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SUMMARY 

The focus of this thesis was to develop a virtual screening framework that allows for small molecule data 

handling, QSAR model development, optimization and analysis, as well as subsequent QSAR model 

prediction through virtual screening as an integral part of collaborative drug discovery projects. All 

algorithms are implemented in the software suite BCL::ChemInfo which is part of the BioChemistry 

library (BCL), an in-house object-oriented library providing functionality to model small molecules and 

proteins. 

Chapter I provides an introduction to the field of computer-aided drug design/discovery, describes the 

underlying concepts of BCL::ChemInfo, and highlights two biological systems where the here introduced 

software framework contributed significantly to respective drug discovery efforts. 

Chapter II details an overview and benchmark of the BCL::ChemInfo method development. This chapter 

is largely a reproduction of the publication Mariusz Butkiewicz, Edward W. Lowe, Ralf Mueller, Jeffrey 

L. Mendenhall, Pedro L. Teixeira, C. David Weaver, and Jens Meiler titled "Benchmarking ligand-based 

virtual high-throughput screening with the PubChem database." Molecules 18, no. 1 (2013): 735-756. 

This work represents the core of this thesis and is crucial to all application projects involving 

BCL::ChemInfo. 

Chapter III describes the application of BCL::ChemInfo towards finding antimalarial inhibitors regarding 

a specific pathway of action. It articulates a collaborative effort between the laboratories of Dr. David 

Wright and Dr. Jens Meiler at Vanderbilt to guide experimental expertise with computational algorithms 

to find effective therapeutics against Malaria. The underlying manuscript is in the stage of finalization and 

will be submitted shortly. It is co-authored by Rebecca D. Sandlin and Mariusz Butkiewicz. Mariusz 

Butkiewicz was guiding the computational component of the project involving the QSAR modeling, 

virtual screening, and in silico analysis. Rebecca D. Sandlin provided the initial HTS data for identified β-
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hematin inhibitors and validated the computational findings experimentally. The respective sections 

provided exclusively by Rebecca D. Sandlin are marked in this chapter. 

Chapter IV summarizes the discovery of selective allosteric modulators of mGlu5 for a novel specific 

binding site applying BCL::ChemInfo. It is a collaborative research project between the laboratories of 

Dr. P. Jeffrey Conn, Dr. Craig W. Lindsley, and Dr. Jens Meiler at Vanderbilt. The resulting manuscript 

highlights computational experiments that are explained and discussed in this chapter. Mariusz 

Butkiewicz performed the computational work and is first author of the manuscript which is expected to 

be submitted, shortly. Experimental validations of the research finding were performed by Alice L. 

Rodriguez. Respective sections provided exclusively by Alice L. Rodriguez are marked in this chapter. 

Chapter V investigates an alternative field of application for BCL::Cheminfo involving the prediction of 

molecular properties in drug discovery. This chapter is based on the publications Edward W. Lowe, 

Mariusz Butkiewicz, Matthew Spellings, Albert Omlor, and Jens Meiler, "Comparative analysis of 

machine learning techniques for the prediction of logP.", IEEE Symposium in Computational Intelligence 

in Bioinformatics and Computational Biology (CIBCB), 2011, pp. 1-6. and Edward W. Lowe, Mariusz 

Butkiewicz, Zollie White III, Matthew Spellings, Albert Omlor, Jens Meiler, "Comparative Analysis of 

Machine Learning Techniques for the Prediction of the DMPK Parameters Intrinsic Clearance and Plasma 

Protein Binding", Proceedings of 4th International Conference on Bioinformatics and Computational 

Biology 2012, p. 25, 2012. As second author to both citations, Mariusz Butkiewicz contributed to the 

writing aspect of both publications as well as performing a substantial part of the involved computational 

experiments. 

Finally, chapter VI provides a discussion about the previous chapters and summarizes individual 

perspectives of research. An outlook about future work is presented showing possible next steps to guide 

improvement of BCL::ChemInfo. Finally, the appendix gives detailed information about side projects and 

ideas that could not be discussed in the chapters and have not been published. More detailed information 
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about command lines, scripts, data, and models provided in the appendix can be found on a DVD that 

accompanies this thesis. 

 



1 

Chapter I 

1. INTRODUCTION 

The investigation of signal transduction processes through receptor proteins and the understanding of 

their interaction with small molecule ligands are key elements of fundamental biomedical research and 

drug discovery. Historically, active ingredients were discovered through traditional therapies or more 

serendipitous findings. With the evolution of technology, libraries of small organic molecules, natural 

products, and extracts are evaluated in an automated and systematic fashion. High-throughput screening 

(HTS) was introduced to find novel compounds by rapidly executing assay experiments against single 

biological targets associated with disease altering phenotypes [4]. At the same time, interest in computer-

aided drug discovery/design (CADD), a purely computational technology, increased significantly [5]. 

Traditional HTS experiments often result in multiple hit compounds which some can be further optimized 

to lead compounds and probe molecules. The typical hit rate is very low limiting the applicability of HTS 

in research efforts attempting evaluating large compound libraries [6]. CADD provides an alternative 

solution to this problem. Large compound libraries that are not readily accessible to traditional HTS can 

be screened in silico. This substantially reduces the number of compounds necessary to experimentally 

screen, while the same level of lead compound discovery is retained. Thus, the chemical space is 

extended to identify possible hit compounds. Molecules predicted to be active can be prioritized while 

molecules predicted be inactive can be discarded. It significantly decreases the cost and time commitment 

of a full HTS experiment while maintaining a comparable lead discovery rate. Furthermore, CADD 

requires substantially less preparation time. As a technology to guide HTS studies, CADD campaigns can 

be applied to virtually screen compounds while the traditional HTS assay is being prepared. 

Distinct CADD strategies cope with availability of protein structure information 

In CADD, two strategies (Structure-based, computer-aided drug design (SB-CADD) and ligand-based 

computer-aided drug design/discovery (LB-CADD)) are available for drug discovery depending on the 

availability of protein target structural data. An overview is given in Figure 1. SB-CADD methods depend 
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on the availability of a structural model determined by X-ray crystallography or NMR techniques. If the 

target structure is known, SB-CADD can be applied through approaches such as ligand docking, de novo 

design, molecular dynamics, or pharmacophore modeling [7]. However, a large fraction of proteins 

targeted by therapeutics have no suitable structural model for structure-based virtual screening. 

Alternatively, LB-CADD can be applied when only ligand structure information and its associated 

biological response with a protein target are given. One central paradigm leverages properties and 

determinants of chemical structures and the associated biological response to describe its relation. 

Involved techniques include quantitative structure activity relationships (QSAR), virtual screening, and 

pharmacophore modeling. Pharmacophore modeling can be categorized in both sub fields. In SB-CADD, 

pharmacophore models take steric and electronic features of the binding site into account that are 

important for ligand binding. In LB-CADD, a QSAR model can be applied to determine a pharmacophore 

map of the ligand independent of the protein target structure. 

 

Figure 1: Overview of computer aided drug design / discovery. 

CADD is divided into two main categories. Depending on the availability of determined structural 

information of a protein two different approaches can be chosen: SB-CADD and LB-CADD. 

Involved techniques are listed for each category. 
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Quantitative structure activity relationships correlate chemical structure to biological 

activity 

The ligand-based approach employs quantitative structure–activity relationships (QSAR), a technology 

that does not require information about the biological target structure. QSAR is an area of computational 

research that builds virtual models to predict the biological activity, the binding affinity, or the toxic 

potential of existing or hypothetical molecules [8]. They seek to quantitatively correlate complex non-

linear relations between chemical and physical properties of a molecule with its biological response, such 

as activity for a specific biological target using statistical models. The application of QSARs plays an 

important role in a variety of fields such as drug discovery [9] and toxicity predictions [10]. Knowledge 

acquired from compounds already biologically tested direct the design of future molecules. 

Molecular descriptors encode chemical structure in QSAR modeling 

Molecular descriptors play a fundamental role in encoding chemical information contained in a molecule 

[11]. Through mathematical procedures the chemical information contained within a symbolic 

representation of a molecule is transferred into a numerical code. Two main categories arise containing 

experimental measurements, such as the octanol/water partition coefficient (logP), molar refractivity, 

dipole moment, polarizability, and secondly, theoretical molecular descriptors derived from such 

symbolic representations of molecules. In small focused chemical libraries theoretical descriptors are 

significant in ‘fragment-independent’ encoding schemes. Examples include autocorrelation functions 

which encode identity and electronic attributes of molecular structure (i.e. atom types, partial atomic 

charges, electronegativity and polarizability) into vector representations. Radial distribution functions 

describe how the atomic density varies as a function of the distance from one particular atom. Surface 

area correlation functions store molecular shape geometry for molecules with known biological activity 

into machine learning models. Each encoding function is independent of translation or rotation of the 

molecule. They can be readily applied to conformational ensembles and yield a numerical description of 

constant length independent from size and composition of the substance. A third-party 3D conformation 
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generator, CORINA [12], allows for 3D coordinates generation for molecules prior to descriptor 

calculation. 

Machine learning approaches model QSARs between chemical structure and biological 

activity 

Machine learning approaches have shown exciting potential in estimating biological target data. In recent 

years the potential of approaches such as Support Vector Machines (SVM) and Artificial Neural 

Networks (ANN) for establishing highly non-linear relations has become apparent [13-17]. The 

algorithms learn to recognize complex patterns and make intelligent decisions based on an established 

compound library. Imposing these sets of patterns obtained from the learning process, the algorithms are 

able to recognize not yet tested molecules and categorize them towards a given outcome. Many different 

technologies can be applied in the QSAR domain including SVMs, ANNs, Kohonen networks (KN), 

kappa nearest neighbor algorithm (kNN), and Decision Trees (DT). SVMs [18-21] use distinct 

mathematical functions to transform a given set of molecular descriptors of the chemical structure into a 

hyperspace optimized to separate a set of data points according to a given, usually binary property. This is 

achieved by introducing a hyperplane in this new hyperspace. Modified versions are also able to handle 

regression problems like function approximation. ANNs consist of an interconnected group of artificial 

neurons and process information adaptively using restricted set of transformations. ANNs have been used 

for several years in chemistry and biochemistry to describe QSAR [22]. Structurally related to ANNs are 

KNs, also known as self-organizing maps. KNs are trained in an unsupervised fashion and pursue the 

discretization of the training input into a network or map [23-25]. A simpler unsupervised learning 

algorithm is represented by kNNs. Based on the principle of majority voting, kNNs resample a type of 

clustering through a given distance metric defining the neighborhood of a given feature vector, and thus 

guide the prediction outcome [26, 27]. DTs represent a sequence of branching operations that break up 

complex problems into a union of simplified sub-problems. Decision analysis is based on knowledge of 

statistical decision theory. Key differences of SVMs, ANNs and DTs are an increased reproducibility for 

SVMs, a slightly higher flexibility for ANNs [28] and a more comprehendible model representation for 
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DTs, kNNs, and KNs. Their critical advantage compared to linear methods such as multiple linear 

regression lies in the flexibility of the models. ANN and SVM models can adapt to complex interrelations 

and are capable of detecting small signals at high noise levels. Hence, each of the methods is applied 

when no simple mathematical model can be assumed, many potential parameters interact, and the 

experimental uncertainties are high. 

Improvements to prediction accuracy of QSAR models 

Unsuccessful QSAR modeling is typically characterized by over-fitting of the trained model where the 

given ligand library is memorized rather than general patterns determined. Therefore, the primary goal of 

the modelling process is to achieve a high degree of generalizability when screening not yet seen ligand 

libraries. Best practices can be applied which comprise techniques such as cross-validation, consensus 

predictions, and molecular descriptor selection [29]. Cross-validation can be applied when the data set is 

subdivided into an independent, monitoring, and training partition. The advantage results because each 

data set fraction is part of an independent and monitoring dataset once in the life cycle of the cross-

validation process [30]. This partitioning ensures less influence of extreme outlier data points in the 

independent dataset evaluation [31]. Another technique contributing to the robustness of QSAR modeling 

is the concept of consensus prediction [32]. Consensus measures take the prediction of different machine 

learning models and algorithms into account by taking the average of all predicted values or applying a 

jury approach where compounds are classified by a majority vote. Through this approach it is possible to 

compensate prediction errors of individual techniques. Furthermore, the selection of optimal molecular 

descriptors or features is another optimization process that can lead to a more robust QSAR model. 

Disproportionate numbers of descriptors or features can decrease the signal to noise ratio and thus reduce 

the predictive power of the model. Feature selection techniques can identify the most significant features 

while removing unnecessary descriptors to lower the dimensionality of the model. Ideally this reduces the 

involved degrees of freedom of the QSAR model and fosters its generalizability. Successful techniques 

involve feature selection including measures such as information gain [33], F-score [34], genetic 
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algorithm [35], swarm optimization [36] and whole descriptor group selection such as sequential feature 

forward selection and feature backward elimination [37]. 

High-throughput screening sets knowledge base for virtual screening in drug discovery 

HTS is the process of testing a large number of diverse chemical structures against disease targets in order 

to identify new leads. Compared to traditional drug screening methods, HTS is characterized by its 

simplicity, rapidness, low cost, and high efficiency while taking ligand-target interactions as the principle 

dataset and leading to a higher information harvest. The screening attrition rate in the current drug 

discovery protocols suggests that one marketable drug emerges from approximately one million screened 

compounds. HTS can test hundreds of thousands of compounds per day, however, if fewer compounds 

could be tested without compromising the probability of success, the cost and time would be greatly 

reduced [38-40]. However, HTS often provides the necessary knowledge base for QSAR, and thus sets 

the foundation for virtual high-throughput screening (vHTS) in drug discovery. 

Curating and identifying publicly and commercially available biological assay data sets 

As part of LB-CADD, QSAR modeling shows encouraging results in identifying potential hit compounds 

that share a biological response [41-43]. This technology has strong potential to greatly reduce these costs 

in academic environments which are restricted by limited resources. However, LB-CADD methods and 

method development heavily depend on the availability of reliable HTS assay data sets and the 

determined relation of ligand structure and biological activity. It is a challenge to identify suitably refined 

data sets for QSAR modeling. Publically available compound repositories with biological assay data are 

of essence. Libraries such as PubChem [44, 45], ChemBL [46], or WOMBAT [47] provide access to such 

HTS experimental results which are typically associated with several hundred thousands of compounds 

are tested against different biological targets. The curation of HTS assay data into high-quality data sets 

for LB-CADD developments plays a pivotal role for LB-CADD method development. Best practices [29] 

for CADD emphasize the importance of data set curation. A research study [48] investigated public and 

commercial data repositories and revealed error rates ranging from 0.1 to 3.4% in respective databases. 
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With the increasing body of scientific studies in the field of CADD the importance of addressing data 

quality becomes inherently significant. 

Virtual high-throughput screening expands chemical search space in comparison to 

traditional HTS 

QSAR models employ machine learning techniques to perform virtual high-throughput screens such as 

identifying (virtual) molecules with predicted properties in a given value range. These molecules can be 

ordered or synthesized and experimentally assessed for the desired property. Machine learning is a key 

element in contemporary virtual high-throughput screening campaigns. Application of several types of 

ANNs for QSAR modeling were investigated by Burton et al. [49] including a review of difficulties and 

challenges. Winkler [50] presented an overview of ANNs and their limitations when accessing chemical 

structure data. SVMs were applied to mine HTS data for type I methionine amino peptidases inhibition in 

a study by Fang et al. [13]. A compound library of 43,736 organic small molecules was evaluated and 

reached a recovery rate of 50% when screening just 7% of the test set. Another study by Plewczynski et 

al. [51] evaluated the effectiveness of SVMs for a range of active compounds determined from the 

MDDR compound library. Sensitivity values of up to 80% and hit rates of up to 100% for specific targets 

were achieved. Sakiyama et al. [52] describe an approach combining SVMs and recursive partitioning by 

DTs to predict the metabolic stability of compounds. Stahura and Bajorath [53] investigated 

computational approaches, including SVMs, to complement HTS. Baurin et al. [54] surveyed various 

statistical and computational techniques, such as DTs in their 2D-QSAR models for COX-2 inhibition. 

This particular study was based on the NCI database with approximately 200,000 compounds. In general, 

machine learning has substantial impact on CADD through guiding HTS in drug discovery efforts. 

Allosteric potentiators of mGlu5 provide a novel approach for treatment of schizophrenia 

As the primary excitatory neurotransmitter glutamate is responsible for rapid excitatory response of 

synapses in the mammalian central nervous system (CNS). The mediation of synaptic signals is regulated 

by a family of receptors categorized as ionotropic and metabotropic glutamate (mGlu) receptors. 
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Glutamate is the indigenous ligand that activates mGlu receptors, a part of the G-protein coupled 

receptors (GPCR) family. mGlu receptors are involved in various biochemical cascade reactions that are 

known to modify proteins and in turn participate in a large variety of CNS functions [55, 56] including 

memory and pain perception. The receptor subtype 5 (mGlu5) is of particular interest. Recent studies 

provide strong support for the hypothesis that activators of mGlu5 may provide a novel approach that 

could be useful in treatment of schizophrenia [57]. Unfortunately, it has been extremely difficult to 

develop highly selective agonists of mGlu5 that have suitable properties for use as drugs. The glutamate 

binding site is highly conserved across mGlu receptor subtypes [55], making it difficult to develop highly 

selective glutamate-site ligands. Also, most glutamate site agonists are analogs of glutamate and do not 

possess pharmacokinetic properties or the ability to cross the blood-brain barrier, essentially crippling the 

use of these compounds as potential drugs. In addition, there are a number of problems associated with 

the use of direct acting agonists as drugs. These include adverse effects associated with excessive 

activation of the receptor, profound receptor desensitization, and loss of activity dependence of receptor 

activation. Recently, highly selective allosteric potentiators of these receptors, including mGlu5, have 

been developed. These compounds do not activate the mGlu receptors directly but act at allosteric sites on 

the receptor to potentiate glutamate-induced receptor activation [58-60]. They provide an exciting 

advance in demonstrating the potential of this approach for developing novel therapeutic agents that 

increase activity of specific mGlu receptor subtypes. However, little is known about the precise domains 

involved in the action of different classes of mGlu receptor potentiators or the physiological impact of 

these compounds on mGlu receptor signaling in native systems. Thus, LB-CADD methods can play a 

pivotal role in guiding medicinal chemistry and drug discovery efforts to elucidate novel interrelations 

between new potentiators and mGlu receptors. 

Novel inhibitors for Plasmodium falciparum have potential to diminish Malaria drug 

resistance 

Malaria is an infectious disease carried from mosquitos to humans with an incidence of approximately 

200 million cases a year. It is caused by Malaria parasites of the genus Plasmodium and is responsible for 
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more than 200 million cases with an estimated 660,000 human fatalities in 2010 [61]. This parasitic 

disease is clinically characterized by high fevers, anemia, and flu-like symptoms. Malaria causing 

parasites like Plasmodium falciparum release significant quantities of free heme as a digestive byproduct, 

a non-protein constituent of hemoglobin [62, 63]. A heme consists of an iron atom contained in the center 

of a heterocyclic porphyrin ring and is toxic to human cells. Parasites convert it into an insoluble 

crystalline form called hemozoin. Therefore, inhibition of hemozoin aggregation is a viable target against 

Malaria parasites. Novel antimalarial therapeutics have potential to diminish Malaria drug resistance. The 

scientific community now has access to an arsenal of thousands of compounds that are highly toxic to the 

parasite, but the process of developing these hits into robust lead compounds will be challenging. 

Identification of the molecular targets responsible for activity could aid in prioritization of these hits, 

while the lead optimization could be streamlined since the hit-target interactions could be directly studied 

which would save time and resources. While the experimental determination of targets is possible in some 

cases, it is again an expensive and time-consuming process. An affordable in silico screening approach 

would greatly benefit the efforts to discover new chemo types, and thus help diminish drug resistance of 

the Malaria parasite. 

Predicting molecular properties through quantitative structure property relationships 

In contrast to QSAR, Quantitative Structure Property Relationships (QSPR) seeks to establish a model 

correlating molecular properties to the molecular structure information of the molecule. Drug metabolism 

and pharmacokinetic (DMPK) properties of lead compounds include absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) in humans and are a key criterion on whether a lead compound can be 

considered a viable drug candidate. Molecular properties such as the logarithm of the water/octanol 

partition coefficient (logP), intrinsic clearance, and plasma protein binding are of essence for 

bioavailability, duration, and intensity of therapeutics. Katritzky et al. [64] studied vapor pressures and 

aqueous solubility of 411 compounds spanning a diverse chemical space by applying QSPR models. The 

model achieved a correlation coefficient (  ) of 0.949 and 0.879 for vapor pressure and for aqueous 
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solubility, respectively. The model was developed solely on the use of compound chemical structures. 

Together, the reliable prediction of vapor pressure and aqueous solubility allows for the prediction of 

water-air partition coefficients. A different study by Shen et al. [65] investigated the metabolic stability of 

drug candidates through QSPR modeling. A kNN approach was chosen and applied to predict properties 

for absorption, distribution, metabolism, and excretion. The biological assay data was provided by 

GlaxoSmithKline (GSK) through 631 diverse proprietary compounds. A final success rate of 83% 

accuracy is reported to correctly identify metabolically stable compounds in the human S9 homogenate. 

Overall, QSPR models can be trained to predicted DMPK properties which can be used as a filter in the 

drug discovery process to reduce the number of compounds necessary to evaluate. 

Concepts of CADD are implemented in BioChemistryLibrary 

All concepts of LB-CADD are implemented in the software suite BCL::ChemInfo, part of the 

BioChemistryLibrary (BCL). This software suite was developed in-house as an object-oriented library 

written in the programming language C++ to implement algorithms regarding small organic molecules 

and large molecular structures such as proteins. It contains more than 1,000 classes and approximately 

500,000 lines of code. All machine learning algorithms and all molecular descriptors were implemented 

in this library. BCL::ChemInfo is a tailored method that streamlines data processing such as data set 

generation and cross-validation. The framework hosts a range of small molecule descriptors, descriptor 

selection strategies, and machine learning technologies. Speedups between 80 and 200 are achieved 

through OpenCL implementations of ANNs and SVMs used on graphics processing units (GPUs) hosted 

on an in-house CPU/GPU cluster. A command line interface is provided for easy access. Thus, no meta-

language has to be learned like R or Matlab. It is an effective software package to prioritize potential hit 

compounds through virtual screening, and therefore guide drug discovery campaigns in medicinal 

chemistry and pharmacology. BCL::ChemInfo is freely available for academic use at www.meilerlab.org. 
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Chapter II 

2. LIGAND-BASED VIRTUAL HIGH-THROUGHPUT SCREENING 

BENCHMARK AND METHOD DEVELOPMENT 

This chapter is based on publication [3]. 

Introduction 

The development of quantitative structure activity relationship (QSAR) models in ligand-based computer-

aided drug design (LB-CADD) has shown practical value for in silico (virtual) high-throughput screening 

(HTS) to identify potential hit compounds, i.e., compounds that share a biological activity of interest [66]. 

However, the predictive power of QSAR models depends not only on molecular descriptors of chemical 

structure and mathematical models, but foremost on the size, quality, and composition of the training 

data. An increased need for QSAR analysis emerged with the advent of HTS in academic research [66]. 

Cost increases linearly with the number of compounds tested in the HTS experiment and the number of 

compounds physically available at one site is limited [67].  

LB-CADD has the potential to reduce these costs in a resource-limited academic environment.  

Public databases such as PubChem [44] contain biological activities for several hundred thousands of 

compounds tested against different biological targets [68]. Nevertheless, the number of compounds tested 

in a HTS experiment is typically at least two orders of magnitude smaller than the tens of millions of 

drug-like small molecules listed in PubChem. The space of possible drug-like molecules is even larger 

and estimated to be 10
30

–10
60

 [69]. LB-CADD has the potential to increase and diversify the chemical 

space tested. 

From a methods perspective, increased public availability of large HTS data sets enables thorough 

benchmarking of existing LB-CADD methods and triggers the development of new cheminformatics 

tools; it will ultimately contribute to the fundamental understanding of protein-small molecule recognition 

and enhance the use of small molecule tools in biology. LB-CADD is particularly attractive in the 
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resource-limited environment of academia as it reduces the cost and increases quality of drug discovery 

and/or probe development for rare or neglected diseases. 

Quantitative structure activity relationships relate chemical structure and biological activity 

QSAR models seek to correlate the often complex non-linear relationship of chemical structure with the 

biological activity for a protein target [29, 70]. Dudek et al. [71] and Du et al. [72] provide an in-depth 

overview of current QSAR methods. Hansch et al. [8, 73] pioneered classical QSAR by investigating the 

biological activity of a set of compounds in relation to their corresponding physicochemical properties 

(hydrophobic, electronic, and steric effects) using linear regression models. Modern QSAR techniques 

employ fingerprints and 2D/3D descriptors coupled with machine learning methods [74, 75]. 

Molecular descriptors numerically encode chemical structure 

The descriptors employed in this study (scalar, 2D/3D auto-correlation, radial distribution functions) are 

fragment-independent and transformation invariant. Fragment-independent molecular descriptors can 

encode the chemical structure of small molecules in a vector of constant length independent of compound 

size, composition, or position in space. Radial distribution functions [76] were successfully employed to 

study the A2A adenosine receptor agonist effect of 29 adenosine analogues [77]. A separate study focused 

on prediction of native receptor affinities of 38 vitamin D analogues [78] outperforming fragment-based 

molecular descriptors. Autocorrelation descriptors [79] were used to train machine learning models that 

predict CDK4/D inhibitory activity [80] and negative ionotropic activity of calcium entry blockers, 

among other applications [81].  

Machine learning techniques have viable impact on the generation of QSAR models 

Machine learning algorithms have shown exciting potential for developing QSAR models to predict 

biological activity data [17, 82, 83]. Machine learning methods recognize complex patterns and derive a 

model based on training data acquired from experimentally screened compound libraries. Subsequently, 
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large compound libraries can be screened virtually or in silico and ranked by predicted biological activity. 

This prioritizes a subset of compounds that is enriched for active molecules for acquisition or synthesis.  

Mueller et al. [84] applied artificial neural networks (ANNs) to identify novel positive allosteric 

modulators for mGlu5, a G-protein coupled receptor (GPCR) involved in neurological disorders like 

schizophrenia in two separate experiments. QSAR models were trained based on a high throughput screen 

of approximately 144,000 compounds. These models were used to virtually screen commercially 

available compound libraries to prioritize the most potent compounds. The top ranked compounds were 

experimentally validated resulting in a significant hit rate increase of 28.2% compared to an initial 

experimental hit rate of 0.94%.  

Golla et al. [85] successfully applied genetic and evolutionary algorithms to virtually screen for novel 

chemical penetration enhancers (CPEs) utilized through transdermal drug delivery. A set of 272 CPEs 

served as a pool for initial structures and QSAR model generation. A total of 4,834 molecules were 

generated by the genetic algorithm and 893 molecules were accepted having a score below a set threshold 

of 8. The study identified 18 novel CPEs that were experimentally evaluated for cytotoxicity and 

permeability, four of which express marginal to no toxicological effects. 

In another study, Sun et al. [86] applied support vector machines in conjunction with 2D molecular 

descriptors to identify compounds involved in drug-induced phospholipidosis (PLD). PLD is implicated 

in intracellular accumulation of phospholipids and formation of concentric lamellar bodies. A set of 4,161 

unique drug-like compounds from various small molecule libraries were evaluated in a quantitative HTS 

experiment. The resulting data was employed to train QSAR models. Using one third of the data as a 

training set, the final model achieved a prediction accuracy of 90% on the remaining two thirds of 

compounds.  
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Consensus of QSAR models has potential to improve prediction accuracy 

Combination of different machine learning models can reduce the prediction error by compensating for 

the misclassification of any single predictor with the consensus of the remaining models [87]. Simmons et 

al. [88] compared several machine learning and chemometric methodologies used to develop ensemble 

classifiers on data sets derived from in vivo HTS campaigns. Model performance was compared using 

false negative and false positive error profiles. Ensemble classifiers constructed from methods like ANNs 

or DTs achieved true positive rates of over 80% in the top 1.4% of the ranked list with false positive rates 

between 5%–7%. 

Svetnik et al. [89] introduced a procedure for building a sequence of predictive models using a Random 

Forest approach [90]. Each model is fitted to the gradient of a loss function in a stage-wise manner to 

analyze ten cheminformatics data sets. Results are comparable to those of other ensemble learning 

methods such as Bagging and Boosting and outperform regular decision trees with accuracy rates of over 

80%. 

On the other hand, Hewitt et al. [91] constructed QSAR consensus models based on Genetic Algorithms 

on smaller data sets for silastic membrane flux, toxicity of phenols to Tetrahymena pyriformis, acute 

toxicity to the fathead minnow and flash point. The data set sizes ranged from 250 to 605 compounds. 

The results suggest only marginal benefit for consensus models compared to a single model predictor. 

Significance 

The objective of this research is three-fold: (1) To compose a comprehensive benchmark set for ligand-

based computer-aided drug discovery (LB-CADD)—i.e., cheminformatics. While PubChem is available 

since 2004, only now it grew to the size and quality needed to assemble a benchmark set of realistic HTS 

experiments, where actives have been confirmed experimentally, a wide range of relevant drug targets is 

spanned, and all data is available in the public domain. The data sets are carefully post-processed and 

made available so as to establish a benchmark for developing LB-CADD methods at 
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www.meilerlab.org/qsar_pubchem_benchmark_2012. (2) To substantiate anecdotal and isolated findings 

on best practices in LB-CADD. Cheminformatics studies have been published comparing different 

machine learning methods, testing different approaches to descriptor selection, and using consensus 

modeling approaches (see above). However, conclusions derived from these studies were often limited by 

small and/or unrealistic toy data sets or by studying only one of the aforementioned aspects in isolation. 

In result correlations between parameters remain uncertain, over-training and narrow application range on 

one class of target proteins are a major concern. The present study overcomes these limitations. (3) To 

introduce a cheminformatics framework BCL::ChemInfo that is freely available for non-commercial use. 

It exposes a variety of methods for molecular descriptor selection, and machine learning techniques 

including ANNs [22, 92, 93], SVMs with an extension for regression [18, 94-96], DTs [97-99], and KNs 

[24, 25, 100]. It also enables consensus predictions from different machine learning models. 

Results and discussion 

Compilation of Validated PubChem HTS Screens Provides Benchmark Data Sets for Training 

QSAR Models 

PubChem provides publically available libraries of small organic molecules that have been tested in a 

diverse set of HTS experiments. Primary screens often include many false-positive hit compounds which 

display a response in initial assay experiments but are inactive in confirmatory experiments. We focus on 

HTS experiments with a single well-defined biological target protein. With respect to the desired target, 

these hit compounds may include non-binders that act on a different component of the assay or binders 

that are non-specific to the target and recognize other biological molecules. To minimize the number of 

false-positive hit compounds we compiled nine data sets applying the following criteria: the HTS 

experiment must target one specific protein and contain a minimum of 150 confirmed active compounds. 

Further, we chose a diverse set of PubChem assays focused on pharmaceutically relevant small molecule 

protein targets such as GPCRs, ion channels, transporters, kinase inhibitors, and enzymes. All PubChem 

assays are identified by PubChem summary id (SAID) of the primary protein target and describe a 

collection of confirmatory screens for active compounds given by PubChem assay ids (AID). It proved 
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critical to go through a detailed manual verification of the HTS experiments performed and collate 

PubChem raw data to arrive at high-quality data sets. Complete data sets and their compilation protocols 

are provided in the Experimental Section. We propose that the data sets presented here can serve as a 

benchmark for further cheminformatics method development. An overview with statistics of all PubChem 

data sets can be found in Table 1. The data sets are made available at 

www.meilerlab.org/qsar_pubchem_benchmark_2012.  

Table 1: Overview of PubChem biological assays and data set statistics. 

Protein 

Target 

Class 

Protein Target 

PubChem 

Summary Assay ID 

SAID 

Number 

Actives 

Number 

Inactives 

Hit 

Rate 

Inactives 

-to-Actives 

Ratio 

GPCR       

 Orexin1 Receptor 435008 234 218,071 0.11% 948 

 
M1 Muscarinic 

Receptor 
1798 188 61,661 0.30% 327 

 
M1 Muscarinic 

Receptor 
435034 448 61,407 0.73% 138 

Ion Channel      

 
Potassium Ion Channel 

Kir2.1 
1843 172 301,473 0.06% 1,752 

 
KCNQ2 potassium 

channel 
2258 213 302,351 0.07% 1,419 

 
Cav3 T-type Calcium 

Channels 
463087 703 100,210 0.70% 143 

Transporter      

 Choline Transporter 488997 252 302,246 0.08% 1,199 

Kinase Inhibitor      

 
Serine/Threonine 

Kinase 33 
2689 172 319,821 0.05% 1,859 

Enzyme      

 
Tyrosyl-DNA 

Phosphodiesterase 
485290 292 344,477 0.08% 1,179 

       

Machine learning algorithms relate chemical structure to biological activity 

Three supervised (ANN, SVM, DT) and one unsupervised (KN) machine learning approaches were 

evaluated to predict biological activity on confirmatory HTS assay data. Machine learning methods can 
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describe non-linear relations and recognize patterns within large sets of numerical descriptors. Trained 

models can adapt to complex interrelations and are capable of detecting even small signals at high noise 

levels. Likewise, non-linear methods are applied when no simple mathematical model can be assumed, 

many influencing factors interact, and the experimental uncertainty is high. 

Quality measures assess the predictive power of machine learning algorithms 

The low ratio of active:inactive compounds in HTS data sets (typically 1:100–1:1000) leaves unbiased 

quality measures (e.g., classification accuracy) inappropriate for comparing results across different data 

sets. To facilitate meaningful comparisons of results across data sets, the integral of true-negative-rate 

(specificity, y-axis) and true-positive-rate (sensitivity, x-axis) (TNR-TPR) was chosen as an objective 

function for QSAR model training. It represents a 90° clock-wise rotation of the traditional receiver 

operating characteristic (ROC) curve [101]. The integral is identical to the well-known area under the 

curve (AUC) value. The TNR-TPR plot shows the accuracies of a model at predicting actives and 

inactives on separate axes, and is thus independent of the active:inactive ratio. It thereby preserves the key 

advantage of the ROC curve. However, it also eliminates a key disadvantage of the ROC curve: after 

virtual screening only a small fraction of compounds—the ones with predicted high activity—will be 

considered. How many actives are among these compounds depends on the very initial slope of the ROC 

curve which is difficult to measure with an integral as the optimal cutoff value on the x-axis tend to be 

very small (for example 10
−3

) and data set dependent, i.e., it needs to be adjusted for optimal 

performance. In the past the x-axis has therefore been often plotted on a logarithmic scale. For TNR-TPR 

plots the integration is performed from 0 to the desired TPR value—i.e., the fraction of actives recognized 

as such, for example 25% or 50%. The integral instead of the slope is now the determinant of model 

quality. In contrast the slope analyzed for ROC curves at a single point the integral computed for TNR-

TPR curves presents a more robust measure for model quality (see Experimental Section). To facilitate 

comparison we report enrichment (ENR) as additional quality measure—i.e., what is the ratio of active 
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compounds after virtual screening compared to the initial HTS experiment. Enrichment correlates with 

the slope of the ROC curve.  

QSAR model quality depends critically on the selection of optimal descriptor set 

To systematically add the most significant descriptor elements for signal to noise increase, three 

descriptor selection methods were employed: Information Gain (IG), F-Score (FS), and Sequential 

Forward Feature Selection (SFFS). A total of 60 numerical descriptor groups were available for this study 

with a total of 1,284 descriptor values (see supplementary materials Table S1). All three methods were 

used separately for each machine learning technique and PubChem data set.  

To cope with the computational expense associated with each descriptor selection technique, reduced data 

sets were created for the training and monitoring data sets containing always all available active 

compounds. Sets of 30,000 and 10,000 inactive compounds for the training and monitoring partitions, 

respectively, were chosen randomly from each HTS data set. The independent data set was not altered. 

The optimal descriptor set is defined by the largest average integral of the TNR-TPR curve over all cross-

validation experiments. The descriptor selection process aims to identify the combination of properties 

and encoding functions that describe the structural features of the pharmacophore best and hence yield the 

best QSAR model. The selection process allows for models with fewer degrees of freedom and therefore 

reduces training time, limits number of data points needed for training, and improves signal to noise. For 

every descriptor selection method, machine learning algorithm, and PubChem data set a comparison of 

the integral beneath the TNR-TPR curve was evaluated by assessing 10 × 9-fold cross-validated models 

using the optimal descriptor set shown in Table 2. 
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Table 2: Overview of descriptor selection results. 

Descriptor selection results for Information Gain (IG), F-Score (FS), and Sequential Feature Forward 

Selection (SFFS) applied to each machine learning technique paired with each PubChem HTS data set. 

Results for the integral of the TNR-TPR curve are presented. The mean and standard deviation for each 

SAID (row) and each descriptor selection approach (column) is given. 

  ANN SVM DT KN   

PubChem 

IG FS 

SF 

IG FS 

SF 

IG FS 
SF 

IG FS 
SF Mean 

SAID FS FS FS FS (Stdev) 

435008 0.79 0.81 0.80 0.84 0.84 0.85 0.77 0.77 0.77 0.77 0.77 0.77 
0.80 

(0.03) 

1798 0.68 0.68 0.64 0.74 0.73 0.76 0.72 0.68 0.52 0.70 0.72 0.68 
0.69 

(0.06) 

435034 0.79 0.80 0.80 0.83 0.82 0.85 0.74 0.74 0.50 0.75 0.76 0.78 
0.76 

(0.09) 

2258 0.80 0.80 0.83 0.84 0.84 0.85 0.78 0.75 0.77 0.75 0.76 0.79 
0.80 

(0.04) 

1843 0.91 0.90 0.92 0.92 0.91 0.92 0.86 0.84 0.83 0.86 0.83 0.86 
0.88 

(0.04) 

463087 0.84 0.86 0.86 0.88 0.89 0.89 0.82 0.81 0.82 0.75 0.77 0.81 
0.83 

(0.05) 

488997 0.76 0.75 0.75 0.79 0.81 0.82 0.77 0.74 0.75 0.74 0.75 0.76 
0.77 

(0.03) 

2689 0.92 0.92 0.92 0.92 0.93 0.93 0.88 0.86 0.86 0.88 0.86 0.85 
0.89 

(0.03) 

485290 0.83 0.84 0.85 0.86 0.86 0.86 0.82 0.84 0.76 0.80 0.80 0.75 
0.82 

(0.04) 

Mean 

(Stdev) 
0.81 

(0.07) 

0.82 

(0.07) 

0.82 

(0.09) 

0.85 

(0.06) 

0.85 

(0.06) 

0.86 

(0.05) 

0.79 

(0.05) 

0.78 

(0.06) 

0.73 

(0.13) 

0.78 

(0.06) 

0.78 

(0.04 

0.78 

(0.05) 
  

 

The mean value of the TNR-TPR integral comparing the performance of machine learning algorithms 

across different descriptor selection methods ranged from 0.73–0.79 (DT), 0.78 (KN), to 0.81–0.82 

(ANN) and 0.85–0.86 (SVM). These results provide a clear distinction of prediction performance between 

individual single predictors. The mean performance of a cross-validated QSAR model considering each 

PubChem data set individually ranged from 0.69 (SAID 1798) to 0.89 (SAID 2698); standard deviations 

ranged from 0.03 to 0.09. ANN and SVM typically outperform DT and KN with mean integral values 

above the baseline independent of the chosen data set. 

Consensus prediction of machine learning techniques increases prediction accuracy 

A consensus prediction was obtained by averaging the output of several machine learning techniques (see 

Experimental). For every data set, all possible combinations of machine learning methods were assessed 
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using the previously determined optimal descriptor set for each machine learning method (see Table 3). 

We ranked QSAR model performance using the achieved ENR value. The best single predictor is listed at 

the end of each ranking if not present among the top three consensus predictors.  

Consensus models consistently outperform QSAR models that rely on a single machine learning method. 

Misclassifications of single predictors are generally extenuated and therefore consensus predictors 

achieve increased prediction accuracy. Normalizing the ENR increase between the best consensus 

predictor and best single predictor by the inactives-to-actives ratio reveals differences ranging from 

−0.21% (SAID 438005, IG) to 4.75% (SAID2689, SFFS). In all but a single case the consensus predictor 

outcompetes individual predictors suggesting that consensus prediction provides a benefit although it is 

small. The overall ENR increase of consensus predictors compared to the theoretical maximum ENR 

appears to be marginal, though significant when compared to the hit rate of the HTS experiment (see 

Table 1). Conflicting findings from previous studies [87-91] can be attributed to a limited benchmark.  
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Table 3: Overview of consensus benchmark results for all PubChem datasets 

SAID FS #r INT ENR IG #r INT ENR SFFS #r INT ENR 

435008 ANN DT KN SVM 1 0.249 27 SVM 1 0.245 24 DT SVM 1 0.247 40 

 

SVM 2 0.245 26 DT SVM 2 0.245 22 SVM 2 0.246 39 

 

DT SVM 3 0.245 26 KN SVM 3 0.245 22 ANN DT SVM 3 0.249 27 

 

Diff - - 0.11% Diff - - -0.21% Diff - - 0.11% 

1798 ANN DT KN SVM 1 0.240 10 ANN DT KN SVM 1 0.241 15 ANN DT KN SVM 1 0.243 7 

 

ANN DT SVM 2 0.240 9 ANN KN SVM 2 0.241 10 ANN KN SVM 2 0.243 7 

 

SVM 6 0.240 8 SVM 8 0.242 7 SVM 8 0.244 5 

 

Diff - - 0.61% Diff - - 2.45% Diff - - 0.61% 

435034 ANN SVM 1 0.246 18 ANN SVM 1 0.245 17 ANN SVM 1 0.246 18 

 

ANN DT SVM 2 0.246 17 ANN DT SVM 2 0.245 16 ANN DT SVM 2 0.246 18 

 

SVM 7 0.245 14 SVM 4 0.246 16 SVM 3 0.246 17 

 

Diff - - 2.90% Diff - - 0.72% Diff - - 0.72% 

1843 ANN DT KN 1 0.249 54 ANN DT SVM 1 0.250 68 ANN DT KN SVM 1 0.250 50 

 

DT KN SVM 2 0.249 45 ANN DT KN SVM 2 0.250 67 ANN DT SVM 2 0.250 45 

 

SVM 11 0.249 32 SVM 10 0.250 45 ANN 11 0.250 30 

 

Diff - - 1.26% Diff - - 1.31% Diff - - 1.14% 

2258 ANN DT 1 0.241 28 ANN DT 1 0.241 34 ANN DT KN 1 0.244 65 

 

ANN DT SVM 2 0.246 26 ANN DT KN SVM 2 0.246 33 DT KN SVM 2 0.249 49 

 

SVM 8 0.246 18 DT 6 0.238 23 SVM 10 0.249 28 

 

Diff - - 0.70% Diff - - 0.78% Diff - - 2.61% 

 

The top two ranking (#r) consensus QSAR models in Table 3 are presented for each PubChem data set 

(SAID) and descriptor selection techniques: F-Score (FS), Information gain (IG), and sequential feature 

forward selection (SFFS). Every model is evaluated by the integral of the TNR-TPR curve with a TPR 

rate of 0.00 to 0.25 (INT). The ranking is ordered by Enrichment (ENR). The best single predictor is 

shown for comparison. The ENR difference of the best consensus predictor compared to the best single 

predictor normalized by the inactives-to-actives ratio is given (Diff). 
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Table 3 continued. 

SAID FS #r INT ENR IG #r INT ENR SFFS #r INT ENR 

463087 ANN SVM 1 0.250 23 ANN DT KN SVM 1 0.250 19 ANN KN SVM 1 0.250 29 

 

SVM 2 0.250 22 ANN DT SVM 2 0.250 18 ANN DT KN SVM 2 0.250 28 

 

DT SVM 4 0.250 21 SVM 8 0.250 17 SVM 8 0.250 24 

 

Diff - - 0.70% Diff - - 1.40% Diff - - 3.50% 

2689 ANN DT KN SVM 1 0.248 74 ANN DT KN SVM 1 0.248 58 ANN DT SVM 1 0.249 101 

 

ANN DT SVM 2 0.248 63 ANN DT SVM 2 0.248 54 ANN DT KN SVM 2 0.249 91 

 

ANN 10 0.250 42 SVM 10 0.248 41 ANN 10 0.248 44 

 

Diff - - 2.67% Diff - - 1.42% Diff - - 4.75% 

488997 ANN DT SVM 1 0.246 20 DT KN SVM 1 0.244 14 ANN DT KN SVM 1 0.243 49 

 

ANN DT KN SVM 2 0.247 19 ANN DT KN 2 0.241 13 ANN KN SVM 2 0.243 44 

 

SVM 6 0.245 15 DT 7 0.242 12 SVM 11 0.244 31 

 

Diff - - 0.27% Diff - - 0.11% Diff - - 0.97% 

485290 ANN DT KN 1 0.241 64 DT KN SVM 1 0.245 71 ANN SVM 1 0.244 30 

 

DT KN SVM 2 0.245 58 ANN DT KN SVM 2 0.246 60 ANN DT SVM 2 0.244 28 

 

SVM 11 0.244 38 SVM 12 0.245 36 SVM 4 0.244 26 

 

Diff - - 2.22% Diff - - 2.96% Diff - - 0.28% 

 

Experimental  

Determination of confirmatory high-throughput screening data sets for diverse protein targets 

Publicly available libraries of small organic molecules from a diverse set of HTS experiments were 

obtained from PubChem. The following listing of PubChem assays identifies the PubChem summary id 

(SAID) of the primary protein target and describes the determination of active compounds from 
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confirmatory screens given by PubChem assay ids (AID). The inactive compounds are taken from the 

corresponding primary assay. 

GPCR: Antagonist of the Orexin 1 Receptor (SAID 435008) 

The GPCR Orexin 1 plays a role in behavioral plasticity, the sleep-wake cycle, and gastric acid secretion 

[102, 103]. Three primary screens, AID 485270, AID 463079, AID 434989, were conducted to identify 

antagonists of Orexin 1 receptor. AID 485270 is a FRET-based cell-based assay [104] identifying 

compounds that inhibit Orexin 1 receptor activity. AID 463079 is a cell-based assay using a parental 

CHO cell line identifying compounds that non-selectively inhibit Gq signaling. Here, compounds are 

tested for inhibition of Gq activity using the parental CHO cell line without transfection of the GPCR. 

AID 434989 is a fluorescence-based cell-based assay identifying compounds with inhibitory activity of 

the Orexin 1 receptor. These compounds are dispensed onto CHO cells with transfected human Orexin 1 

receptors to gauge calcium mobilization by a fluorescent indicator dye. Inhibitors revealed by the primary 

screen AID 485270 were confirmed by the counter screen AID 492964 through a Homogeneous Time 

Resolved Fluorescence (HTRF)-based cell-based assay. Further, resulting inhibitors from assay AID 

492964 were investigated by the counter screen AID 493232 that tested for non-selectivity due to 

inhibition of Gq activity. It applied a HTRF-based cell-based assay to identify antagonists of the parental 

CHO-K1 cell line. Subsequently, the validation assay AID504701 identified compounds being active in 

primary screen AID 483270, confirmed in assay AID 493964, but inactive in counter screen AID 493232 

to exclude compounds with non-selectivity due to inhibition of Gq activity. AID504701 applied an 

HTRF-based cell-based dose response assay to identify antagonists of the Orexin 1 receptor. Another 

validation screen, AID 492965, confirmed compounds, active in AID 434989 and inactive in primary 

screen AID 463079, being non-selective inhibitors of Gq signaling. The applied assay was a fluorescence-

based cell-based HTS confirmation assay. A second primary assay, AID 434989, screened for agonists of 

the Orexin 1 receptor with validation of inhibitory activity by AID 492963. AID 492963 used a 

fluorescence-based cell-based HTS confirmation assay to identify antagonists of the Orexin 1 receptor. A 
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more specific assay, AID504699, identified compounds that are active in AID 434989 and AID 492963 

but being inactive against the parental cell line tested in a third primary screen AID 463079. AID504699 

applied a fluorescence-based cell-based HTS confirmation assay to identify antagonists of the Orexin 1 

receptor. Combining the active compounds of the most refined assays, AID504701 and AID504699, 

resulted in a total of 234 active compounds excluding an overlap of 155 molecules. 

GPCR: Allosteric modulators of M1 Muscarinic Receptor: Agonist (SAID 1798)  

The Gq-coupled GPCR M1 Muscarinic Receptor [105-108] is a seven-transmembrane domain receptors 

whose modulation has significant impact in treatment of cognitive degeneration associated with 

Alzheimer’s disease and schizophrenia. The same set of compounds was screened for positive (AID626) 

and negative (AID628) allosteric modulation of the M1 Muscarinic receptor. Agonistic modulators of M1 

Muscarinic receptor were confirmed by screen AID 1488 applying a cell-based fluorometric calcium 

assay. A second counter screen AID 1741, using the same assay settings as AID 1488, evaluated these 

compounds for cross-activity with M4 muscarinic receptor. The final set of selective positive allosteric 

modulators of M1 was obtained by removing compounds active in AID 1741 from the compounds active 

in AID 1488 resulting in 188 compounds. 

GPCR: Allosteric modulators of M1 Muscarinic Receptor: Antagonist (SAID 435034) 

Negative modulators of M1 muscarinic receptors (AID628) [109, 110] were confirmed by screen AID677 

through a cell-based fluorometric calcium assay. AID859 confirmed activity on rat M1 receptor. The 

counter screen AID860 removed non-selective compounds being active also at the rat M4 receptor. 

AID859 and AID860 employed the same assay type as AID677 and AID628. To remove the non-

selective actives having a different target then the rat and human M1 receptor, the final set of active 

compounds was obtained by subtracting active compounds of AID860 from those in AID677, resulting in 

448 total active compounds. 
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Ion Channel: Potentiators of KCNQ2 potassium channel (SAID 2258) 

Voltage-gated potassium channels, like KCNQ2 [111, 112], have important neuronal functionality in 

excitement and resting states of cells. This target institutes a new avenue for drugs attempting to treat 

cancer, autoimmune diseases, and metabolic, neurological, and cardiovascular disorders. The primary 

screen AID 2239 identified potentiators of KCNQ2 potassium channel through measurements of 

intracellular thallium, gauged by the intensity of a thallium-sensitive fluorescent dye. A confirmatory 

screen AID 2287 validated active compounds to be potentiators. Counter screens identified false positive 

compounds showing response for CHO-K1 cell activity (AID 2282), non-specific effects on KCNQ1 

(AID 2283) and response in KCNQ2-W236L-CHO cells (AID 2558). All confirmatory and counter 

screens applied the same experimental conditions as in the primary screen. The final set of 213 active 

compounds was acquired by removing the active compounds of AID 2282, AID 2283 and AID 2558 from 

the confirmatory screen active set of compounds (AID 2287).  

Ion Channel: Identification of compounds that inhibit Inward-Rectifying Potassium Ion Channel 

Kir2.1 (SAID 1843) 

The Kir2.1 inward-rectifier potassium ion channel is recognized as a target in the treatment of 

cardiovascular, neurological, renal and metabolic disorders [113-115]. The primary assay AID 1672 

identified inhibitors for the inward-rectifying potassium ion channel Kir2.1. The assay uses a HEK293 

cell line with stably expressed Kir2.1 channels where test compounds are gauged by intracellular thallium 

through thallium-sensitive fluorescent dye. The validation screens AID 2032 and AID 463252, both 

confirmed active compounds from the primary screen showing inhibition of Kir2.1. While AID 2032 used 

the same assay experiment as the primary screen, AID 463252 applied an automated electrophysiology 

assay for Kir2.1. The counter screens AID 2105, AID 2345, AID 2236, and AID 2329 identified active 

compounds exhibiting non-specific binding effects against Kir2.1. AID 2105 is a counter screen to the 

primary screen and evaluated active compounds against their non-specific effects on parental HEK293 

cells of Kir2.1-HEK293 cells. AID 2236 tested compounds identified in the primary screen assay for 

effects on hERG CHO cells. AID 2345 assess compounds identified as active in an independent primary 
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screen assay (PubChem AID 2239) for non-specific effects on the Kir2.1 stably expressed HEK293 cells 

as well as on KCNQ2 potassium channels. 

The final set of 172 active compounds was assembled by subtracting the actives in AID 2105, AID 2345, 

AID 2236, and AID 2329 from the molecules found active in both, AID 2032 and AID 463252. 

Ion Channel: Inhibitors of the of Cav3 T-type Calcium Channels (SAID 463087) 

The transient-type (T-type) calcium channel containing one of three α1 subunits (Cav3) is part of the 

voltage-gated potassium channel family and has suggested involvement in epileptics and pulmonary 

hypertension [116-119]. The primary screen AID 449739 identified inhibitors of Cav3 T-type calcium 

channels measuring calcium fluorescence change in a Cav3.2 expressing cell line. AID 489005 is a 

counter screen validating active compounds of the primary screen using the same assay. Four follow-up 

screens were performed to confirm inhibitory effects on smaller sets of compounds involving AID 

493021, AID 493022, AID 493023, and AID 493041. All were confirmatory and tested dose-response 

through 11-point 3-fold experiments using the same assay conditions as the primary screen.  

The final set of 703 active compounds was acquired by subtracting the inactive compounds of the latter 

follow-up screens from the actives in the validation screen AID 498005. Taking just the actives of the 

four follow-up screens would have violated the established benchmark data set requirements. 

Transporter: Inhibitors of the Choline Transporter (CHT, SAID 488997) 

Choline has many physiological functions throughout the body that are dependent on its available local 

supply [120, 121]. Its transport is required for cellular membrane construction and is the rate-limiting step 

for acetylcholine production. CHT is suggested a drug target involved in Alzheimer's disease. The 

primary screen AID 488975 identified inhibitors of CHT. The counter screen AID 493221 is a validation 

screen to confirm the active compounds that inhibit CHT. It uses a choline-induced membrane potential 

assay measuring choline coupled sodium flow through CHT. Further, two additional validation screens 

reaffirmed activity of these compounds with 5-point concentration response curve (CRC) (AID504840) 
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and 10-point CRC (AID588401) experiments. The screen AID 493222 evaluated remaining active 

compounds for non-specific activity in parental HEK293 cells. Finally, the reconfirmation screen 

AID602208 tested a selected set of compounds for 3H choline uptake.  

The final set of 254 active compounds was determined by the overlap of active compounds in screens 

AID 493221, AID504840, and AID588401 subtracting any non-specific hits from AID 49322 and all 

inactive compounds in the re-confirmation screen AID602208. 

Kinase Inhibitor: Inhibitors of Serine/Threonine Kinase 33 (STK33, SAID 2689) 

The serine/threonine kinase, STK33, has been shown to be required for the survival and proliferation of 

mutant KRAS-dependent cells involved in cancer [122]. The primary screen AID 2661 identified 

inhibitors of STK33 through preincubation of purified STK33 Kinase with potential inhibitors and kinase 

activity is measured through luminescent signal strength. The counter screen AID 2821 reaffirmed active 

compounds from AID 2661 using the same experimental conditions as in the primary screen. AID504583 

tested a subset of compounds for STK33 selectivity by measuring Protein Kinase A inhibition. Taken the 

actives in AID 2821 subtracted by the actives from screen AID504583 resulted in the final set of 172 

active compounds. 

Enzyme: Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (TDP1, SAID 485290) 

The inhibition of Human tyrosyl-DNA phosphodiesterase 1 (TDP1) has the potential to enhance 

anticancer activity of DNA topoisomerase I inhibitors [122-124]. The primary screen AID 485290 

identified inhibitors of TDP1. The counter screen AID 489007 was used as a confirmation of the 

previously identified actives. AID 489007 used the Alpha Screen detection method [124] measuring the 

intensity of an enzyme cleavage reaction. The final set of 292 actives contains all compounds labeled as 

active in the counter screen AID 489007. 
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Numerical representation of biological data distinguishes active from inactive compounds 

The half maximal inhibitory and effective concentrations, IC50 and EC50 values, of active compounds 

from the HTS data ranged from 0.1 μM to 25 μM. Biological activity was not reported for every active 

compound, thus all active compounds without an assigned IC50 or EC50 value were categorized as actives 

with a representative value of 1 μM chosen from the actives concentration range. All inactive compounds 

were set to a biological activity value of 1 mM. Models were trained on pIC50 = −log10 (IC50/1 M), which 

ranges from 3 (for inactive molecules) to 4.6 to 7 (for molecules with IC50 = 25 to 0.1 µM). The same 

method was applied for pEC50 values. This procedure ensures that compounds without determined 

IC50/EC50 can be used for training while at the same time information on differential activity is leveraged 

when available. In our hands this procedure is superior to a pure binary classification in active/inactive 

(data not shown). 

Numerical description of molecules for QSAR model development 

A total of 1,284 numerical descriptors in 60 categories were implemented in this study (see 

supplementary materials Table S1). The 60 categories contain scalar descriptors such as molecular 

weight, number of hydrogen bond donors, -acceptors, octanol / water partition coefficient, total charge, 

and topological polar surface area. Nine additional chemical properties were computed for every atom 

including atom identities, σ-, π-, and total charges, σ-, π-, and lone pair electronegativities, effective atom 

polarizabilities, and VC2003 atom charges [125]. Three encoding functions (2D auto-correlation, 3D 

auto-correlation, radial distribution function) are paired with each of the chemical properties to yield 27 

fingerprints [77, 80]. In addition, each fingerprint is computed a second time applying van der Waals 

surface area as a weight factor. 3D conformations for all molecules were calculated with CORINA [126]. 

Monitoring data set is used for early termination of training process 

The oversampled data set had 80% of the data points employed in the actual training process. The number 

of training iterations was limited through early termination to counter “overfitting” of the machine 

learning model to the training data. A monitoring data set consisting of 10% of the data points was used 
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to optimize all training parameters of the machine learning methods and to invoke early termination. The 

final 10% of the data points are set aside as an independent data set. It is not employed in the training 

process, but was evaluate by the final model. There was no overlap of compounds between training, 

monitoring, and independent data sets.  

The integral of the true-negative-rate–true-positive-rate curve is a viable quality measure for 

QSAR models 

Similarly to a traditional receiver operating characteristic (ROC) curve, QSAR models were evaluated by 

means of a true-negative-rate - true-positive-rate (TNR-TPR) curve. It resembles a clockwise rotated 

ROC curve plotting the rate of true negatives TNR = TN/N = 1 − FR/N = TN/(FP + TN) (or specificity) 

versus the rate of true positives TPR = TP/P = TP/(FN+TP), also known as sensitivity. The diagonal 

represents performance of a random predictor and has an integral (area under the curve, AUC) of 0.5. The 

QSAR model progressively improves as the integral increases. For virtual screening where only a small 

fraction of a screened compound library will be tested experimentally, performance at high true positive 

rates (or low false positive rates) is most critical (see below). 

Enrichment measures ratio of fraction of active compounds predicted above actives rate  

QSAR models are most frequently applied in virtual screening experiments: activities are predicted for a 

large compound library (e.g., ~10
5
). Compounds are ranked by predicted activities to select a small 

fraction of compounds for experimental testing (e.g., 1% or ~10
3
). In this scenario it is important that the 

1,000 compounds predicted as most active are actually active while the ranking of the other 99,000 

compounds is of a lesser concern. This property of the QSAR model is not well reflected in the global 

AUC value as it only depends on the initial integral of the TNR-TPR curve. It is better analyzed through 

computation of enrichment: 

     
  

     
 

   

           (1) 
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The value represents the factor by which the fraction of active compounds was increased through virtual 

screening above the background observed in the original HTS experiment. 

Orthogonal supervised and unsupervised machine learning algorithms seek optimal biological 

activity predictions 

A set of four supervised and unsupervised machine learning algorithms were implemented in this study. 

The first supervised algorithm is the Artificial Neural Networks (ANN). The utility of ANNs for 

classification is well-known in chemistry and biology [28, 82, 83, 127]. Their architectural arrangement 

resembles the network structure of neurons. Layers of neurons are connected by weighted edges wji. The 

input data xi are summed according to their weights, an activation function is applied, and its output used 

as the input to neurons of the next layer. Simple propagation [92] was chosen as the weight update 

algorithm during the training process. The parameters (learning rate) and α (momentum) were optimized 

prior to descriptor selection and again with the optimized descriptor set.  

Support Vector Machine (SVM) learning with extension for regression estimation [18] represents a 

supervised machine learning approach successfully applied in the past[82, 128-130]. The core principles 

lay in linear functions defined in high-dimensional hyperspace [21], risk minimization according to 

Vapnik’s - intensive loss function, and structural risk minimization [96] of a risk function consisting of 

the empirical error and the regularized term. SVMs were trained using an initial penalty parameter C and 

kernel parameter γ of 1 and 0.1 respectively, during the descriptor optimization process. Upon 

identification of the optimal descriptor set, C and γ were optimized in a grid search approach for every 

data set.  

The decision tree (DT) learning algorithm [88, 89, 98] determines sets of rules to partition a given 

training data set. A partitioning algorithm gauges each successive split into subset or decision nodes with 

increased purity of one small molecule category. The splitting criterion is ascertained by the Gini 

coefficient [131]. The resulting model is a sequence of decisions involving single predictor variables that 
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classify a given feature. The DT implementation in BCL::ChemInfo ranks outcomes based on the percent 

of actives that were mapped into that node during training. 

The Kohonen network (KN) represents an unsupervised learning algorithm [24, 25, 100]. The KN clusters 

similar inputs into nodes on a spatial grid, thus forming a reduced-dimensional representation of the 

problem space. Each node represents a cluster of similar compounds based on a Gaussian neighbor kernel 

distance measure. 

Cross-validation ascertains robustness of QSAR models  

The active and inactive data sets are divided into ten equal-sized partitions. The first partition is specified 

as the independent data set which is constant during cross-validation. Of the remaining nine partitions a 

second partition is selected as the monitoring data set. The remaining eight subsets constitute the training 

data set. A different monitoring data set is chosen systematically for each iteration of the cross-validation. 

In a set of ten data partitions each of those ten partitions can be assigned as independent data set leaving 

nine possibilities of assigning one remaining data partition as the monitoring data set. This results in 10 × 

9 = 90 possible model training configurations. All final models trained using the optimized descriptor sets 

in this study are 10 × 9 -fold cross-validated. This procedure still ensures that every molecule in the data 

set was part of an independent data partition at least once during cross-validation. Data sets for ANNs and 

SVMs were balanced by oversampling actives, while decision trees and KNs required no oversampling.  

To reduce the computational burden, all descriptor selection schemes use a 5 × 1 = 5 fold cross-validation 

set up, where the monitoring data partition is systematically incremented but only one independent data 

set configuration is evaluated.  

Selection of an optimized descriptor set guides QSAR model training 

To reduce the total number of inputs to machine learning algorithms, it is advantageous to remove 

obsolete descriptors in order to minimize the number of degrees of freedom that need to be determined. 

Further, noise is reduced while the ratio of data points versus degrees of freedom increases. The 
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determination of an optimal set of descriptors for each data set was evaluated by various selection 

methods such as Information gain [33], F-Score [34], and Sequential Forward Feature selection [132]. 

Information gain (IG) and F-Score (FS) score every descriptor column in the data set by statistical metrics 

that consider the actives/inactives composition. These scores can be compared: higher values indicate a 

higher discriminating power between active and inactive data points for a particular descriptor column. A 

particular advantage of these metrics over SFFS is that relatively few models need to be trained, because 

the scores are independent from model training. 

IG measures the change of information entropy from the overall compound distribution of actives and 

inactives in one descriptor column compared to the entropy in each descriptor category itself. A higher 

information gain value of a descriptor column indicates higher discriminating information content. 

Information gain:    ( )   ∑          
 
          (2) 

The variable represents the i-th feature of the combined active and inactive data sets. FS considers the 

mean and standard deviation of each descriptor column across active and inactive compounds 
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where are the average of the i-th feature of the whole, active, and inactive data sets, respectively; is the     

i-th feature of the k-th active instance, and is the i-th feature of the k-th inactive instance.  

SFFS evaluates the objective function of trained models directly to arrive at an optimal descriptor set. 

This approach is a deterministic greedy search algorithm over all descriptor groups (see supplementary 

materials Table S1). Each round adds a single descriptor group to the descriptor set (initially, the empty 

set) selected in the previous round. Descriptor sets for the current round are then formed by adding each 

candidate descriptor group to the descriptor set selected in the previous round. Descriptors already present 

in the best descriptor group are ignored when creating the descriptor sets for a given round. Five-fold 



33 

cross-validated models are trained followed by the evaluation of respective objective functions. The 

average objective function result is computed for each cross-validated model, and the descriptor set 

corresponding to the top performing models is selected as the best descriptor set for this round. This 

process is repeated until all features are selected or early terminated if no improved was determined for 

ten consecutive rounds. Finally, the best descriptor combination is chosen from the best performing 

model. 

Consensus predictions seeks improved accuracies of trained QSAR models 

The combination of different machine learning model predictions can reduce the overall prediction error 

by compensating for misclassification of a single predictor with the consensus of the remaining models 

[87]. Here, we evaluate the overall accuracy of all trained QSAR models by calculating average 

consensus of all predicted pIC50 or pEC50 values given in an independent data set: 

Consensus ∷ average =        (4) 

If the predicted pIC50 or pEC50 value is at or above a given cutoff the predicted activity of the molecule 

is evaluated as active. Consensus, prediction was performed over all cross-validated QSAR models, five 

cross-validation models for every of the four machine learning methods. 

Implementation 

All machine learning algorithms and all molecular descriptors were implemented in the 

BioChemistryLibrary (BCL). This software suite was developed in-house as an object-oriented library 

written in the programming language C++. It contains more than 1,000 classes and approximately 

500,000 lines of code. This library is the basis for BCL::ChemInfo and other modeling algorithms 

regarding small organic molecules and large molecular structures such as proteins. BCL::ChemInfo is a 

tailored method that streamlines data processing such as data set generation and cross-validation. The 

framework hosts a range of small molecule descriptors, descriptor selection strategies, and machine 
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learning technologies. Speedups between 80 and 200 are achieved through OpenCL implementations of 

ANNs and SVMs used on graphics processing units (GPUs) hosted on an in-house CPU/GPU cluster. A 

command line interface is provided for easy access. Thus, no meta-language has to be learned like R or 

Matlab. BCL::ChemInfo is freely available for non-commercial use at www.meilerlab.org/bclcommons. 

Conclusions  

In this study, nine large data sets were assembled originating from realistic HTS experiments for a range 

of common drug target proteins including GPCRs, ion channels, transporters, kinase inhibitors, and 

enzymes. All data was drawn from the public domain through PubChem but carefully post-processed to 

include only confirmed active compounds. These data sets provide a foundation for developing and 

testing methods in LB-CADD. We further introduce a comprehensive framework for LB-CADD termed 

BCL::ChemInfo that is freely available for non-commercial use and exposes orthogonal machine learning 

approaches including ANNs, SVMs, DTs, and KNs. We confirm that the quality of QSAR models 

depends critically on selection of optimal molecular descriptors, composition of the training data, and the 

machine learning method itself.  

Further optimization was achieved by combining different machine learning methods into a consensus 

prediction to reduce false positives of each individual method. Theoretical enrichments ranging from 15 

to 101 for a TPR cutoff of 25% are observed. The overall enrichment improvement normalized by 

maximal possible enrichment of consensus predictors compared to single predictors is up to 4.75%. We 

derive a ‘TNR-TPR curve’ from the common ROC analysis to better evaluate the quality of QSAR 

models at high TPR/FPR ratios. 

LB-CADD or ‘cheminformatics’ is one strategy to reduce costs and increase size of the chemical space in 

resource-limited academic probe development efforts or drug discovery campaigns that target orphan or 

neglected diseases. This study shows that QSAR models prioritize compounds in silico thereby limiting 
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the cost of HTS and hit-to-lead optimization. The availability of HTS data through PubChem allows for a 

comprehensive comparison of QSAR models, molecular descriptor selection, and training strategies. 
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Chapter III 

3. IDENTIFICATION OF PATHWAY SPECIFIC INHIBITORS FOR Β-HEMATIN 

CRYSTALLIZATION IN PLASMODIUM FALCIPARUM INVOLVED IN 

MALARIA 

Introduction  

(This section was kindly provided by Rebecca D. Sandlin) 

The malaria eradication campaigns of the mid 1900s dramatically lowered infections worldwide through a 

combination of vector control methods and drug treatment using the antimalarial chloroquine (CQ) [133]. 

After two decades the focus of these efforts shifted to a less ambitious goal of malaria control due in part 

to resistance and safety concerns.  Recently, resurgence in malaria cases have been observed, primarily in 

underdeveloped countries and due in large part to the development of resistance mechanisms to nearly all 

affordable antimalarial drugs and insecticides [134, 135]. Though it has been over 50 years since 

resistance to CQ was first reported, no affordable replacement has been developed [136, 137]. Perhaps the 

primary reason that progress has been slow is because malaria is a disease of poverty [138]. There has 

also been a lack of public funding for tropical diseases, referred to as the ‘90/10 split’, where 90% of the 

US health-related funding goes to research for only 10% of the worldwide disease burden [139]. 

Fortunately, interest in malaria control has increased in recent years, including an initiative announced in 

2007 by the Bill & Melinda Gates Foundation to eradicate malaria worldwide. Furthermore, through the 

advent of public-private partnerships (PPP’s), pharmaceutical companies are now collaborating with non-

profit organizations and academic institutions to develop new antimalarial drugs [140]. 

Although malaria has historically been a neglected disease, there is reason to be optimistic.  Several 

significant advances have been made in antimalarial drug discovery, particularly in the past ten years. 

Perhaps one of the most exciting advancements has been the full genomic sequencing of P. falciparum 

and P. vivax which allows for the identification of new druggable targets [141, 142]. Additionally, a more 

in-depth understanding of parasite biochemistry has allowed the introduction of high-throughput 
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screening (HTS) techniques for both target-based and phenotypic assays. Successful target-based assays 

have been developed including those that identify inhibitors of hemozoin formation, aminopeptidase 

activity, the mitochondrial electron transport chain, and pyrimidine biosynthesis [143-146]. Phenotypic 

assays have also been developed to identify molecules that are toxic to parasite cultures.  Recently, 

phenotypic screens have been completed by GSK and Novartis against millions of compounds in their 

respective HTS collections [147, 148]. The results were released to the public and identified thousands of 

potent chemical starting points for lead compound development.  The scientific community now has 

access to an arsenal of thousands of compounds that are highly toxic to the parasite, but the process of 

developing these hits into robust lead compounds will be challenging.  Identification of the molecular 

targets responsible for activity could aid in prioritization of these hits, while the lead optimization could 

be streamlined since the hit-target interactions could be directly studied, saving time, and money. While 

the experimental determination of targets is possible in some cases, it is an expensive and time-consuming 

process. With the wealth of target-based HTS data obtained in recent years, there is an opportunity to 

utilize these results in silico as a training set for the development of a QSAR model capable of predicting 

target-specific activity against phenotypic data, thereby bridging these two screening techniques. 

However, the validity of a QSAR model is only as valuable as the quality of the training set used to build 

the model. 

One of the most studied P. falciparum drug targets is hemozoin, the malaria pigment [149]. During the 

intraerythrocytic stages of infection, the parasite consumes hemoglobin as a source of nutrition. Upwards 

of 80% of an erythrocyte’s hemoglobin can be consumed by the growing parasite, resulting in the 

liberation of near molar amounts of toxic free heme in the parasite’s acidic digestive food vacuole. To 

escape free heme toxicity, the parasite has evolved a mechanism by which heme is incorporated into a 

non-toxic crystalline material known as hemozoin. Inhibition of hemozoin formation by quinoline drugs 

such as CQ leads to accumulation of near molar concentrations of toxic free heme, resulting in parasite 

death. Resistance to the quinoline drugs is the result of efflux mechanisms developed by the parasite 
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rather than changes to the pathway itself.  For this reason, hemozoin remains a valid drug target for the 

development of new antimalarials. Recently, the NP-40 β-hematin (synthetic hemozoin) formation assay 

was developed to mimic the conditions present within the digestive food vacuole.  An HTS pilot screen 

using the β-hematin formation assay identified 161/38,400 compounds as actives, and over 30% of these 

were also active against in vitro cultures of P. falciparum.  The high translation of target-specific actives 

into in vitro antimalarial compounds is supportive of a high quality screen, and suggests this assay would 

be useful in obtaining a training set for the development of a robust QSAR model. In this work, we 

demonstrate an affordable in silico screening approach to sort and prioritize compounds according to their 

likelihood to interact with a specific target, hemozoin, from the TCAMS data set from GSK. 

Results 

HTS identification of β-hematin inhibitors  

(This section was kindly provided by Rebecca D. Sandlin) 

 The development of quantitative structure activity relationship (QSAR) models has shown 

practical value for in silico screening of potential hit compounds to identify novel chemical entities with a 

desired biological activity [42, 82, 84] and prioritize focused libraries for acquisition and experimental 

verification. The previously reported NP-40 β-hematin formation assay represents a high quality assay to 

serve as the training set for development of the QSAR model. The assay was designed to mimic 

biological conditions where hemozoin formation occurs in order to enrich the subset of β-hematin 

inhibitors that translate into in vitro antimalarial compounds [144]. Upon screening 144,330 compounds, 

530 β-hematin inhibitors were identified with more potent activity than CQ. Follow-up dose-response 

curves revealed potencies ranging from 0.5 to 110 μM against heme-crystallization (see Supplementary 

Information). Examination of the structures that were identified as having activity against β-hematin 

formation highlights 24 scaffolds that represent 321 of the 530 total compounds identified in this screen 

(see Figure 2).  
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A search of the PubChem database [44] revealed that compounds derived from many of the 24 scaffolds 

identified in the clustering analysis have previously been reported as in vitro antimalarials. However, no 

previously reported activity against β-hematin was found for scaffolds 2, 4, 6, 8, 10, 11, 16, 17, 18, 20, 22 

 

Figure 2: Dendrogram representing the majority of cluster scaffolds of 530 β-hematin inhibitors. 

Dendrogram branches in red denote scaffolds that kill the parasite and show β-hematin inhibiton. 
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and 23. The remaining unassociated 209 compounds encompass a wide range of structural diversity (see 

Appendix). 

Confirmed hits were further examined for in vitro antimalarial activity, leading to the identification of 171 

compounds with activity against the D6 strain of P. falciparum. IC50 values ranged from 0.11 – 17.8 μM. 

This high translation of target-specific actives (32%) compares favorably to previously reported assays 

where only 3% of β-hematin inhibitors exhibited in vitro antimalarial activity.  By utilizing an assay that 

successfully recapitulates the biological conditions within the digestive food vacuole of the parasite, a 

higher percentage of compounds retained activity against in vitro cultures of P. falciparum, suggesting 

hemozoin formation as the pathway. This assay design also facilitated the discovery of novel and highly 

diverse scaffolds with potent β-hematin inhibitory activity. Consequently, we predicted that the results of 

this screening effort would form the basis of an excellent training set for the development of an accurate 

QSAR model to predict pathway specific activity against hemozoin formation from libraries of 

phenotypic actives. 

QSAR model development  

Here, the results of the high throughput screen have been harnessed to provide the knowledge-base for a 

target specific QSAR model developed with BCL::ChemInfo, an in silico ligand based virtual screening 

suite. A detailed description is provided in the methods section. The predictive power of the QSAR 

models was assessed by means of quality measures such as precision, enrichment, information gain, and 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve for an independent 

dataset. The best performing consensus model was chosen by maximizing its precision in the range 

critical for in silico screening and prioritization of compounds from a library not used for model training. 

The final consensus model achieved an average precision of 16% for the top 0.1% - 1% of positive 

predicted compounds, i.e. 16% of the predicted active compounds are true actives. This corresponds to an 

enrichment of 44 fold in comparison to the initial hit rate (0.37%) when using a cutoff of 1% false 

positive rate (see Appendix).  
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QSAR model successfully prioritizes GlaxoSmithKline and Novartis compounds for inhibition of β-

hematin pathway 

GSK and Novartis screened their small molecule libraries and identified hit compounds acting against in 

vitro cultures of P. falciparum. The targets of these potent in vitro antimalarial compounds are largely 

unknown and it would be far too expensive to individually identify the targets of each of the hits.   In an 

effort to prioritize compounds most likely to have activity against the hemozoin formation pathway, the 

QSAR model was applied to virtually screen the active compounds for β-hematin inhibitory activity 

published by GSK and Novartis.  The output of the QSAR model is a predicted IC50 (P-IC50) for β-

hematin inhibition. The compounds were grouped into seven ‘bins’ based on the potency of the predicted 

IC50 values (0-70 µM, 71 - 140 µM, etc). The GSK library contained a total of 13,229 compounds of 

which 249 compounds (below 70 µM) were predicted to express inhibitory effects in silico. The Novartis 

library contained 5,697 compounds and the computational model predicted 37 compounds as inhibitors 

with an IC50 of below 70 µM. These results yield a predicted in silico hit rate of 1.9 % and 0.65% for the 

GSK and Novartis compounds, respectively. 

Experimental analysis of enrichment by predicted activity binning and structural similarity 

(This section was kindly provided by Rebecca D. Sandlin) 

The QSAR model was used to prioritize compounds based on predicted β-hematin inhibitory activity. If 

the QSAR model is indeed accurate, experimental analysis should confirm a significant number of the 

compounds in bin 1 to be active while bin 9 compounds should be inactive, such that the highest degree 

of enrichment should be observed in bin 1. To fully validate the accuracy of the QSAR model to prioritize 

inhibitors of β-hematin formation, the entire library of 13,229 GSK in vitro antimalarial compounds was 

experimentally analyzed. Compounds were first pre-screened in duplicate using the NP-40 assay at a 

concentration of 22 µM. Using an activity threshold of >80% β-hematin inhibition, 397 hits were 

identified (3% hit rate) from the 13,229 compound library. These hits were then compared to the list of 

predicted hits identified in silico (P-IC50 ≤ 70 μM) to establish the accuracy of the developed QSAR 
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model.  Of the 249 in vitro antimalarials predicted to inhibit β-hematin formation, 40 were confirmed 

active (16% hit rate), an enrichment factor of 44 compared to the initial training set used to develop the 

QSAR model.  Bins 2 and 3 also showed increased degrees of enrichment where 10% and 11% of the 

compounds tested were active, respectively.  In bins 5-9, the percentage of actives decreases as a function 

of increasing bin number, such that the largest ratio of active:inactive is observed in bin 1, the bin 

predicted to contain the highest percentage of actives according to the QSAR model. 

It is also worth noting that some degree of enrichment is observed in bins 5-9.  This is almost certainly 

due to the fact that the GSK and Novartis compounds are biased as they are known to inhibit some 

pathway within the parasite.  As such, a higher hit-rate would be expected than that observed when 

screening a non-biased library, leading to some degree of enrichment (the overall hit-rate of the GSK 

library was 2%, higher than the 0.37% hit-rate in the unbiased HTS library used as the training set). 

Comparison of the QSAR model to naïve substructure search  

In addition to the development of the QSAR model, a naïve substructure search (NSS) was evaluated to 

assess the structural similarity of all 13,229 GSK compounds compared to the known 530 active 

compounds used in QSAR model training (see Figure 3) and to determine whether a less sophisticated 

model prediction approach could identify β-hematin inhibitors. 89% of all GSK compounds and 91% of 

all experimentally validated compounds have a similarity <50% similarity to the known actives. 

Considering compounds with a similarity cutoff of >80% to the known training actives the naïve 

substructure search identified <1% of the total number of compounds, containing <2% of all 

experimentally validated active compounds highlighted in the red partition. In comparison, the bin 1 

compounds identified by the QSAR model (green partition) identified <2% of the total number of 

compounds but contained 10% of the total number of actives. Bin 1 compounds also exhibited a 

significantly higher hit-rate of 16%, an enrichment factor of 44 compared to the initial training set, 

demonstrating that the QSAR model is significantly more powerful at identifying populations of 

compounds with enriched activity against the selected target, β-hematin. 
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Target validation in P. falciparum  

(This section was kindly provided by Rebecca D. Sandlin) 

 

Figure 3: QSAR model predictions compared to naïve substructure search 

a) Visualization of the predicted activity of GSK compounds by the QSAR model in relation to the 

similarity of the 530 know active compounds by % substructure overlap. Compounds represented 

in grey exhibited a β-hematin inhibition of less than 80% and are classified as inactive. A red 

color coding indicates an experimentally validated active compound.  The green partition 

corresponds to bin 1 with concentration threshold of <70μM. The red partition denotes all 

compounds that express a similarity of >80% by substructure overlap. The area where the green 

and red partitions overlap contains compounds that were identified by both prediction 

approaches. 

b) Distribution of GSK compounds with respect to similarity towards known actives used in QSAR 

model training in % substructure overlap. The dotted line corresponds to the beginning of the red 

partition in A) distinguishing between compounds having similarity of less or greater than 80% 

by substructure overlap. 
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As evident in the screening results, many of the in vitro antimalarial compounds identified by GSK were 

also active in the β-hematin formation assay, suggesting hemozoin as the target. In order to validate 

hemozoin as the molecular target responsible for parasite death, the heme speciation assay developed by 

Combrinck et al. was utilized to quantitate hemozoin formation [150]. In this assay, tightly synchronized 

ring-stage parasite cultures are treated with the indicated β-hematin inhibitor and incubated for 32 hours, 

allowing the rings to mature into schizonts where hemozoin formation is expected to be maximal. 

Parasitic digestive food vacuoles are subsequently isolated from culture, facilitating the quantification of 

free heme and hemozoin concentrations. If the β-hematin inhibitor indeed targets the hemozoin formation 

pathway, then the ratio of free heme:hemozoin should increase as a function of increasing drug 

concentration and consequent parasite death. Figure 4 shows the treatment of parasite cultures with 

TCMDC-123692, confirming that upon treatment, hemozoin is inhibited, leading to the accumulation of 

free heme and consequent parasite death. In total, 17 β-hematin inhibiting in vitro antimalarials were 

tested in this assay, 15 of which were confirmed to inhibit hemozoin formation in P. falciparum. 

Methods 

β-hematin formation HTS assay 

(This section was kindly provided by Rebecca D. Sandlin) 

The β-hematin formation assay has been described previously for use in HTS [144]. A bulk liquid 

dispenser was used to add water, NP-40 (30.6 μM), acetone and heme (100 μM) suspended in a pH 4.9 

acetate buffer (1 mM) to 384-well microtiter plates.  The plates were incubated for six hours in a shaking 

water bath at 37°C. The pyridine-ferrochrome method of colorimetric quantification was used to analyze 

the inhibitory activity of compounds by adding a solution containing 50% pyridine, 20% acetone, and 

water solution buffered with a 200 mM pH 7.4 HEPES buffer such that the final concentration in each 

well was 5% pyridine (vol/vol) [151]. From this method, hits were then identified as compounds 

exhibiting greater than 80% inhibitory activity. Follow-up dose-response curves were generated for in a 

concentration range of 0.1-110 µM. 
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QSAR model training  

Quantitative structure activity relationships seek to correlate the often complex non-linear relations 

between chemical structure and biological activity for a specific protein target [82, 84]. Modern QSAR 

techniques employ advanced 2D molecular fingerprints and 3D molecular descriptors coupled with 

machine learning [152, 153]. The descriptors employed in this study (scalar, 2D/3D auto-correlation, 

radial distribution functions) are fragment-independent and translation/rotation invariant. Thus, the 

resultant fingerprints are constant in length and independent from molecule orientation in space. A total of 

1,284 numerical descriptors in 60 categories were implemented in this study (see Supplementary 

Information). 3D conformations were calculated for all molecules with CORINA [12]. A set of five 

machine learning algorithms was implemented in the BCL::Cheminfo, a virtual screening suite for ligand-

based computer aided drug discovery. This study employed machine learning techniques such as 

Artificial Neural Networks [22, 154, 155], Support Vector Machines [21], kappa – Nearest Neighbors 

[156, 157], Kohonen Networks [98], and Decision Trees [158]. Machine learning models can adapt to 

complex interrelations and are capable of detecting even small signals at high noise levels. Hence, each of 

these methods is applied when no simple mathematical model can be assumed, many influencing factors 

interact, and the experimental uncertainty is high. The training data set had employed 80% of the data 

points used in the training process. The number of training iterations was limited through early 

termination to counter “overfitting” of the machine learning model to the training data. A monitoring data 

set consisting of 10% of the data points was used to optimize all training parameters of the machine 

learning methods and to invoke early termination. The final 10% of the data points are set aside as an 

independent data set. It is not used in the training process, but used to evaluate the final model. There was 

no overlap of compounds between training, monitoring, and independent data sets. An optimized 

descriptor set was determined for every combination of machine learning technique by means of 

information gain of each numerical descriptor element. Systematically, each data partition is chosen once 

as an independent dataset and cross–validated through machine learning model training [159]. The overall 
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accuracy of all cross-validated QSAR models was evaluated by calculating a jury consensus of all 

predicted P-IC50 values and each independent data set iteration. 

Heme speciation assay 

(This section was kindly provided by Rebecca D. Sandlin) 

The heme speciation assay was conducted using the method previously described. Briefly, a highly 

synchronized culture of Plasmodium falciparum (3D7) in the early ring stage was evenly divided into 

culture flasks and titrated with indicated β-hematin inhibitor. The cultures were allowed to incubate 

(37°C, 5% O2, 5% CO2, 90% N2) for 32 hours to mature into the late trophozoite stage of the parasite 

lifecycle where hemozoin formation is maximal. Following incubation, the trophozoites were isolated 

using saponin lysis (0.05%) and collected for further quantification of the three forms of heme: 

hemoglobin, free heme, and hemozoin. To the trophozoite pellet, HEPES buffer (0.02M, pH 7.5) and 

sodium dodecyl sulfate (4%) was added, followed by sonication and centrifugation.  The supernatant was 

collected as the hemoglobin fraction, while pyridine (5%) was added to the pellet to solubilize the free 

heme. The remaining fraction consisted of hemozoin, which was then solubilized through the addition of 

sodium hydroxide (0.3M). For each fraction, the UV-visible absorption spectrum was collected between 

300 and 800nm with the maximum peak maximum at 405nm used to calculate the percentages of the 

heme species. 
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Discussion 

The GSK and Novartis screening efforts resulted in the identification of thousands of chemical starting 

points for lead identification, but the molecular targets of these active compounds are unknown. 

Leveraging this rich data source for the development of lead compounds hinges on identification of 

pathway and target, a time-consuming and resource-intense process. Hemozoin, a validated target specific 

to the parasite, has been studied in great detail and serves as an important pathway for future antimalarial 

development.  Inevitably, some subset of the in vitro antimalarials identified by GSK and Novartis were 

likely to act upon the hemozoin pathway. To avoid testing all 20,000 active compounds, the challenge is 

to prioritize those that are most likely to exhibit activity against a particular target, in this instance, 

 

Figure 4: Validation of β-hematin inhibitors in Plasmodium falciparum.  

(a) Parasite survival curve (squares, right axis) determined using the malaria SYBR green I fluorescence 

based assay and the percentage of free heme (circles, left axis) as a function of compound concentration. 

Fraction of the (b) free heme, (c) hemozoin, and (d) hemoglobin as a percentage of the total heme species 

present following treatment with TCMDC-125671. 
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hemozoin formation. This has been addressed here using a QSAR model to virtually screen the 20,000 

compounds to prioritize those that are most likely to inhibit β-hematin formation. The model was 

subsequently validated through the experimental analysis of over 13,000 of the GSK compounds to 

determine the feasibility of screening in silico libraries in the future. 

The training set was provided by an HTS campaign that screened 144,330 compounds to identify 

inhibitors of β-hematin formation (0.37% hit-rate). This method of developing a QSAR model takes 

advantage of the chemical space provided by both active and inactive compounds. The resulting model 

was used to virtually screen the GSK and Novartis hits and prioritize the compounds based on P-IC50 

values of ≤ 70 μM. This approach prioritized a manageable subset of 249 GSK and 37 Novartis 

compounds with predicted activity against β-hematin formation.  To fully validate the accuracy of the 

QSAR model, the entire GSK in vitro antimalarial library was experimentally tested for activity against β-

hematin formation. Of the 249 compounds in Bin 1 (those predicted to have the most potent activity 

against β-hematin formation), 40 compounds were experimentally confirmed active, an enrichment of 44 

fold. Compounds with a low P-IC50 value are predicted with a high confidence yielding a decrease of 

enrichment with increasing bin number. Therefore, this method confidently filters for inhibitors of β-

hematin formation. 

A comparison between the QSAR model and a NSS was conducted to determine whether a less 

sophisticated prediction approach could be equally successful for predicting GSK compounds that inhibit 

β-hematin formation. Using the NSS, <1% of the GSK compounds exhibited >80% similarity to the 530 

known actives that were used in the training set. Since only 9 of these compounds were true actives, this 

approach is limited in its ability to predict inhibitors of β-hematin formation. In contrast, the QSAR 

model identified 40 compounds from Bin 1 as actives. Furthermore, the compounds predicted by the 

QSAR model explore a larger chemical space and are more suitable to identify antimalarials comprising 

new chemotypes. 
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The QSAR approach developed here is not specific to the malaria parasite, and can be used for target-

elucidation in other diseases as well. This is particularly applicable for use in neglected diseases where 

limited funding restricts the expensive and time-consuming process of target-elucidation. A further 

application of this model would be to guide the selection of second generation compounds in the process 

of lead development. By creating a large list of possible second generation compounds, the model can 

prioritize a subset of compounds predicted to have more potent activity against the target. This approach 

could greatly accelerate the identification of drug targets and optimization of leads for tropical neglected 

diseases where research and development funds are severely limited. 
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Chapter IV 

4. NOVEL ALLOSTERIC MODULATORS FOR MGLU5 RELATED TO CPPHA 

BINDING 

Introduction 

Metabotropic glutamate receptors (mGlu) are part of the G protein-coupled receptor (GPCR) family also 

known as seven-transmembrane (7TM) domain receptors. As the primary excitatory neurotransmitter in 

the mammalian nervous system glutamate acts as an endogenous ligand to mGlu receptors binding 

orthosterically at a large extracellular globular domain. mGlu activation is tied to a downstream effector 

mechanism through guanine nucleotide binding proteins. The mGlu family consists of eight subtypes 

classified into three major groups [55, 160]. Group I includes mGlu1 and mGlu5, which couple primarily 

to Gq/11 and mediate IP3/Ca
2+

 signal transduction while increasing phosphoinositide hydrolysis in 

expression systems [161] whereas group II (mGlu 2 and 3) and group III (mGlu 4, 6, 7, and 8) mGlu 

receptors couple primarily to inhibition of adenylyl cyclase when expressed in cell lines [162]. Through 

the diverse physiological roles, heterogeneous distribution, and wide diversity of mGlu receptor subtypes, 

the possibility arises for new therapeutic agents. These agents are selectively interacting with mGlu 

receptors specific to a single or limited number of CNS functions. Such therapeutics could have incisive 

importance on the development of novel treatment strategies for a range of neurological disorders [57, 

163, 164]. 

Modulators of mGlu5 have promising potential for treatment of schizophrenia  

Modulators of mGlu5 are of particular interest. An increasing body of studies provides evidence for 

modulators of mGlu5 to play key roles in potential novel treatment strategies for schizophrenia, 

Alzheimer’s and other diseases linked to cognitive impairment [165, 166]. Current mGlu5 positive 

allosteric modulators (PAM) have been developed based of multiple scaffolds [60, 167-175]. Well-

characterized structural classes of mGlu5 PAMs include 1-(3-fluorophenyl)-N-((3-fluorophenyl)-

methylideneamino)-methanimine (DFB), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide 
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(CDPPB), and N-{4-chloro-2-[42]phenyl}-2-hydroxybenzamide (CPPHA). Challenges with mGlu5 

PAMs in medicinal chemistry are characterized by slight structural changes inducing a large spectrum of 

pharmacological responses (DFB series), 'flat' structure–activity relationship (SAR) (CPPHA series) 

resulting in a low hit rate in assay experiments, or minimal SAR improvements beyond the initial starting 

structure (CDPPB series) [162]. Overcoming these difficulties led to evidence supporting these positive 

modulators to allosterically potentiate mGlu5-mediated electrophysiological responses in the CNS [167, 

169, 176, 177]. Furthermore, antipsychotic-like effects were confirmed by in vivo studies based on animal 

models [60, 178]. 

More recently, a distinct mGlu5 PAM chemotype was presented by Addex pharmaceuticals (ADX47273) 

[179]. The compound showed in vivo efficacy in preclinical behavioral models comparable to other 

known antipsychotics [180]. In general, these mGlu5 PAMs improved cognitive function in animals in 

which object recognition was impaired [180] and demonstrated improved behavioral flexibility [181]. 

These exciting discoveries provide a strong emphasis for mGlu5 PAMs having potential application as 

novel antipsychotic agents and cognition-enhancing therapeutics. 

Allosteric modulation of mGlu5 through multiple distinct binding sites 

The primary binding site of these PAMs correlates with the same site as for the negative allosteric 

modulator (NAM) 2-methyl-6-(phenylethynyl)-pyridine (MPEP) located in TM 3,6, and 7 [165]. 

Evidence for a possible distinct allosteric binding site was provided by O’Brien et al. [167] . In a later 

study, Chen et al [168] characterized a novel mGlu5 PAM labeled 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-

yl)-benzamide (VU-29) which was shown to act at an overlapping site to the binding site of MPEP. The 

same study points out that the structurally distinct PAM CPPHA potentiates the concentration response of 

mGlu5 by an alternative mechanism to the one of VU-29. Additionally, a neutral ligand at the MPEP 

allosteric site termed 5-methyl-2-(phenylethynyl)-pyridine (5MPEP) is blocking VU-29- and CPPHA-

induced potentiation of mGlu5 responses. Remarkably, an increase in 5MPEP concentration invokes a 

parallel rightward shift in the concentration-response curve of VU-29. In contrast, CPPHA potentiation is 
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inhibited by 5MPEP noncompetitively [169, 177]. Furthermore, this evidence of an alternative binding 

site is supported by mutagenesis experiments where a mutation (A809V) decreases binding of ligands to 

the MPEP site. The mutation abolishes binding of VU-29 but does not influence the response to CPPHA. 

Likewise, a second mutation (F585I) eliminates the response to binding CPPHA but does not change 

binding of VU-29. Both results suggest that CPPHA does not bind at the MPEP site but rather acts at a 

distinct novel allosteric site on mGlu5 as a positive potentiator to the receptor. 

A later study by Noetzel et al. [182] revealed an analog to the CPPHA series that was investigated and 

labeled NCFP (N-(4-chloro-2-((4-fluoro-1,3-dioxoisoindolin-2-yl)methyl)phenyl)picolinamide). NCFP 

binds to the previously mentioned CPPHA site on mGlu5 and exhibits stronger mGlu5 subtype selectivity 

in comparison to CPPHA increasing the effectiveness for studies of mGlu5 influence in the CNS. 

Furthermore, an analysis to investigate the effects of agonists and antagonists on the cellular response 

regarding mGlu5 revealed that NCFP will induce a parallel rightward shift in concentration–response 

curves independent of the presence of the neural ligand 5MPEP. 

Drug discovery guided by in silico virtual screening can prioritize modulation-specific mGlu 

potentiators  

Previous quantitative structure activity relations (QSAR) studies were successful in identifying lead 

scaffolds serving as starting points for successful probe development campaigns. A research study by 

Mueller et al. [43] identified novel mGlu5 PAMs based on a high-throughput screen (HTS) of a diverse 

library of 144,475 substances which revealed 1,382 compounds as PAMs. A subsequently trained QSAR 

model with a theoretical enrichment ratio of up to 38 for an independent data was applied to screen a 

database of approximately 450,000 commercially available drug-like compounds. A set of 824 

compounds was acquired for testing based on the highest predicted potency values. Experimental 

validation confirmed 28.2% (232/824) of these compounds with various activities at mGlu5. These results 

represent an enrichment factor of 23 for pure potentiation of the mGlu5 glutamate response and 30 for 
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overall mGlu5 modulation activity when compared with those of the original mGlu5 experimental 

screening data (0.94% hit rate). 

A subsequent study [183] applied the same approach to investigate the activation of metabotropic 

glutamate receptor subtype 4 (mGlu4) shown to be efficacious in rodent models of Parkinson's disease. A 

high throughput screen identified 434 positive allosteric modulators of mGlu4 out of a set of 

approximately 155,000 compounds. A QSAR model with a theoretical enrichment of 15 fold when 

selecting the top 2 % compounds of an independent test dataset. The same external commercial database 

of approximately 450,000 drug-like was screened as in the previous study. 1,100 predicted active small 

molecules were tested experimentally using two distinct assays of mGlu4 activity. This experiment 

yielded 67 positive allosteric modulators of metabotropic glutamate receptor subtype 4 that confirmed in 

both experimental systems. Compared to the initial hit rate of 0.3% in the primary screen, the enrichment 

resulted in a 22 fold increase. 

Noeske et al. [184] applied a self-organizing map to discern antagonists for mGlu1 and mGlu5. This 

approach employed topological pharmacophore descriptors which were applied to a compiled library of 

338 compounds of non-competitive antagonists and an external library of 5,376 molecules of known 

drugs and lead candidates for different drug targets. The resulting self-organizing maps were able to 

differentiate between separate localized distributions for the two mGlu receptor targets. 

Significance 

Preclinical studies have implied the role of mGlu receptors as possible candidates for drug targets 

involved in treatment of a range of CNS disorders. Research efforts are focused around the development 

of allosteric modulators due to receptor subtype selectivity and activity reliance upon receptor activation. 

However, the current understanding of mechanisms that involve mGlu receptors is limited when mediated 

in vivo effects are considered. In addition, awareness is increasing that distinct allosteric modulators can 

induce differential effects on mGlu5-mediated psychological responses in the CNS, referred to as 
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functional selectivity or stimulus bias [185-187]. Albeit these challenges, promising evidence has 

demonstrated the existence of a novel mGlu5 binding site distinct from the MPEP binding site. The 

identification of novel allosteric potentiators binding to this alternative site will help elucidate binding 

interactions and bias effects of ligands binding at one of these two sites. Computational techniques like 

virtual screening are imperative for prioritization and identify of novel selective potentiators. This study 

identified 63 compounds through virtual screening and rigorous filtering which were purchased and 

experimentally validated. Approximately 10% (6/63 compounds) were confirmed to be specific allosteric 

mGlu5 PAMs active at the CPPHA-site. This represents an virtual screening hit rate increased by two 

orders of magnitude compared to an initial experimental hit rate of 0.09% (130 CPPHA like actives/(1382 

PAMs + 144,475 inactives)). These identified molecules have the potential to serve as lead compounds in 

future drug discovery campaigns and will subsequently help to establish specifically tailored therapeutics 

with reduced side effects. 

 Results 

With the identification of a putative allosteric mGlu5 binding site different to the MPEP binding site a 

series of CPPHA analogs was screen and accessed for mGlu5 PAM activity. A total of 275 distinct 

compounds were screened with 130 compounds tested to be active (see Table 4). 

This data set is comprised of CPPHA-like compounds. Structural similarity between the involved 

different scaffolds is shown in Figure 5. The dendrogram shows structural similarity of each scaffold 

Table 4: Listing with all available datasets used for QSAR modeling and virtual screening study. 

 

Type #actives #inactive 

mGlu5 PAM 1,382 144,475 

mGlu5 NAM 343 152,298 

mGlu5 PAM CPPHA 130 145 
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cluster with a representative structure. Additionally, for each cluster the composition of active and 

inactive compounds is indicated relative to the overall total number of compounds.  

 

 

 

Figure 5: Clustering of compounds 130 actives and 145 inactives in the CPPHA series.  

A) shows the structural similarity of 17 identified clusters. B) highlights the scaffold representation of 

each cluster and C) shows the cluster composition in respect to actives (green) and inactives (red). 



56 

Development of QSAR model to prioritize specific mGlu5 PAMs for alternative site distinct from 

MPEP binding site 

Three cross-validated QSAR models were trained based on the aforementioned datasets. In previous 

studies we developed two specific QSAR models to predict allosteric mGlu5 PAMs [43]  and NAMs 

[183] from a HTS campaign screening for mGlu5 modulators. The same datasets were used, as reported in 

the respective publications, to re-train two of those QSAR models with our current advancements version 

of the BCL. In this study, a third QSAR model was developed specifically to identify compounds that 

bind to the putative CPPHA site. In a previous study [43] a set of 1,382 PAMs was identified to activate 

mGlu5 allosterically. This model did not distinguish between selective binders to the MPEP site or 

CPPHA site. Here, these 1,382 PAMs are classified as inactives because of their non-CPPHA like 

character. There is no molecule overlap between the set of 130 actives (CPPHA-like) and the set of 1,382 

general mGlu5 PAMs. The dataset for training was comprised of the 130 active compounds (CPPHA-like) 

categorized as active. All compounds in the remaining dataset were classified as inactive consisting of 

mGlu5 PAM actives (1,382 compounds), mGlu5 PAM inactive (144,475 compounds), and mGlu5 PAM 

 

Figure 6: Schematics of data set composition for each of the three QSAR models hit 

compounds. 
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CPPHA-like inactives (145 compounds). The mGlu5 PAM actives (1,382 compounds) were categorized 

as inactive in this scenario to identify CPPHA-site binders and not binders that interact with the MPEP 

binding site. The data set configuration for all involved QSAR models is presented in Figure 6. Given this 

data set arrangement it was possible to develop QSAR models that distinguish between mGlu5 PAMs, 

NAMs, and PAMs that bind the alternative CPPHA binding site distinct from the MPEP binding site. The 

cross-validated QSAR models were evaluated by means of the receiver operating characteristics (ROC) 

 

Figure 7: Listing of ROC curve quality measures for each cross-validated model on a log scale. 

A) general mGlu5 PAM model. B) general mGlu5 NAM model. C) ROC curve for the specific 

mGlu5 PAM model predicting CPPHA-site compounds. D) ROC curve when only the 130 actives 

/ 145 inactives portion of the independent data set is considered. 
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curve and enrichment (ENR). The enrichment and positive predictive value (PPV) results were calculated 

by iteratively averaging the quality measure up until a specific false positive rate (FPR) cutoff for each of 

the three QSAR models. The results are shown as ROC curves in Figure 7. The selective mGlu5 PAM 

model for CPPHA-site binders achieved a PPV of 73% with an prediction accuracy of 79% when 

considering only the CPPHA-like actives and inactives in the independent data set. 

Virtual screening predicts site specific mGlu5 PAMs among commercially available compounds 

The compound library eMolecules [188] was chosen for virtually screening with the aforementioned 

QSAR models. It contains over 4 million compounds from several large vendor libraries. To query for 

selective hits of the mGlu5 PAM CPPHA binding site, the three QSAR models were applied to 

simultaneously virtual screen for activity of each respective mGlu5 target. An mGlu5 PAM CPPHA-site 

hit was defined by molecules classified as inactive by the general mGlu5 PAM model, inactive by the 

general mGlu5 NAM model, and active by the selective mGlu5 CPPHA-site PAM model. Through this 

query scheme, 4,719 compounds were predicted to be hits.  

Medicinal chemistry filters and clustering analysis narrow down selective hit compounds. All 4,719 hits 

were further assessed by the Rapid Elimination Of Swill (REOS) filter [189] and Pan Assay Interference 

Compounds (PAINS) filter [190] to remove undesired non-drug-like compounds and often seen false 

positive molecules. The resulting set of compounds contained 353 molecules which were further filtered 

by the number of occurring halogen atoms. The final set contained 138 molecules, 109 with one halogen 

atom and 29 with no halogen atoms. A subsequent hierarchical cluster analysis narrowed this set of 

molecules further down to 103 candidates, each representing a cluster of structurally similar molecules 

where the candidate compound with the highest predicted activity for mGlu5 PAM CPPHA-site binding 

was chosen. Taking pricing and availability into consideration, a subset of 63 of 103 identified candidate 

molecules was chosen for acquisition. To further investigate the chemical diversity among the chosen 63 

candidate compounds to the known 1,382 PAMs, an analysis of the similarity between every compound 

pair was conducted (see Figure 8). The distribution of the highest similarity of each compound pair 
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clearly indicates a scaffold similarity peak at approximately 40%. The majority of compound pairs exhibit 

a scaffold similarity below 50% which is indicative of scaffold diversity among the chosen compounds. 

 

Experimental validation of identified compounds through vHTS 

All 63 purchased compounds were evaluated by means of calcium binding. An initial testing applied a 10-

point concentration response curve (CRC) format. A total of 7 compounds showed an increased response 

of mGlu5 in rat brain tissue. The selected compounds were part of follow-up experiments in replicate 

assays. A second pass of evaluation involved re-plating and re-testing again in 10-point CRC format 

throughout three independent assays. Results were averaged and seven compounds showed significant 

activity upon repeat. Table 5 shows a list of all seven identified modulator candidates. PAM activity of 

the top three compounds reached a glutamate response of 40 to 50% to the maximal signal with potencies 

above 10 µM shown in Figure 9.  

 

 

Figure 8: Distribution plot shows the similarity of ordered compounds compared to known 

PAMs. 
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Table 5: Seven confirmed mGlu5 modulators predicted to interact with CPPHA binding related site. 

Structure VU Identifier Category Potency 

 

VU0603815 Potentiator 6.30E
-07

 

 

VU0603849 Potentiator 1.44E
-06

 

 

VU0603805 Potentiator 1.51E
-06

 

 

VU0603830 Potentiator 1.64E
-06

 

 

VU0603838 Potentiator 1.77E
-06

 

 

VU0603841 Potentiator 1.00E
-05

 

 

VU0603820 

Weak 

Antagonist 

1.00E
-05
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Seven compounds were tested in triplicate using membranes harvested from the same mGlu5 cell line 

used for the aforementioned calcium assay. A concentration range up to 300 µM was tested (see Figure 

10). It was confirmed that five compounds (VU0603830, VU0603841, VU0603838, VU0603815, and 

VU0603820) showed no radio ligand displacement up to the highest concentration tested, indicating they 

do not bind to the MPEP site. Compounds VU0603805 and VU0603849 exhibited weak binding at 

concentrations of 100 and 300 µM. PAM activity at 10 and 30 µM was observed indicating a disconnect 

between potentiator activity and binding, suggesting an alternate or overlapping binding site.  

Methods 

Machine learning applied to develop QSAR 

A large fraction of proteins targeted by therapeutics have no suitable structural model for structure-based 

virtual screening. Quantitative structure activity relationships (QSAR) are an area of computational 

research that builds in silico models to predict the biological activity for small organic molecules to a 

protein target [153]. The models seek to quantitatively correlate complex non-linear relations between 

 

Figure 9: Experimental validation of the three most active compounds by calcium binding. 
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chemical and physical properties of a molecule with its biological response for a specific biological target. 

The application of QSAR models plays an important role in a variety of fields like drug discovery [191] 

and toxicity predictions [10]. Knowledge acquired from compounds already biologically tested directs the 

design of future molecules.  

Molecular descriptors play a fundamental role in encoding chemical information contained in a molecule 

[79]. Through mathematical procedures the chemical information contained within a symbolic 

representation of a molecule is transferred into a numerical code. A list of all applied molecular 

descriptors is available in supplemental materials. Each encoding function is independent of translation or 

rotation of the molecule. They can be readily applied to conformational ensembles and yield a numerical 

description of constant length independent from size and composition of the substance. 

Machine learning approaches have shown to have exciting potential in estimating biological target data. 

 

Figure 10: Confirmation of CPPHA site specific binding through radio ligand binding assay. 



63 

In recent years the potential of approaches such as Artificial Neural Networks (ANN) for establishing 

highly non-linear relations has become apparent [22]. The algorithms learn to recognize complex patterns 

and make intelligent decisions based on an established compound library. Imposing such acquired sets of 

patterns obtained by a learning process, the algorithms are able to recognize not yet tested molecules and 

categorize them towards a given outcome. ANNs consist of an interconnected group of artificial neurons 

and process information adaptively using restricted set of transformations. ANNs have been used for 

several years in chemistry and biochemistry to describe QSARs [17]. Their critical advantage compared 

to linear methods such as multiple linear regression lies in the flexibility of the models. ANN models can 

adapt to complex interrelations and are capable of detecting even small signals at high noise levels.  

Clustering of identified hits from virtual screening  

To access the similarity of predicted compounds a hierarchical clustering approach based on average 

linkage as cluster distance measure was chosen. The similarity calculation among all compound pairs was 

based on common occurring small molecule fragments. The fragment library was established by 

determining the largest common substructure between pairs of molecule fragments keeping ring systems 

intact. Each fragment had a minimum of four atoms. Pairwise compound similarities were calculated 

based on molecule fragment overlap using the tanimoto coefficient [192] between molecular fragment 

sets. All atoms were considered equivalent by element type. Bonds were compared by order (single, 

double, triple), ring membership, and aromaticity. 

Calcium mobilization assay assesses ligands for mGlu5 modulation response  

(This section was kindly provided by Alice L. Rodriguez) 

HEK 293 cells expressing rat mGlu5 were plated in black-walled, clear-bottomed, poly-D-lysine coated 

384-well plates in 20 μL of assay medium (DMEM containing 10% dialyzed FBS, 20 mM HEPES, and 1 

mM sodium pyruvate) at a density of 20K cells/well. The cells were grown overnight at 37 °C in the 

presence of 5% CO2. The next day, medium was removed and the cells incubated with 20 μL of 2 μM 
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Fluo-4, AM prepared as a 2.3 mM stock in DMSO and mixed in a 1:1 ratio with 10% (w/v) pluronic acid 

F-127 and diluted in assay buffer (Hank’s balanced salt solution, 20 mM HEPES, and 2.5 mM 

probenecid) for 45 minutes at 37 °C. Dye was removed, 20 μL of assay buffer was added, and the plate 

was incubated for 10 minutes at room temperature. Compounds were serially diluted 1:3 in DMSO into 

10 point concentration response curves and transferred to daughter plates using the Echo acoustic plate 

reformatter (Labcyte, Sunnyvale, CA) followed by further dilution into assay buffer to a 2x stock using a 

Thermo Fisher Combi (Thermo Fisher, Waltham, MA). Ca
2+

 flux was measured using the Functional 

Drug Screening System (FDSS7000, Hamamatsu, Japan). After establishment of a fluorescence baseline 

for about 3 seconds, the test compounds were added to the cells, and the response in cells was measured. 

2.3 minutes later an EC20 concentration of the mGlu5 receptor agonist glutamate was added to the cells, 

and the response of the cells was measured for 1.9 minutes; an EC80 concentration of agonist was added 

and readings taken for an additional 1.7 minutes. Data were collected at 1 Hz. Concentration response 

curves were generated using a four point logistical equation with XLfit curve fitting software for Excel 

(IDBS, Guildford, U.K.) or GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). 

Competition binding assay determines interaction of ligands with MPEP site  

(This section was kindly provided by Alice L. Rodriguez) 

The allosteric antagonist MPEP analog (
3
H)methoxyPEPy was used to evaluate the ability of test 

compounds to interact with the MPEP site on mGlu5. Membranes were prepared from rat mGlu5 HEK 

293 cells as previously described (Rodriguez et al., 2005). Compounds were serially diluted in DMSO 

then added to assay buffer (50 mM Tris/0.9% NaCl, pH 7.4) to reach a 5x stock and 50 µL test compound 

was added to each well of a 96 deep-well assay plate. 150 µL aliquots of membranes diluted in assay 

buffer (20 µg/well) were added to each well.  50 µL (
3
H)methoxyPEPy (2 nM final concentration) was 

added and the reaction was incubated at room temperature for 1 hour with shaking. After the incubation 

period, the membrane-bound ligand was separated from free ligand by filtration through glass-fiber 96 

well filter plates (Unifilter-96, GF/B, PerkinElmer Life and Analytical Sciences, Boston, MA). The 
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contents of each well were transferred simultaneously to the filter plate and washed 3-4 times with assay 

buffer using a cell harvester (Brandel Cell Harvester, Brandel Inc., Gaithersburg, MD). 40 µL scintillation 

fluid was added to each well and the membrane-bound radioactivity determined by scintillation counting 

(TopCount, PerkinElmer Life and Analytical Sciences). Non-specific binding was estimated using 5 µM 

MPEP. Concentration response curves were generated using a four parameter logistical equation in 

GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). 

Discussion 

Allosteric binding selectivity for receptors of the mGlu GPCR family is driven by ligand binding behavior 

at the receptors TM domain. With the discovery of a potential alternative allosteric mGlu5 binding site in 

addition to the already known MPEP binding site new possibilities to investigate more selective allosteric 

modulators for the mGlu5 receptor are revealed. The goal of this study is to elucidate the chemical space 

of ligands interacting with this novel binding site. Thus, a series of CPPHA-like compounds was 

developed to investigate determinants of the alternative binding site further. The set of compounds 

contained 275 molecules comprised of 130 active and 145 inactive compounds that show structural 

similarity to CPPHA. In an effort to investigate the structural distinctiveness of these compounds a 

similarity analysis identified 17 clusters. Each cluster center is shown with its main scaffold and a 

percentage of involved active and inactive compounds (see Figure 5). A clear separation between clusters 

of solely active or inactive compounds was only given in clusters 3, 11, 14 and 4, 7, 10, 15, 16, 

respectively. This clustering scheme suggests a partially intertwined structural landscape for active and 

inactive molecules. Therefore, a pure structural separation is not possible. 

On this basis, a QSAR model was trained on a data set consisting of the aforementioned 130 active 

compounds classified as active and 145 inactives complemented with all compounds available from a 

previous study [43] to identify mGlu5 potentiators for the MPEP binding site (see Figure 6). QSAR 

models for the identification of mGlu5 PAMs [43] and NAMs [183] were re-trained with the current 

version of BCL::ChemInfo. While re-training the QSAR models the quality measure results improved 
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substantially observing PPV rates of 51% (PAM) and 19% (NAM) indicating a substantial improvement 

compared to the published results when applying a similar FPR cutoff. These results are due to the 

implementation of regularization features to the ANN algorithm such as neuronal dropout [193], a 

technique that allows to train QSAR model with increased predictive generalization.  

A third QSAR models was trained to identify allosteric binders for the mGlu5 CPPHA site with an overall 

PPV of 0.73 when iteratively average until a FPR cutoff of 0.1%. When just evaluating the predictions for 

CPPHA-like actives and inactives in the independent data set a prediction accuracy of 79% was achieved. 

The strong predictive performance can be explained due to the extreme imbalanced character of the 

training data set and the distinctive structural features of the 130 active compounds in comparison to all 

categorized inactives. It is also expected that the QSAR model will suffer from the lack of cover chemical 

space of the active compounds. Thus, potential modulators interacting with the CPPHA site might be 

missed. The original QSAR model for mGlu5 was trained to identify all modulators, mainly the one that 

bind the MPEP binding site. Since the set of actives was structurally different from the CPPHA analog 

series we assume these compounds to supplement the existing set of inactive compounds. 

The three QSAR model were applied to virtually screen the small organic compound library eMolecules 

containing over 4 million molecules. A set of 4,719 molecules was predicted to be active for specific 

interaction with the CPPHA site, predicted inactive by the general mGlu5 PAM QSAR model, and 

predicted inactive by the mGlu5 NAM model. Medicinal chemistry filters, REOS and PAINS, reduced this 

set further down to only 103 compounds. From this pool of compounds 63 molecules were chosen by 

predicted activity, structural diversity, and acquisition cost.  

A total of seven compounds were identified to express a biological response in mGlu5. Six of these 

compounds were categorized as PAM and one as antagonist. The three most potent compounds reached a 

glutamate response of 40-50% of the maximal signal with potencies above 10 µM. This relatively weak 

signal strength is an expected result given the primary goal of this study was to find new chemotypes 
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through scaffold-hopping that exhibit at least a weak response but interact selectively with the mGlu5 site 

related to CPPHA binding. 

To assess whether these seven compounds are indeed CPPHA site-specific binders further investigation 

of the location of binding was required. An experiment to determine the displacement of 

(
3
H)methoxyPEPy gave evidence that five of the identified seven compounds indeed interact with a 

different binding site distinct from the MPEP site.  

That is an exciting result given the limited data set used to build the site-specific QSAR model. The five 

identified structures show a significant divergence from the reference CPPHA structure indicative of 

scaffold hopping through the involved QSAR modeling. With this approach demonstrates that the 

identification of target-specific binders is possible and is a valuable method in identifying novel lead 

compounds implicated in less adverse effects. 

Conclusions 

In summary, mGlu receptors of subtype 5 are suggested as possible candidates for drug targets involved 

in treatment of a range of CNS disorders. An alternative binding site distinct from the already known 

MPEP binding site was identified through mutagenesis and binding experiments involving residues F585 

(TM1) and A809 (TM7) in the 7TM helices region. A comprehensive set  of QSAR models was 

employed to query the commercially available compound library eMolecules for specific binders to 

mGlu5 binding site related to CPPHA binding. A resulting set of 4,719 candidate molecules was 

identified. After the application of medicinal chemistry filters a subset of 63 molecules was chosen for 

compound acquisition. Subsequent calcium binding experiments revealed an increased biological 

response to mGlu5 in vitro for 7 out of the ordered 63 compounds. Further experimental validation 

through displacement of the radio ligand (
3
H)methoxyPEPy confirmed 5 out of 7 compounds to not bind 

the MPEP site, indicating binding to an alternative mGlu5 site associated with CPPHA binding. This 

corresponds to an approximated 8% (5/63 compounds) hit rate compared to the initial 0.09%. 
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These are very exciting results showing that QSAR modeling can identify novel chemotypes through 

scaffold hopping given only limited data sets. The confirmed compounds do not bind to the already 

known MPEP site, implying the aforementioned mGlu5 site associated with CPPHA binding. The binding 

affinity can be refined through SAR optimization. As shown in this research virtual screening enables the 

prioritization of site-specific novel modulators, and thus contributes to the reduction of adverse effects of 

drug candidates. The here identified molecules have great potential to serve as novel lead or probe 

compounds in subsequent drug discovery campaigns. 
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Chapter V 

5. SMALL MOLECULE PROPERTY PREDICTIONS 

This chapter is based on publications [1] and [2]. 

Comparative analysis of machine learning techniques for the prediction of logP 

Introduction 

The process of modern drug design involves eliminating compounds with undesirable properties from the 

available chemical space while optimizing efficacy. The ability to predict properties which influence 

absorption, distribution, metabolism, and excretion of compounds prior to synthesis, such as the octanol-

water partition coefficient (logP), could drastically reduce both the cost and time involved in drug 

discovery. Computational models can quickly assess the properties of large sets of compounds in silico. 

LogP, a measure of hydrophobicity or hydrophilicity of a molecule indicates whether a compound reaches 

a target protein as it influences the ability to cross the blood/brain barrier [194, 195]. It plays further a key 

role in the binding of a ligand to a target in aqueous solution [196]. Formally, logP is the logarithm of the 

equilibrium ratio of concentrations of a compound in the organic and aqueous phases of an octanol-water 

system [197]. LogP is a widely used, well-defined property with experimental values available for large 

numbers of compounds, which makes it ideal for prediction by machine learning methods. 

A well-established method for prediction of logP is XlogP [198], which assigns each atom in the 

molecule an empirically-determined contribution depending on its type and then sums these contributions 

for the logP estimation of the entire molecule. This incremental method resembles a multiple linear 

regression model. We test the hypothesis that logP has a nonlinear dependence on composition, charge 

distribution, and shape of the molecule. Therefore, we expect non-linear models to improve prediction 

accuracy.  

Machine learning techniques have been successful in approximating nonlinear separable data in 

Quantitative Structure Property Relationship studies [83, 130, 199, 200]. Here, we present several 
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predictive models for logP using machine learning techniques including artificial neural networks (ANN) 

[22], support vector machines with the extension for regression estimation (SVR) [201], and kappa 

nearest neighbors (kNN) [65]. 

Machine learning techniques 

Artificial Neural Networks 

The utility of ANNs for classification is well-known in chemistry and biology [202-205]. ANNs model 

the human brain and, thus, consist of layers of neurons linked by weighted connections wji. The input data 

xi are summed according to their weights, activation function applied, and output used as the input to the 

j-th neuron of the next layer. For a three-layer feed forward ANN, such a training iteration would proceed 

as: 

    (    )    (∑      )            
          (1) 

    (    )    (∑      )          
  
          (2) 

 

where  ( ) is the activation function, d is the number of features, nH is the number of hidden neurons, and 

c is the number of outputs. For supervised training, the difference between the calculated output zk, and 

the target value tk, determines the errors for back-propagation: 
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The ANN training iterations produce weight changes that minimize the rmsd between the predicted and 

target values,  

 

     √
∑ (          )

  
   

 
       (5) 

 

which in this case is predicted and experimental logP values, respectively.  
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In this study, the ANNs have up to 1142 inputs, 8 hidden neurons, and one output (logP). The activation function 
of the neurons is the sigmoid function: 

 

 ( )  
 

                (6) 

 

Support Vector Machines 

The second machine learning approach applied in this study is SVM learning with extension for 

regression estimation [206, 207]. Linear functions defined in high-dimensional feature space [21], risk 

minimization according to Vapnik’s   - intensive loss function, and structural risk minimization [96] 

which minimizes the risk function consisting of the empirical error and the regularized term are the core 

principles integrated in SVM regression estimation. 

The training data is defined by (              ) with         where   is the total number of 

available input data pairs consisting of molecular descriptor data and experimental logP value. The 

following function defines a linear plane in a high-dimensional space for SVM estimation:  

 (   )     ( )          (7) 

 

 

Figure 11: Schematic view of an ANN 

Up to 1,142 descriptors are fed into the input layer. The weighted sum of the input data is modified by the 

activation function and serves as input to the next layer. The output describes the predicted logP value of the 

molecule. This figure was adapted from [1]. 
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where  ( ) describes a nonlinear transformation function as a distance measure in an input space  . The 

parameter   describes a normal vector perpendicular to the separating hyperplane whereas   is a bias 

parameter. Both parameters are optimized by estimating the minimum of Vapnik’s linear loss function as 

a measure of the error of approximation: 

|   (   )|  {
     |   (   )|                        

|   (   )|             
         (8)  

 

The error is zero if the difference between the measured value   and the predicted value  (   )is less 

than a given threshold  . Thus, Vapnik’s insensitivity loss function defines an   - tube (Figure 12). 

 

Figure 12: Schematic view of a Support Vector   – tube. 

Data points in   – tube are not penalized, while points outside the tube get a penalty according to their 

distance from the tube edge. This figure was adapted from [1]. 

 

Predicted values positioned within the   - tube have an error of zero. In contrast, data points outside the 

tube are panelized by the magnitude of the difference between the predicted value and the outer rim of the 

tube. The regression problem is solved by minimizing function  : 
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under constraints:  

    (   )        
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( )                              (10) 

 

where the slack variables    and   
 
are shown in Fig 2 for measurements above and below an   - tube, 

respectively. Both slack variables are positive values and their magnitude can be controlled by penalty 

parameter  . To estimate a numerical solution the optimization problem is converted into the given dual 

problem by: 

 ( )  ∑ (     
 )   (    )    

   
     

         
    

         (11)  

 

where    and   
  define Lagrange multipliers associated with    and     

 
,     shows the number of 

support vectors    defining the SVM and  (     ) denotes the kernel function. In this study the Radial 

Basis Function kernel  

 (     )   
 

‖     ‖
 

             (12)  

 

was used to train the Support Vector Machine. The influence of the approximation error and the weight 

vector ‖ ‖ norm is balanced by the penalty constant  . It is optimized along with kernel parameter γ by 

using a grid search approach on a monitoring dataset.  
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Kappa Nearest Neighbors 

The third machine learning approach utilized in this research is the kNN [65, 208-211]. kNNs are 

considered an unsupervised learning algorithm. This method uses a distance function to calculate pair-

wise distances between query points and reference points, where query points are those to be classified 

(Figure 13). The predicted value of a query point is then that of the weighted average of its kappa nearest 

reference points. In this research, the distance measure was the Euclidean distance between feature 

vectors: 

 (   )   √∑ (      )
   

            (13) 

 

The reference activities were weighted as 
 

        
, and the value of kappa was 5. 

 

 

Figure 13: Schematic view of kNN cluster centers with its determined nearest neighbor environments.  

This figure was adapted from [1]. 

 

Training data 

The octanol-water partition coefficient, or partition constant, is a measure of differential solubility of a 

substance. Specifically, it is the ratio of concentrations of a substance in the two phases of a mixture of 

the two immiscible solvents. These partition constants are useful in approximating the distribution of a 

substance within the body in medicinal settings. In pharmacology, logP is an indicator of how easily a 

substance can reach its intended target, and influences absorption, distribution, metabolism, and excretion 
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(ADME) properties of the substance. Thus, certain ranges of logP are desirable depending on the intended 

target and interaction of the substance making logP an important property in drug discovery. The ability 

to accurately predict this property is beneficial in the early stages of therapeutic design, such as during 

virtual high-throughput screening efforts and in analogue prioritization and optimization.  

The training data for this investigation was obtained through data mining of the MDL Drug Data Report 

(MDDR) [212] and Reaxys [213] databases, as well as through literature searches using SciFinder [214]. 

Data mining resulted in ~26,000 compounds with experimentally determined values of logP. Of the 

compounds retrieved, the values of logP ranged from approximately -14 to 14. From this range, 13% of 

the compounds were removed from the training set from both extrema reaching a range of -5 to 8 in order 

to eliminate possible outliers at the limits of logP determination. 

The remaining molecules in the training data set were numerically encoded using a series of 

transformation-invariant descriptors which serve as unique fingerprints. 

Implementation / Method 

All machine learning algorithms, and descriptor calculations used for this study were implemented in our 

in-house C++ class library, the BioChemistryLibrary (BCL). A third-party 3D conformation generator, 

CORINA [12], was used to generate 3D coordinates for the molecules prior to descriptor calculation.  

Dataset generation 

The data set used in this study was obtained through data mining and filtering which resulted in a final 

data set of 22,582 molecules. During the training of the models, 10% of the data set was used for 

monitoring and 10% were used for independent testing of the trained models, leaving 80% for the training 

data set.  

Quality measure 

The machine learning methods are evaluated by calculating the rmsd (eq. 5) using the cross-validated 

models.  
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The average rmsd of the cross-validated models for a feature set with n features is used to determine the 

predictive ability of the model. Additionally, correlation plots and the calculation of r
2
 are also used to 

evaluate the trained models. 

   (
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Feature selection 

1142 descriptors in 54 categories were generated using the BCL. The 54 categories consisted of scalar 

descriptors, as well as 2D and 3D autocorrelation functions, radial distribution functions, and van der 

Waals surface area weighted variations of each of the non-scalar descriptors (see Table 6).  

Table 6: The original molecular descriptors by category 

 

Sequential forward feature selection [215] was used for feature optimization for each machine learning 

technique individually. Additionally, each feature set was trained with 5-fold cross-validation. To cope 

 Descriptor 

Name 

Description 

Scalar descriptors Weight Molecular weight of compound  

 HDon Number of hydrogen bonding acceptors derived from the sum of nitrogen and oxygen  

 HAcc Number of hydrogen bonding donors derived from the sum of N-H and O-H groups in molecule 

 TPSA Topological polar surface area in Å2 of the molecule derived from polar 2D fragments 

Vector descriptors Ident  weighted by atom identities 

2D Autocorrelation SigChg weighted by σ atom charges 

(11 descriptors) / PiChg weighted by π atom charges 

3D Autocorrelation TotChg weighted by sum of σ and π charges 

(12 descriptors) / SigEN weighted by σ atom electronegativities 

Radial Distribution PiEN weighted by π atom electronegativities 

Function               

(48 descriptors) 

LpEN weighted by lone pair electronegativities 

 Polariz weighted by effective atom polarizabilities 

Every Vector descriptor available with and without van der Waals surface area weighting 
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with the computational expense associated with this thorough feature selection process, a subset of the 

training data was used taking randomly only 8,000 of the 22,582 molecules. The number of models 

generated during this process for each training method was ∑  (   )  
   . Upon identification of the 

optimized feature set for each algorithm, any algorithm-specific parameters were optimized using the 

entire training data set and using 5-fold cross-validation. 

Results 

ANNs were trained using 7,500 iterations of simple propagation evaluating the rmsd every 100 steps 

during the feature optimization process. For the training of the final model with the optimized feature set, 

100,000 iterations were performed evaluating the rmsd every 500 steps. The weight matrices were 

randomly initialized with values in the range of -0.1 to 0.1 if the rmsd of the monitoring data set had not 

improved in the last 10,000 iterations. The ANN algorithm runs on graphics processing units (GPUs) 

using OpenCL implemented within the BCL. The training time was 28 minutes per final network on a 

C2050 NVidia GPU on a Dell T3500 with 8-core Xeon 3.2 GHz microprocessor running CentOS 5 64-

bit. For the best model, an rmsd of 1.20 for the independent data set was achieved. 

SVMs were trained using a C of 1.0 and γ of 0.1 during the feature optimization process. Upon 

identification of the optimal feature set, the cost and γ parameters were optimized to 0.1 and 0.1, 

respectively. The training time for the final model was 12 minutes using 6 cores. Using these optimized 

parameters, the cross-validated model achieved an rmsd for the independent data set of 1.21. 

The kNN algorithm was used to predict the logP values of the training, monitoring, and independent data 

sets. The value of kappa, the number of neighbors to consider, was optimized with the full data set using 

the optimized feature set determined during the feature selection process. The prediction time for the final 

model was 0.75 minutes on 8 cores. Using an optimal kappa of 5, the relative rmsd achieved for the 

independent data set was 1.03. 
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Table 7: Model statistics for best predictors 

Method RMSD R2 

ANN 1.20 0.70 

SVM 1.21 0.67 

kNN 1.03 0.72 

XlogP 1.41 0.56 

 

In order to further evaluate the resulting models, cross correlation plots were created on the independent 

data sets of each model and compared with that of the XlogP algorithm [198].  

 

 

Consensus predictors were also created by averaging the predictions using different combinations of 

models. This yields better results with the best rmsd of 0.86 achieved using ANN/SVM/kNN models 

(Table 8). 

 

 

 

Figure 14: Correlation plot of best consensus predictions compared to experimental data. 

ANN/SVM/kNN predictions are compared with Reaxys/MDDR experimental values. This figure was 

adapted from [1]. 
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Table 8: Consensus Predictors 

Method RMSD R
2
 

ANN/SVM 1.04 0.80 

ANN/kNN 1.06 0.81 

SVM/kNN 0.99 0.77 

ANN/SVM/kNN 0.86 0.86 

 

Conclusions 

Here, we present the utility of a series of machine learning techniques for the construction of predictive 

models capable of predicting logP, the water-octanol partition coefficient, with high accuracy compared 

to XlogP. The XlogP algorithm is a standard and is used by the NIH-funded PubChem database as well as 

the Chemical Abstracts Service. We have shown that the three models using artificial neural networks, 

support vector machines, and kappa nearest neighbors outperform this method as do all of the consensus 

models. 

 

 

Figure 15: ANN, SVM, kNN, and XlogP predictions compared to Reaxys/MDDR experimental values.  

This figure was adapted from [1]. 
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The best individual model was found to be that of the kNN.  This is likely due to the kNNs ability to 

predict only around the cluster space of kappa neighbors while the other machine learning methods take 

the entire sample space into account when training.  This all-inclusive training allows the SVM and ANN 

to over-train on the mean due to underrepresentation of the extrema. This is reflected by the slope of the 

best-fit linear regression lines in Figure 14. The best performing method was the consensus prediction of 

ANN/SVM/kNN models which achieved an rmsd of 0.86.  This is likely due to the ANNs and SVMs 

ability to predict the core range of the logP space more accurately while the kNN was more accurate at 

the extrema.  

Quantitative structure property modeling for the prediction of DMPK parameters intrinsic 

clearance and plasma protein binding 

Introduction 

During the 1990’s, poor pharmacokinetic and bioavailability properties accounted for approximately 40% 

of drug candidate attrition during human trials [216]. A decade later, these properties accounted for 

approximately 10% of attrition during human trials due to the implementation of early determination (pre-

clinical) of drug metabolism and pharmacokinetics (DMPK) properties in the drug discovery workflow 

through both in vitro and in vivo studies.  While many proposed new chemical entities (NCE) are now 

eliminated in earlier stages, these preliminary studies are time consuming and add to the mounting real 

and opportunity costs which now approach an estimated $1.30 – $1.76 billion [217, 218].  Thus, the use 

of in silico models for the prediction of these DMPK properties trained on existing data would increase 

the efficiency of the drug discovery process while mitigating the costs [219]. Indeed, computational 

models can quickly assess large data sets of proposed molecules for DMPK parameters [1]. 

Two important DMPK properties which are routinely determined in drug discovery are microsomal 

intrinsic clearance (CLint) and plasma protein binding as the fraction of unbound compound (fu).  CLint is 

a measure of metabolism primarily by cytochrome P-450 (CYP) enzymes in the vesicles of the smooth 

endoplasmic reticulum of hepatocytes.  CYP enzymes contribute to the metabolism of approximately 75% 
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of the top 200 most prescribed drugs in the United States [220]. fu is an indication of the extent to which a 

compound binds to plasma proteins which influences to a large degree pharmacokinetics, efficacy, and 

toxicology in vivo [221, 222]. 

Previous work has proven machine learning techniques useful in the approximation of nonlinear separable 

data in Quantitative Structure Property Relationship (QSPR) studies [1, 43, 83, 130, 200].  Here, we 

present several predictive models based on machine learning techniques for human and rat CLint as well 

as human and rat fu.  The machine learning techniques used include artificial neural networks[50], 

support vector machine with the extension for regression[201], kappa nearest neighbor[65], and Kohonen 

networks[223].  

Methods 

All descriptors calculated and machine learning algorithms used in this study are implemented in the in-

house C++ class library, the BioChemistry Library (BCL).  CORINA, a 3
rd

-party 3D conformation 

generator, was used for the generation of 3D coordinates prior to descriptor calculations [12]. 

Machine learning techniques 

Artificial Neural Network 

The utility of artificial neural networks (ANN) for classification is proven in chemistry and biology [202-

205]. ANNs model the human brain, consisting of layers of nodes linked by weighted connections wji. 

Input data xi are summed by their weights, followed by the application of an activation function, and the 

output used as the input to the j-th neuron of the next layer.  

For a common feed forward ANN with a single hidden layer, the training iteration would proceed as: 

    (    )    (∑      )            
          (1) 

    (    )    (∑      )          
  
          (2) 
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where  ( ) is the activation function (commonly sigmoid), d is the number of features, nH is the number 

of hidden neurons, and c is the number of outputs. The difference between the calculated output zk, and 

the target value tk, provides the errors for back-propagation through the network: 

       (      )   (    )          (3) 

       [∑     (   –   )  (    ) 
   ]  (    )        (4) 

The weight changes produced attempt to minimize the objective function (RMSD) between the predicted 

and target values,  

     √
∑ (          )

  
   

 
         (5) 

 In this study, the ANNs have up to 1284 inputs, 8 hidden neurons, and one output (DMPK 

parameter of interest). The activation function of the neurons is the sigmoid function: 

 ( )  
 

                (6) 

Support Vector Machine with extension for regression estimation  

SVM learning with extension for regression estimation [201] represents a supervised machine learning 

approach successfully applied in the past [1, 43, 200]. The core principles in SVR lay in  linear functions 

defined in high-dimensional feature space [21], risk minimization according to Vapnik’s   - intensive loss 

function, and structural risk minimization [224] of  a risk function consisting of the empirical error and 

the regularized term. 

The training data is described by (              ) with         where   is the total number 

of available input data pairs consisting of molecular descriptor data and the experimental DMPK 

property.  
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Given a defined error threshold  , SVR seeks to approximates Vapnik’s insensitivity loss function 

through the definition of an   – tube incorporating all data points of the given problem. The error is zero if 

the difference between the experimentally measured value and the predicted value is less than  . 

Predicted values positioned within the   - tube have an assigned error value of zero. On the opposite, data 

points outside the tube are panelized by the distance of the predicted value from the edge of the tube. The 

solution to the regression problem is obtained by minimizing the following function  : 

        
 

 
‖ ‖   (∑   

 
    ∑   

  
   )             (7) 

under constraints:  

    (   )         ,    (   )         
 
  

and     
( )                        

where the parameter   describes a normal vector perpendicular to the separating hyperplane in the higher 

dimensional space. The slack variables    and   
 
are for measurements above and below an   - tube, 

respectively. Both slack variables are positive values and their magnitude can be controlled by the penalty 

parameter  . In this study the Radial Basis Function kernel  

 (     )   
 

‖     ‖
 

             (8) 

was applied as distance measure. The penalty constant   determined the influence of the approximation 

error penalty. A grid search approach was conducted to optimize both parameters γ and   using a 

monitoring dataset. 

Kappa Nearest Neighbor 

Kappa nearest neighbor (kNN) was also utilized in this study [65, 208-211]. kNNs are an unsupervised 

learning algorithm using a distance function to calculate pair-wise distances between query points and 
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reference points. Query points are those to be classified. The query point is classified through a weighted 

average of the known output of its kappa nearest reference points. The distance measure used in this study 

was the Euclidean distance measure between feature vectors: 

 (   )   √∑ (      )
   

            (9) 

The reference activities were weighted as 
 

 (   )
, and the value of kappa was optimized for each data set. 

Kohonen Network 

The kohonen network represents an unsupervised learning algorithm. It is conceptually derived from 

artificial neural networks consisting of one input layer connected by weighted connections with a two 

dimensional grid of neurons, the kohonen network [225]. 

The training data defined by pairs of numerical molecular descriptor data    and the respective 

experimental DMPK parameter    (              ) with         where   is the total number 

of available input data pairs. 

For every training data point, a node most similar to the data point is determined for placement in the 

grid. Weight vectors are updated using the Gaussian kernel as a neighborhood function.  A radius of four 

neighboring nodes is considered.  

To determine the classification result of an unknown compound, the most similar node is determined and 

the average prediction values of all neighboring nodes are computed. 

 

Data set generation 

The data sets used in this study were obtained through the Vanderbilt Center for Neuroscience Drug 

Discovery.  The data sets ranged from 386 (human fu) to 601 (rat CLint) as seen in Table 9.   
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Table 9: Data set composition 

Data Set Number Molecules 

Rat fu 388 

Human fu 386 

Rat CLint 601 

Human CLint 576 

 

Three-dimensional conformations for the molecules were generated. The molecules in the data sets were 

then numerically encoded using transformation-invariant descriptors (Table 10) which represent features 

for the machine learning techniques. 

Quality measures 

The calculated RMSD (eq. 5) is used to evaluate the predictive power of the machine learning models.  

Specifically, the average RMSD of the cross-validated models for a feature set with n features is used. 

The Pearson,    
  and Spearman,    

  correlation coefficients are computed.  

     
 ∑(        ) ∑   ∑    

√[ ∑(    ) (∑   )
 
][ ∑(     ) (∑    )

 
]

         (10) 

Additionally, the Spearman correlation coefficient is defined as the Pearson (10) correlation coefficient 

between the rankings of variables. 

Feature selection 

The BCL was used to generate 1284 descriptors in 60 categories.  The 60 categories consist of scalar, 2D 

and 3D autocorrelation functions, radial distribution functions, and van der Waals surface area weighted 

variations of each of the non-scalar descriptors (see Table 10). 

Sequential forward feature selection [215] was used for feature optimization for each machine learning 

technique individually.  Each feature set was trained with 5-fold cross-validation. The number of models 

generated during this process for each training method was    
 (   )

 
 where n is the number of feature 

categories and cv is the number of cross validations. Thus, 9150 models were trained for each machine 

learning algorithm on each data set during feature selection.  Upon identification of the optimized feature 
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set for each algorithm, algorithm-specific parameters were then optimized using a grid search with 5-fold 

cross-validation. 

Table 10: Molecular descriptors by category 

 Descriptor Name Description 

Scalar descriptors Weight Molecular weight of compound  

 HDon 
Number of hydrogen bonding acceptors derived from the 

sum of nitrogen and oxygen atoms in the molecule 

 HAcc 
Number of hydrogen bonding donors derived from the 

sum of N-H and O-H groups in the molecule 

 TPSA 
Topological polar surface area in Å2 of the molecule 

derived from polar 2D fragments 

Vector descriptors Ident  weighted by atom identities 

2D Autocorrelation SigChg weighted by σ atom charges 

(11 descriptors) / PiChg weighted by π atom charges 

3D Autocorrelation TotChg weighted by sum of σ and π charges 

 VCharge weighted by VCharge atom charges 

(12 descriptors) / SigEN weighted by σ atom electronegativities 

Radial Distribution PiEN weighted by π atom electronegativities 

Function  (48 descriptors) LpEN weighted by lone pair electronegativities 

 Polariz weighted by effective atom polarizabilities 

All molecular fingerprints are considered with and without van der Waals surface area weighting 

 

Results 

During feature selection, ANNs were trained for 100 epochs of simple back-propagation using η = 0.1 

and α = 0.5 with weight updates and the evaluation of RMSD every step using 5-fold cross validation.  

Weight matrices were initialized randomly with values in the range [226].  A grid search was performed 

to optimize eta and alpha parameters using the optimized feature set and trained 100 epochs using 5-fold 

cross validation (Table 11).  Eighty percent of each data set was used as the training set while 10% was 

used for the monitoring data set and 10% for the test data set.  

SVMs were trained using a C of 0.1 and γ of 0.5 during the feature optimization process. Upon 

identification of the optimal feature set, the cost and γ parameters were optimized using a grid search 

approach (Table 11). 
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Table 11: Optimized parameters 

Data Set ANN (η,α) 

 

 

SVM (C, γ) KNN (k) 

Rat fu 0.25/0.015625 2.0/0.25 5 

Human fu 0.125/0.5 2.0/0.03125 24 

Rat CLint 0.03125/0.03125 0.25/0.25 14 

Human CLint 0.03125/0.0625 1.0/0.03125 16 

 

The SVMs were trained 100 iterations and used 5-fold cross validation. Each iteration step accumulated up to 

200 support vectors.   

 

Table 12: Model correlation results (rp/s/rmsd) for independent validation set 

Machine Learning Method(s) 
Rat 

fu 

 

 

Human 

fu 

Rat 

CLi

nt 

Human 

CLint 

ANN 9.52 8.47 1.08 1.10 

ANN/KNN 9.53 8.60 1.09 1.18 

ANN/KNN/Kohonen 9.29 8.78 1.08 1.17 

ANN/KNN/Kohonen/SVM 8.79 8.83 1.01 1.10 

ANN/KNN/SVM 8.73 8.70 0.99 1.08 

ANN/Kohonen 9.17 8.78 1.07 1.13 

ANN/Kohonen/SVM 8.39 8.78 0.97 1.04 

ANN/SVM 8.00 8.51 0.92 0.97 

KNN 9.43 8.67 1.09 1.23 

KNN/Kohonen 9.07 8.89 1.07 1.19 

KNN/Kohonen/SVM 8.36 8.84 0.98 1.10 

KNN/SVM 7.98 8.58 0.94 1.06 

Kohonen 8.56 8.94 1.05 1.15 

Kohonen/SVM 7.38 8.65 0.91 1.01 

SVM 4.35 7.49 0.71 0.82 

 

KNNs were trained by optimizing kappa, the number of neighbors to consider, during feature selection 

from k=1 to k=25 using 5-fold cross validation (see Table 11).  Eighty percent of each data set was used 

as reference features while 10% were queried as the monitoring data set.  The remaining 10% was then 

used as a test set. 

Kohonen networks were trained using a grid of 10x10 nodes.  An ensemble model approach was then 

investigated by using all combinations of optimized models to arrive at single best predictors for each 
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data set.  This approach provided the best models in terms of correlation. The resulting 
  

    
 values are 

listed in Table 12 with correlations plots shown for each of the best predicting models. 

Conclusion 

Here, we present ensemble models based on machine learning techniques capable of predicting several 

parameters relevant to drug discovery. We have shown that ensemble models are in some cases capable of 

 

Figure 16: Overview of correlation plots for respective consensus models 

Correlation plots are shown for the machine learning models with the highest predictive power 

as determined by 
  

    
 for human CLint, rat CLint, human fu, and rat fu, respectively. The 

selected models are shown in bold in Table 12. This figure was adapted from [2]. 
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outperforming single algorithms using artificial neural networks, support vector machines, kappa nearest 

neighbors, and kohonen networks. 

KNN algorithm consistently performs very well for all 4 data sets examined. The predictors constructed 

during this study compare favorably against recent studies [227] and are of great utility in early drug 

discovery. The top scoring predictors for human and rat CLint, and human and rat fu are KNN, 

ANN/KNN, Kohonen, and ANN/KNN, respectively.  
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Chapter VI 

6. DISCUSSION 

Conclusions and future directions 

The main focus of this thesis was to develop a virtual screening framework that allows for small molecule 

data handling, QSAR model development, optimization and analysis, as well as subsequent QSAR model 

prediction through virtual screening, an integral part of drug discovery projects. Two main goals were 

pursued. The first objective was the method development and benchmarking of BCL::ChemInfo as a 

novel and robust tool for virtual screening through QSAR modeling. The second objective was to assess 

whether the developed method is applicable to real-world scenarios in drug discovery. Different 

biological targets such as mGlu5 modulation involved in schizophrenia, β-hematin crystallization 

inhibition involved in malaria, or molecular property prediction where highlighted in previous chapters. 

The present chapter will summarize key findings of each previous project and give suggestions on future 

perspectives. 

Methods development and benchmarking of Quantitative Structure Activity Relationships 

When designing a benchmark for QSAR modelling one of the critical challenges is to identify an array of 

data sets that are suitable for the task and yet diverse enough to span a wide range of applicability. Here, 

nine diverse protein targets spanning a variety of real-world drug targets were chosen from the PubChem 

database as benchmark data set. Biological assays are available for different stages of HTS. Primary 

screens evaluate an initial library of compounds for activity, typically in singlicate to reduce cost. 

Resulting hit compounds are typically investigated further by counter and confirmatory screens, typically 

in duplicate or triplicate. It was of essence to understand the validation hierarchy of each of the nine data 

sets to compile a high-quality benchmark set. 

BCL::ChemInfo incorporates an array of different machine learning algorithms into one framework. 

Machine learning algorithms include ANNs, SVMs, KNs, kNNs, and DTs which can be trained in an 
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extensive cross-validated fashion. It is easily extendable to host future machine learning algorithms and 

unifies data set creation as well as handling for each machine learning algorithm.  

The nature of biological assay data poses a further challenge. The ratio of active to inactive compounds 

determined in an HTS experiment is usually highly imbalanced. Inactive compounds are overrepresented 

by a factor of 100 to 1,000. Here, an appropriate alternative quality measure was proposed based on the 

ROC curve derivate TNR-TPR curve to evaluate machine learning models. This measure does not suffer 

from the imbalanced character of HTS assay data sets, and thus appropriately represents the performance 

of machine learning techniques.  

Descriptor selection plays a significant role QSAR model optimization. The benchmark in this study 

confirmed that each combination of biological target and machine learning algorithm favor a different 

molecular descriptor set. A further improvement which was not part of this benchmark could be the 

introduction of a truly cross-validation wide independent data set or blind data set. Current descriptor 

selection schemes choose descriptor subsets based on the monitoring and training data partition while 

evaluating the machine learning technique on the independent data portion. The general reasoning is that 

the chosen descriptor set is representative enough for the chemical space of the data set. But different 

cross-validation iterations use the same independent data portion for descriptor selection and could 

introduce a chemical space bias. Therefore, a blind data set could circumvent this potential bias could in 

future studies.  

Consensus prediction is another feature of BCL::ChemInfo. Through the consensus of different predictive 

outputs it is possible to improve the prediction accuracies of trained QSAR models. Our benchmark study 

showed a strong trend towards multiple models typically outperforming single predictors.  

Future directions of this research involve the implementation of new machine learning algorithms. Deep 

learning approaches such as Restricted Boltzmann Machines (RBM) or Stacked denoising Autoencoders 
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(SdA) are of interest and showed promising results in research fields such as image recognition. The 

description of a proposed research project regarding SdAs is located in the Appendix.  

A second future direction might be the incorporation of protein sequence data of the respective biological 

protein target. LB-CADD methods do not rely on the structural information of the target but have access 

to the respective amino acid sequence. This additional information has the potential to introduce novel 

discriminative features for QSAR model training. A proposed research project description regarding the 

combination of protein sequence and small molecule descriptors is located in the Appendix. 

Discovery of pathway specific antimalarial hit compounds to diminish P. falciparum 

The pharmaceutical companies GlaxoSmithKline (GSK) and Novartis tested combined approximately 3.7 

million compounds against P. falciparum. Out of the respective libraries of compounds approximately 

13,500 (GSK) and 5,700 (Novartis) hit compounds were identified to eliminate the malaria parasite. A 

collaborative study investigated an HTS effort at Vanderbilt University to elucidate compounds that kill 

the parasite by acting through a specific pathway inhibiting a vital crystallization process involving β – 

hematin, a synthetic form of hemozoin. From a screened set of 13,229 compounds, a set of 530 

compounds emerged as inhibitors of β – hematin crystallization. This data was used as a knowledgebase 

to develop QSAR models with BCL::ChemInfo. This approach prioritized a subset of 249 GSK and 37 

Novartis compounds with predicted activity against β – hematin formation. A subsequent experimental 

validation of the GSK predictions confirmed 40 out the predicted 249 compounds for β – hematin 

formation, resulting in a hit rate of 16% compared to an initial hit rate of 0.37%. A subset of 17 

compounds was chosen to validate the fatal effect on the parasite and 15 out of 17 were confirmed. With 

the application of BCL::ChemInfo it was possible to screen in silico a larger chemical space then would 

be possible with conventional HTS. Current antimalarial drugs are becoming more and more ineffective 

while the drug resistance of the malaria parasite increases. A possible future direction for this project 

could be the incorporation of a variety of QSAR models trained against a range of P. falciparum targets. 
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This aspect would allow creating a profile prediction of future antimalarial molecules that are selective 

against specific pathways of action. PubChem and ChemBL provide sources of suitable HTS assay data. 

Selective allosteric modulators for distinct mGlu5 site related to CPPHA binding 

Previous studies provided evidence for an alternative binding site other than the already known MPEP 

binding site for mGlu5 modulation [168]. The positive allosteric modulator CPPHA is involved in binding 

exclusively to this alternative binding site. A series of CPPHA like compounds was prepared as the basis 

for in silico virtual screening with BCL::ChemInfo. In addition, data from previous research [84, 183] 

was pooled to develop three distinct QSAR model predicting unspecific positive allosteric modulation 

(PAM) for mGlu5, unspecific negative allosteric modulation (NAM) for mGlu5, and selective PAMs for 

mGlu5 specific to the aforementioned alternative binding site. A virtual screening campaign was initiated 

to prioritize the compound library eMolecules containing approximately 4 million molecules. A total of 

63 molecules were chosen after the application of medicinal chemistry filters. Preliminary experimental 

validation verified 6/63 compounds with weak general PAM activity for mGlu5 resulting in an 

experimental hit rate of ~10%. Further testing for MPEP binding competition has to verify whether these 

6 compounds exhibit selective binding. This project highlights the capabilities of BCL::ChemInfo for 

tailored drug discovery campaigns searching for specific modulators. Even though the discovered 

compounds exhibit weak binding for mGlu5 the identified compounds can act as novel starting points for 

later SAR optimization for selective binding.  

Future perspectives for this project could include the exploration of SB-CADD methods with the 

ROSETTA::LIGAND software package [228, 229]. A crystallographic model of mGlu1 was recently 

published [230] which is closely related to mGlu5. This SB-CADD approach could be applied as a in 

silico filter to confirm ligand binding prior to compound acquisition. 
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Molecular property predictions  

The prediction of small molecule properties is an important application when evaluating molecule for 

drug metabolism and pharmaco kinetics (DMPK) properties. This chapter is based on two research 

project: development of a QSPR model for 1) the water-octanol partition coefficient (logP) prediction and 

2) microsomal intrinsic clearance (CLint) and plasma protein binding as the fraction of unbound 

compound (fu). Each property is essential for prospective drug candidates when interacting with the 

human body. In both studies BCL::ChemInfo was applied to develop a consensus QSPR model. The best 

consensus predictor was compared to the current gold standard for logP prediction (XlogP). A root mean 

square distance of 0.86 was achieved by BCL::ChemInfo compared to 1.21 for XlogP, a significant 

improvement. The second study investigated consensus prediction performance the properties CLint and fu 

(human and rat) in a similar fashion as for logP. It was shown that ensemble models are capable of 

outperforming single algorithms using artificial neural networks, support vector machines, kappa nearest 

neighbors, and kohonen networks. Predictors constructed during this study compare positively against 

recent studies and are of great utility in early stage drug discovery campaigns.  

Future perspectives for QSPR modeling with BCL::ChemInfo consider an expansion of respective 

property training data. The current data set used in this chapter is fairly small which makes extrapolation 

of extreme outlier compounds difficult for the constructed QSPR models. 

Future perspectives of LB-CADD 

With access to more HTS data challenges will emerge over time in the research field of LB-CADD. As 

pointed out in Chapter II, HTS data set curation is imperative to ensure high quality QSAR modeling. A 

future extension of BCL::Cheminfo could incorporate an automated evaluation of available HTS assay 

data for compound repositories such as PubChem, or ChEMBL. Related biological assay data sets could 

be identified for each repository and be cross-referenced for association with the same protein target. 

With minimal supervision by the user this approach would allow a compilation of primary and 
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confirmatory screens more easily and ensure a highly curated HTS data set well suited for QSAR 

modeling. 

Not only will the number of available compounds increase the dimensions and thus the size of future 

QSAR training data sets but it will also encourage the develop of novel small molecular descriptors. 

Memory requirements will be a concern. There is the possibility that future small molecule training data 

sets will not fit into memory of a single computer anymore. What would be an efficient way to deal with 

this growing amount of QSAR training data? One possible strategy could encompass a distributed 

database approach with a network of multiple dedicated computers. Data set access could be coordinated 

by a central database server with access to all involved sub-databases. The compound information can be 

stored on multiple file systems with enough storage capacity and ensure a user friendly single point access 

to retrieve compound data. The challenging aspect would be adapting current machine learning 

algorithms to retrieve their training data in chunks rather than having access to the entire training dataset. 

In addition, it would be expected that the latency of data access will suffer due to the network 

communication overhead. An alternative coping strategy would be the clustering of molecules to ensure a 

maximum coverage of chemical space. The resulting reduction of compounds will ensure a manageable 

size of training data sets fitting into the memory of a single computer. 

Machine learning is a progressing field of research. With adapting machine learning algorithms for LB-

CADD one important question will arise: What is the best way to identify novel machine learning 

algorithms suitable for application in CADD? Recently emerging machine learning algorithms, such as 

deep belief networks based on Restricted Boltzmann machines and stacked denoising Autoencoders, or 

manifold learning algorithms like Isomap showed great success in applications such as image and voice 

recognition, sentiment analysis, or dimensionality reduction. Yet, benchmark studies have to show 

whether the prediction performance will hold up with competing algorithms when predicting the 

biological activities of small molecules for novel protein targets. To assess the algorithm performance 

Chapter II introduced an extensive benchmark of machine learning algorithms for biological datasets. It 
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can be assumed that with increasing quantity and quality of small molecule data the prediction 

performance of machine learning algorithms will improve simply by sampling a larger chemical space 

more precisely. 

With the larger spectrum of available HTS data it is reasonable to expect an increase in the number of 

protein targets. QSAR modeling will not just focus on single targets, but models will be trained for an 

array of targets associated with entire signal transduction pathways. Predictions for a range of biological 

targets will foster a better understanding of the path of action for each screened compound. QSAR models 

can then be optimized to predict a compound profile assessing multiple targets simultaneously and giving 

insight to protein target interaction specificity of the ligand. The BCL::Cheminfo software suite is 

designed to accommodate this use case scenario. 

Over time, it is expected that new classes of drug targets will be discovered that potentially require more 

tailored descriptors to model this new chemical problem. How can existing LB-CADD methods be 

adapted for these new drug targets? One example is protein-protein interactions. Ligand descriptors 

coupled with protein sequence information are one possible approach to incorporate this type of 

information into QSAR model training. Combining small molecule and protein sequence information 

descriptors would have the advantage of creating an association between determinants of both descriptor 

types. This encoding paradigm could be applicable for the encoding of biopharmaceuticals or simply 

‘biologics’ in association with a small molecule of interest. Most biologics are complex molecules or 

mixtures of molecules extracted from living systems or produced by recombinant DNA technology. 

Examples are antibodies, vaccines, blood tissues, or somatic cells. Further, adding nucleic acid 

information could allow modeling of transcription factors associated with nucleic acid – protein 

interactions as drug targets. The encoding of DNA or RNA related information along with an associated 

small molecule- or protein-ligands is another approach to associate different types of targets and thus 

foster modeling of novel ligand interaction patterns. Given the development of appropriate descriptors 
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tailored for these drug targets BCL::ChemInfo can be easily adapted to handle the different modeling 

scenarios.  

Interesting application possibilities could arise for LB-CADD modeling when longitudinal transcriptome 

data of assay experiments becomes available. The transcriptome of a cell changes dynamically dependent 

on its accessible genome defined through mechanisms like DNA methylation pattern or histone 

modification. With the rise of genetic sequencing technologies, a procedure called ‘whole transciptome 

shotgun sequencing’ can reveal which RNA type is present and its quantity at a given point in time. 

Biological assay data could be collected at specific time intervals and biological effects of candidate 

compounds can be quantified. If assay experiments require cells to be lysed and thus destroyed to obtain a 

measurement the experiment could be repeated and its duration increased until the final evaluation. LB-

CADD models could be trained on small molecule ligands associated with RNA representations and 

quantities. A possible application could be the detailed elucidation of candidate compound toxicity 

through predictions of the hit compound activity in relation to the environmental changes of the cell. 

In general, research fields will become more synergistic. The fields of medicine, pharmacology, and 

genetics will progress to include more initial computational guidance. The acceleration of technological 

infrastructure will see a decrease in associated costs while more computational processing resources will 

be available. Virtual screening methods in LB-CADD will allow for quicker, more cost-effective 

development of highly specialized drugs that will interact with the research field of pharmacogenetics to 

see a realistic rise in personalized medicine. Currently, physicians prescribe medication with 

recommended dosages determined by clinical trials or previous experiences with the drug. However, the 

optimal medication dosage ranges widely from patient to patient and can be harmful or even deadly when 

too high. Thus, a future application of QSAR/QSPR modeling could entail the incorporation of small 

molecule information of the candidate drug, protein target information, and the associated genetic markup 

of a patient to predict likely appropriate dosage ranges suitable for the patient. 
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The failure rates of drug candidates passing clinical trials and being approved by the US Food and Drug 

Administration (FDA) is very high. A grand challenge for future drug discovery research will be to 

understand why certain drug candidates are unsuccessful in the clinic. Gathering this understanding will 

guide future drug discovery efforts to omit previous short comings. The prediction of pharmacokinetic 

properties of compounds will play a more substantial role in this challenge. Chapter V gave insight into 

the prediction of small molecule properties as part of ADMET (absorption, distribution, metabolism, 

excretion, and toxicology) modeling. An increased understanding of the effect of a drug candidate on the 

human body will ultimately determine the success of a drug candidate in clinical trials.  

Another future challenge will be the acceptance of novel LB-CADD tools in the medicinal chemistry 

community. The vision is that technology will disperse. Virtual high-throughput screening will become a 

routine in drug discovery campaigns. How can this technology be efficiently brought to medicinal 

chemistry? To see such a trend in the future one can envision the following scenarios. Novel LB-CADD 

algorithms will have to be developed not only focusing on performance but also usability. User interfaces 

will need to be improved to be more self-explaining and user friendly. Another challenge is to educate 

researchers in the scientific community about the available LB-CADD methods and the benefit the 

computational tool can have for their research. To disseminate the method functionality, workshops can 

be developed to allow for an in-person experience. Towards this goal, a virtual high-throughput workshop 

was developed to showcase the functionality and possible application of BCL::Cheminfo to the 

community of the Vanderbilt Institute of Chemical Biology. An in-depth description of the workshop 

tutorial is provided in the Appendix. Another scenario could entail providing LB-CADD functionality as 

a service. Trained cheminformatics researchers who are familiar with the functionality of LB-CADD 

methods could reach out and apply novel LB-CADD tools collaboratively with medicinal chemists. This 

approach would maximize the success rate of applying all tools correctly while minimizing the frustration 

level of users when dealing with unfamiliar software. 
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In summary, the BCL::Cheminfo software suite provides an ideal framework for QSAR modeling and 

virtual high-throughput screening that is easily extendable to master the aforementioned challenges. The 

software is freely available for the academic community and will hopefully deem useful to the scientific 

community in future years to come. 
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APPENDIX 

General Comments 

Each section of the appendix is structured according to chapters. For each of the four main chapters a 

paragraph with the supplemental material is provided. Additional paragraphs summarize projects, ideas, 

or experiments that are not yet published or are incomplete. All computational work presented here is 

based on applications programmed in the BCL. All command lines presented in this appendix are 

functional as of BCL v3.1.0 SVN revision r4799. A current executable is available. The appendix is 

accompanied by a DVD. Each respective paragraph spells out a specific link to the directory layout. 

General information for each directory is provided in a respective README file on the DVD.  

Supporting information for Chapter 2 

Ligand-based virtual high-throughput screening benchmark and method development 

DVD path: /ligand-based_virtual_hts_benchmark 

Molecular descriptors numerically encode chemical structure 

A total of 60 descriptor groups with 1,284 numerical descriptors were implemented in this study (see 

Table 13). The 60 categories contain scalar descriptors such as molecular weight, number of hydrogen 

bond donors, -acceptors, octanol / water partition coefficient, total charge, and topological polar surface 

area. Nine additional chemical properties were computed for every atom including atom identities, σ-, π-, 

and total charges, σ-, π-, and lone pair electronegativities, effective atom polarizabilities, and VC2003 

atom charges [125]. Three encoding functions (2D auto-correlation, 3D auto-correlation, radial 

distribution function) are paired with each of the chemical properties to yield 27 fingerprints [77, 80]. In 

addition, each fingerprint is computed a second time applying van der Waals surface area as a weight 

factor.  
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Analyzing the overlap of optimal descriptor sets reveals extent of similarity  

Descriptor selection identified optimized descriptor sets for each PubChem data set and machine learning 

algorithm pairing. The following experiment analyses the pair-wise overlap of optimized descriptor sets 

for each PubChem dataset using Tanimoto coefficients. The average overlap ranges from 0.01 to 0.31 

when comparing different machine learning algorithms on one PubChem dataset. This is indicative of 

chosen descriptor sets having only few descriptors in common for a pair of machine learning algorithms. 

Individual off-diagonal values never exceed a Tanimoto coefficient of 0.47 suggesting that two optimized 

descriptor sets have generally less than half of  their descriptor values in common for a particular SAID. 

Also, the size of the optimal descriptor set varies for every machine learning algorithm. The diagonal 

values show the recovered descriptors in comparison to the entire available 1284 descriptor values. 

Naively, one might expect a strong dependence on the target data set. Thus, the relation between chemical  

Table 13: Overview of descriptors by category, description, and number of descriptor features. 

#Group 
Descriptor 
Category 

Descriptor Name #Features 

 
Scalar descriptors 

  
1 

 
Molecular weight of compound 1 

2 
 

Number of hydrogen bonding acceptors derived from the 

sum of nitrogen and oxygen atoms in the molecule 
1 

3 
 

Number of hydrogen bonding donors derived from the sum 

of N-H and O-H groups in the molecule 
1 

4 
 

Topological polar surface area in Å
2
 of the molecule derived 

from polar 2D fragments 
1 

5 
 

Octanol/water partition coefficient in log units 1 

6 
 

Total charge of the molecule 1 

 
Vector descriptors 

  
7 2D autocorrelation Atom identity 11 

8 
 

Sigma charge 11 

9 
 

Pi charge 11 

10 
 

Total charge 11 

11 
 

Sigma electronegativity 11 

12 
 

Pi electronegativity 11 

13 
 

Lone pair electronegativity 11 

14 
 

Polarizability 11 

15 
 

VC/2003 partial atom charges 11 

16 2D autocorrelation Atom identity 11 

17 weighted with Sigma charge 11 

18 van der Waals Pi charge 11 

19 surface area Total charge 11 
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Table 13 continued 

20 
 

Sigma electronegativity 11 

21 
 

Pi electronegativity 11 

22 
 

Lone pair electronegativity 11 

23 
 

Polarizability 11 

24 
 

VC/2003 partial atom charges 11 

25 3D autocorrelation Atom identity 12 

26 
 

Sigma charge 12 

27 
 

Pi charge 12 

28 
 

Total charge 12 

29 
 

Sigma electronegativity 12 

30 
 

Pi electronegativity 12 

31 
 

Lone pair electronegativity 12 

32 
 

Polarizability 12 

33 
 

VC/2003 partial atom charges 12 

34 3D autocorrelation Atom identity 12 

35 weighted with Sigma charge 12 

36 van der Waals Pi charge 12 

37 surface area Total charge 12 

38 
 

Sigma electronegativity 12 

39 
 

Pi electronegativity 12 

40 
 

Lone pair electronegativity 12 

41 
 

Polarizability 12 

42 
 

VC/2003 partial atom charges 12 

43 Radial Distribution Atom identity 48 

44 Function Sigma charge 48 

45 
 

Pi charge 48 

46 
 

Total Charge 48 

47 
 

Sigma electronegativity 48 

48 
 

Pi electronegativity 48 

49 
 

Lone pair electronegativity 48 

50 
 

Polarizability 48 

51 
 

VC/2003 partial atom charges 48 

52 Radial Distribution Atom identity 48 

53 Function Sigma charge 48 

54 weighted with Pi charge 48 

55 van der Waals Total charge 48 

56 surface area Sigma electronegativity 48 

57 
 

Pi electronegativity 48 

58 
 

Lone pair electronegativity 48 

59 
 

Polarizability 48 

60 
 

VC/2003 partial atom charges 48 

  
Total 1284 
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structure and biological activity can be established using multiple different combinations of descriptors – 

a finding that can be explained by linear dependence among different descriptor sets. Figure 17 compares 

descriptor set overlap from the perspective of each machine learning algorithm in the same fashion as in 

Table 13. Again, only few descriptors overlap. The  extend of percent overlap compared to the initial 

1284 descriptor values ranges from 0.3% to 83% (KN), 16% to 52% (ANN), 10% to 45% (DT), and 20% 

to 72% (SVM). ANN and DT tend to choose a more compact descriptor then KN. SVM shows a slightly 

increased descriptor set in comparison. High overlap does not seem to correlate with similar targets as 

seen for SAID 463087. 

 

Figure 17: Pair-wise comparison of optimized descriptor sets. 

Machine learning algorithms trained on the same PubChem data set were evaluated for 

descriptor set overlap. Each dataset (SAID) is represented with a heat map reporting the 

Tanimoto coefficients of element overlap for two machine learning methods shown in 

rainbow coloring. 0.0 (green) represents no overlap while 1.0 (red) indicates full overlap. 

The average percent overlap is depicted in blue taking off-diagonal values into account. All 

optimal descriptor sets determined by SFFS. The diagonal values (white) are excluded from 

the average calculation and represent the percent overlap of the optimized descriptor set 

compared to the initial set containing 1284 descriptors. This figure was adapted from [3]. 
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Complete representation of inactive compounds improves QSAR model precision for initial true-

positive range 

Generally, experimental HTS datasets are highly unbalanced, i.e. the number of active compounds is 

much smaller than the number of inactive compounds. This poses a challenge for training predictors with 

naïve objective functions as – for example – 99% of all compounds are classified correctly by calling all 

compounds “inactive” and the root mean square difference (RMSD) between experimental and predicted 

activity will be low. To circumvent this problem all training data sets were balanced – i.e. an equal 

 

Figure 18: Heat maps reporting Tanimoto coefficients of descriptor overlap. 

SFFS was applied to optimize descriptor sets among the various machine learning algorithms 

trained on different PubChem data sets (SAID). 0.0 (green) indicates no overlap while 1.0 (red) 

indicates full overlap. The average overlap is depicted in blue.  All optimal descriptor sets were 

determined by SFFS. The diagonal values (white) are excluded from the average calculation and 

represent the percent overlap of the optimized descriptor set compared to the initial set containing 

1284 descriptors. This figure was adapted from [3]. 
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number of active and inactive molecules were used. This can be achieved through over-sampling of active 

or under-sampling of inactive molecules. The first strategy utilizes all data for training while the second 

strategy only uses part of the inactive molecules, a strategy that could be attractive in order to accelerate 

the training procedure and create substantially smaller datasets. Note that the number of inactive 

compounds in the independent data set was not modified, i.e. the QSAR model still needs to classify all 

compounds of the independent dataset correctly. The percentage of inactive compounds reserved for 

training and monitoring data set partitions was systematically increased ranging from 1%, 5% and 10% to 

100% in 10% steps for three selected datasets with SAIDs 488997, 485290 and 2258. Each data set 

contains more than 300,000 inactive compounds total. Adding more inactive compounds to the training 

and monitoring dataset increased the integral of the TNR-TPR curve for the initial TPR range compared 

to the 1% case (see Figure 19). A steeper TNR-TPR curve indicates a high TP to FP ratio (FP=1-TN), 

implies a high precision and therefore a high Enrichment. Evaluating the TPR range of 0.0 to 0.2, QSAR 

models with more inactives included in the training and monitoring data showed a higher precision for 

identifying active compounds compared to the 1% case. These results suggest a similar overall 

performance for all training data configurations but higher accuracy for the initial TPR range if more 

inactives are involved. 
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Figure 19: The TNR-TPR curve is shown for SAIDs 488997, 485290, and 2258.  

Each curve represents a QSAR model trained on 1%, 5%, 10% … 100% of the given monitoring 

and training data. The plots on the right-hand side show an enlarged view of the initial portion of 

the true-positive rate. With increasing percent of the used monitoring and training data the color 

intensity of each curve decreases. (1% - dark, 100% - light). This figure was adapted from [3]. 
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Protocol Capture 

The protocol capture was conducted on Linux CentOS 5. bcl version: 2.5.0; bcl svn revision: 4313. Every 

step assumes your root directory is the top level directory of the protocol capture directory! 

The following steps capture the procedure for one of the benchmark data sets (eg. SAID 1798). All other 

benchmark data sets can be processed in the same way. 

a) Data set generation: download AIDs 

cd /bin/dataset_generation/ 

./aid_download.sh YOUR_AID_NUMBER 

The script aid_download.sh will download the molecules associated with a specific PubChem AID. The 

result is a .sdf.gz file with all relevant molecules and a .csv file containing the biological data for every 

compound. YOUR_AID_NUMBER is the PubChem AID of interest.   

b) Data set generation: process PubChem AIDS 

cd /bin/dataset_generation/ 

./molecule_pipeline.sh YOUR_AID_NUMBER.csv YOUR_AID_NUMBER.sdf.gz 

#the generate .bin files have to be copied to the /bin/cross_validation_pipeline/data directory 

mv ./YOUR_AID_NUMBER_actives.bin ../cross_validation_pipeline/data 

mv ./YOUR_AID_NUMBER_inactives.bin ../cross_validation_pipeline/data 

YOUR_AID_NUMBER is the PubChem AID of interest. The script molecule_pipeline.sh will clean up 

all molecules by removing duplicates, generating 3D coordinates with CORINA, randomize the order and 

seperate actives from inactives. If active compounds have no biological value (EC50/IC50) assigned, then 

a given value is set. binary files (.bin) containing small molecule descriptors and the associated biological 
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data will be generated for machine learning training .bin files have to be present in the 

/bin/cross_validation_pipeline/data directory. 

c) Descriptor selection preparation 

# it is recommended to copy and rename the directory /bin/cross_validation_pipeline to represent the data 

set designation! The protocol capture will omit this step!  

cd /bin/cross_validation_pipeline  

# make sure that the bcl.exe symbolic link is valid in bcl/ ; edit the file include.sh and set all variables 

accordingly; adjust the variable dataid to follow the pattern 'aidYOUR_AID_NUMBER', an example is 

given in the file for aid891; variable dataset_size should approximate the number of compounds used in 

both .bin files to request the right amount of memory from the pbs scheduler; the section TRAINING 

OBJ, CUTOFF and PARITY should set the variable cutoff and parity properly and only one of the 

objective function string should be unlocked! The training objective function will be applied in every 

iteration step during training; the section ITERATE specifies the chosen machine learning technique. only 

one set of the variables learning, iterate, and training_chunk_composition; the section FINAL OBJ 

FUNCTION specifies the objective function consisting of variables obj_final and obj_final_prefix applied 

only once at the end of ML training all remaining variables should be set accordingly to their description 

in include.sh 

The set of scripts in /bin/cross_validation_pipeline makes it possible to perform descriptor selection (IG, 

FS, SFFS) and consensus predictions. 

d) Descriptor selection 

cd /bin/cross_validation_pipeline  

# get all options for descriptor selection by IG (information gain) and FS (fscore): 

./submit_descriptor_reduction.sh  
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# launch descriptor selection FS execute:  

./submit_descriptor_reduction.sh fscore 2 local 10 600  

# launch descriptor selection IG execute:  

./submit_descriptor_reduction.sh infogain 2 local 10 600  

# launch descriptor selection by SFFS (sequential feature forward selection) you need to have access to a 

pbs scheduler queue!  

The type (SFFS) was set in the include.sh script!  

./submit_descriptor_selection.sh start  

# Once the descriptor selection has stopped you can retrieve results: 

cd results/  

# for IG and FS:  

./results_descriptor_reduction.sh  

# for SFFS:  

./results_descriptor_selection.sh 

After choosing your descriptor selection method of choice, start your descriptor selection run. 

e) Cross-validation 

cd /bin/cross_validation_pipeline  

# to determine the best performing descriptor set  

# if you ran descriptor selection by IG or FS retrieve your final descriptor set with:  
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./get_best_descriptors_by_reduction.sh fscore  

OR  

./get_best_descriptors_by_reduction.sh infogain  

# if you ran descriptor selection by SFFS retrieve your final descriptor set with:  

./get_best_descriptors.sh  

# to start cross-validation with the best performing descriptor set launch:  

./submit_cross_validation.sh  

# to determine the results of the cross-validation run, execute:  

cd results  

./result_cross_validation.sh roc  

# results should contain a gnuplot script that can be executed to obtain a graphical representation (.png)  

gnuplot cv_result.gz.gnuplot 

f) Consensus Prediction 

cd /bin/cross_validation_pipeline 

# to determine a consensus prediction, copy all available cv_results.gz to a separate directory (eg. 

/bin/consensus_prediction) and rename each filename to contain the machine learning technique.  

./bcl.exe ComputejuryStatistics -input `ls /bin/consensus_prediction` -potency_cutoff 4.0 -table_name 

table.txt 
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In Figure 20 a) the consensus QSAR model is quantified by a receiver operating characteristic (ROC) 

curve analysis. The plot illustrates the quality measures True Positive Rate (grey) and Precision (black) on 

a logarithmic scale. The ideal Precision plot (black dashed) is shown as a baseline. True Positive Rate (= 

TP/(TP+FN)) shows the ratio between the true positive active compounds and all positive compounds, 

true positives and false negatives. The higher the True Positive Rate the more accurate the QSAR model 

is in identifying true active compounds. Precision (=TP/(TP+FP)) provides the ratio of true positive active 

compounds and all positive predicted compounds, true positives and false positives. The quality measure 

Precision is equivalent to a normalized form of Enrichment (=Precision/(P/(P+N))). For the data set of 

530 actives (P) / 144,300 inactives (N), a precision of 16%  corresponds to an Enrichment value of 40 

fold at a False Positive Rate (=FP/(FP+TN)) threshold of 1%. While misclassifying 1% of the active 

compounds the QSAR model identifies 16% of the active compounds correctly. In Figure 20 b) the same 

quality measures are evaluated with respect to the prediction activity cutoff in μM on a logarithmic scale. 

Both sub Figure 20 a) and b) plot the quality measures True Positive Rate, Precision, and Information 

Gain Ratio on a logarithmic scale. As a reference, the ideal trajectory of the precision curve is given for 

comparison to an ideal predictor.  Figure 20 a) plots all quality measures in respect to the false positive 

rate assuming an activity cutoff of 100μM.  Figure 20 b) shows the same quality measures as a function of 

 

Figure 20: ROC curve evaluating the consensus model. 

 

Supplementary Figure 1:  
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the activity cutoff. This evaluation proves useful when choosing a concentration threshold for virtual 

screening. The application ComputejuryStatistics takes all raw experimental/predicted values of available 

cross-validation runs and computes the consensus between all possible combinations or raw 

experimental/predicted value files. 

 

Figure 21: The heme speciation assay conducted on 17 β-hematin inhibiting GSK compounds.  
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Supporting information for Chapter 3 

Identification of pathway specific inhibitors for β-hematin crystallization in plasmodium 

falciparum involved in Malaria 

DVD path: /inhibitors_for_beta-hematin_crystallization_malaria 

Results from a heme speciation assay 

Figure 21 shows supplemental results from a heme speciation assay developed by Combrinck et al. [150] 

conducted on 17 β-hematin inhibiting GSK compounds. The parasite survival curve and fractions of free 

heme, hemoglobin, and hemozoin are shown for Figure 21 a) a compound confirmed as hemozoin 

inhibitor (TCMDC-125529) and Figure 21 b) one that does not inhibit hemozoin formation within the 

parasite (TCMDC-125505). 

Protocol capture 

The protocol capture was conducted on Linux CentOS 5. bcl version: 3.1.0; Every step assumes your root 

directory is the top level directory of the protocol capture directory! 

a) Dataset preparation 

./bin/generate_data.sh 

the script will standardize the actives.sdf.gz and inactives.sdf.gz files using the BCL. Afterwards, datasets 

representbed by .bin files are are generated.  

output: ./input/*.bin; files containing data sets for active and inactive molecules. 

b) Descriptor scoring by information gain 

edit the config/config.ini file to specify best performing descriptor set: 

./bin/submit.py -t dataset_scoring --config-file config/config.ini 

check calculated score distribution with: 

gthumb score.infogain.out.png 
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calculates descriptor scores for every column. The .png file plots all ordered scores and visualizes the 

score distribution. output:  score.infogain.out containing information gain scores for every feature 

column. 

c) Feature selection 

./bin/submit.py -t feature_selection --config-file config/config.ini 

Edit your config.ini to specify the feature selection method to determine the best descriptor set. 

d) Cross-validation 

./bin/submit.py -t cross_validation --config-file config/config.ini 

Edit your config.ini to specify the best descriptor set. 

e) Consensus prediction 

Repeat step 3 for all other machine learning approaches (svm, kohonen, dt). Copy the cross-validated 

independent dataset evaluations for each machine learning method into a new directory.  

Create a new directory ‘consensus’: 

mkdir consensus  

Name each independent prediction output conveniently the same as the machine learning method (ann, 

svm, kohonen, dt).  

cp results/{ann|svm|kohonen|dt}/independent0-?_monitoring0-?_number0.gz.txt 

consensus/{ann|svm|kohonen|dt} 

Use the cross-validated machine learning models for a consensus prediction  

bcl.exe model:ComputeStatistics -input ann svm kohonen dt -potency_cutoff 4 
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The generated output table shows all machine learning consensus combinations and their respective 

quality measures. 

Supporting information for Chapter 4 

Novel allosteric modulators for mGlu5 acting on distinct site related to CPPHA binding 

A protocol capture will be provided on the DVD. 

DVD path: /modulators_mglu5_related_to_cppha_binding 

Protocol capture 

The protocol capture was conducted on Linux CentOS 5. bcl version: 3.1.0; Every step assumes your root 

directory is the top level directory of the protocol capture directory! 

a) Dataset preparation 

./bin/generate_data.sh 

the script will standardize the actives.sdf.gz and inactives.sdf.gz files using the BCL. Afterwards, datasets 

representbed by .bin files are are generated.  

output: ./input/*.bin; files containing data sets for active and inactive molecules. 

b) Descriptor scoring by information gain 

edit the config/config.ini file to specify best performing descriptor set: 

./bin/submit.py -t dataset_scoring --config-file config/config.ini 

check calculated score distribution with: 

gthumb score.infogain.out.png 
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calculates descriptor scores for every column. The .png file plots all ordered scores and visualizes the 

score distribution. output:  score.infogain.out containing information gain scores for every feature 

column. 

c) Feature selection 

./bin/submit.py -t feature_selection --config-file config/config.ini 

Edit your config.ini to specify the feature selection method to determine the best descriptor set. 

d) Cross-validation 

./bin/submit.py -t cross_validation --config-file config/config.ini 

Edit your config.ini to specify the best descriptor set. 

e) Consensus prediction 

Repeat step 3 for all other machine learning approaches (svm, kohonen, dt). Copy the cross-validated 

independent dataset evaluations for each machine learning method into a new directory.  

Create a new directory ‘consensus’: 

mkdir consensus  

Name each independent prediction output conveniently the same as the machine learning method (ann, 

svm, kohonen, dt).  

cp results/{ann|svm|kohonen|dt}/independent0-?_monitoring0-?_number0.gz.txt 

consensus/{ann|svm|kohonen|dt} 

Use the cross-validated machine learning models for a consensus prediction  

bcl.exe model:ComputeStatistics -input ann svm kohonen dt -potency_cutoff 4 
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The generated output table shows all machine learning consensus combinations and their respective 

quality measures. 

Supporting information for Chapter 5 

Small molecules property predictions 

A protocol capture will be provided on the DVD.  

DVD path: /small_molecule_property_predictions  

The same protocol was used to train QSPR model for both publications [1] and [2]. Protocol Capture 

The protocol capture was conducted on Linux CentOS 5. bcl version: 2.5.0; bcl svn revision: 4313. Every 

step assumes your root directory is the top level directory of the protocol capture directory! 

The raw data is given by two .sdf.gz files with all relevant molecules containing logP data. 

(MiscProperty: P_ow) 

It is recommended to copy and rename the directory /bin/cross_validation_pipeline to represent the data 

set designation! The protocol capture will omit this step!  

a) Set up scripts  

cd /bin/cross_validation_pipeline  

Variable dataset_size should approximate the number of compounds used in both .bin files to request the 

right amount of memory from the pbs scheduler  

The section TRAINING OBJ, CUTOFF AND PARITY should set the variable cutoff and parity properly 

and only one of the objective function strings should be unlocked! The training objective function will be 

applied in every iteration step during training. The section ITERATE specifies the chosen machine 

learning technique. only one set of the variables learning, iterate, and training_chunk_composition. The 

section FINAL OBJ FUNCTION specifies the objective function consisting of variables obj_final and 
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obj_final_prefix applied only once at the end of ML training. All remaining variables should be set 

accordingly to their description in include.sh. The set of scripts in /bin/cross_validation_pipeline makes it 

possible to perform descriptor selection (SFFS) and consensus predictions. The include.sh script is the 

main configuration file.  

b) Cross-validation 

Start cross-validation with the best performing descriptor set launch:  

./submit_cross_validation.sh  

Determine the results of the cross-validation run, execute:  

cd results  

./result_cross_validation.sh roc  

The results should contain a gnuplot script that can be executed to obtain a graphical representation (.png)  

gnuplot cv_result.gz.gnuplot 

Once the final descriptor set is determined a full 10x9 cross-validation can be applied to determine the 

objective function of the final cross-validated model. The cross-validated models based on the best 

performing descriptor set will be stored in the MySQL database. After retrieving the results from the final 

cross-validation run a graphical representation can be generated through gnuplot.  

c) Consensus prediction 

cd /bin/cross_validation_pipeline 

To determine a consensus prediction, copy all available cv_results.gz to a separate directory (eg. 

/bin/consensus_prediction) and rename each filename to contain the machine learning technique.  
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./bcl.exe ComputejuryStatistics -input `ls /bin/consensus_prediction` -potency_cutoff 4.0 -table_name 

table.txt 

The application ComputejuryStatistics takes all raw experimental/predicted values of available cross-

validation runs and computes the consensus between all possible combinations or raw 

experimental/predicted value files. 

 

Tutorial for QSAR modeling, virtual screening, and cluster analysis with BCL::ChemInfo 

This tutorial is part of a workshop to disseminate the functionality of BCL::ChemInfo to the Vanderbilt 

community. 

DVD path: /vHTS_workshop 

The tutorial starts with a file that contains the results of an HTS screen: 9,122 molecules are classified as 

active or inactive, according to their activity in the screen. We train a QSAR model to recognize 

molecules according to their activity, and then apply that model to virtually screen a larger library of 

100,000 molecules.  

Hands-on 1: Data set preparation 

In this section, you will prepare a data set for QSAR model construction starting from an SDF file format. 

The files required for this lesson are found in the sub directory qsar_tutorial. 

Preparing the SDF file 

The SDF file named initial_hts_result.sdf contains connectivity information describing the molecules 

from an HTS screen as well as the resulting experimental bioassay data. If you wish, you can open this 

text file in a text editor to examine the contents. The experimental data is included as an SDF 

miscellaneous property string that looks like this: “> <Activity>”. Some compounds may be missing this 

property. The first step is to filter the SDF file to ensure that all molecules can be properly interpreted by 
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the BCL, by removing any compounds that are missing the Activity property. This is performed using the 

following command line: 

bcl.exe molecule:Filter -input_filenames initial_hts_result.sdf -has_properties 'Activity' -
output_matched molecules_with_activity_property.sdf -output_unmatched 
molecules_missing_activity_property.sdf 

 

This will divide your compounds into two files. Were any molecules discarded during this process? If so, 

they can be found in this file:  

molecules_missing_activity_property.sdf 

 

You can count the number of records in that file by grepping for the record separator: 

grep -c '$$$$' molecules_missing_activity_property.sdf 

 

Execute the following command to find about about the activity distribution of the compounds: 

bcl.exe molecule:Properties -input_filenames molecules_with_activity_property.sdf -
numeric_histogram 'Activity' 0 10 20 -output_histogram 

 

Determine the cutoff value by examining the histogram file. What is a suitable cutoff value? 

Next, two SDF files will be created to separate the “actives” from the “inactives” depending on your 

cutoff value $CUTOFF that you determined from examining the histogram (we chose 45 micromolar): 

bcl.exe molecule:Filter -input_filenames molecules_with_activity_property.sdf -output_matched 
molecules_actives.sdf -output_unmatched molecules_inactives.sdf -compare_property_values 
'Activity' less 45  

 

Now check-the number of molecules in each of the created actives.sdf and inactives.sdf files using “grep” 

as above. How many molecules are contained in each file? 

grep -c '$$$$' molecules_{in}actives.sdf  
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Perform clustering analysis 

Now that we have ensured that the molecules are usable by the BCL and have been separated into actives 

and inactives, let’s visually assess the chemical space of the actives through hierarchical agglomerative 

clustering analysis. Run the following script to create the dendrogram for visualization: 

Copy your molecules_with_activity.sdf file into the directory called clustering: 

cp molecules_actives.sdf clustering/ 

 

Change into directory clustering. 

cd clustering 

 

Start processing your molecules by executing a molecule clean up script: 

clean_up_molecules.sh molecules_actives.sdf 

 

This will create an output file (and it automatically zips the input and output files for you):  

molecules_actives_clean.sdf.gz 

Start clustering your cleaned up molecules by executing this command to learn about all the options 

available for the clustering command.:  

cluster_molecules.py -h   

 

The following clustering run should take about 20 minutes, using a linkage value of 0.3, a sampling factor 

of 0.1 (which means it uses 10% of the data to construct fragments to determine common scaffolds), and 

uses a cluster size cutoff of 5. These values may be adjusted for different datasets. Execute following 

command:  



122 

cluster_molecules.py -m molecules_actives_clean.sdf.gz -l 0.3 -s 0.1 -c 5 

 

You will see the program 1) build a fragment library, 2) do several filtering steps 3) construct the distance 

matrix 4) perform the actual clustering step. The output to the screen indicates the number of clusters, and 

the number of compounds per cluster (Size). You can adjust the parameters and re-run the clustering if 

you get an unreasonably small or large number of clusters. 

To identify the main scaffold in each cluster issue the following command: 

cluster_scaffolds.sh 

 

A new directory will be created containing all clusters and cluster scaffolds as sdf files 

cd cluster_sdf 

 

Now issue the following command to visualize the dendrogram of the scaffolds: 

pymol dendrogram.py 

 

Look at the individual scaffold molecules with: 

pymol scaffolds.sdf 

 

You can step through the scaffolds using the movie commands in the bottom-right corner of the PyMOL 

window. Note that the scaffolds do not have Hydrogens added. 

It is important that the actives chemical space is diverse to ensure generalizability of the model. If all of 

the scaffolds are similar, it will be difficult to apply the QSAR model to external databases successfully to 

find novel scaffolds. 
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After visualizing the diversity of the scaffolds, you can go back to the main tutorial directory 

(qsar_workshop) with this command: 

cd ../.. 

Descriptor generation 

Numerical descriptors of the molecules will be calculated to serve as input for the QSAR method. The 

descriptors to be calculated are shown below 

 

Figure 22: Graphical overview of molecular descriptors applied in the tutorial. 

 

Now, copy our active and inactive files into our next working directory: 

cp molecules_actives.sdf qsar_cheminfo/data 

cp molecules_inactives.sdf qsar_cheminfo/data 

cd qsar_cheminfo 

 

Have a look into the files features.object and results.object to find out about the descriptors used in this 

dataset. This command will display the list of molecular descriptors that we will include in the model: 
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less features.object 

 

And this command will show the transformation of Activity values from the original micromolar scale to 

a log scale that is convenient for training the model: 

less results.object 

 

Run the following two commands to generate two dataset files, "the binfiles." Those files contain the 

scaled activities, and values for each descriptor calculated from the structures in your input sdf files (of 

your actives and inactives). This step should take just a few minutes on our small file of actives, and ten 

times as long for the larger inactives file:  

bcl.exe descriptor:GenerateDataset -source 'SdfFile(filename=data/molecules_actives.sdf)' -
feature_labels features.object -result_labels results.object -output data/molecules_actives.bin -
scheduler PThread 2 

 

and then: 

bcl.exe descriptor:GenerateDataset -source 'SdfFile(filename=data/molecules_inactives.sdf)' -
feature_labels features.object -result_labels results.object -output data/molecules_inactives.bin -
scheduler PThread 2 

 

If you watch the output from this command, you will see that a few molecules may get rejected from the 

dataset generation. This happens when the molecule contains unrecognized atomtypes. The model will 

still be robust even if a few molecules are discarded. The resulting output file is a binary format and is not 

human readable. However, the descriptors can be viewed using the following command: 

bcl.exe descriptor:GenerateDataset -compare data/molecules_actives.bin | less -S  

and: 

bcl.exe descriptor:GenerateDataset -compare data/molecules_inactives.bin | less -S 
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Scroll down to the section that starts 'Statistics.' The following is a list of molecular descriptors, which 

you will recognize from the lecture. You can also scroll to the right to see the column headings: "Ave Std 

Min Max" which indicate the range of values for each descriptor. The last line is the range of scaled 

Activity values in your dataset. 

Hands-on 2: QSAR model construction 

Now that the data set of molecular descriptors has been created, a QSAR model must be constructed. We 

will now construct a QSAR model using an Artificial Neural Network (ANN).  

Training your first model 

You will now use the model::Train bcl application to train an ANN for distinguishing actives from 

inactives. First, type: 

bcl.exe model:Train -help | less 

 

to look at the possible arguments for this application. As the help output indicates, in many cases you can 

get help in greater detail for each individual argument. To train an ANN using enrichment as an objective 

function we will use a submission script that does the heavy lifting for us. 

As you saw when looking at the help function from BCL model:Train, there are a number of options 

available. To make it more manageable, we will use a subset of those options in a configuration file. Edit 

the file config.ini using gedit or vim, and make sure the following options are set: 

[datasets] 

datasets: ['data/molecules_actives.bin','data/molecules_inactives.bin'] 

 

[cv] 

 cross-validations: 10 

 monitoring-id-range: [ 0, 0] 

 independent-id-range: [ 1, 1] 

 id: qsar_workshop 
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Note that here we are telling BCL to divide the dataset into ten equal-sized "chunks," the first of which is 

used for monitoring, and the second for independent testing. Then execute training of the model with all 

possible features: 

./submit.py -t cross_validation 

 

The command above runs a script to perform 10-fold cross validation (discussed later) and uses 80% 

training, 10% monitoring, and 10% independent as was discussed in the previous lecture. This step should 

take just a few minutes, and will create directories named results/ log_files/ and models/. 

Analyze full model results 

To analyze the performance of the model, we can create a receiver operator characteristic (ROC) curve. 

This plots the true positive rate versus the false positive rate. Run the following commands to create the 

ROC curve for visualizing the QSAR model performance. 

Go into your results directory: 

cd results/cv_qsar_workshop 

 

and examine the roc curve in the created .png file (eog is a png viewer): 

 eog independent1-1_monitoring0-0.gz.txt.gnuplot_txt.png 

 

The red curve is your ROC curve (False Positive Rate vs. True Positive Rate), the green curve is the 

normalized enrichment value (precision) for that particular FPR cutoff, and can be compared to the blue 

ideal curve. 

Hands-on 3: Feature selection 

We have now created a baseline QSAR model using an ANN. The next step is to optimize the 

performance of this model through feature selection. The feature selection process to be used in this 
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section utilizes information theory to determine the relevance of each descriptor and eliminate those 

which contribute less to describing the observed activity. 

Create feature scores 

We first calculate information gain scores for each feature. Go back up to the qsar_cheminfo directory: 

cd ../.. 

 

edit the file config.ini and make sure the following options are set as listed:  

[score] 

scoring-type: InformationGain 

output_score_file: score.infogain.out 

features: features.object 

 

To calculate the information gain score execute following command: 

submit.py –t dataset_scoring 

 

A scores file called score.infogain.out will be generated. You can examine the file with the following 

command: 

less -S score.infogain.out   

 

Analyze feature scores 

We can see the amount of discrimination that each feature (descriptor) contributes to the model by 

looking at the sorted values in the resulting graph: 

display score.infogain.out.png 
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Each point on this graph represents an individual descriptor column in the dataset. The Y-value shows the 

amount of information gain from that descriptor. From this plot, you can estimate how many descriptors 

you need to perform good discrimination. This will be done in the next step. 

Feature selection 

We now use the calculated scores to perform a feature selection protocol. Now, three hundred QSAR 

models will be trained using different sets of features chosen by information gain score to optimize model 

performance. 

edit the file config.ini and make sure the following options are set as listed:  

[feature-selection] 

 range: [150,1284,150] 

 

[cv] 

 monitoring-id-range: [0,4] 

 independent-id-range: [0,4] 

 cross-validations: 5 

 store-model: File 

 id: qsar_feature_selection 

 

Executing the following script will perform the feature selection: 

./submit.py -t feature_selection 

 

This feature selection protocol will take ~1hr, so let’s break for lunch at this time. 

After this process completes, look in the results directory, at the final result file: 

less -S results/final_cv_qsar_workshop_InformationGain_result.txt 

 

The first field of the last line specifies the directory containing the best-performing descriptor set. Make 

note of the number. You will use that in the next step, where we call it 

cv_qsar_workshop_InformationGain_top_???_features. (???-should be substituted by best round number) 
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Hands-on 4: Cross-validation 

Now that model optimization has been achieved through feature selection, we must extensively cross 

validate the QSAR model using the optimized feature set.  

Cross validate optimized models 

To perform a full cross validation, the script below will train 90 models. This resulting ensemble of 

optimized models maximizes generalizability by using the arithmetic mean for prediction. In order to use 

the optimized feature set, we need to copy that result file over: 

cp models/cv_qsar_workshop_InformationGain_top_???_features/model000001.descriptor 
best.descriptor 

 

edit the file config.ini and make sure the following options are set as listed:  

[score] 

scoring-type: InformationGain 

output_score_file: score.infogain.out 

features: best.descriptor 

 

[cv] 

 monitoring-id-range: [0,9] 

 independent-id-range: [0,9] 

 cross-validations: 10 

 store-model: File 

 id: qsar_final 

 

Executing the following script will perform the feature selection: 

./submit.py -t cross_validation 

 

This step should take around an hour. 
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Analyze optimized results vs. full model results 

Now that the feature selection and full cross validation has completed, we can create the ROC curve for 

the optimized model. 

ROC curves have now been generated by the cross-validation script. Look in the ./results directory and 

the appropriate sub directory for .png files. How does this ROC curve compare with that achieved 

previously using the entire feature set? 

Hands-on 5: Virtual screening of external libraries 

Now that we’ve constructed optimized, cross-validated QSAR models using decision trees, we can use 

these models to predict active compounds for this target using large external libraries as input. 

Run the vHTS using optimized models 

Using the “external_lib.sdf” SDF file run the following command: 

bcl.exe molecule:Properties -input_filenames external_lib.sdf -add 
'Mean(PredictedActivity(storage=File(directory=models/cv_qsar_final,prefix=model)))' -rename 
'Mean(PredictedActivity(storage=File(directory=models/cv_qsar_final,prefix=model)))' 
pred_activity_rank -output vhts.sdf.gz -input_start 1 -input_max 2000 

 

This command will generate the optimized descriptors for the molecules in the SDF file, predict the 

activity using the 90-model ensemble, and insert the activities into the compressed SDF file “vhts.sdf.gz”. 

This process should take 30 minutes. Note that we are abbreviating this screen- we limit ourselves to the 

first 2000 compounds, so that we can finish in a short time for the workshop. 

Clustering analysis of top actives 

Now let’s analyze the molecules predicted to be active. First, filter the predicted activities to a list of the 

top 1000 actives: 

bcl.exe molecule:Reorder -input_filenames vhts.sdf.gz  -sort 'MiscProperty("pred_activity_rank")' -
reverse -output vhts.sorted.sdf.gz 
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Extract the top 1000 molecules: 

bcl.exe molecule:Properties -add Index -input_filenames vhts.sorted.sdf.gz  -input_max 1000 -
output vhts.top1000.sdf.gz 

 

Now, perform a clustering analysis by moving the files into the right directory: 

cp vhts.top1000.sdf.gz  ../cluster_top_vhts_hits 

 

then go to the clustering directory: 

cd   ../cluster_top_vhts_hits 

 

and execute the following commands: 

./clean_up_molecules.sh vhts.top1000.sdf.gz   

cluster_molecules.py -m vhts.top1000_clean.sdf.gz -l 0.3 -s 0.1 -c 5 

cluster_scaffolds.sh 

 

Visualize the resulting dendrogram with the retrieved scaffolds: 

cd cluster_sdf/ 

pymol dendrogram.py 

 

Look at the individual scaffold molecules with: 

pymol scaffolds.sdf 

 

The individual molecules associated to each cluster can be found in the files 

cluster_output_*.sdf  and  cluster_output_*.scaff.sdf   

 pymol cluster_output_<cluster_number>.sdf 

and 
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cluster_output_<cluster_number>.scaff.sdf   

 

You would then select the desired scaffolds and associated compounds for purchase.  

Implementation of multi-output Support Vector Regression  

This project describes the implementation of multi output support vector regression (SVR) in the BCL. A 

summer student in the Meiler laboratory, Georg Krause, worked under the supervision of Mariusz 

Butkiewicz on this project and provided the write-up on the DVD. Multi-output regression aims at 

learning a mapping from an input feature space to a multivariate output space. The output space is 

considered a sub manifold which incorporates its geometric structure into the regression process. A novel 

technique termed locally linear transformation (LLT) is used to specify a loss function on the output 

manifold. This method uses possible correlations between the SVR outputs and is described in [231]. The 

resulting convex optimization problem is solved by a sequential minimal optimization algorithm. This 

method is described for the single output SVR in [232]. The derivation of this algorithm for the method in 

[231] will be described here.  

The derivation can be found in the MS word document on the DVD. See DVD path: /multi_output_svr 

Implementation 

Solving the sub problem 

In our implementation we decided to set ε to 0. This simplifies the computation a lot, because then the 

whole sign dependent term vanishes. We first compute the optimal solution for  ⃗  and clip it to the 

bounds. Second we use the summation constraint to compute  ⃗  and check whether its boundaries are 

violated. In case of a violation we clip  ⃗  and adjust  ⃗  using the summation constraint again. Next we 

check for violations in  ⃗  and clip it if necessary. The checking is done until both alphas fit into 

boundaries within five iterations total at the maximum. If there is still a boundary violation, we ignore the 

summation constraint and clip both alphas independent from each other. At last we update all gradients to 

the new alphas using the following equation: 
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  ⃗⃗       ⃗  (     )      ⃗  (     )   

Picking the two feature vectors i and j  

For picking the two feature vectors to optimize I use a slightly modified method from [232].   is picked so 

that (  
  (    ))

 
is maximized ignoring the elements where the corresponding alpha element already 

hits its lower(if the current element of   
  (    )   )/upper bound. If we chose an   with a large 

error it is more likely to get a large error difference corresponding to a large change in alpha. We subtract 

the current bias from the error vector, because the alphas are not to optimize in a way they compensate the 

bias. The   is picked, so that (  )  (     )
  is maximized, yielding a maximal reduction of the error 

vectors. Therefore we solve the problem for each possible j as described above. The we apply the solution 

with the j yielding maximal (  ) . This means we update the gradients and alphas.  

Get the final support vector model 

   is called a support vector if and only if  

 ⃗      ⃗      

To reduce the number of support vectors, we set the alpha elements with an absolute value smaller than a 

threshold epsilon to zero. This could be a more simple way than the epsilon term in the optimal solution. 

The prediction for a new input vector   is 

 ( )    ⃗⃗  ∑ ⃗  (    ) 

 

   

 

So we need only the betas to make a prediction. 

Explanation of variables and parameters 

In the implementation there are certain parameters used. Let us have a look at their influence here. In 

Figure 23 below you see some training data points fitted by a graph. Some of them are support vectors, so 
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they contribute to the graph. The contribution of each support vector is shown by the dotted plots. These 

are kernel functions; here we used the RBF-Kernel. The amount of influence is determined by alpha. If 

this is smaller than a threshold ε the influence is ignored in the end. The maximal possible influence is C 

or -C respectively. This is to avoid wrong predictions due to outliers. The bias b is the average error and 

therefore close to the average output and contributes as an offset. The alphas are not able and not made to 

take care of this offset. The last parameter shown in the figure gamma is specific to the RBF function and 

determines the range of influence. This should not go over the entire data set. The parameter Kappa is the 

number of nearest neighbors used to determine the coordinate systems. Set it to 1 if you want these 

coordinate systems to be identity matrices. For details about the coordinate system computation see [231]. 

 

Implementation of an auto-encoder algorithm for molecular descriptor compression 

The auto-encoder algorithm is implemented in the BCL. An example setup can be found on the appendix 

DVD.  

 

Figure 23: Explanatory schematic of variables used in multi-output SVR 

training. 
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DVD path: /autoencoder 

Deep learning allows for novel molecule encoding scheme to overcome the limitations of budget-

constrained HTS campaigns. 

QSAR modeling relies on the availability of HTS data representing the chemical space of the biological 

target [116]. The predictive accuracy of conventional QSAR modeling algorithms typically suffers from 

limited data of smaller HTS campaigns [116]. 

To address the bottleneck, we explore a novel strategy to build deep neural networks, based on stacking 

layers of denoising autoencoders (SdA). Deep learning refers to the training of multiple layers of hidden 

units in one network structure (see Aim Ia). SdAs are trained on corrupted versions of their inputs (noise) 

with the goal to recover the noise-free input from the trained hidden layer (denoising). The resulting 

algorithm is a variation of the stacking of autoencoders. It has been shown on a benchmark of 

classification problems to yield significantly lower classification error [233]. Higher level data 

representations learned in this purely unsupervised fashion help boost the performance of subsequent 

machine learning predictors. Qualitative experiments show that in contrast to ordinary autoencoders, 

denoising autoencoders are able to learn edge detectors, which are derived from natural image patches 

and enable hierarchical extraction of image determinants. Lastly, SdA abilities also allow for the inclusion 

of larger stroke detectors from digit images, a different form of image determinants [233-235]. This work 

clearly establishes the value of using a denoising criterion as a tractable unsupervised objective to guide 

the learning of higher level data representations. 

The hypothesis of this project is derived from the field of image recognition. Each layer of SdAs will be 

able to capture distinct aspects of the structural information available from drug-like small organic ligands 

in publically accessible databases. It is an unsupervised technique which relies solely on the structural 

information of small molecule ligands and thus is independent of any HTS campaign.  
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Molecule encoding is an alternative to conventional descriptor selection schemes for QSAR.  

QSAR modeling requires molecular descriptors to train a machine learning model. With the development 

and availability of new molecular descriptors, the encoding of a small molecule ligand can get complex 

and time-consuming. Current descriptor selection algorithms evaluate combinations of molecular 

descriptors in an iterative fashion. In addition, this process is dependent on the current protein target and 

has to be repeated for every new biological system. With the proposed encoding scheme, only one master 

network of SdA layers has to be trained. This scheme is independent of HTS campaigns and can be 

applied to small molecule structures of any biological system. This master SdA network is able to 

determine the relevant small molecule features and therefore circumvents the time expensive descriptor 

selection process. Subsequently, a cross-validated QSAR model can be trained based on encoded 

molecules of the SdA network. 

Molecule encoding scheme using Stacked denoising Autoencoder (SdA) 

With the recent advent of deep learning it is possible to develop more sophisticated network architectures 

suitable for supervised and unsupervised learning. The foundation of the molecule encoding scheme 

builds upon a deep learning technology called Stacked denoising Autoencoder. SdAs employ hierarchical 

extraction of essential determinants from existing molecular descriptors. Each layer in the hierarchy can 

be stacked upon each other. The training takes place in a separate step for each SdA until its input layer 

resembles the output layer (see Figure 24). The addition of noise to each input layer ensures a 

generalization ability of the SdA to prevent overfitting (memorizing). This pre-training procedure of each 

SdA is an unsupervised learning process which means no HTS association to a biological target is 

necessary. Only the molecular structure and properties are used for training each SdA layer. Thus, it is 

possible to leverage different aspects of chemical space, obtained from diverse and large public databases 

of small molecules, with each layer through dimensionality reduction. Subsequently, ligands evaluated 

through biological assay screens will be encoded using the proposed encoding scheme to develop 
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quantitative structure activity relationship (QSAR) models. These models correlate chemical structure 

(encoded ligand) with its biological activity for a specific biological target (protein).  

The development of the proposed molecule encoding scheme requires access to small organic ligand 

structures representing the largest possible chemical space. Two of the largest publically available 

databases, Pubchem [236] and Zinc [237] will be applied. Each database contains characterized chemical 

compounds, 31 and 21 million compounds respectively.  

Each available compound will be represented by molecular descriptors expressing every molecule as a 

unique numerical fingerprint. Currently, the BCL provides implementations of 784 descriptor groups 

resulting in over 7,300 descriptor values. 

Mapping of protein-ligand interactions elucidates determinants of structure-activity 

relations 

The foundation of protein-ligand interaction mapping builds upon quantitative structure activity 

relationships (QSARs) that correlate chemical structure (ligand) with its biological activity for a specific 

 

Figure 24: Schematic view of training de-noising autoencoders.  

A) Flowchart showcasing the training of one denoising autoencoder. Molecular descriptors are altered to 

introduce a noise. The corrupted input is mapped into a lower dimensional hidden layer. A reverse 

mapping process seeks to reconstruct the original input vector from the lower dimensional hidden layer. B) 

Flowchart depicts the stacking aspect of training multiple layers of SdAs.  Once a SdA layer is trained, its 

hidden layer output serves as input vector to the subsequent layer. The final layer encodes the molecule. 
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biological target (receptor) based on machine learning algorithms. Furthermore, amino acid sequence 

descriptors for receptor variants and descriptors for ligand chemotypes will be concatenated into one 

numerical fingerprint. So far, traditional ligand-based virtual screening methods encode solely ligand 

information screened against a single biological target. Screening the same set of ligands against mutated 

representations of the same receptor target will disclose specific biological activities for each compound. 

This will allow for determination of ligand specific binding site interactions and adds a new dimension to 

conventional ligand based virtual screening. 

Protein sequence and amino acid information of the receptor mutant are associated with each available 

ligand. The resulting descriptor fingerprint serves as input to machine learning algorithms that establish a 

QSAR model through the proposed consensus prediction scheme.  

The hypothesis states that trained models will allow for correlation of ligand derivatization with protein 

mutation. A proof of concept experiment involves two distinct amino acid sequence mutations through 

site-directed mutagenesis of residues affecting ligand binding and receptor function. Ligand structures 

with known activity against one or both mutations have to be available. Now, a consensus QSAR model 

can be trained to distinguish ligands that bind at binding sites with one variation or both. A possible 

starting point is a similar experiment performed in the Conn laboratory at Vanderbilt. Double-point 

mutations of the metabotropic Glutamate Receptor subtype 5 were carried out to discover negative 

allosteric modulators (NAMs). 

Further, the trained consensus QSAR models can now be applied to virtually screen external commercial 

databases (e.g. ChemBridge, ChemDiv) for potential hit compounds involving a potential binding site. A 

systematic moiety substitution of a ligand scaffold is also possible. All putative hits from this virtual 

screen can be confirmed at the Vanderbilt HTS center through dose-response experiments against all 

available receptor mutants. These mutation assays provide evidence of significant functional groups 

involved in ligand-protein binding. 
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An opposite application is to guide and prioritize experimental sequence mutations by virtual screening 

for active compounds in the presence of a specific amino acid change. The impact of the mutation 

towards the activity of ligands can be assessed and low impact binding mutations can be avoided. Both 

application strategies highlight the potential of the proposed protein-ligand interaction map. 

A protein-ligand interaction map seeks to pin-point interactions between ligand and receptor 

Every ligand – mutant receptor combination is represented as a data vector of which the amount is equal 

to the number of receptor mutations multiplied with the number of ligands. This setup ensures the activity 

association of all ligands toward all available mutations. Given a predefined ligand scaffold it is possible 

to screen modified derivatives for receptor binding activity. Changes in activity can now be related to the 

modification of the ligand in conjunction with the receptor 

mutation. Conclusions about moieties in the small molecule can 

be drawn that are crucial to specific residue binding. 

On the other hand, the systematic mutation of residues can be 

evaluated through virtual screening against the given ligand 

library as well. Therefore the impact of specific residues for 

ligand binding can be assessed. This allows the development of a 

correlations map to highlight interactions from the perspective of 

a ligand structure as well as the receptor mutation. A possible 

mapping scheme is shown in Figure 25 showing modification 

suggestions as a map on the ligand scaffold related to the 

influence of mutated residues. 

The resulting receptor – ligand map is expected to guide prospective experimental mutation studies to 

assay structural determinants for ligand binding. In addition to the systematic moiety substitution, the 

 

Figure 25: Schematic view of 

protein-ligand interaction. 

Amino acid mutations impact is 

correlated to ligand moiety 

influence shown as a 

pharmacophore map. 
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trained consensus QSAR models can now be applied to virtually screen external commercial databases 

(e.g. ChemBridge, ChemDiv) for potential hit compounds involving a particular binding site. 

Multi-output prediction QSAR model to create a small molecule prediction profile for 

mGlu1-8 

The goal of this project is to create a QSAR model to predict a small molecule activity profile involving 

mGlu receptor subtypes 1-8. The ChemBL database contains molecule information in publications 

reporting compounds with activity against various mGlu Receptors. A total of 1,008 molecules was 

identified that showed at least activity against one mGlu receptor subtype. 

A description to train a preliminary QSAR model and the protocol to acquire all 1,008 compounds with 

their associated biological activities is provided on the DVD.  

DVD path: /mglu_x_profiler 
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