ubiquitous and evocative of 

emotion as older, more traditional, music forms. That is to say, digital music, and the 

tools used in its creation, can be considered as being proficient in invoking emotions 

that in turn create emotional bonds between the physiological and psychological 

experiences of the user. Relationships with music are established through personal 

tastes that are developed through experience, listening habits, and time, all of which 

serve to bring meaning to a musical interaction. These relationships, which are 

developed by users of music technology, can be observed throughout history and 

location. 

As some consider certain forms of music atrocious or unpleasant, others hold them in 

high regard. Sound art can be whatever the beholder bestows upon it, and the same 

concept can be applied to the objects used in the creation of this art by the artists. 

Through decisions made in the creative process, an artist will make choices about 

medium, style, and expressionism. The personal choices, skills, and experiences of the 

artist can lead to a classical orchestration or a composition of noise music. There are 

many artistic movements throughout history that have seen fit to engage the observer on 

a multitude of levels, but they cannot all be categorised or justified easily. Therefore, 

when a piece of technology is evaluated in its application in the arts, it must be 

considered how it is applied and how it specifically relates to the end user or artist. 

Through the study of a musician’s experience with music technology, it can be observed 

that musicians not only use technology to make music easier, they use it to live with. 

Interacting with technology involves the user on an emotional, intellectual, and sensual 

level [68]. The research and analysis theories discussed in Chapter 4 bestow upon 

investigators the tools to explore how users apply technology in tasks that extend the 

reach of their internal empathy or compassion by assisting in the internalisation of the 

external world around them [148]. This is particularly pertinent in evaluating 

technology applied in the creation of art, as it is the artist who is attempting to create a 

physical representation of an internalised concept. 

In music, it can be observed how musicians choose certain musical instruments and 

compositional styles over others. It can be argued that some instrumentation is capable 

of evoking stronger emotional responses in both performer and observer than others 

evoke. Musicians have often expressed their relationship with their instrument as 
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something that is emotional and subjective that has been developed over time. It has 

been found that this kinship is usually unique to the artist, arousing the individual 

through various means. Below, are extracts of a study undertaken by S. Turkle [149]. 

Within this text, there are interviews and writings of musicians expressing how they feel 

about their instruments and what it was that initially interested them. 

... I can feel the instrument vibrate from head to foot as I draw my bow across its 

strings, a throbbing through my chest, a buzzing through my legs and feet, a tingling to 

my fingertips. 

- Tod Machover, talking about his cello. 

When I learned to play the piano, my mother sat next to me nearly every day. I feel an 

association between the piano keyboard and family love. 

- Howard Gardner, on his association of family, love, and the piano. 

 

It was the sound that first drew me in. What was a police siren doing in a university 

common room during [the] Fresher’s fair? 

-Trevor Pinch, his first attraction to the synthesizer. 

What can be summarised from these brief accounts is that the emotional state of a 

performer and their relationship with their instrument is more than a measure of 

efficiency and accuracy in realising musical intentions or that the instruments discussed 

are just physiologically pleasing for the artist to use. Further emotive senses are 

involved in the choices made by the artist. However, it is often the subjective 

experiences of the artist that are used to hold certain sound qualities in higher regard 

than others, which may explain why audiences empathise with musicians when they 

observe their performances. These relational differences are the result of many 

influences that include prior experiences, personal attitudes, and many other internal 

and external effectors. Therefore, a person’s emotional response to a musical instrument 

is a function of both the design of the instrument and the individual’s previous 

experiences. McCarthy and Wright surmise this requirement for receptiveness to 

experience by highlighting that experience is not something that comes readymade [68]. 

Furthermore, it is the individual's responsibility to become ready and receptive to an 

experience in the present, as it may manifest itself in the future. That is to say, the 
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meaning of an experience in the future depends heavily on the individual's own history, 

character, and idiosyncrasies in both the present and in the past. 

In addition to this, the emotional response of an individual when listening to music is 

also the result of a multifaceted sequence of interconnecting factors. Furthermore, 

factors such as current mood, prior memories, and the level of engagement have been 

recorded as having some effect upon a listener [150]. In addition to this, the emotional 

response of an individual listening to music can be predicted when combining 

electroencephalogram (EEG) and acoustic features derived from music [151]. Daly et 

al. suggested that emotional responses to music are the result of processes that are 

internal to the listener and the acoustic properties of music being listened to, which is to 

say, the stimuli presented to the listener. It can therefore be observed that prior 

experience and the stimuli delivered are influential in the relationships that are 

developed between instruments and musicians. 

6.4 Beyond the Physical 

The study of touch is highly complex and in the studies presented within Chapter 3 the 

physiological and psychophysiological responses of the body were measured and 

discussed. In Chapter 5 it was observed that the user’s experiences of the different 

feedback stages were the most significant effector in the operation and application of 

feedback. From these two chapters, it was observed that when interacting with the 

various feedback types the devices displayed information to the exteroceptive senses to 

be processed and used in conjunction with the interoceptive senses. Furthermore, it was 

the sense of touch that gave an immediate indication of what is happening during the 

DMI’s interaction with the performer. The body translated the information presented 

and it made the user spatially aware of their surroundings from an inward orientated or 

interoceptive sense of position, movement, and balance. To differentiate the internal and 

external senses, consider how the texture of a device is affirmed via touch or an 

interaction with a touch-screen is determinate versus the emotional avowal or pleasure 

response evoked when touching an animate object, such as a pet, child, or loved one. 

This second type of interaction holds an immediacy of sensation that is both affirmative 

and comforting to the person experiencing it [146]. Therefore, it can be seen that the use 

of a DMI is encompassed by the many divisions of the human condition and should, 

therefore, be considered more than just the externalisation of an inward sensation. 
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Also of consideration to this discussion is the role of multimodal interaction with the 

multiple feedback types that were applied in the context of the analyses carried out in 

this thesis. To demonstrate, consider the popular saying “Seeing is believing” and how it 

was originally written as “Seeing is believing, but feeling is the truth”. With regard to 

technology, the final part is often neglected and visual representations of data are rarely 

surpassed by the other senses. However, musicians instinctively know that this form of 

interaction is not always the most affirmative and although visual data is the most 

prominent and quickest way to convey information to a DMI user, it is notably distant, 

easily manipulated, and altogether inaccessible for some users. That is not to say that 

musicians are discouraged from using visual devices, but that they are aware of the 

removal and separation of the relationships formed between these feedback types; as 

they have often experienced these in acoustic interactions. The link between physical 

and virtual interactions via combined tactile and visual interactions are definite and give 

affirmation of input actions, but they are neglected in most audio technology designs. 

The removal of tactile feedback from interaction with technology is prominent in almost 

all touchscreen devices today. Additionally, the sense of touch is the sense that is least 

susceptible to deception and is therefore the one in which the most trust is put [149]. 

 

Figure 6.1: An example of the Bouba / Kiki Effect [156]. 

The sense of touch brings visually distant information near. It can also be used to 

reassure that an interaction has been successfully undertaken. The combined senses of 

sight and touch contain a vast wealth of information for a person to process. However, 

as with the preconceptions of usability discussed earlier, indirect tactile experiences are 

capable of reaching a user before they physically interact with a device, if indeed 

physical touch is experienced at all. This concept of virtual touch is similar to the 

observations made by Kohler during the bouba/kiki experiments of 1929, Figure 6.1 
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[152], where a non-arbitrary mapping between a sound and the shape of an object was 

observed. As discussed earlier in this chapter, as with perceived usability, physical 

sensations are capable of reaching the inner senses via visual stimulation. Therefore, 

when a user browses a selection of music apps, they are not solely evaluating aesthetic 

design qualities or functionality; they are perhaps also formulating a virtual tactile 

sensation. Discrimination between a virtual touch and actual touch is only realised when 

the user interacts with a device to ascertain its true usability. 

The human body also contains a sense specific tactile spatial memory [147], an example 

being the ability to recognise letters when drawn on the back. This type of memory is 

acquired through experience, another example being the ability to feel through a 

familiar environment in the dark. Although this knowledge is often passively processed, 

it is made use of in every moment. This knowledge acquisition is not simply an 

interaction between the senses that develops into an understanding of what is happening 

in the direct vicinity, but is developed through correlations between the internal somatic 

systems and the perceptual processes of the brain. This system is constructed through 

processing a combination of the three internal interoceptive senses: the proprioceptive, 

kinaesthetic, and vestibular senses. In this context, proprioception can be defined as the 

body's position felt as muscular tension, kinaesthesia is the sense of movement from 

within our body, and the vestibular sense is derived from the inner ear controlling the 

balance mechanisms. The combined applications of these interoceptive senses correlates 

to the earlier definition given for haptic interactions, and any somatic response a user 

has to an environment or device is also perceived this way. 

The experiences of individuals are accumulated over many years and the development 

of the senses used to perceive external stimuli have taken millenniums to evolve. 

Therefore, it can be argued that both elements are in a constant state of slow-moving 

flux, altering on a species-by-species and subject-by-subject basis over time and that 

these changes are the result of external spatiotemporal influences upon the body of the 

individual. Initially, these changes were evolutionary requirements of survival; whereas 

nowadays, these changes are arguably more psychosomatic responses influenced by 

social constructs and individual ideals. Traditionally, musicians have been playing 

acoustic instruments developed to create sound in a way that incorporate all of the 

senses together. However, as was discussed in Chapter 2, the manner in which sound is 

now being generated is no longer restricted by the physical constraints of acoustic sound 

generation. Therefore, the changes that have taken many years to accomplish, will 
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ultimately result in the musical process being slowly altered and eventually altogether 

changed. 

6.5 Changes in Experience 

The fields of HCI and Interaction Design are constantly changing to keep pace with 

advancements and developments in technology. Although there are still concerns with 

the usability aspects of computing, there is also now an interest in experience [68]. 

Currently, a developing trend in the field of HCI is the growing interest in experienced-

focussed HCI that emphasises the experience of using technology, rather than focussing 

on the task being completed with it [153]. Similarly, in Chapter 5, it was observed that 

consideration had to be given to the context in which the DMI was applied, in terms of 

the functionality and explorative exercises completed. Along with context, many 

emerging technologies are easily defined as consumer products rather than professional; 

as they were once seen to be in the past. Technology is no longer limited, but available 

to all. This direction of study is leading to a new design ethos where aesthetic 

experience is being applied to integrate technology into creative media industries. 

Many advances in music technology have been implemented in the form of devices that 

make music production easier. In doing so, these developments have achieved the 

speeding up of the methods in which something is created or accomplished. By means 

of compensation, the human element has also had to speed up. Technology is applied in 

many areas to increase the completion times of any given task, and in response, users 

have had to adapt themselves to this increase in pace [149]. As technology speeds up, 

users have had to adapt their senses to this increase in pace. This has improved lifestyles 

in many ways, and yet, has degraded them in terms of shortening the time in which 

users have to experience them. 

Regarding technology and its application to music, many instances of this phenomenon 

exist. For example, the increase in home produced music is a by-product of the fast-

paced technological revolution that many more musicians have accessed. The historic 

technological requirements of a recording studio and the other high cost technologies 

have in the past restricted most people from self-producing music. Nowadays, most 

home computers can handle this task without having to spend much more than the cost 

of the actual computer. This freedom of creation has overwhelmed digital markets with 

endless musical experiences, and has augmented the relationship consumers and 

creators develop towards musical interfaces. 
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Current market consumptions of analogue equipment are favourable and this market has 

in turn created digital devices that introduce imperfections directly modelled upon old 

analogue technology. This reintroduction of the imperfections of dated technology 

addresses the audible requirements of an analogue experience. However, the role of a 

DAW in replicating the audible effects of older technology neglects to incorporate a 

sense of touch, both physiologically and psychologically. Haptic interfaces that expand 

input gesture capabilities enable the meaningful manipulation of virtual sound objects. 

This technology has long been available in video game consoles and musical interfaces, 

but its influence on the user's experience has yet to find an accurate measure. 

As discussed in Chapter 2, haptic devices are becoming increasingly prominent in 

commercial markets with the recently renewed interest in VR. The commercialisation of 

VR technologies allows for prolonged user exposure to digital renditions of physical 

interactions. While the rhetoric of VR technology has ebbed and flowed, technologies 

that integrate touch have been proliferating [154]. Commercial examples of this include 

medical and military training, such as remote keyhole surgery, mine clearance, and 

undersea and interplanetary exploration. Further examples can be seen in Fujitsu’s 

prototype haptic sensory tablet, ViviTouch’s Electroactive Polymer technology in Mad 

Catz gaming headsets, Tactus Technology mobile phone layers, and Immersion’s 

TouchSense. Technology of this type is being integrated into a vast array of commercial 

mobile devices and haptically enabled technologies are slowly substituting everyday 

passive devices that operate purely on an audio-visual level. It is predicted that the 

proliferation of haptic technology will expand into three distinct forms of device: 

• Basic haptic feedback devices (such as video game controllers). 

• Haptic displays (capable of simulating shape and texture). 

• Exoskeleton external devices (which exert force and pressure directly onto the 

skin). 

6.6 From Experience Evaluation to Design 

The discipline of HCI has developed a wide-range of tools for the appraisal of computer 

technology applied in the accomplishment of specific tasks. This includes evaluation 

techniques that are designed to discover issues that arise in unique applications of 

technology, such as in haptic DMIs. For the appraisal of complex devices, the field of 

HCI can be called upon for the evaluation of usability and user experience. In addition 
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to this, the subject of Human Computing (or Human-Centred Computing) can also be 

called upon to evaluate the user’s intentions and motivations in the application of 

technology in creative contexts. An appraisal of function, or a task-focused approach, 

presents metrics that are easy to measure and quantify. However, in the creation of 

music, the application of technology relies upon the user’s previous experiences to 

accurately express the artist’s inner thoughts or intentions. Therefore, it is proposed that 

although DMIs require functional testing to highlight potential usability issues, a 

comprehensive analysis should also include the evaluation of real-world situations to 

accurately capture and evaluate all aspects of an interaction. Thus, to expand an 

investigation of a device into the real world, an experience-focused analysis should also 

be undertaken. This idea emphasises the “third paradigm” concept discussed earlier, 

which includes the gathering of information relating to culture, emotion, and previous 

experience. It is strongly evident from the analysis of data gathered in Chapter 5 that 

task-focussed evaluations are a necessary precursor to an experience-focussed 

evaluation, but they do not present sufficient information about the real world 

application of such technology when carried out alone. 

Information about real-world devices and how they operate can be measured and 

applied to their virtual equivalent. In the case of DMIs, much of this information exists 

as an acoustic musical instrument. Therefore, data can be measured and applied to 

provide a sense of realism and embodiment to virtual or augmented instruments or 

expanded upon to fit new types of devices. Digital artists are renowned for their 

creativity, innovation, and adaptation in the design and construction of digital musical 

instruments; however, these digital representations are often devoid of haptic feedback. 

It is possible to reconstruct the operating principles of acoustic instruments and apply 

this to DMIs, as is seen in augmented instruments and DMIs that replicate the playing 

style of an acoustic instrument. However, for most commercial DMI interfaces, the 

emptiness of button bashing can be seen as a significantly negative aspect of their use. 

DMIs offer freedoms to musicians that are near endless, but computer music performers 

often also play traditional instruments. This highlights the need to experience the 

creation of music with all the senses incorporated. 

If aural, visual, and haptic collocations are possible within DMI design, it should 

therefore be possible to simulate the feel of an acoustic experience within it. Sound can 

be created electronically with the freedoms afforded through digital sound generation 

and with the combined information of the interaction response being fed back with the 
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same meaning as an acoustic instrument. Sound can be digitally created and 

manipulated by the artist and a deeper sense of craft can potentially be realised. 

Computer musicians need to be able to experience consistency, adaptability, musicality, 

and touch-related sensations that are induced by touch to experience the physiological 

and psychological occurrences outlined within each of the research conclusions of this 

dissertation. 

6.7 Emergent and Future DMI Designs and their Evaluation 

Traditional musical instruments allow musicians to create sound through explicit 

gestures that are specific to the generation of sound that a particular instrument employs 

(Figure 1.3). Many of these instruments are consistent in that they are unambiguous in 

their operation. Conventionally, they are designed for single users, are single-sound 

orientated or sound specific in their design, and the context in which they are used is 

largely determined by the user; that is to say, solo or within an ensemble and so on. This 

has facilitated instrument designers by predefining the composition and arrangement of 

the sound generating modules within an instrument to suit the specific style of 

interaction required. As the input and the output of the instrument are physically 

inseparable, an explicit dialogue has been formed between the musician and the 

instrument, one that has been established through extended practice and performance. 

This relationship is further facilitated when the user can apply interactions learned from 

one instrument to another of similar design. 

As was discussed in Chapter 1, these relationships are not as apparent in many DMI 

designs. New interfaces for musical expression are becoming multi-modal and 

embedded, allowing musicians to interact with digital sound generating modules in a 

multitude of novel and innovative ways. In many instances, haptic DMIs allow a natural 

interaction to take place between computers and musicians, bridging the physical-digital 

divide with an interaction paradigm that is familiar to the user. Furthermore, instead of 

creating computer interfaces for musicians, DMI designers now have the potential to 

provide musician interfaces for computers. That is to say, the nature of the interaction is 

changing beyond traditional concepts of a musical interaction, yet there is the possibility 

to stimulate the user in an evocative and familiar way. However, if future DMI designs 

continue to neglect the potential of feedback to tap into the deeper philosophical 

potential of haptics, the metaphysical distance between the user and the systems in use 

will continue to increase and the disconnect felt between the digital and physical worlds 

will increase. 
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Accordingly, the disconnect or physical-digital divide will continue to present interface 

designers with issues beyond basic interaction metaphors unless DMIs are developed to 

fully stimulate a user. To measure the effects of stimulation and for an accurate 

evaluation and appraisal of new DMI designs, the tools and techniques applied must 

also be assessed for their suitability. In this thesis, it has been suggested that HCI 

evaluation tools can be augmented for the assessment of DMI designs in a Computer 

Music context. However, within HCI the concept of a device evaluation is broad. 

Furthermore, current evaluation methods have been identified as being inappropriate for 

emerging HCI applications [155]. Poppe et al. have highlighted failings in traditional 

HCI evaluation methods. From their findings, it is apparent that further consideration of 

potential design paradigms is required and future developments in DMI design must be 

discussed in a musical context. 

6.8 Considering Previous Experience in New DMI designs 

From the findings made in this thesis, specific principles of interface design for DMIs 

have been developed and investigated. It is suggested that consideration of the 

following points should be made in the creation of new haptically enabled DMIs: 

• Transparent in use: it must be possible to determine a DMI’s function, this 

must be clear to both the musician and the observing audience, as it is easier to 

recognise an action than to recall one. 

• Reactive and communicative to as many of the user’s senses as possible: in 

relation to a device’s transparency, information must be presented to as many of 

the user’s senses as is possible in a timely and logical manner to emphasise the 

effect of the input interaction upon the system in use. 

• Present a meaningful set of tangible interactions: all information related to 

the system’s reaction should be presented to the musician clearly and they 

should also be able to interpret meaning easily, this will serve to enhance 

discoverability and improve the musician’s overall understanding of the device. 

• Clarity of affordances delivered via the sensors types used: a DMI that is 

designed with familiar features should be done so with clarity in how these 

features react and should therefore respond in a recognisable and familiar way. 

• Consistency in the information displayed to the user: the location, 

appearance, significance, and behaviour of an interface must be consistent for it 
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to be effectively learned. In achieving this, when errors are made the interface 

will allow musicians to recover and continue without any additional mental or 

physical strain. 

• Clear and stable mapping of user gestures in the interaction model: the 

mapping of gestures in a spatial context and the systems temporal responses 

should be clear and stable. 

• Consistent device constraints for the interpretation of gestures: physical, 

logical, and clear limitations upon an interaction will prevent errors and assist in 

interaction interpretation by both the musician and the system in use. 

By following these guidelines, new haptic DMI designs will be fully communicative to 

all senses and present computer musicians with an array of carefully designed tools for 

their own artistic endeavours. In addition to this, the audience’s experience will also be 

improved upon as clarity between the musician’s actions and the system’s response will 

be achieved. In addition to these guidelines, the concepts applied in the design of 

“Tangible User Interfaces” [156] and the paradigm of “enaction” [157] should be 

considered to further overcome the issues presented in Chapter 1. 

6.9 Chapter Conclusion 

The use of haptic feedback may go beyond the singular, subjective, or artistic 

experience to convey data that is evocative of the past experiences of a musician, an 

ensemble, or an audience. Embracing haptic technology will assist in collaborations 

between artists, making the sharing of musical interactions and mutual touch 

experiences easier. In this way, one user may virtually feel another, creating an ideal 

context for collaborative work [148]. Musicians will be enabled in the communication 

of performance information, expressing their mutual playing experience and creating a 

shared touch between musicians and audience members. This technology can also be 

applied for training purposes, impromptu solo performances, and improvisation. The 

production of a tangible presence around a digital musical instrument will result in the 

wider acceptance of them among traditional musicians. Which will make them “literally 

manipulable or graspable” [148]. 

Haptic technology can be applied to bring physicality to virtual objects. However, it can 

also allow for the introduction of intimacy of touch to these devices. The future 

development and inclusion of such interfaces in music will rely on the acceptance of 
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these devices by musicians, but also on the audience’s ability to virtually touch them. 

This will serve to complete the broken feedback loop that is present in modern 

electronic musical instruments. If the tactile needs of the exteroceptive senses can be 

addressed, it is proposed that the interoceptive will be enriched. It is not yet fully 

possible to stimulate the inner workings of the human condition through digital means, 

but it should be an endeavour of all new digital objects.
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Chapter 7: Conclusions and Future 

Work 

The research presented in thesis has explored the role of haptic feedback in digital 

musical instrument design applied in the field of Computer Music. To achieve this, HCI 

methodologies were investigated and augmented in the construction of a DMI 

evaluation framework applied in the evaluation of haptic feedback. As described in 

Chapter 1, haptic feedback plays an important role in interactions with acoustic musical 

instruments, but most contemporary DMI designers often overlook its application in 

Computer Music. In addition, there has been a recognized need for structured analysis 

techniques in the evaluation of these devices, such as those applied in the field of HCI. 

Therefore, this thesis has focused upon the analysis of haptic feedback and the 

development of a rigorous testing framework. The primary contributions of this thesis to 

the field of Computer Music research were outlined in Chapter 1. In this final chapter, 

each of these contributions will be summarised. 

7.1 Original Contributions 

“The design and construction of an analytical tool for the investigation of physiological 

and psychophysiological parameters of vibrotactile feedback.” 

In Chapter 3, the Audio-Tactile glove was designed, constructed, and successfully 

applied in the investigation and validation of applications of vibrotactile theory. It was 

proposed that this research tool could be useful for researchers and designers of new 

musical interfaces who wished to explore audio related tactile feedback in their 

instrument designs, allowing the end user to experience passive or active tactile 

feedback depending upon the designer’s application. The experiments presented in 

Chapter 3 proved that the Audio-Tactile glove could be successfully applied in the 

evaluation of vibrotactile feedback. The measurement of perception information being 

delivered concurrently with sonic events allowed for the exploration of appropriate 

feedback techniques in DMI design. 

“Validated vibrotactile feedback in signal detection tasks, in terms of vibrotactile 

amplitude, frequency, and timbre.” 



Chapter 7. Conclusions and Future Work 

 190 

Also in Chapter 3, the relationship between stimulus and sensation were investigated 

and previous psychological findings were validated. Specifically, the psychophysical 

concept of a sensory threshold was examined for pure and complex waveforms across a 

frequency range of 10 to 1000 Hz. In addition to this, signal detection theory was 

applied to quantify the sensory magnitudes of tactile feedback and its potential 

application in DMI interactions. Although a number of psychophysiological studies 

have already been undertaken to quantify these aspects of stimulus detection, in this 

thesis they have been further validated in a computer music context. It was found that 

the absolute threshold of detection varied from person to person and that it was also 

dependent on the frequency, amplitude, and harmonic content of the applied signal. In 

addition to this, it was found that musicians do not display any increase in sensitivity 

through experience. 

“Established the significance of concurrent aural and tactile signals in pitch/frequency 

detection tasks.” 

In the final experiment of Chapter 3, an investigation was conducted to determine the 

significance of simultaneous aural and tactile signals in frequency detection tasks. The 

results of this experiment suggested that combined audio-tactile stimulation had a 

positive effect upon the participants’ ability to discriminate between small changes in 

frequency. Musical ability did not appear to alter the probability scores in terms of 

grouping. However, the difference between musicians and non-musicians within the 

groups appeared to be of some practical significance, as would be expected through 

training and experience. A psychometric analysis was used to identify the PSE for each 

waveform type for each group. There were found to be observable differences between 

the two groups; however, an independent-samples t-test found that significant 

differences were only present for simple waveforms. Although there was found to be no 

statistically significant difference, there were practical implications for the differences 

in PSE frequencies for complex waveforms. Furthermore, in the combined audio-tactile 

group, a small improvement in JND percentage was observed, but no significant 

differences were recorded. These results support the theory that simultaneous 

combinations of tactile and audio stimulation positively influence the perceptual 

frequency discrimination of our sensory system. 
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“The development of an analysis framework for the evaluation of interaction with 

DMIs.” 

In Chapter 4, it was seen how the field of Human-Computer Interaction concerns itself 

with research into the design and implementation of systems that allow users to interact 

with digital technology. This also involves the creation of systems that evaluate explicit 

and implicit tasks undertaken in a variety of contexts. Several existing methods of 

device evaluation from HCI were explored. It was highlighted that task-orientated 

evaluations were not alone suitable for the evaluation of technology applied in a 

creative context, such as with DMIs. Therefore, it was suggested that for a 

comprehensive evaluation of this technology, some focus must also be placed upon the 

evaluation of the user’s experience. 

From the framework presented in Figure 4.2, it was suggested that the following stages 

of a device’s evaluation should be carried out: 

1. The capture of low-level device characteristics, creating a generalized device 

description. A device should also be reduced to its physical variables in terms of 

its taxonomy of input. 

2. A contextualisation of the evaluation should be made; explicitly clear in terms of 

stakeholder, questioning who is evaluating the device and why. 

3. Functionality testing should be completed; including elements of a usability and 

user experience analysis. A variety of HCI paradigms exist that can be 

augmented to best fit the categorisation and contextualisation of the device being 

analysed. 

4. Finally, an explorative study should be carried out in a creative context. 

Usability and user experience data in a musical context will present more 

meaningful data as the participants are given more time to evaluate a device in a 

natural real-world application of the device. 

An application of this four-stage evaluation framework was carried out in Chapter 5 and 

from the analysis of feedback in musical interactions, it was demonstrated how a HCI 

informed framework could be applied in the evaluation of DMIs. 
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“The design, construction, and analysis of two new DMIs that incorporate derivatives 

of haptic feedback.” 

From the exploration of existing haptic technologies in Chapter 2 and the analysis of 

tactile feedback presented in Chapter 3 it was possible to design two DMI that were 

capable of displaying haptic feedback. Specifically, between the two devices, force and 

tactile feedback could be presented to the user in combination or isolation. The two 

devices were constructed and then tested by applying the framework of analysis 

presented in Chapter 4. 

In the functional analysis of feedback, participants were able to select specific 

frequencies with observable increases in mean move time across the four stages of 

feedback. However, a statistical analysis of variance between each feedback stage 

presented with no significant effect for feedback, this was also true for frequency 

selection accuracy measures. This indicated that although there was evidence of 

practical differences in move time and accuracy, haptic feedback and its derivatives had 

no significant effect upon performance of frequency selection tasks. In contrast to this, 

the application of feedback in musical tasks presented with an observable advantage 

over no feedback. The analysis of participant responses to the different feedback stages 

revealed that although there was no quantifiable difference between feedback stages in 

the functionality experiment, there was a perceived qualitative difference between them 

in the execution of musical exercises. 

From the analyses of data gathered from both experiments, it was observed that the 

different feedback types had a significant effect upon certain aspects of device usability 

and the user’s experience. In the usability testing results, it was seen that the perception 

of task difficulty and the mental effort required to complete tasks increased as feedback 

was removed in the order of haptic, force, tactile, and no feedback. Furthermore, in the 

NASA-TLX usability ratings, the categories of Mental Demand, Performance, Effort, 

and Frustration all displayed noticeable differences between feedback stages. In terms 

of User Experience, there were observed some deviations in participant answers; 

however, the overall trend within pragmatic qualities was that haptic feedback was the 

most preferred feedback type, followed by force, tactile, and finally no feedback. 
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“Develop a set of recommendations that considered the role of previous user 

experience in DMI design.” 

In Chapter 6, a discussion of these findings was presented. The discussion concluded 

with the concept of previous experience applied in the design of new instruments for 

musical expression. Recommendations were made relating to the design of devices with 

consideration to the following attributes: 

• Transparent in use. 

• Reactive and communicative to as many of the user’s senses as possible. 

• A tangible interpretation of the device’s reaction must be possible. 

• Clarity of affordances delivered via the sensor technologies applied. 

• Consistency in the information displayed to the user. 

• The application of clear and stable mapping methodologies. 

• Clear and consistent constraints for the interpretation of gestures made. 

7.1.1 Summary 

What can be seen from the findings presented within this thesis is that interactions 

between musicians and digital instruments are highly complex. That is to say, the 

relationships developed between musicians and instruments can be highly dynamic in 

how they effect a musical endeavour. In the process of expressing their musical goals, a 

musician is attempting to convey some philosophical ideal or concept that has no 

corporeal form. In Computer Music, the musical intentions of the creator are realised 

through the application of digital technology. In performances with acoustic 

instruments, a feedback loop is created as a direct result of the sound generating 

capabilities of the instrument. For computers, feedback that informs musicians of 

timing, timbre, or dynamics has to be purposefully and mechanically coupled together 

as this medium has no such innate communication methodology. However, it has been 

shown in this thesis that this mode of communication can be realised through the 

application of haptics. It has been demonstrated that sensory feedback plays an 

important role in how a musician develops a relationship with and evaluates a DMI 

interface for the creation of computer music. Providing extra feedback channels for 

computer-based musical instruments positively benefited the participants of the studies 

presented here and the results of these studies suggested that in order to bridge the 
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physical-digital divide that has developed in the application of DMIs in Computer 

Music, instrument designers should incorporate sensory feedback beyond that of audio 

and visual stimulation. Furthermore, to be of use to a musician, a list of 

recommendations was presented to ensure that future DMI designs are predictable and 

stable. In following these recommendations, DMI designers should be able to create 

two-way isochronously communicative devices that are evocative and communicative 

to all the senses applied in their use. 

7.2 Future Work 

It is hoped that through the presentation of the research findings of this thesis that 

advances in the field of Computer Music have been made. Specifically, it is foreseen 

that the study of interactions between performers and digital instruments in a variety of 

contexts will continue to be of interest in this field far beyond the scope presented in 

this thesis. Further research on digital musical instruments and interfaces for musical 

expression will continue to explore the role of haptics, previous user experience, and the 

frameworks that are constructed to quantify the relationship between musical 

performers and new musical instruments. The complexities of these relationships are 

further compounded by the skills of musicians and are far more meaningful than a 

physically stimulating interaction and should therefore be explored further. 

It has been seen in this thesis that digital musical instrument design and evaluation 

methodologies can be applied in the study of interactions between musicians and 

instruments in a variety of musical contexts. Furthermore, the instrument designer is 

often the performer and a DMI may take many forms; from concept to performance 

tool. In a similar vein, in the design processes of computer interfaces, evaluation tools 

are applied iteratively, in cycles that address the design issues raised within the previous 

sequence. An example of this can be seen in Norman’s Seven Stages of Action as a 

design aid in interaction design [158]. Whilst appraising a DMI, the musician constantly 

questions certain aspects of a design’s usability when applied to specific tasks. For 

example: 

• Can I achieve my goals accurately and effectively? 

• Am I working productively and efficiently? 

• Is the device functioning as I expect it to? 

• At what rate am I acquiring new skills? 
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Emergent DMI systems require further measures for an accurate appraisal of the user’s 

experience when applying the device in a musical context. In a traditional HCI analysis, 

a device is evaluated in a specific context and the evaluation methods are expert-based 

heuristic evaluations or user-based experimental evaluations. Only by determining 

context is it possible to interpret correctly the data gathered. Therefore, it is suggested 

that DMI specific functionality, usability, and user experience evaluation methods 

should be developed. 

In the future, it is expected that emerging haptic DMI systems will expand into the 

following areas and in doing so the tools that are to be applied in their appraisal will 

have to be augmented to display a thorough understanding of a device’s usability and 

the user’s current and previous experiences with musical instruments. 

• Natural Communication: this relates to the application of multiple sensing 

technologies that are navigating new DMI designs away from traditional object-

oriented approaches. This will in turn influence musical interaction design, as 

the traditional communication-orientation of an interaction will blend Actual and 

Symbolic gestures (Figure 1.2) into less implicit interactions. To realise a more 

natural communication interface, the systems in use will become contextually 

aware of their application to avoid the user and the system developing different 

views of gestural applications. 

• Creative Systems: interactive devices will be developed to be near autonomous 

or proactive in their creation of sound. Traditional instruments are explicit in 

how they are to be interacted with, the user is the one who initiates the 

interaction, and they are characteristically responsive in nature. In comparison to 

this, DMIs can be seen as the opposite, leading to a loss of meaning and 

transparency in their application. In computer music that applies DMIs, neither 

of these extremes are appropriate. In their place, a mixed-initiative approach to 

interaction design must be applied to coordinate the musician and the system in 

use. 

• Diversity of Form: the physical form a DMI has the potential to take is already 

quite diverse. The two extremes of this currently span between the following; on 

the one hand, there are large interfaces, such as immersive displays and 

interactive spaces, and on the other, there are smaller forms that are wearable or 

embedded. The diversity of form that DMIs can take in the future will be greatly 
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influenced by technological trends and developments in sensor technology, as 

has been seen with mobile devices and game controllers. This should serve to 

replace many familiar or general-purpose interfaces with more purpose-designed 

or specialised devices. 

• Application Purpose: where traditional instruments are designed to be task-

based, new devices will be designed to be applied in a multitude of contexts. 

This shifts the design focus away from user experience design to a usability 

design approach or multitask-dominant paradigm. However, creative endeavours 

are the consequence of a user’s internal state (or intention) and in ignoring these, 

three major problems may arise. Firstly, the user’s requirements beyond the 

physical are ignored. Secondly, affective and emotional aspects of creation are 

disregarded. Thirdly, the fundamental nature of the experience is disposed of. 

Therefore, both pragmatic and hedonistic aspects of the interaction being 

facilitated should be measured and considered. 

The work presented in this thesis has only begun to explore the possibilities of haptic 

feedback in future DMI designs. The experiments presented endeavoured to present 

evidence of some influence haptic feedback has on a user’s perception of functionality, 

usability, and user experience. Beyond this, future research goals will include the 

development of laboratory tools that will assist in the creation of a DMI design 

environment that will allow designers to experiment with different communication 

paradigms and gestural interface models. Within this space, composers, performers, and 

DMI designers will be able to explore the affordances of new sensor technologies in the 

creation of new instruments for musical expression.
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Early	Glove	Prototype:	

 

Figure 1: Early Audio-Tactile Glove Prototype. 

 

Concept	Development	for	Musical	Tasks	and	HCI	Evaluation:	

 

Figure 2: Musical Tasks / HCI Evaluation sketch. 

  



 III 

Researcher	Questionnaires	for	Chapter	3: 

Experiment Subject Group – A / B (Flip a Coin) 

Fixed Questions – 

Name:             

Age:    Gender:         

Profession:            

Current level of education:          

Music Experience:            



 IV 

Experiment stage 1: Same / Different 

Ö (correct) or x (incorrect) 

160 Hz Practice. 

Waveform Sine Saw Square 

Sine    

Saw    

Square    

 

160 Hz Experiment. 

Random Frequency Pair Run 1 Run 2 Run 3 

(4) Saw- Sine    

(9) Square-Square    

(3) Sine-Square    

(8) Square-Saw    

(7) Square-Sine    

(6) Saw-Square    

(1) Sine-Sine    

(2) Sine-Saw    

(5) Saw-Saw    

 

 

 

 

 

 

 



 V 

Experiment stage 2.1: Pitch Detection 

Ö (correct) or x (incorrect) 

Sine 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(12) -0.25    

(19) -4    

(6) +2    

(17) -2    

(14) -0.8    

(16) -1.5    

(8) + 1    

(1) +12    

(13) -0.5    

(4) +4    

(9) +0.8    

(18) -3    

(15) -1    

(11) +0.25    

(10) +0.5    

 (2) +8    

(22) -12    

(5) +3    

(7) +1.5    

(3) +6    

(21) -8    

(20) -6    

 

 

 

 

 

 



 VI 

Experiment stage 2.2: Pitch Detection 

Ö (correct) or x (incorrect) 

Saw 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(8) + 1    

(3) +6    

(7) +1.5    

(19) -4    

(22) -12    

(18) -3    

(6) +2    

(14) -0.8    

(9) +0.8    

(11) +0.25    

(13) -0.5    

(5) +3    

(1) +12    

(20) -6    

(16) -1.5    

(10) +0.5    

(15) -1    

(21) -8    

 (2) +8    

(12) -0.25    

(4) +4    

(17) -2    

 

 

 

 

 

 



 VII 

Experiment stage 2.3: Pitch Detection 

Ö (correct) or x (incorrect) 

Square 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(11) +0.25    

(7) +1.5    

(13) -0.5    

(22) -12    

(9) +0.8    

(5) +3    

(17) -2    

(19) -4    

(3) +6    

(15) -1    

(20) -6    

(8) + 1    

(14) -0.8    

(12) -0.25    

 (2) +8    

(6) +2    

(1) +12    

(10) +0.5    

(21) -8    

(4) +4    

(18) -3    

(16) -1.5    

 

 

 

 

 



 VIII 

Researcher	Questionnaires	for	Chapter	5:	
Experiment: Functional / Explorative (Circle One).  

Subject #:  Name:       Age:   

Gender:      

Part	1:	Please	collect	comments	on	the	following	topics:	(Researcher	Interview	Data).	

Learnability	-	the	time	needed	to	learn	how	to	control	my	performance	with	this	

controller	was…	

_______________________________________________________________________

Explorability	-	the	exploration	of	the	capabilities	of	the	controller	and	the	number	of	

different	gestures	and	gesture	nuances	that	could	be	applied	were…	

_______________________________________________________________________

Feature	Controllability	-	The	accuracy,	resolution,	and	range	of	features	when	

performing	musical	tasks	was… 	

_______________________________________________________________________

Timing	Controllability	-	musical	tasks	that	required	the	measuring	of	temporal	

precision	were…	

_______________________________________________________________________	

Part	2:	Given	the	previous	considerations,	please	gather	comments	on	the	

performance	of:		

•	Isolated	tones,	from	simple	triggering	to	varying	characteristics	of	pitch,	loudness,	

and	timbre	

_______________________________________________________________________

•	Musical	gestures:	glissandi,	trills,	grace	notes,	and	so	on	

_______________________________________________________________________

•	Simple	scales	and	arpeggios	at	different	speed,	range,	and	articulation	

_______________________________________________________________________

•	Phrases	with	different	contours,	from	monotonic	to	random	

_______________________________________________________________________

•	Continuous	feature	modulation	(e.g.	timbre,	amplitude	or	pitch)	both	for	a	given	

note	and	inside	a	phrase	

_______________________________________________________________________

•	Simple	rhythms	at	different	speeds	combining	tones	or	pre-recorded	material	

_______________________________________________________________________	
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Record	Further	Comments	Here:	

	

	

	

	

	

	

	

	

	

	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 X 

Subject	Questionnaire	for	Chapter	5:	
Q1: Overall, how difficult or easy did you find this task? (Circle one) [SEQ] 

1 2 3 4 5 6 7 

Very 

Difficult 

Mostly 

Difficult 

Somewhat 

Difficult 

Neither 

Difficult nor 

Easy 

Somewhat 

Easy 

Mostly 

Easy 

Very 

Easy 

Q2: This graphic displays the amount of effort it took you to execute the task. Please 

score the amount of effort by marking one of the anchors on the verticle line below. 

[SMEQ] 
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Please score by marking on the line below [NASA-TLX]. 

Q3: How mentally demanding was the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q4: How physically demanding was the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q5: How hurried or rushed was the pace of the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q6: How successful were you in accomplishing what you were asked to do? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Perfect          Failure 

 

Q7: How hard did you have to work to accomplish your level of performance? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q8: How insecure, discouraged, irritated, stressed, or annoyed were you? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q9: How often do you think you would use a device like this to perform with? [Use] 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Often        Not Very Often 

 

Please assess the device by ticking one circle per line. [UEQ] 



 XII 

 
  1 2 3 4 5 6 7     

annoying � � � � � � � enjoyable 1 

not understandable � � � � � � � understandable 2 

creative � � � � � � � dull 3 

easy to learn � � � � � � � difficult to learn 4 

valuable � � � � � � � inferior 5 

boring � � � � � � � exciting 6 

not interesting � � � � � � � interesting 7 

unpredictable � � � � � � � predictable 8 

fast � � � � � � � slow 9 

inventive � � � � � � � conventional 10 

obstructive � � � � � � � supportive 11 

good � � � � � � � bad 12 

complicated � � � � � � � easy 13 

unlikable � � � � � � � pleasing 14 

usual � � � � � � � leading edge 15 

unpleasant � � � � � � � pleasant 16 

secure � � � � � � � not secure 17 

motivating � � � � � � � demotivating 18 

meets expectations � � � � � � � does not meet expectations 19 

inefficient � � � � � � � efficient 20 

clear � � � � � � � confusing 21 

impractical � � � � � � � practical 22 

organized � � � � � � � cluttered 23 

attractive � � � � � � � unattractive 24 

friendly � � � � � � � unfriendly 25 

conservative � � � � � � � innovative 26 

 
	

	

	

	

 For researcher use only [Subject #:  ].	
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Simple	Melodies	Used	in	Explorative	Studies:	
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OSC	Receive	Pure	Data:
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Early	Glove	Prototype:	

 

Figure 1: Early Audio-Tactile Glove Prototype. 

 

Concept	Development	for	Musical	Tasks	and	HCI	Evaluation:	

 

Figure 2: Musical Tasks / HCI Evaluation sketch. 

  



 III 

Researcher	Questionnaires	for	Chapter	3: 

Experiment Subject Group – A / B (Flip a Coin) 

Fixed Questions – 

Name:             

Age:    Gender:         

Profession:            

Current level of education:          

Music Experience:            



 IV 

Experiment stage 1: Same / Different 

Ö (correct) or x (incorrect) 

160 Hz Practice. 

Waveform Sine Saw Square 

Sine    

Saw    

Square    

 

160 Hz Experiment. 

Random Frequency Pair Run 1 Run 2 Run 3 

(4) Saw- Sine    

(9) Square-Square    

(3) Sine-Square    

(8) Square-Saw    

(7) Square-Sine    

(6) Saw-Square    

(1) Sine-Sine    

(2) Sine-Saw    

(5) Saw-Saw    

 

 

 

 

 

 

 



 V 

Experiment stage 2.1: Pitch Detection 

Ö (correct) or x (incorrect) 

Sine 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(12) -0.25    

(19) -4    

(6) +2    

(17) -2    

(14) -0.8    

(16) -1.5    

(8) + 1    

(1) +12    

(13) -0.5    

(4) +4    

(9) +0.8    

(18) -3    

(15) -1    

(11) +0.25    

(10) +0.5    

 (2) +8    

(22) -12    

(5) +3    

(7) +1.5    

(3) +6    

(21) -8    

(20) -6    
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Experiment stage 2.2: Pitch Detection 

Ö (correct) or x (incorrect) 

Saw 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(8) + 1    

(3) +6    

(7) +1.5    

(19) -4    

(22) -12    

(18) -3    

(6) +2    

(14) -0.8    

(9) +0.8    

(11) +0.25    

(13) -0.5    

(5) +3    

(1) +12    

(20) -6    

(16) -1.5    

(10) +0.5    

(15) -1    

(21) -8    

 (2) +8    

(12) -0.25    

(4) +4    

(17) -2    
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Experiment stage 2.3: Pitch Detection 

Ö (correct) or x (incorrect) 

Square 160 Hz 

Random Frequency Shift Run 1 Run 2 Run 3 

(11) +0.25    

(7) +1.5    

(13) -0.5    

(22) -12    

(9) +0.8    

(5) +3    

(17) -2    

(19) -4    

(3) +6    

(15) -1    

(20) -6    

(8) + 1    

(14) -0.8    

(12) -0.25    

 (2) +8    

(6) +2    

(1) +12    

(10) +0.5    

(21) -8    

(4) +4    

(18) -3    

(16) -1.5    
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Researcher	Questionnaires	for	Chapter	5:	
Experiment: Functional / Explorative (Circle One).  

Subject #:  Name:       Age:   

Gender:      

Part	1:	Please	collect	comments	on	the	following	topics:	(Researcher	Interview	Data).	

Learnability	-	the	time	needed	to	learn	how	to	control	my	performance	with	this	

controller	was…	

_______________________________________________________________________

Explorability	-	the	exploration	of	the	capabilities	of	the	controller	and	the	number	of	

different	gestures	and	gesture	nuances	that	could	be	applied	were…	

_______________________________________________________________________

Feature	Controllability	-	The	accuracy,	resolution,	and	range	of	features	when	

performing	musical	tasks	was… 	

_______________________________________________________________________

Timing	Controllability	-	musical	tasks	that	required	the	measuring	of	temporal	

precision	were…	

_______________________________________________________________________	

Part	2:	Given	the	previous	considerations,	please	gather	comments	on	the	

performance	of:		

•	Isolated	tones,	from	simple	triggering	to	varying	characteristics	of	pitch,	loudness,	

and	timbre	

_______________________________________________________________________

•	Musical	gestures:	glissandi,	trills,	grace	notes,	and	so	on	

_______________________________________________________________________

•	Simple	scales	and	arpeggios	at	different	speed,	range,	and	articulation	

_______________________________________________________________________

•	Phrases	with	different	contours,	from	monotonic	to	random	

_______________________________________________________________________

•	Continuous	feature	modulation	(e.g.	timbre,	amplitude	or	pitch)	both	for	a	given	

note	and	inside	a	phrase	

_______________________________________________________________________

•	Simple	rhythms	at	different	speeds	combining	tones	or	pre-recorded	material	

_______________________________________________________________________	
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Record	Further	Comments	Here:	

	

	

	

	

	

	

	

	

	

	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 X 

Subject	Questionnaire	for	Chapter	5:	
Q1: Overall, how difficult or easy did you find this task? (Circle one) [SEQ] 

1 2 3 4 5 6 7 

Very 

Difficult 

Mostly 

Difficult 

Somewhat 

Difficult 

Neither 

Difficult nor 

Easy 

Somewhat 

Easy 

Mostly 

Easy 

Very 

Easy 

Q2: This graphic displays the amount of effort it took you to execute the task. Please 

score the amount of effort by marking one of the anchors on the verticle line below. 

[SMEQ] 
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Please score by marking on the line below [NASA-TLX]. 

Q3: How mentally demanding was the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q4: How physically demanding was the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q5: How hurried or rushed was the pace of the task? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q6: How successful were you in accomplishing what you were asked to do? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Perfect          Failure 

 

Q7: How hard did you have to work to accomplish your level of performance? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q8: How insecure, discouraged, irritated, stressed, or annoyed were you? 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Low         Very High 

 

Q9: How often do you think you would use a device like this to perform with? [Use] 

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 
Very Often        Not Very Often 

 

Please assess the device by ticking one circle per line. [UEQ] 
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  1 2 3 4 5 6 7     

annoying � � � � � � � enjoyable 1 

not understandable � � � � � � � understandable 2 

creative � � � � � � � dull 3 

easy to learn � � � � � � � difficult to learn 4 

valuable � � � � � � � inferior 5 

boring � � � � � � � exciting 6 

not interesting � � � � � � � interesting 7 

unpredictable � � � � � � � predictable 8 

fast � � � � � � � slow 9 

inventive � � � � � � � conventional 10 

obstructive � � � � � � � supportive 11 

good � � � � � � � bad 12 

complicated � � � � � � � easy 13 

unlikable � � � � � � � pleasing 14 

usual � � � � � � � leading edge 15 

unpleasant � � � � � � � pleasant 16 

secure � � � � � � � not secure 17 

motivating � � � � � � � demotivating 18 

meets expectations � � � � � � � does not meet expectations 19 

inefficient � � � � � � � efficient 20 

clear � � � � � � � confusing 21 

impractical � � � � � � � practical 22 

organized � � � � � � � cluttered 23 

attractive � � � � � � � unattractive 24 

friendly � � � � � � � unfriendly 25 

conservative � � � � � � � innovative 26 

 
	

	

	

	

 For researcher use only [Subject #:  ].	
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Simple	Melodies	Used	in	Explorative	Studies:	
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OSC	Receive	Pure	Data:

	

	


