
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322414782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


8 

PLC-Based Implementation of Local Modular 
Supervisory Control for Manufacturing Systems 

André B. Leal1, Diogo L. L. da Cruz1,3 and Marcelo da S. Hounsell2 

1Department of Electrical Engineering, Santa Catarina State University 
2Department of Computer Science, Santa Catarina State University 

3Pollux Automation 
Brazil 

1. Introduction 

Developing and implementing control logic for automated manufacturing systems is not a 
trivial task. Industrial production lines should be able to produce many types of products 
that go through a growing number of processes given the needs of the market, and there is 
an ever growing flexibility demand because of it. To keep up with it a faster way to develop 
control logic automation for the production lines is required. And this should be done in 
such a way to easy development and to guarantee that the control is correct in terms of 
making the system to behave as it should. To this end, the use of formal modelling tools 
seems to help raise the abstraction level of specifying systems’ behaviour at the same time 
that it provides ways to test the resulting model. 

The Supervisory Control Theory (SCT) of Ramadge and Wonham (1987, 1989) is an 
appropriate formal tool for the control logic synthesis of automated systems because it 
ensures the achievement of an optimal control logic (minimally restrictive and nonblocking), 
and that meets control specifications. Regardless of its advantages for automated 
manufacturing systems control and troubleshooting, this theory and its extensions have not 
been broadly used in industrial environments so far. The main reason for this resides in 
some difficulties that exist in dealing with complex problems. According to Fabian and 
Hellgren (1998) another important reason is the difficulty in implementing a pragmatic 
solution obtained from SCT theoretical result, i.e., bridging practice and theory. 

This chapter presents a methodology, named DECON9, that aims to reduce the gap 
between this promising theory and real world applications, i. e., it presents a 
methodology for the implementation of the SCT into Programmable Logic Controllers 
(PLCs). The local modular approach (Queiroz & Cury, 2000a, 2000b) is used for the 
supervisors’ synthesis and the implementation in PLC is performed in the ladder diagram 
language. Local Modular approach is used because systems of greater complexity that 
have a big amount of machines (and then, events) usually can be modelled as many 
concurrently interacting and simpler subsystems. 

PLC implementation of supervisory control was also discussed in (Ariñez et al., 1993; 
Lauzon, 1995; Leduc & Wonham, 1995; Leduc, 1996; Qiu & Joshi, 1996; Lauzon et al. 1997; 
Fabian & Hellgren, 1998; Dietrich et al., 2002; Hellgren et al., 2002; Liu & Darabi, 2002; Music & 

www.intechopen.com



 
Manufacturing System 

 

160 

Matko, 2002; Queiroz & Cury, 2002; Chandra et al., 2003; Hasdemir et al., 2004; Manesis & 
Akantziotis, 2005; Vieira et al., 2006, Morgenstern & Schneider, 2007; Noorbakhsh & Afzalian 
2007a&b; Afzalian et al., 2008; Hasdemir et al., 2008; Noorbakhsh, 2008; Silva et al., 2008; Leal 
et al., 2009; Possan & Leal, 2009; Uzam et al., 2009). In most of these works the monolithic 
approach (Ramadge & Wonham, 1989) for the supervisors’ synthesis is used, in which a single 
and usually large supervisor is computed to control the entire plant. According to (Queiroz & 
Cury, 2002), this approach is not adequate for most real problems because they involve a large 
number of subsystems. In order to overcome this problem, in some works the synthesis of 
supervisors is performed according to the local modular approach (Queiroz & Cury, 2000a), 
which reduces the computational complexity of the synthesis process and the size of 
supervisors by exploiting specifications modularity and the decentralized structure of 
composite plants. Thus, instead of a monolithic supervisor for the entire plant, a modular 
supervisor is obtained for each specification, taking into account only the affected subsystems.  

In almost all these work the implementation is held on ladder diagram, which is a well-known 
PLC programming language in industrial environments. But most existing proposals can only 
tackle one event per PLC scan cycle, which represents a problem when handling large scale 
plants (Vieira et al. 2006). Just a few of those proposals, at the best situation, can process one 
event per supervisor at each PLC scan cycle, a situation that can certainly be improved. Finally, 
just a few of them proposed solutions for the broad spectrum of problems that arise when 
implementing supervisory control in a PLC-based control system, as will be detailed later. 

A contribution of the DECON9 methodology is that it allows dealing with various events at 
each PLC scan cycle, regardless if these events are controllable (can be disabled by control 
action) or not. Moreover, DECON9 provides a standardized approach and solution to many 
problems that arise while implementing SCT into PLCs. 

The remaining of this chapter is organized as follows: In section 2, basic notations of the 
Supervisory Control Theory (SCT) for Discrete Event Systems (DES) control are introduced 
altogether with Monolithic and Local Modular approaches; Section 3 details the problems 
that arise while implementing SCT into a PLC; Section 4 presents the general assumptions 
behind the proposed methodology as well as its step-by-step detailed functioning; Section 5 
presents a case study and how it can be solved by the methodology, and; Finally, section 6 
concludes this chapter. 

2. Supervisory control of discrete event systems 

In the solution of manufacturing automation problems through the Supervisory Control 
Theory (SCT), the shop floor plant can be modelled as a Discrete Event System (DES) and 
finite-state automata are used to describe plant, specifications and supervisors. In this 
section, we introduce basic SCT notations. More details can be found in (Wonham, 2011) 
and in (Cassandras & Lafortune, 2008). 

2.1 Discrete event systems 

A Discrete Event System (DES) is a dynamic system that evolves in accordance with the 
abrupt occurrence of physical events at possibly unknown irregular intervals (Ramadge & 
Wonham, 1989). Application domains include manufacturing systems, traffic systems, 
software engineering, computer networks and communication systems, among others. 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

161 

According to (Cassandras & Lafortune, 2008) and (Ramadge & Wonham, 1987, 1989) the free 
behaviour of a DES can be described through automata. An automaton can be represented 
by the 5-tuple 0( , , , , )mQ q Q , where Q is the set of states, Σ is the alphabet of events, 

: Q Q    is the (partial) state transition function, 0q  is the initial state and mQ Q  is 
the set of marked states (Vieira et al., 2006). Σ* is used to denote the set of all finite length 
sequences of events from Σ. A string (or trace) is an element of Σ* and a language is a subset 
of Σ*. A prefix of a string s is an initial subsequence of s, i.e. if r and s are strings in Σ*, u is a 
prefix of s if ur s . For a language L, the notation L , called the prefix-closure of L, is the set 
of all prefixes of traces in L. L is said to be prefix-closed if L = L  (Afzalian et al., 2010). 

Consider that an automaton G represents the free behaviour of the physical system. Two 

languages can be associated with it: the closed behaviour L(G) and the marked behaviour 

Lm(G). The language L(G) is the set of all sequence of events that can be generated by G, from 

the initial state to any state of G. Thus, L(G) is prefix-closed because no event sequence in the 

plant can occur without its prefix occurring first. It is used to describe all possible behaviours 

of G. The language Lm(G) ⊆ L(G) is the set of all sequence of events leading to marked states of 

G, each of them corresponding to a completed task of the physical system. A DES represented 

by G is said to be nonblocking if ( ) ( )
m
L G L G , i.e., if there is always a sequence of events 

which takes the plant from any reachable state to a marked state (Afzalian et al., 2010). 

The concurrent behaviour of two or more DESs is captured by the synchronous composition 
of them. Thus, for two DES, G1 and G2, the synchronous composition is given by 1 2G G G . 
This expression can be generalized for any number of DES by i I iG G  . 

The automata can also be represented by transition graphs (see Figure 1), where the nodes 
represent the states and the arcs labelled with event names represent transitions. Usually, 
the initial state is identified by an ingoing arrow whereas a marked state is denoted by 
double circles. 

2.2 Supervisory control theory 

In the Ramadge & Wonham (1989) framework, the set of plant events  is partitioned into 

c u    , two disjoint sets where c  is the set of all controllable events and u  is the 
set of all uncontrollable events. An event is considered to be controllable if its occurrence 
can be disabled by an external agent (named supervisor), otherwise it is considered 
uncontrollable. The necessary and sufficient conditions for the existence of supervisors are 
established in (Wonham, 2011). 

A supervisor, denoted S, determines the set of events to be disabled upon each observed 
sequence of events. It is a map from the closed behaviour of G to a subset of events to be 
enabled S : L(G) → 2Σ. The controlled system is denoted by S G  (S controlling G) and is 
modelled by the automaton G S . The closed and the marked behaviour of the system under 
supervision are respectively represented by the following languages: ( ) ( )L S G L S G  and 

( ) ( ) ( )m mL S G L S G L G  . 

Further, S is said to be nonblocking if ( ) ( )mL S G L S G , i.e., if each generated trace of the 
controlled plant can be extended to be a marked trace of the controlled plant. Consider that 
a language ( )mK L G  represents a control specification over the plant G. K is said to be 
controllable with respect to G (or simply controllable) if its prefix-closure K  doesn’t change 

www.intechopen.com



 
Manufacturing System 

 

162 

under the occurrence of uncontrollable events in G. In other words, K is controllable if and 
only if ( )uK L G K   . Given a discrete event plant G and a desired nonempty specification 
language ( )mK L G , there exists a nonblocking supervisor S such that ( )mL S G K  if and 
only if K is controllable with respect to G (Wonham, 2011). 

However, if K is not controllable, the supremal controllable sublanguage of K with respect to G, 
denoted by ( , )SupC K G , must be computed. In this case ( ) ( , )mL S G SupC K G  (Ramadge & 
Wonham, 1989).  

In order to differentiate the controllability of events in the graph representation of automata, 
usually the state transitions due to controllable events are indicated by a short line drawn 
across the transitions (Chandra et al. 2003). Figure 1 represents an automaton, where the 
event A is controllable and the event B is uncontrollable. 

 

Fig. 1. A graph representation of an automaton 

2.3 Monolithic approach 

In the monolithic approach for the supervisors’ synthesis (Ramadge & Wonham, 1989), the 
objective is to design a single supervisor that will coordinate the plant behaviour. Thus, all 
subsystems models iG  (where i is related to the number of subsystems), are composed in 
order to compute an automaton (generator) G that represents the free behaviour of the entire 
plant. In the same way, all control specifications jE  (where j is related to the number of 
control specifications) are composed into a global control specification E. From these 
models, one obtains the closed loop desired behaviour (known as target language) 
computing K G E  and, consequently, obtaining a single supervisor S that marks the 
supremal controllable sublanguage of K, that is, ( ) ( ) ( , )m mL S L S G SupC K G  .  

According to (Queiroz & Cury, 2000a), in the monolithic approach the number of states of G 
grows exponentially with the number of subsystems. So this approach has the following 
drawbacks: the amount of computational effort when performing asynchronous 
composition of several automata, and; the use of supervisors with too many states in control 
platforms (usually a PLC) may generate extensive programs, where understanding, 
validation and maintenance will therefore, become difficult. In some cases the size of the 
program can render them unfit to be used in certain platform, either because of the storage 
or processing capacity. 

In order to resolve these difficulties, Queiroz & Cury (2000a) propose using the local 
modular approach, as introduced in the next subsection. 

2.4 Local modular approach 

This approach is an extension to the monolithic approach and explores both the modularity 
of the plant and of the control specifications. It allows determining rather than a single and 
usually large supervisor, many local supervisors whose joint action guarantees the 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

163 

attendance of all the control specifications. Figure 2 illustrates the structure of local modular 
supervisory control for two supervisors. 

 

Fig. 2. Local modular supervisory control architecture (Queiroz & Cury, 2002) 

In this approach, the physical system behaviour is modelled by a Product System (PS) 

representation (Ramadge & Wonham, 1989), i.e., by a set of asynchronous automata 

0( , , , , )
ii i i i miG Q q Q  , with {1,2,..., }i N n  , all of them having disjoint alphabets i . In 

turn, each specification imposed by the designer is represented by an automaton Ej with an 

alphabet j  ,  j  {1,..., m}, where m is the number of specifications. For each specification 

Ej a local plant Glocj is obtained, which is computed by the synchronous composition of all 

subsystems that share some events with the associated specification. 

After determining all local plants it should be calculated the so-called local specification, 
which consists of performing synchronous composition between a given specification with 

its own local plant, i.e., 
j j

loc j loc
K E G . Thus, the supremal controllable local sublanguages 

of 
jlocK , denoted by ( , )

j jloc locSupC K G , can be computed. Finally, it is possible to perform the 

synthesis of a local supervisor 
jlocS  for each specification defined in the project. If at least 

one local supervisor disables the occurrence of an event, then the occurrence of this event is 
disabled in G (Vieira et al., 2006). To ensure that the system under the joint action of local 
supervisors is nonblocking, it should be guaranteed that the supervisors are nonconflicting, 

what is verified when the 1 1( ) ( )
j j j j

m m
j m loc loc j m loc locL S G L S G   test holds. According to 

(Queiroz & Cury, 2000b), this condition ensures that the joint action of local supervisors is 
equivalent to the action of a monolithic supervisor that addresses all specifications 
simultaneously. Some computational tools can be used to assist in the synthesis of 
supervisors. For each one of them the models of subsystems and control specifications 
should be introduced in order to obtain synthesized supervisors, automatically. Among 
these tools IDES (Rudie, 2006), TCT (Feng & Wonham, 2006) and “Grail for Supervisory 
Control” (Reiser et al., 2006) can be mentioned. 

3. Supervisory control implementation 

3.1 Problems 

According to (Fabian & Hellgren, 1998), “the supervisor implementation is basically a matter of 

making the PLC behave as a state machine”. However, this is not trivial task and can lead to 

many problems (Fabian & Hellgren, 1998): 

Causality: SCT assumes that all events are spontaneously generated by the plant and that 
supervisors should only disable events generated by the plant. However, controllable events 

www.intechopen.com



 
Manufacturing System 

 

164 

on practical applications are not spontaneously generated by the physical plant, but as 
responses to given PLC commands. Thus, for implementation purposes, "who generates 
what?" must be answered. 

Avalanche Effect: occurs when a change on the value on a given PLC input signal is 
registered as an event that makes the software jump over an arbitrary number of states 
within the same PLC scan cycle. This may occur particularly if a specific event is used to 
trigger many successive state transitions, thus producing an avalanche. 

Simultaneity: Due to the cyclical nature of the PLC processing in which input signals 
readings are performed only at the beginning of each scan cycle, the occurrence of 
uncontrollable events from the plant is recognized by the PLC once there are changes in the 
input signals values. Therefore, if in between successive scan cycles two or more signals 
change, they will all be recognized as simultaneous uncontrollable events regardless of their 
exact timing. As a result, the PLC is unable to recognize the exact order of uncontrollable 
events that happen in between scan cycles. 

Figure 3 shows an automaton that is sensitive to the sequence of B and C events. Notice that 
depending on the order B and C events happens, the control decision is different, which 
highlights the problem that if B and C are recognized altogether in the same scan cycle, we 
would not be able to determine the actual state and, what should be the control action: E or F.  

In order to avoid the simultaneity problem, the system must present the “interleave 
insensitivity” property (Fabian & Hellgren, 1998), which requires that after any interleaved 
uncontrollable events the “control decision” must necessarily be the same. 

 

Fig. 3. Automaton that attempts to distinguish between the interleaving of events 

Choice Problem: the supervisors obtained by the SCT are required to be “minimally 
restrictive”, which means that the supervisors might provide alternative paths for the plant 
to choose from. Often a supervisor presents more than one possible controllable event from 
a single state. Thus, before producing a signal-change in the PLC outputs it may have to 
choose only one among them because according to Fabian & Hellgren (1998), generating 
more than one controllable event in a scan cycle can be contradictory and catastrophic.  

Inexact Synchronization: during the program execution a change in any PLC input signal 
may occur and, this change will only be recognized at the beginning of the next scan cycle. 
The control reasoning is always performed on old frozen data. Therefore the communication 
between the PLC and the plant is subject to delays due to periodic reading of the input 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

165 

signals (Balemi, 1992). This inexact synchronization (Fabian & Hellgren, 1998) can be a 
problem when a change in a PLC input signal invalidates a control action (the choice made 
by the program, which corresponds to the generation of a controllable event). 

3.2 Related work 

Many researches have dealt with producing PCL programs from TCS. Some attempts 
(Fabian & Hellgren, 1998) did not propose a methodology but focused on solving particular 
situations which is far from a generic approach such as (Hasdemir et al., 2008). In the 
following, we briefly discuss some of these proposals.  

In order to solve the choice problem, the solutions adopted in the literature follow the idea that 
for practical PLC implementation purposes, a deterministic controller must be statically 
extracted from the supervisor. Fabian & Hellgren (1998) also show that if a choice is not taken, 
the sequential execution of the program within the PLC will choose and the chosen transition 
will always be the same in a particular state according to the ordering of the rungs.  

Moreover, Malik (2002) shows that depending on the choice taken (or deterministic 
controller extraction) the controlled behaviour may be blocking, even when the supervisor is 
nonblocking, which in that work is named determinism problem. In (Dietrich et al., 2002) three 
properties are given which, when satisfied, ensure that any controller for the system is 
necessarily nonblocking. In (Malik, 2002) a more general property is introduced and an 
algorithm is given which checks whether every deterministic controller generated from a 
given model is nonblocking. However, no controller can be constructed from those works in 
case the DES model does not satisfy these conditions. In particular, a valid controller may 
exist, even if the conditions of (Malik, 2002) and (Dietrich et al., 2002) do not hold. But, in 
(Morgenstern & Schneider, 2007) another approach to generate deterministic controllers 
from supervisors is presented and a property named forceable nonblocking is introduced. 

In (Queiroz & Cury, 2002), the authors introduce a general control system structure based 
on a three level hierarchy that executes the modular supervisors’ concurrent action and 
interfaces the theoretical model with the real system. They also propose a ladder-based PLC 
implementation of TCS but do not discuss the above mentioned problems. 

In (Hasdemir et al., 2004) the authors propose the use of two bits for each state in order to 
solve the avalanche effect, but none of the other problems are discussed. In addition, only a 
single event is processed per supervisor at each PLC scan cycle. 

Vieira (2007) presents a methodology that considers some of the problems but the program 
is structured as Sequential Function Charts (SFC), which is not so widespread among PLC 
programmers so far. Also, this methodology requires to change the automaton model in 
order to remove self-loops and there is no solution to the choice problem as well. 

Most of the proposals found in the literature (Leduc, 1996; Hellgren et al., 2002; Queiroz & 
Cury, 2002) implements SCT in the ladder language. They have the same drawback: they 
deal with one single event per scan cycle. Thus, if between two scan cycles “n” changes 
occur in the PLC inputs, the program will take “n” scan cycles to deal with them. The best 
proposals so far handle one event per supervisor at each PLC scan cycle. This constraint 
help ensure existing approaches to deal with the avalanche effect and the choice problem 
(determinism problem). However, in this way the supervisor’s update rate and actions will be 
lower than that obtained via traditional solution, without the use of the SCT.  

www.intechopen.com



 
Manufacturing System 

 

166 

The related work presented above shows that a ladder-based PLC complete methodology 
that solves recurring problems on implementing TCS supervisory control is still missing. 
Below we present a methodology that fills this gap. 

4. DECON9 methodology  

This section presents DECON9 (which comes from the main idea: DEcomposing the 
CONtrol Implementation DEpending on the CONtrolability of the events), a nine steps 
ladder-based PLC implementation of SCT supervisory control methodology that treats 
multiple events in the same scan cycle and also solves the avalanche effect and the choice 
problem. The methodology was inspired by the work of Queiroz & Cury (2002) but the 
Product System (PS, the asynchronous sub-plant models) and supervisors’ implementations 
are decomposed into blocks of events according to their controllability. 

At the beginning of each PLC scan cycle, all signal changes in the PLC inputs are registered 
as uncontrollable events in the PS level, and state transitions due these events are processed 
in the PS automata. Immediately after that, the supervisors also perform the state transitions 
due uncontrollable events. In this way the treatment of uncontrollable events are prioritized, 
and PS and supervisors are maintained in synchronization with the plant. 

From the current state of the supervisors all events that are still disabled are verified 
through a disabling map. Thus, if at least one local supervisor disables a certain event, then 
the occurrence of this event is globally disabled. Thereafter, from the list of non-disabled 
events the choice problem (determinism problem) is inferred. If there is more than one 
enabled event in a current local supervisor state an event is randomly selected. In opposition 
to the other proposals in which a deterministic controller is statically extracted out of the 
supervisor (offline procedure) before being implemented, in our methodology the 
supervisors are fully implemented and the decisions on which controllable event may be 
executed are dynamically performed on the fly (during the program execution). So all 
alternative paths in the supervisor are preserved and the system behaviour under 
supervision is ensured to be nonblocking. 

All enabled controllable events which are likely to occur in the plant are generated in the PS 
and the states are updated in the subsystems and supervisors models. Finally, these events 
are mapped to PLC outputs and another scan cycle begins.  

Notice that the coherence of control actions is guaranteed because before defining the set of 
disabled events and generating the controllable events in the PS, the states of the subsystems 
and supervisors are all updated (this means that the supervisors know in which state they 
are in and which events are enabled). 

4.1 Solving the avalanche effect: Damming  

To avoid the avalanche effect the methodology indicates to use two auxiliary memories for 
each uncontrollable event: the first one is used to store the events generated by the plant 
and; the second is used to enable PS and supervisors to transit states. Every time the second 
memory is used, it is reset (deleted).  

In this way, an event is used only once and multiple transitions are hold up. In any case the 
initial state of the event is required, the first memory can be used. As long as the PS is 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

167 

composed of asynchronous subsystems, once it is updated due to a given uncontrollable 
event, this information is not used any more until this same event is generated by the plant.  

However, the information that a given uncontrollable event is active can be used 
somewhere in de program, especially to update supervisors states, once an uncontrollable 
event can be part of many supervisors simultaneously. Therefore, it should be possible to 
recover all information regarding uncontrollable events generated by the plant before 
updating supervisors. That’s the reason for the second auxiliary memory. 

4.2 Solving the choice problem: Random choice 

To deal with the choice problem, one should analyse each supervisor at a time, to look after 
states where the problem may occur and which events are involved in each case. The 
simpler case is when there are only two controllable events to choose from, but situations 
involving a handful of choices are not rare in real applications. Figure 4 presents a flowchart 
for dealing with the choice problem. It helps identifying corresponding states and events.  

 

Fig. 4. A flowchart to identify a possible choice problem 

www.intechopen.com



 
Manufacturing System 

 

168 

To solve the choice problem, states that present multiple control alternatives need to be 

identified. But, if just after the disabling routine more than one controllable event is enabled at an 

active state, a routine is called that performs a random selection between pairs of these events. 

Randomness happens because an auxiliary memory is used to help perform the selection. This 

memory changes state at every scan cycle and, because there is no deterministic way to predict 

the number of scan cycles before the choice problem occurs, it acts as if it is random. 

4.3 Solving simultaneity and inexact synchronization: Hardware interruption 

For the simultaneity and inexact synchronization problems the solution adopted is the use 
of hardware interruption. Then, the uncontrollable events that may cause these problems 
must be associated with that type of PLC input. Thus, when a change in one of these PLC 
inputs occurs, the program is interrupted and the event is registered at the moment of its 
occurrence. It is important to notice that many PLCs do not have this kind of input and, in 
that case, there is no particular solution in DECON9.  

It should be pointed out that these are not problems that arise exclusively while 
implementing SCTs into PLCs; they could happen in any given conventional approach that 
did not even use SCTs. Nevertheless, it can be said that an advantage of using SCTs is that 
these problems can be identified and we could be aware of them at the very beginning stage 
of designing the control system. On conventional approaches however, they can only be 
identified, if ever, after an extensive trial-and-error validation experiments. 

On the other hand, not all systems’ models will present this kind of problem. Thus, for the 
local modular supervisory control structure to be implemented without such problems the 
model must abide to some properties: 

 To be sure that no problem regarding the "inability to identify event’s order" problem 
will happen, it should be ensured that all automata that model every supervisor show 
the "interleave insensitivity" property (Fabian & Hellgren, 1998); 

 Complementary, to be sure that no problem regarding "inexact synchronization" will 
happen, it should be ensured that the resulting language from every supervisor’s 
automata, and their corresponding supervisors, show the "delay insensibility" (Balemi 
& Brunner, 1992). 

5. DECON9 methodology step-by-step 

This section will detail all nine steps of DECON9 methodology. DECON9 organizes the 
resulting program as a set of subroutine calls for the sake of better understanding, code 
reuse and reduction and, easy maintenance. Subroutine calls is a common feature available 
in almost every PLC.  

Ten subroutines are created to fulfil all steps of DECON9 and they must follow a specific 
order. Figure 5 presents a complete flowchart where one can see all subroutine calls on the 
left and all nine steps on the right. It should be noticed that the third and fourth steps deal 
with uncontrollable events and the fifth to eighth steps deal with controllable ones. Also, 
"Make Mx.0 = Mx.1" routine is called twice for every scan cycle. 

First step is to be performed at the very first scan cycle only because it sets initial states of all 
auxiliary memories that store the initial state of all supervisors and PS subsystems. The 
remaining states are reset.  

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

169 

Second step reads all PLC inputs and identify events coming from the plant according to 
signal changes that corresponds to uncontrollable events. 

Third step promotes the state transitions for the whole PS altogether with all just identified 
uncontrollable events. For this end, only transitions belonging to PS that involves 
uncontrollable events are transited. At this point it should be reminded that each event 
transition performed produces the information on the event to be erased in order to avoid 
the avalanche effect. 

 

Fig. 5. Complete flowchart of the main routine 

During the fourth step all supervisors must perform their state transitions considering 
uncontrollable events (and only these). The structure of the PLC program to be 
implemented for supervisors is the same as previously used for the PS system.  

Because the information that a given event was active was erased during the transitions of 
the PS system, before updating the supervisors, the information of which uncontrollable 
events were generated by the plant must be recovered. For this end, all uncontrollable 
events use a pair of auxiliary memories: one of them to store which events were generated 
by the plant and the other is used for state transition and is discarded immediately after. 

As a consequence, the methodology gives priority to uncontrollable events but do not 
neglect the synchronization of PS and supervisor states with the physical plant, therefore 
avoiding the avalanche effect. 

The fifth step do not differ from what was proposed by Queiroz & Cury (2002) where, from 
the current state of each supervisor, the events disabled by any supervisor is disabled by the 
whole set of supervisors. 

www.intechopen.com



 
Manufacturing System 

 

170 

Sixth step starts off taking into account the status of all supervisors and a list of all still 
enabled controllable events. From these, if any supervisor shows the choice problem, it is 
resolved at this step. The program structure to solve this problem depends on the number of 
choices available (as presented earlier) but if no supervisor presents this problem, the sixth 
step does not produce any code. 

As for the seventh step, it relates to the generation of controllable events that were not 
disabled beforehand and could possibly occur on the plant. This event generation is done at 
the PS level and is followed by the PS state transitions update due to the just generated 
events. Therefore, step seven is responsible for all state transitions related to PS´s 
controllable events and completing the implementation of the PS in the PLC. 

Eighth step updates all controllable events generated in preceding step in all supervisors. 
Therefore, the remaining transitions not dealt with at the third step are done here 
completing the implementation of all supervisors in the PLC. 

Thus, as a result of the last two steps, even before a physical control at the PLC output is 
issued due to controllable events, the PS and supervisors will be anticipating the state of the 
physical plant.  

It should be noticed that there is also the possibility of the avalanche effect problem for 

controllable events. However, DECON9 establishes no particular procedure to deal with them 

because it is understood that in a practical application this problem will not occur. In any case, 

if it ever happens, it can be treated the same way it was done for uncontrollable events. 

Ninth, and last step, sends controllable events generated by the control logic to the physical 
plant. This is done by mapping events to specific drives at the PLC outputs. This action 
generates new events from the physical plant and another scan cycle begins. 

6. Case study 

In order to illustrate DECON9, a complete solution for supervisory control problem is 
presented. The case study covers the plant and specifications modelling, the synthesis of 
supervisors, up to the coding of the control logic in ladder, ready to be implemented in a PLC. 

6.1 Description of the physical system 

The problem to be studied consists of a transfer line with six industrial machines MX (where 
X = 1,..., 6) connected by four buffers BY (where Y = A, B, C, D), capable of storing only one 
part, as shown in Figure 6. This problem was studied by Queiroz & Cury (2000a) and was 
chosen because it produces simple automata, is easy to understand, is fairly possible to 
occur as part of bigger layouts and presents some of the problems DECON9 deals with. 

 

Fig. 6. Industrial transfer line case study 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

171 

Start operation of the machines are controllable events, and the end operation are 
uncontrollable events. The transfer line should work in order to transport the parts 
through the machines, but a machine can’t start operation if there is no part in its input 
buffer. Since the machines M1 and M3 have no input buffer, it should be considered that 
there will always be parts available for these machines. Similarly, M6 can release as many 
parts as it is capable of producing.  

6.2 Plant modelling 

Table 1 presents a list of events associated with the operation of each machine as well as the 
type of event according to its controllability, the description of the event and, which PLC 
input (I) or output (Q) it is associated with. 

DEVICE EVENT EVENT TYPE DESCRIPTION I/O 

Machine 1 
A1 Controllable Machine 1 start operation  Q0.0 

B1 Uncontrollable Machine 1 stop operation I0.0 

Machine 2 
A2 Controllable Machine 2 start operation  Q0.1 

B2 Uncontrollable Machine 2 stop operation I0.1 

Machine 3 
A3 Controllable Machine 3 start operation  Q0.2 

B3 Uncontrollable Machine 3 stop operation I0.2 

Machine 4 
A4 Controllable Machine 4 start operation  Q0.3 

B4 Uncontrollable Machine 4 stop operation I0.3 

Machine 5 
A5 Controllable Machine 5 start operation  Q0.4 

B5 Uncontrollable Machine 5 stop operation I0.4 

Machine 6 
A6 Controllable Machine 6 start operation  Q0.5 

B6 Uncontrollable Machine 6 stop operation I0.5 

Table 1. Machine-related events for the case study  

The behaviour of each Mx (where x = 1, .., 6) machine is represented by a Gx automaton 
shown in Figure 7. Each machine has only two states: in the state 0 the machine is stopped, 
waiting to work, and the state 1 the machine is working on a part. According to Table 1, the 
start operation is a controllable event Ax, and the stop operation is uncontrollable event Bx. 

 

Fig. 7. GX automaton for each machine 

It is important to observe that passive devices need not be modelled, i.e., devices that don’t 
have proper events, such as the buffers in the transfer line, for instance.  

www.intechopen.com



 
Manufacturing System 

 

172 

6.3 Control specifications modelling 

Control specifications are models that describe the desired behaviour for the closed loop 

system.  

The automaton presented at the left-side of Figure 8, shows the control specification of the 

buffers to avoid their overflow and underflow. It represents the working specification of BA 

if x = 1, BB if x = 3 and, BD if x = 5. For all buffers, state 0 represents an empty buffer while 

state 1 represents a full buffer. The specification represented by the E automaton at the right-

side of Figure 8 prevents the BC buffer overflow and underflow. BC will be full (state 1) if 

either B2 or B4 events occur and will be emptied (state 0) if an A5 event happen. Therefore, 

machine M5 will only be able to start operation after machine M2 or M4 produce a part in 

their output buffers. Once a part is deposited on a buffer, another part can only be deposited 

after a subsequent machine start operation (which signals that it collected a part from the 

buffer). Note that randomness must be guaranteed to prevent the machine M5 from working 

with parts coming from only one of M2 or M4 machines. 

              

Fig. 8. "E" specifications for BA, BB and BD, buffers (on the left) and Bc (on the right) 

6.4 Synthesis of local modular supervisors 

From the devices (Gx) and operating specifications (EY) models, a synchronous composition 
between these models must be performed (as required by Queiroz & Cury, 2000b). 

Firstly, you must determine the Product System (PS). To do this, the synchronous 
composition of all sub-plants that present common events should be performed. It should be 
looked for the biggest amount of asynchronous subsystems possible. For the present case 
study no common events between any sub-plants exist, therefore the models previously 
presented are the set of subsystems of PS. 

Then the set of local plants must be determined. To do this, a synchronous product 

between the subsystems that are affected directly or indirectly by a particular specification 

must be done. 

The most practical way to identify common events is through a table, like Table 2, so the 
local plants (those that share specifications) are: 1 2locAG G G , 3 4locBG G G , 

2 4 5locCG G G G  and 5 6locDG G G . From the common events between specifications and 
sub-plants analysis, it should be verified if some specification can be grouped together. For 
the present case study this grouping does not occur. 

Following, a synchronous composition of local plants with the specifications should be 
performed to generate local specifications: locA locA AK G E , locB locB BK G E , 

locC locC CK G E , and locD locD DK G E . 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

173 

Finally, the maximum controllable sublanguage of locYK  is calculate, which is denoted 
( )locY locYSupC K G , where Y = {A, B, C, D}. The results are the local supervisors: SlocA, SlocB, 

SlocC and SlocD, that are presented in Figure 9 where the left side shows the supervisors SlocA if 
z=1, SlocB if z=3 and SlocD if z=5 and; at the right side the SlocC supervisor is shown. 

 
M1 M2 M3 M4 M5 M6 

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 

EA  X X          

EB      X X      

EC    X    X X    

ED          X X  

Table 2. Common events between sub-plants and specifications 

 

Fig. 9. Local modular supervisors 

However, it is necessary to ensure the local modularity of local supervisors altogether so the 
joint action of all supervisors is nonblocking, as demonstrated by Queiroz & Cury (2000b). 
To verify local modularity, the synchronous composition of all local supervisors must be 
performed, as follows: locA locB locC locDS S S S S . The resulting automaton from this 
composition should be checked for blocking states. If no blocking states can be found, then it 
can be said that local supervisors are modular to each other. 

In order to reduce the amount of memory used in the implementation of these supervisors 
some tools to reduce the supervisors, these tools keep the control action that disable 
controllable events, but the supervisors lose information about the plant (Su & Wonham, 
2004). However, as the product system will be implemented together with supervisors in the 
PLC, the information that was lost by reducing the supervisors will be preserved in the 
product system. Figure 10 shows the same supervisors of Figure 9, but in reduced form 
where the left-side show the SlocA (if z=1), SlocB (if z=3) and SlocD (if z=5) supervisors, and the 
SlocC supervisor is presented at the right-side. 

www.intechopen.com



 
Manufacturing System 

 

174 

 

Fig. 10. Reduced supervisors automata 

6.5 Following DECON9´s methodology 

a. Main Routine  

To easy understand, the PLC program is organized as a main routine that calls subroutines 
for every single block in the flowchart of Figure 5. Figure 11 shows DECON9’s main routine. 
The sequence of calls should be followed in such a way that this main routine works like a 
template for all systems. Therefore, there will be 10 (ten) subroutines that will be detailed 
following. Notice that some abbreviations were considered in order to simplify the PLC 
code. Thus, SC is the abbreviation for SlocC and Sc.0 means state 0 of Supervisor SC. Moreover, 
dAx is used to indicate the disabling of the Ax event. Thus, in Figure 11 dA2 and dA4 are 
used to indicate the disabling of A2 and A4, respectively.  

 

Fig. 11. DECON9 main routine 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

175 

Figure 12 shows the subroutines in the order they will be called by the main routine. In 
order to facilitate understanding, the code for each subroutine is shown just below the line 
that promotes the corresponding call. Each of the subroutines is presented in sequence. 

 

Fig. 12. PLC implementation for the case study 

www.intechopen.com



 
Manufacturing System 

 

176 

b. State Initialization 

The first subroutine initializes all states of the Product System (PS) and supervisors. Thus, 
the memory that corresponds to the initial state of all automata is set to 1. Remaining 
memories that represents all other states are set to 0. This should be done only on the very 
first scan cycle (that’s why a memory flag called "first check" is used alongside it) so the 
automata do not lose its evolutionary feature during a sequence of scan cycles. 

c. Reading Inputs  

Second subroutine reads PLC inputs and identifies controllable and uncontrollable events 
that came from the plant. This subroutine is called at the beginning of every scan cycle to 
verify if there is any positive transition at any PLC input. If so, there is an uncontrollable 
event being generated that corresponds to that input. The correspondence of inputs and 
uncontrollable events for the case study is in Table 1. It should be noticed that the "POS" 
PLC function (see Figure 12) ensures that the uncontrollable event will be identified only at 
the scan cycle immediately after the corresponding input signal changes (positive edge) and 
that this function is available to the RockWell PLC family.  

d. Rescuing Uncontrollable Events 

Every uncontrollable event uses two memories, Mx.0 and Mx.1. The first group of 
memories, Mx.0, is responsible for storing the information of all events that actually have 
been produced by the plant. Therefore, there is a subroutine that updates the second set of 
memories (Mx.1) with the information stored at the other set (Mx.0) so the second group is 
used to promote the state transitions at PS as well as at supervisors. 

As long as the information of each event that have been issued by the plant is stored in 
Mx.0, Mx.1 can eventually lose its information because it can always be recovered from Mx.0 
by calling "Make Mx.0 = Mx.1" subroutine, as shown in Figure 12. 

e. Updating Product System with Uncontrollable Events 

Next subroutine deals with PS uncontrollable events and is responsible for performing PS 
state transitions due to these events. It can be interpreted as an "automata player". There is 
no restriction on the number of events issued by the plant that this automata player is able 
to deal with. Therefore, at each scan cycle, PS automata can transit states regardless the 
number of uncontrollable events coming from the plant.  

The current state of all subsystems is updated. This can be seen by observing for instance 
that when G1 sub-plant is in state 1 and B1 event happens, the state transition to 0 will occur 
and, to avoid the avalanche effect, B1.1 memory is reset to 0 (see Figure 12). It should be 
noticed that if any other sub-plant is able to promote state transitions, it will be possible to 
promote it as well. 

Because PS is composed of asynchronous subsystem, an event that is dealt with in one 
subsystem will not occur in another. Thus, there is no problem of erasing its information 
when its state transition occurs. 

f. Updating Supervisors with Uncontrollable Events 

Another automata player is implemented here but only to promote transitions for 
uncontrollable events of the supervisors. For these supervisors, that are not necessarily 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

177 

asynchronous, the same event can produce state transitions in more than one supervisor. 
Therefore, once the information on every event that promotes a transition is erased to avoid 
the avalanche effect, this information should be recovered before executing the automata 
player for each supervisor. That’s why "Make Mx.0 = Mx.1" subroutine is called once before 
each supervisor in the case study, as illustrated in Figure 12. 

Note that the program structure used to update the supervisors is the same used for the PS 
but the supervisors’ states are considered instead. 

g. Disabling Controllable Events  

According to the current state of all supervisors, all controllable events that should be 
disabled are determined.  

Once PS and supervisors states are updated with the transitions promoted by the 
uncontrollable states issued by the plant, it can be said that all automata implemented 
into the PLC are in synchrony with the plant, i. e., they are all at the same states as the 
physical plant. 

Therefore, it is possible to identify events that need to be disabled by the conjunction of the 
supervisors. It is possible that a single event became disabled by the action of many 
supervisors.  

h. The Choice Problem  

This subroutine should be called only if necessary and, depending on the state of a given 
supervisor and on the events involved in the choice problem. For each choice problem that 
appears, a different subroutine must be created to deal with it. 

It is possible that two or more controllable events became disabled by the supervisors. If 
they belong to the same supervisor a choice problem may occur. In the case study at hand, 
M2 and M4 machines cannot start operation at the same time because they share the same 
output buffer and thus, once one machine issue a part to that buffer, the other cannot issue 
another one. In other words, when supervisor SC is in state 0, A2 e A4 events are enabled but 
cannot be issued at the same time (neither at the same scan cycle) because issuing one means 
disabling the other. This is a clear choice problem whereby the Product System must decide 
which one to issue. 

According to the flowchart shown in Figure 4 that ensures a solution to the choice 
problem at the same time that it avoids rendering a blocking system, a "Choice A2A4" 
subroutine is called (see Figure 12). This subroutine randomly enables only one event at a 
time, either A2 or A4 for the supervisor SC when it is in its 0 state, for the present case 
study. An auxiliary memory, called "AUX", is used which changes its state (from 0 to 1, 
and vice-versa) at every scan cycle. Therefore, when AUX holds 1, A2 event is disabled 
and, when AUX holds 0, A4 is disabled. 

i. Issuing Controllable Events from PS  

Another automata player is implemented but only controllable events of the Product System 
are dealt with. Thus, each controllable event that has not been disabled and ready to occur 
would make PS to transit states and an event to be issued from PLC which means that a 
controllable event occur at the physical plant. 

www.intechopen.com



 
Manufacturing System 

 

178 

It is important to observe that the choice problem happens among non-disabled 
controllable events at a particular state of some supervisor and not among events of 
different supervisors. Thus, DECON9 allow that many controllable events can be issued at 
the same scan cycle. For instance, at the present case study, M1 and M3 start operation can 
happen at the same time and, as a consequence, A1 e A3 events can also be issued at the 
same scan cycle.  

It should be noticed that every state transition that occur at PS corresponds to signalling a 
particular event that must be issued. 

j. Issuing Controllable Events from Supervisors 

As can be noticed in Figure 12, controllable events of PS might promote state transitions on 

the supervisors. Therefore, another automata player is implemented here but only for 

supervisors’ controllable events. 

k. Writing Outputs 

Finally, at the end of the scan cycle, PLC outputs are updated. It should be noticed that all 

output reset conditions are implemented first and just afterwards, output signals are issued 

according to controllable events. 

7. Conclusions 

Supervisory Control Theory (SCT) of Discrete Event Systems (DES) has become a major 

player in the next step manufacturing system automation once it brings formality, 

predictability and a higher abstract level of specification to the analysis of complex layouts. 

Some of the advantages of using SCT include: plant and supervisors are high level models; 

testing of resulting control program is not required once it is produced from a sound 

theoretical background; equipment or plant behaviour models can be easily reused and; 

better control programs can be achieved by engineers focusing on the modelling instead of 

the intricacies of implementing it. 

But widespread use of SCT has been hold up by the fact that Programmable Logic 

Controllers (PLCs) are the basic devices that can be found in the shop-floor. Implementing 

SCT in PLCs is not a trivial task because many problems and constraints arise while 

attempting to do it. Many researches have dealt with producing PCL programs from TCS. 

Some attempts did not propose a methodology but focused on solving particular situations 

which is far from a generic approach. Most of the existing proposals are based on the 

monolithic approach for the supervisors’ synthesis, and the implementation is performed in 

ladder language. In some works the synthesis of supervisors is performed according to the 

local modular approach, which reduces the computational complexity of the synthesis 

process and the size of supervisors by exploiting specifications modularity and the 

decentralized structure of composite plants. But almost all of them can only tackle one event 

per PLC scan cycle, which represents a problem when handling large scale plants. 

Moreover, in this way the supervisor’s update rate and actions will be lower than that 

obtained via traditional solution, without the use of the SCT. Finally, just a few of them 

proposed solutions for the broad spectrum of problems that arise when implementing 

supervisory control in a PLC-based control system. 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

179 

In this chapter a nine step methodology, named DECON9, was presented. DECON9 is a 
methodology to implement SCT into PLCs in standardized, efficient and robust ways, closer 
to real size plants. It is a standardized approach because represents a complete methodology 
for the whole process, and is divided into simple sub-routines. It can deal with large scale 
plants because it uses the local modular approach for the supervisors’ synthesis. It is an 
efficient solution because can tackle more than one event per scan cycle. It is robust because 
can predict problems and solves some of the most common ones. It turns PLCs into a state-
machine where supervisors and plant events are explicitly represented and their control 
reasoning depends on their controllability. 

This chapter also reviewed the basics of DES and the problems of implementing SCT into a 
PLC, presented detailed functioning and implementation of DECON9 and gave an example 
on how to apply it. 

The local modular approach was used for the synthesis of supervisors and their 
implementation in PLC was programmed using the well-known ladder language. 
DECON9 use is exemplified by the implementation of the supervisory control of an 
industrial transfer line case study found in the literature. Using this case study, it is 
demonstrated that DECON9’s advantages include: (i) it allows the control logic to deal 
with many events at each scan cycle, which improves existing approaches that are 
constrained to only one event at a time; (ii) a nonblocking property is achieved thanks to 
the random selection of controllable events approach that solves the choice problem; (iii) 
there is no fear of an avalanche effect thanks to the use of auxiliary memories, and; (iv) 
uncontrollable events are prioritized. 

A computational tool for automatic generation of PLC programs obtained through the 
Supervisory Control Theory (SCT) is under development. This tool will comply with 
DECON9. With this tool, the gap between theory and practice will be reduced even further 
thanks to the automatic procedure based on a sound methodology. 

8. Acknowledgment 

The authors would like to thank Pollux Automation Company and Santa Catarina State 
University (UDESC) for their support to pursue this work.  

9. References 

Afzalian, A.; Noorbakhsh, M. & Navabi, A. (2008). PLC implementation of decentralized 
supervisory control for dynamic flow controller. Proceedings of the 17th IEEE 
International Conference on Control Applications (CCA'08), pp. 522-527, San Antonio, 
Texas (USA), September, 2008. 

Afzalian, A. A.; Noorbakhsh, S. M. & Wonham, W. M. (2010). Discrete-Event Supervisory 
Control for Under-Load Tap-changing Transformers (ULTC): from synthesis to 
PLC implementation, In: Discrete Event Simulations, Aitor Goti (Ed.), pp. 285-310, 
InTech, ISBN 978-953-307-115-2, Retrieved from  

 <http://www.intechopen.com/download/pdf/pdfs_id/11550> 

www.intechopen.com



 
Manufacturing System 

 

180 

Ariñez, J.F.; Benhabib, B.; Smith, K.C. & Brandin, B.A. (1993). Design of a PLC-Based 
Supervisory-Control System for a Manufacturing Workcell, The Canadian High 
Technology Show and Conference, Toronto, 1993.  

Balemi, S. (1992). Control of Discrete Event Systems: Theory and Application, Ph.D. thesis, Swiss 
Federal Institute of Technology, Zürich, Switzerland. 

Balemi, S. & Brunner, U. A. (1992). Supervision of discrete event systems with 
communication delays, Proceedings of the American Control Conference, pp. 2794-2798, 
Chicago, IL, USA, June, 1992. 

Cassandras, C. G. & Lafortune, S. (2008). Introduction to Discrete Event Systems. (2nd edition), 
Springer, ISBN: 978-0-387-33332-8, New York, USA.  

Chandra, V.; Huang, Z. & Kumar, R. (2003) Automated Control Synthesis for an Assembly 
Line Using Discrete Event System Control Theory. IEEE Transactions on Systems, 
Man, and Cybernetics—Part C: Applications and Reviews, Vol. 33, No. 2, (may 2003), 
pp. 284-289, ISSN 1094-6977. 

Dietrich, P.; Malik, R.; Wonham, W. M. & Brandin, B. A. (2002). Implementation 
considerations in supervisory control. In: Synthesis and Control of Discrete Event 
Systems, Caillaud, B.; Darondeau, P.;Lavagno, L.; Xie, X. (Eds), pp. 185-201, Kluwer 
Academic Publishers. 

Fabian, M. & Hellgren, A. (1998). PLC-based implementation of supervisory control for 
discrete systems, Proceedings of the 37th IEEE Conference on Decision and Control, Vol. 
3, pp. 3305-3310.  

Feng, L. & Wonham, W. M. (2006). TCT: a computation tool for supervisory control 
synthesis, Proceedings of the 8th International Workshop on Discrete Event Systems – 
WODES, pp. 388-389, Ann Arbor, Michigan, USA, July 2006. 

Hasdemir T., Kurtulan, S., & Gören, L. (2004). Implementation of local modular supervisory 
control for a pneumatic system using PLC. Proceedings of the 7th International 
Workshop on Discrete Event Systems (WODES’04), pp. 27-31, Reims, France. 

Hasdemir, T.; Kurtulan, S.; & Gören, L. (2008). An Implementation Methodology for 
Supervisory Control Theory. International Journal of Advanced Manufacturing 
Technology, Vol. 36, No. 3, (March 2008), pp. 373-385. ISSN 0268-3768. 

Hellgren, A.; Lennartson, B. & Fabian, M. (2002). Modelling and PLC-based implementation 
of modular supervisory control, Proceedings of the 6th International Workshop on 
Discrete Event Systems (WODES’02), pp. 1-6. ISBN: 0-7695-1683-1. Zaragoza, Spain, 
October 2002. 

Lauzon, S. C. (1995). An implementation methodology for the supervisory control of flexible-
manufacturing workcells, M.A. Sc. Thesis, Mechanical Engineering Dpt. University of 
Toronto, Canada. 

Lauzon, S. C.; Mills, J. K.; & Benhabib, B. (1997). An Implementation Methodology for the 
Supervisory Control of Flexible Manufacturing Workcells, Journal of Manufacturing 
Systems, Vol. 16, No. 2, pp. 91-101. 

Leal, A. B.; Cruz, D.L.L.; Hounsell, M.S. (2009). Supervisory Control Implementation into 
Programmable Logic Controllers. In: Proceedings of the 14th IEEE International 
Conference on Emerging Technologies and Factory Automation - ETFA, pp. 899-905, 
Palma de Mallorca, 2009. 

www.intechopen.com



 
PLC-Based Implementation of Local Modular Supervisory Control for Manufacturing Systems 

 

181 

Leduc, R. J. (1996). PLC Implementation of a DES supervisor for a manufacturing testbeb: an 
implementation perspective, M.A.Sc. Thesis, Dept. of Electrical and Computer 
Engineering, Univ. of Toronto, Canada.  

Leduc, R .J. & Wonham W. M. (1995). PLC implementation of a DES supervisor for a 
manufacturing test bed. Proceeding of Thirty-Third Annual Allerton Conference on 
Communication, Control and Computing, pp. 519-528, University of Illinois. 

Liu, J. & Darabi, H. (2002). Ladder logic implementation of Ramadge-Wonham supervisory 
controller, Proceedings of the 6th International Workshop on Discrete Event System 
(WODES’02), pp. 383-389. ISBN: 0-7695-1683-1. Zaragoza, Spain, October 2002. 

Malik, P. (2002). Generating Controllers from Discrete-Event Models. In: F. Cassez, C. Jard, 
F. Laroussinie, M. D. Ryan (Eds.), Proceedings of the Summer school in MOdelling and 
VErification of Parallel processes (MOVEP), pp. 337-342.  

Manesis, S. & Akantziotis, K. (2005). Automated synthesis of ladder automation circuits 
based on state-diagrams. Advances in Engineering Software, 36, pp .225–233. 

Morgenstern, A. & Schneider, K. (2007). Synthesizing Deterministic Controllers in 
Supervisory Control In: Informatics in Control, Automation and Robotics II. Filipe, J.; 
Ferrier, J-L.; Cetto, J.A.; Carvalho, M. (Eds), pp. 95-102, Springer, ISBN 978-1-4020-
5626-0, Netherlands. 

Noorbakhsh, M. & Afzalian, A. (2007a). Design and PLC Based Implementation of 
Supervisory Controller for Under-load Tap-Changer. Proc. of the 2007 IEEE Int. 
Conf. on Control, Automation and Systems (ICCAS’07), pp. 901-906, Seoul, Korea. 

Noorbakhsh, M. & Afzalian, A. (2007b). Implementation of supervisory control of DES using 
PLC. 15th Iranian Conf. on Electrical Engineering (ICEE'07), (in Farsi), Tehran, Iran. 

Noorbakhsh, M. (2008). DES Supervisory Control for Coordination of Under-Load Tap-
Changing Transformer (ULTC) and a Static VAR Compensator (SVC). M.A.Sc Thesis, 
Dept. of Electrical & Computer. Eng., Shahid Abbaspour University of 
Technology, (in Farsi), Tehran, 2008. 

Noorbakhsh, M. & Afzalian, A. (2009). Modeling and synthesis of DES supervisory control 
for coordinating ULTC and SVC. Proceedings of the 2009 American Control Conference 
(ACC’ 09), pp. 4759-4764, Saint Louis, Missouri USA, June 10-12, 2009. 

Possan, M. C.; Leal, A. B. (2009). Implementation of Supervisory Control Systems Based on 
State Machines. In: Proceedings of the 14th IEEE International Conference on Emerging 
Technologies and Factory Automation – ETFA, pp. 819-826, Palma de Mallorca, 2009. 

Queiroz, M. H. de & Cury, J. E. R. (2000a). Modular supervisory control of large scale 
discrete event systems, In: Discrete Event Systems: Analysis and Control. 1st Ed. 
Massachusetts: Kluwer Academic Publishers, pp. 103-110. Proc. WODES 2000. 

Queiroz, M. H. de & Cury, J. E. R. (2000b). Modular control of composed systems. In: Proc. of 
the American Control Conference, pp. 4051-4055, Chicago, USA, 2000. 

Queiroz, M. H. de & Cury, J. E. R. (2002). Synthesis and implementation of local modular 
supervisory control for a manufacturing cell, Proceedings of the 6th International 
Workshop on Discrete Event Systems (WODES), pp. 1-6. ISBN: 0-7695-1683-1. 
Zaragoza, Spain, October 2002. 

Qiu, R. G. & Joshi, S. B. (1996). Rapid prototyping of control software for automated 
manufacturing systems using supervisory control theory. ASME, Manufacturing 
Engineering Division, 4, pp. 95-101. 

www.intechopen.com



 
Manufacturing System 

 

182 

Ramadge, P. J. & Wonham, W. M. (1987). Supervisory control of a class of discrete event 
processes, SIAM Journal on Control and Optimization, Vol. 25, No. 1, pp. 206 - 230. 

Ramadge, P.J. & Wonham, W.M. (1989). The control of discrete event systems, Proceedings of 
the IEEE, Vol. 77, No. 1, pp. 81-98. 

Reiser, C.; Cunha, A. E. C. da & Cury, J. E. R. (2006). The Environment Grail for 
Supervisory Control of Discrete Event Systems, Proceedings of the 8th International 
Workshop on Discrete Event Systems – WODES, pp. 390-391, Ann Arbor, Michigan, 
USA, July 2006. 

Rudie, K. (2006). The Integrated Discrete-Event Systems Tool, Proceedings of the 8th 
International Workshop on Discrete Event Systems – WODES’06, pp. 394-395, Ann 
Arbor, Michigan, USA, July 2006. 

Silva, D. B.; Santos, E. A. P.; Vieira, A. D. & Paula, M. A. B. (2008). Application of the 
supervisory control theory in the project of a robot-centered, variable routed 
system controller, Proceedings of the 13th IEEE International Conference on Emerging 
Technologies and Factory Automation – ETFA’08, pp. 1-6. 

Su, R. & Wonham, W. M. (2004). Supervisor reduction for discrete-event systems, Discrete 
Event Dynamic Systems, Vol. 14, No. 1, pp. 31-53.  

Uzam, M.; Gelen, G. & Dalci, R. (2009). A new approach for the ladder logic implementation 
of Ramadge-Wonham supervisors, Proceeding of the XXII International Symposium on 
Information, Communication and Automation Technologies (ICAT’09), pp. 1-7. ISBN: 
978-1-4244-4220-1, Bosnia 2009. 

Vieira, A. D.; Cury, J. E. R. & Queiroz, M. (2006). A Model for PLC Implementation of 
Supervisory Control of Discrete Event Systems. Proceedings of the IEEE Conference on 
Emerging Technologies and Factory Automation - ETFA'06, pp. 225–232. Czech 
Republic, September 2006. 

Wonham, W. M. (2011). Supervisory Control of Discrete-Event Systems, The University of 
Toronto, available from: http://www.control.utoronto.ca/DES. 

www.intechopen.com



Manufacturing System

Edited by Dr. Faieza Abdul Aziz

ISBN 978-953-51-0530-5

Hard cover, 448 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book attempts to bring together selected recent advances, tools, application and new ideas in

manufacturing systems. Manufacturing system comprise of equipment, products, people, information, control

and support functions for the competitive development to satisfy market needs. It provides a comprehensive

collection of papers on the latest fundamental and applied industrial research. The book will be of great

interest to those involved in manufacturing engineering, systems and management and those involved in

manufacturing research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

André B. Leal, Diogo L. L. da Cruz and Marcelo da S. Hounsell (2012). PLC-Based Implementation of Local

Modular Supervisory Control for Manufacturing Systems, Manufacturing System, Dr. Faieza Abdul Aziz (Ed.),

ISBN: 978-953-51-0530-5, InTech, Available from: http://www.intechopen.com/books/manufacturing-

system/plc-based-implementation-of-local-modular-supervisory-control-for-manufacturing-systems



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


