121 research outputs found

    Optimal assignment methods for ligand-based virtual screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ligand-based virtual screening experiments are an important task in the early drug discovery stage. An ambitious aim in each experiment is to disclose active structures based on new scaffolds. To perform these "scaffold-hoppings" for individual problems and targets, a plethora of different similarity methods based on diverse techniques were published in the last years. The optimal assignment approach on molecular graphs, a successful method in the field of quantitative structure-activity relationships, has not been tested as a ligand-based virtual screening method so far.</p> <p>Results</p> <p>We evaluated two already published and two new optimal assignment methods on various data sets. To emphasize the "scaffold-hopping" ability, we used the information of chemotype clustering analyses in our evaluation metrics. Comparisons with literature results show an improved early recognition performance and comparable results over the complete data set. A new method based on two different assignment steps shows an increased "scaffold-hopping" behavior together with a good early recognition performance.</p> <p>Conclusion</p> <p>The presented methods show a good combination of chemotype discovery and enrichment of active structures. Additionally, the optimal assignment on molecular graphs has the advantage to investigate and interpret the mappings, allowing precise modifications of internal parameters of the similarity measure for specific targets. All methods have low computation times which make them applicable to screen large data sets.</p

    jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats.</p> <p>Results</p> <p>We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al.</p> <p>Conclusions</p> <p>jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining.</p

    Machine Learning for Kinase Drug Discovery

    Get PDF
    Cancer is one of the major public health issues, causing several million losses every year. Although anti-cancer drugs have been developed and are globally administered, mild to severe side effects are known to occur during treatment. Computer-aided drug discovery has become a cornerstone for unveiling treatments of existing as well as emerging diseases. Computational methods aim to not only speed up the drug design process, but to also reduce time-consuming, costly experiments, as well as in vivo animal testing. In this context, over the last decade especially, deep learning began to play a prominent role in the prediction of molecular activity, property and toxicity. However, there are still major challenges when applying deep learning models in drug discovery. Those challenges include data scarcity for physicochemical tasks, the difficulty of interpreting the prediction made by deep neural networks, and the necessity of open-source and robust workflows to ensure reproducibility and reusability. In this thesis, after reviewing the state-of-the-art in deep learning applied to virtual screening, we address the previously mentioned challenges as follows: Regarding data scarcity in the context of deep learning applied to small molecules, we developed data augmentation techniques based on the SMILES encoding. This linear string notation enumerates the atoms present in a compound by following a path along the molecule graph. Multiplicity of SMILES for a single compound can be reached by traversing the graph using different paths. We applied the developed augmentation techniques to three different deep learning models, including convolutional and recurrent neural networks, and to four property and activity data sets. The results show that augmentation improves the model accuracy independently of the deep learning model, as well as of the data set size. Moreover, we computed the uncertainty of a model by using augmentation at inference time. In this regard, we have shown that the more confident the model is in its prediction, the smaller is the error, implying that a given prediction can be trusted and is close to the target value. The software and associated documentation allows making predictions for novel compounds and have been made freely available. Trusting predictions blindly from algorithms may have serious consequences in areas of healthcare. In this context, better understanding how a neural network classifies a compound based on its input features is highly beneficial by helping to de-risk and optimize compounds. In this research project, we decomposed the inner layers of a deep neural network to identify the toxic substructures, the toxicophores, of a compound that led to the toxicity classification. Using molecular fingerprints —vectors that indicate the presence or absence of a particular atomic environment —we were able to map a toxicity score to each of these substructures. Moreover, we developed a method to visualize in 2D the toxicophores within a compound, the so- called cytotoxicity maps, which could be of great use to medicinal chemists in identifying ways to modify molecules to eliminate toxicity. Not only does the deep learning model reach state-of-the-art results, but the identified toxicophores confirm known toxic substructures, as well as expand new potential candidates. In order to speed up the drug discovery process, the accessibility to robust and modular workflows is extremely advantageous. In this context, the fully open-source TeachOpenCADD project was developed. Significant tasks in both cheminformatics and bioinformatics are implemented in a pedagogical fashion, allowing the material to be used for teaching as well as the starting point for novel research. In this framework, a special pipeline is dedicated to kinases, a family of proteins which are known to be involved in diseases such as cancer. The aim is to gain insights into off-targets, i.e. proteins that are unintentionally affected by a compound, and that can cause adverse effects in treatments. Four measures of kinase similarity are implemented, taking into account sequence, and structural information, as well as protein-ligand interaction, and ligand profiling data. The workflow provides clustering of a set of kinases, which can be further analyzed to understand off-target effects of inhibitors. Results show that analyzing kinases using several perspectives is crucial for the insight into off-target prediction, and gaining a global perspective of the kinome. These novel methods can be exploited in the discovery of new drugs, and more specifically diseases involved in the dysregulation of kinases, such as cancer

    Graph-Based Approaches to Protein StructureComparison - From Local to Global Similarity

    Get PDF
    The comparative analysis of protein structure data is a central aspect of structural bioinformatics. Drawing upon structural information allows the inference of function for unknown proteins even in cases where no apparent homology can be found on the sequence level. Regarding the function of an enzyme, the overall fold topology might less important than the specific structural conformation of the catalytic site or the surface region of a protein, where the interaction with other molecules, such as binding partners, substrates and ligands occurs. Thus, a comparison of these regions is especially interesting for functional inference, since structural constraints imposed by the demands of the catalyzed biochemical function make them more likely to exhibit structural similarity. Moreover, the comparative analysis of protein binding sites is of special interest in pharmaceutical chemistry, in order to predict cross-reactivities and gain a deeper understanding of the catalysis mechanism. From an algorithmic point of view, the comparison of structured data, or, more generally, complex objects, can be attempted based on different methodological principles. Global methods aim at comparing structures as a whole, while local methods transfer the problem to multiple comparisons of local substructures. In the context of protein structure analysis, it is not a priori clear, which strategy is more suitable. In this thesis, several conceptually different algorithmic approaches have been developed, based on local, global and semi-global strategies, for the task of comparing protein structure data, more specifically protein binding pockets. The use of graphs for the modeling of protein structure data has a long standing tradition in structural bioinformatics. Recently, graphs have been used to model the geometric constraints of protein binding sites. The algorithms developed in this thesis are based on this modeling concept, hence, from a computer scientist's point of view, they can also be regarded as global, local and semi-global approaches to graph comparison. The developed algorithms were mainly designed on the premise to allow for a more approximate comparison of protein binding sites, in order to account for the molecular flexibility of the protein structures. A main motivation was to allow for the detection of more remote similarities, which are not apparent by using more rigid methods. Subsequently, the developed approaches were applied to different problems typically encountered in the field of structural bioinformatics in order to assess and compare their performance and suitability for different problems. Each of the approaches developed during this work was capable of improving upon the performance of existing methods in the field. Another major aspect in the experiments was the question, which methodological concept, local, global or a combination of both, offers the most benefits for the specific task of protein binding site comparison, a question that is addressed throughout this thesis

    Étude de la structure et des propriétés SAR/QSAR de quelques molécules à visée thérapeutique

    Get PDF
    Recently, a series of carbazole derivatives containing chalcone analogues (CDCAs) were synthetized as potent anticancer agents and apoptosis inducers. These compounds target the inhibition of topoisomerase II and present cytotoxic activities. After comparison to experiment, we validated the use of B3LYP, a density functional theory-based approach, to describe the structure and molecular properties of the carbazole subunit and CDCAs compounds of interest. Then, we derived relationships between the chemical descriptors and activity of these carbazole derivatives using multi parameter optimization and quantitative structure activity relationships (QSAR) approaches. For the QSAR studies, we used multiple linear regression and artificial neural network statistical modelling. Our predicted activities are in good agreement with the experimental ones. We found that the most important parameter influencing the activity of the considered compounds is the octanol water partition coefficient, highlighting the importance of flexibility as a key molecular parameter to favor cell membrane crossing and enhance the action of these CDCAs against topoisomerase II. Our results provide useful guidelines for designing new oral active CDCAs medicaments for cytotoxic inhibition

    IN SILICO METHODS FOR DRUG DESIGN AND DISCOVERY

    Get PDF
    Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug discovery that are critical in the cost-effective identification of promising drug candidates. These computational methods are relevant in limiting the use of animal models in pharmacological research, for aiding the rational design of novel and safe drug candidates, and for repositioning marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery trajectory.Within this field of research, we launched a Research Topic in Frontiers in Chemistry in March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists and received a large number of submitted manuscripts. Among them 27 Original Research articles, five Review articles, and two Perspective articles have been published within the Research Topic. The Original Research articles cover most of the topics in CADD, reporting advanced in silico methods in drug discovery, while the Review articles offer a point of view of some computer-driven techniques applied to drug research. Finally, the Perspective articles provide a vision of specific computational approaches with an outlook in the modern era of CADD

    Bionano-Interfaces through Peptide Design

    Get PDF
    The clinical success of restoring bone and tooth function through implants critically depends on the maintenance of an infection-free, integrated interface between the host tissue and the biomaterial surface. The surgical site infections, which are the infections within one year of surgery, occur in approximately 160,000-300,000 cases in the US annually. Antibiotics are the conventional treatment for the prevention of infections. They are becoming ineffective due to bacterial antibiotic-resistance from their wide-spread use. There is an urgent need both to combat bacterial drug resistance through new antimicrobial agents and to limit the spread of drug resistance by limiting their delivery to the implant site. This work aims to reduce surgical site infections from implants by designing of chimeric antimicrobial peptides to integrate a novel and effective delivery method. In recent years, antimicrobial peptides (AMPs) have attracted interest as natural sources for new antimicrobial agents. By being part of the immune system in all life forms, they are examples of antibacterial agents with successfully maintained efficacy across evolutionary time. Both natural and synthetic AMPs show significant promise for solving the antibiotic resistance problems. In this work, AMP1 and AMP2 was shown to be active against three different strains of pathogens in Chapter 4. In the literature, these peptides have been shown to be effective against multi-drug resistant bacteria. However, their effective delivery to the implantation site limits their clinical use. In recent years, different groups adapted covalent chemistry-based or non-specific physical adsorption methods for antimicrobial peptide coatings on implant surfaces. Many of these procedures use harsh chemical conditions requiring multiple reaction steps. Furthermore, none of these methods allow the orientation control of these molecules on the surfaces, which is an essential consideration for biomolecules. In the last few decades, solid binding peptides attracted high interest due to their material specificity and self-assembly properties. These peptides offer robust surface adsorption and assembly in diverse applications. In this work, a design method for chimeric antimicrobial peptides that can self-assemble and self-orient onto biomaterial surfaces was demonstrated. Three specific aims used to address this two-fold strategy of self-assembly and self-orientation are: 1) Develop classification and design methods using rough set theory and genetic algorithm search to customize antibacterial peptides; 2) Develop chimeric peptides by designing spacer sequences to improve the activity of antimicrobial peptides on titanium surfaces; 3) Verify the approach as an enabling technology by expanding the chimeric design approach to other biomaterials. In Aim 1, a peptide classification tool was developed because the selection of an antimicrobial peptide for an application was difficult among the thousands of peptide sequences available. A rule-based rough-set theory classification algorithm was developed to group antimicrobial peptides by chemical properties. This work is the first time that rough set theory has been applied to peptide activity analysis. The classification method on benchmark data sets resulted in low false discovery rates. The novel rough set theory method was combined with a novel genetic algorithm search, resulting in a method for customizing active antibacterial peptides using sequence-based relationships. Inspired by the fact that spacer sequences play critical roles between functional protein domains, in Aim 2, chimeric peptides were designed to combine solid binding functionality with antimicrobial functionality. To improve how these functions worked together in the same peptide sequence, new spacer sequences were engineered. The rough set theory method from Aim 1 was used to find structure-based relationships to discover new spacer sequences which improved the antimicrobial activity of the chimeric peptides. In Aim 3, the proposed approach is demonstrated as an enabling technology. In this work, calcium phosphate was tested and verified the modularity of the chimeric antimicrobial self-assembling peptide approach. Other chimeric peptides were designed for common biomaterials zirconia and urethane polymer. Finally, an antimicrobial peptide was engineered for a dental adhesive system toward applying spacer design concepts to optimize the antimicrobial activity
    corecore