1,150 research outputs found

    Enabling preemptive multiprogramming on GPUs

    Get PDF
    GPUs are being increasingly adopted as compute accelerators in many domains, spanning environments from mobile systems to cloud computing. These systems are usually running multiple applications, from one or several users. However GPUs do not provide the support for resource sharing traditionally expected in these scenarios. Thus, such systems are unable to provide key multiprogrammed workload requirements, such as responsiveness, fairness or quality of service. In this paper, we propose a set of hardware extensions that allow GPUs to efficiently support multiprogrammed GPU workloads. We argue for preemptive multitasking and design two preemption mechanisms that can be used to implement GPU scheduling policies. We extend the architecture to allow concurrent execution of GPU kernels from different user processes and implement a scheduling policy that dynamically distributes the GPU cores among concurrently running kernels, according to their priorities. We extend the NVIDIA GK110 (Kepler) like GPU architecture with our proposals and evaluate them on a set of multiprogrammed workloads with up to eight concurrent processes. Our proposals improve execution time of high-priority processes by 15.6x, the average application turnaround time between 1.5x to 2x, and system fairness up to 3.4x.We would like to thank the anonymous reviewers, Alexan- der Veidenbaum, Carlos Villavieja, Lluis Vilanova, Lluc Al- varez, and Marc Jorda on their comments and help improving our work and this paper. This work is supported by Euro- pean Commission through TERAFLUX (FP7-249013), Mont- Blanc (FP7-288777), and RoMoL (GA-321253) projects, NVIDIA through the CUDA Center of Excellence program, Spanish Government through Programa Severo Ochoa (SEV-2011-0067) and Spanish Ministry of Science and Technology through TIN2007-60625 and TIN2012-34557 projects.Peer ReviewedPostprint (author’s final draft

    Full TCP/IP for 8-Bit architectures

    Get PDF
    We describe two small and portable TCP/IP implementations fulfilling the subset of RFC1122 requirements needed for full host-to-host interoperability. Our TCP/IP implementations do not sacrifice any of TCP's mechanisms such as urgent data or congestion control. They support IP fragment reassembly and the number of multiple simultaneous connections is limited only by the available RAM. Despite being small and simple, our implementations do not require their peers to have complex, full-size stacks, but can communicate with peers running a similarly light-weight stack. The code size is on the order of 10 kilobytes and RAM usage can be configured to be as low as a few hundred bytes

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201

    System software for the finite element machine

    Get PDF
    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested

    Rewriteable optical disk recorder development

    Get PDF
    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented

    Efficient Parallel Reinforcement Learning Framework using the Reactor Model

    Full text link
    Parallel Reinforcement Learning (RL) frameworks are essential for mapping RL workloads to multiple computational resources, allowing for faster generation of samples, estimation of values, and policy improvement. These computational paradigms require a seamless integration of training, serving, and simulation workloads. Existing frameworks, such as Ray, are not managing this orchestration efficiently, especially in RL tasks that demand intensive input/output and synchronization between actors on a single node. In this study, we have proposed a solution implementing the reactor model, which enforces a set of actors to have a fixed communication pattern. This allows the scheduler to eliminate work needed for synchronization, such as acquiring and releasing locks for each actor or sending and processing coordination-related messages. Our framework, Lingua Franca (LF), a coordination language based on the reactor model, also supports true parallelism in Python and provides a unified interface that allows users to automatically generate dataflow graphs for RL tasks. In comparison to Ray on a single-node multi-core compute platform, LF achieves 1.21x and 11.62x higher simulation throughput in OpenAI Gym and Atari environments, reduces the average training time of synchronized parallel Q-learning by 31.2%, and accelerates multi-agent RL inference by 5.12x.Comment: 10 pages, 11 figure
    • …
    corecore