613 research outputs found

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    A Dynamical System-based Approach to Modeling Stable Robot Control Policies via Imitation Learning

    Get PDF
    Despite tremendous advances in robotics, we are still amazed by the proficiency with which humans perform movements. Even new waves of robotic systems still rely heavily on hardcoded motions with a limited ability to react autonomously and robustly to a dynamically changing environment. This thesis focuses on providing possible mechanisms to push the level of adaptivity, reactivity, and robustness of robotic systems closer to human movements. Specifically, it aims at developing these mechanisms for a subclass of robot motions called “reaching movements”, i.e. movements in space stopping at a given target (also referred to as episodic motions, discrete motions, or point-to-point motions). These reaching movements can then be used as building blocks to form more advanced robot tasks. To achieve a high level of proficiency as described above, this thesis particularly seeks to derive control policies that: 1) resemble human motions, 2) guarantee the accomplishment of the task (if the target is reachable), and 3) can instantly adapt to changes in dynamic environments. To avoid manually hardcoding robot motions, this thesis exploits the power of machine learning techniques and takes an Imitation Learning (IL) approach to build a generic model of robot movements from a few examples provided by an expert. To achieve the required level of robustness and reactivity, the perspective adopted in this thesis is that a reaching movement can be described with a nonlinear Dynamical System (DS). When building an estimate of DS from demonstrations, there are two key problems that need to be addressed: the problem of generating motions that resemble at best the demonstrations (the “how-to-imitate” problem), and most importantly, the problem of ensuring the accomplishment of the task, i.e. reaching the target (the “stability” problem). Although there are numerous well-established approaches in robotics that could answer each of these problems separately, tackling both problems simultaneously is challenging and has not been extensively studied yet. This thesis first tackles the problem mentioned above by introducing an iterative method to build an estimate of autonomous nonlinear DS that are formulated as a mixture of Gaussian functions. This method minimizes the number of Gaussian functions required for achieving both local asymptotic stability at the target and accuracy in following demonstrations. We then extend this formulation and provide sufficient conditions to ensure global asymptotic stability of autonomous DS at the target. In this approach, an estimation of the underlying DS is built by solving a constraint optimization problem, where the metric of accuracy and the stability conditions are formulated as the optimization objective and constraints, respectively. In addition to ensuring convergence of all motions to the target within the local or global stability regions, these approaches offer an inherent adaptability and robustness to changes in dynamic environments. This thesis further extends the previous approaches and ensures global asymptotic stability of DS-based motions at the target independently of the choice of the regression technique. Therefore, it offers the possibility to choose the most appropriate regression technique based on the requirements of the task at hand without compromising DS stability. This approach also provides the possibility of online learning and using a combination of two or more regression methods to model more advanced robot tasks, and can be applied to estimate motions that are represented with both autonomous and non-autonomous DS. Additionally, this thesis suggests a reformulation to modeling robot motions that allows encoding of a considerably wider set of tasks ranging from reaching movements to agile robot movements that require hitting a given target with a specific speed and direction. This approach is validated in the context of playing the challenging task of minigolf. Finally, the last part of this thesis proposes a DS-based approach to realtime obstacle avoidance. The presented approach provides a modulation that instantly modifies the robot’s motion to avoid collision with multiple static and moving convex obstacles. This approach can be applied on all the techniques described above without affecting their adaptability, swiftness, or robustness. The techniques that are developed in this thesis have been validated in simulation and on different robotic platforms including the humanoid robots HOAP-3 and iCub, and the robot arms KATANA, WAM, and LWR. Throughout this thesis we show that the DS-based approach to modeling robot discrete movements can offer a high level of adaptability, reactivity, and robustness almost effortlessly when interacting with dynamic environments

    Radial Basis Function Neural Network in Identifying The Types of Mangoes

    Get PDF
    Mango (Mangifera Indica L) is part of a fruit plant species that have different color and texture characteristics to indicate its type. The identification of the types of mangoes uses the manual method through direct visual observation of mangoes to be classified. At the same time, the more subjective way humans work causes differences in their determination. Therefore in the use of information technology, it is possible to classify mangoes based on their texture using a computerized system. In its completion, the acquisition process is using the camera as an image processing instrument of the recorded images. To determine the pattern of mango data taken from several samples of texture features using Gabor filters from various types of mangoes and the value of the feature extraction results through artificial neural networks (ANN). Using the Radial Base Function method, which produces weight values, is then used as a process for classifying types of mangoes. The accuracy of the test results obtained from the use of extraction methods and existing learning methods is 100%

    Video Quality Assessment in Underwater Acoustic Networks

    Get PDF
    Fecha de Lectura de Tesis Doctoral: 23 de mayo de 2018.Las imágenes subacuáticas reciben una atención cada vez mayor por parte de la comunidad científica dado que las fotografías y los vídeos son herramientas de gran valor en el estudio del entorno oceánico que cubre el 90% de la biosfera de nuestro planeta. Sin embargo, las Redes de Sensores Submarinas deben enfrentarse al canal hostil que el agua de mar constituye. Las comunicaciones de medio rango son sólo posibles con modems acústicos de capacidades muy limitadas con tasas binarias de pico de unas decenas de kbps. En transmisión de vídeo, estas reducidas tasas binarias fuerzan una compresión elevada que produce niveles de distorsión mucho mayores que en otros entornos. Además, los usuarios de vídeo submarino son oceanógrafos u otros especialistas con una percepción de la calidad diferente a la de un grupo genérico de usuarios. Las peculiaridades descritas exigen un estudio dedicado de la evaluación de calidad de vídeo para redes submarinas. Esta tesis doctoral aborda el problema de la evaluación de calidad de vídeo y presenta contribuciones en las dos áreas principales de esta disciplina: evaluación subjetiva y evaluación objetiva. La referencia para la percepción de calidad en cualquier servicio es la opinión de los usuarios y, por tanto, un análisis de la calidad subjetiva es el primer paso en este trabajo. Se presentan el diseño experimental y los resultados de un test de acuerdo a métodos psicométricos estándares. Los participantes del test fueron científicos del océano y las secuencias de vídeo utilizadas fueron grabadas en campañas de exploración y procesadas para simular las condiciones de las comunicaciones submarinas. Los resultados experimentales muestran como los vídeos son útiles para tareas científicas incluso en condiciones de muy baja tasa binaria. Los métodos de evaluación de la calidad objetiva son algoritmos diseñados para calcular puntuaciones de calidad

    Overcoming foreign language anxiety in an emotionally intelligent tutoring system

    Get PDF
    Learning a foreign language entails cognitive and emotional obstacles. It involves complicated mental processes that affect learning and emotions. Positive emotions such as motivation, encouragement, and satisfaction increase learning achievement, while negative emotions like anxiety, frustration, and confusion may reduce performance. Foreign Language Anxiety (FLA) is a specific type of anxiety accompanying learning a foreign language. It is considered a main impediment that hinders learning, reduces achievements, and diminishes interest in learning. Detecting FLA is the first step toward reducing and eventually overcoming it. Previously, researchers have been detecting FLA using physical measurements and self-reports. Using physical measures is direct and less regulated by the learner, but it is uncomfortable and requires the learner to be in the lab. Employing self-reports is scalable because it is easy to administer in the lab and online. However, it interrupts the learning flow, and people sometimes respond inaccurately. Using sensor-free human behavioral metrics is a scalable and practical measurement because it is feasible online or in class with minimum adjustments. To overcome FLA, researchers have studied the use of robots, games, or intelligent tutoring systems (ITS). Within these technologies, they applied soothing music, difficulty reduction, or storytelling. These methods lessened FLA but had limitations such as distracting the learner, not improving performance, and producing cognitive overload. Using an animated agent that provides motivational supportive feedback could reduce FLA and increase learning. It is necessary to measure FLA effectively with minimal interruption and then successfully reduce it. In the context of an e-learning system, I investigated ways to detect FLA using sensor-free human behavioral metrics. This scalable and practical method allows us to recognize FLA without being obtrusive. To reduce FLA, I studied applying emotionally adaptive feedback that offers motivational supportive feedback by an animated agent

    Deep Learning Detected Nutrient Deficiency in Chili Plant

    Get PDF
    Chili is a staple commodity that also affects the Indonesian economy due to high market demand. Proven in June 2019, chili is a contributor to Indonesia's inflation of 0.20% from 0.55%. One factor is crop failure due to malnutrition. In this study, the aim is to explore Deep Learning Technology in agriculture to help farmers be able to diagnose their plants, so that their plants are not malnourished. Using the RCNN algorithm as the architecture of this system. Use 270 datasets in 4 categories. The dataset used is primary data with chili samples in Boyolali Regency, Indonesia. The chili we use are curly chili. The results of this study are computers that can recognize nutrient deficiencies in chili plants based on image input received with the greatest testing accuracy of 82.61% and has the best mAP value of 15.57%

    Building energy management and occupants’ behaviour-intelligent agents, modelling methods and multi-objective decision making algorithms

    Get PDF
    In the UK, buildings contribute around one third of the energy-related greenhouse gas emissions. Space heating and cooling systems are among the biggest power consumers in buildings. Thus, improvement of energy efficient of HVAC systems will play a significant role in achieving the UK carbon reduction target. This research aims to develop a novel Building Energy Management System (BEMS) to reduce the energy consumption of the HVAC system while fulfilling occupants’ thermal comfort requirements. The proposed system not only considers the occupants’ adaptations when making decisions on the set temperature, but also influences occupants’ behaviours by providing them with suggestions that help eliminate unnecessary heating and cooling. Multi-agent technologies are applied to design the BEMS’s architecture. The Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop the structure of the agents inside the system. The EDA-based agents select their optimal action plan by considering the occupants’ thermal sensations, their behavioural adaptations and the energy consumption of the HVAC system. Each aspect is represented by its relevant objective function. Newly-developed personal thermal sensation models and group-of-people-based thermal sensation models generated by support vector machine based algorithms are applied as objective functions to evaluate the occupants’ thermal sensations. Equations calculating heating and cooling loads are used to represent energy consumption objectives. Complexities of adaptive behaviours and confidence of association rules between behaviours and thermal sensations are used to build objective functions of behavioural adaptations. In order to make decisions by considering the above objectives, novel multi-objective decision-making algorithms are developed to help the BEMS system make optimal decisions on HVAC set temperature and suggestions to the occupants. Simulation results prove that the newly-developed BEMS can help the HVAC system reduce energy consumption by up to 10% while fulfilling the occupants’ thermal comfort requirements
    corecore