294 research outputs found

    Novel Time Asynchronous NOMA schemes for Downlink Transmissions

    Full text link
    In this work, we investigate the effect of time asynchrony in non-orthogonal multiple access (NOMA) schemes for downlink transmissions. First, we analyze the benefit of adding intentional timing offsets to the conventional power domain-NOMA (P-NOMA). This method which is called Asynchronous-Power Domain-NOMA (AP-NOMA) introduces artificial symbol-offsets between packets destined for different users. It reduces the mutual interference which results in enlarging the achievable rate-region of the conventional P-NOMA. Then, we propose a precoding scheme which fully exploits the degrees of freedom provided by the time asynchrony. We call this multiple access scheme T-NOMA which provides higher degrees of freedom for users compared to the conventional P-NOMA or even the modified AP-NOMA. T-NOMA adopts a precoding at the base station and a linear preprocessing scheme at the receiving user which decomposes the broadcast channel into parallel channels circumventing the need for Successive Interference Cancellation (SIC). The numerical results show that T-NOMA outperforms AP-NOMA and both outperform the conventional P-NOMA. We also compare the maximum sum-rate and fairness provided by these methods. Moreover, the impact of pulse shape and symbol offset on the performance of AP-NOMA and T-NOMA schemes are investigated

    An antenna switching based NOMA scheme for IEEE 802.15.4 concurrent transmission

    No full text
    This paper introduces a Non-Orthogonal Multiple Access (NOMA) scheme to support concurrent transmission of multiple IEEE 802.15.4 packets. Unlike collision avoidance Multiple Access Control (MAC), concurrent transmission supports Concurrent-MAC (C-MAC) where packet collision is allowed. The communication latency can be reduced by C-MAC because a user can transmit immediately without waiting for the completion of other users’ transmission. The big challenge of concurrent transmission is that error free demodulation of multiple collided packets hardly can be achieved due to severe Multiple Access Interference (MAI). To improve the demodulation performance with MAI presented, we introduce an architecture with multiple switching antennas sharing a single analog transceiver to capture spatial character of different users. Successive Interference Cancellation (SIC) algorithm is designed to separate collided packets by utilizing the spatial character. Simulation shows that at least five users can transmit concurrently to the SIC receiver equipped with eight antennas without sacrificing Packet Error Rate

    Non-orthogonal Multiple Access (NOMA) with Asynchronous Interference Cancellation

    Get PDF
    Non-orthogonal multiple access (NOMA) allows allocating one carrier to more than one user at the same time in one cell. It is a promising technology to provide high throughput due to carrier reuse within a cell. In this thesis, a novel interference cancellation (IC) technique is proposed for asynchronous NOMA systems, which uses multiple symbols from each interfering user to carry out IC. With the multiple symbol information from each interfering user the IC performance can be improved substantially. The proposed technique creates and processes so called "IC Triangles". That is, the order of symbol detection is based on detecting all the overlapping symbols of a stonger user before detecting a symbol of a weak user. Also, successive IC (SIC) is employed in the proposed technique. Employing IC Triangles together with the SIC suppresses co-channel interference from strong (earlier detected) signals for relatively weak (yet to be detected) signals and make it possible to achieve low bit error rate (BER) for all users. Further, iterative signal processing is used to improve the system performance. Employing multiple iterations of symbol detection which is based on exploiting a priori estimate obtained from the previous iteration can improve the detection and IC performances. The BER and capacity performance analyses of an uplink NOMA system with the proposed IC technique are presented, along with the comparison to orthogonal frequency division multiple access (OFDMA) systems. Performance analyses validate the requirement for a novel IC technique that addresses asynchronism at NOMA uplink transmissions. Also, numerical and simulation results show that NOMA with the proposed IC technique outperforms OFDMA for uplink transmissions. It is also concluded from the research that, in the NOMA system, users are required to have large received power ratio to satisfy BER requirements and the required received power ratio increases with increasing the modulation level. Also, employing iterative IC provides significant performance gain in NOMA and the number of required iterations depend on the modulation level and detection method. Further, at uplink transmissions, users' BER and capacity performances strongly depend on the relative time offset between interfering users, besides the received power ratio

    Play to Earn in the Metaverse with Mobile Edge Computing over Wireless Networks: A Deep Reinforcement Learning Approach

    Full text link
    The Metaverse play-to-earn games have been gaining popularity as they enable players to earn in-game tokens which can be translated to real-world profits. With the advancements in augmented reality (AR) technologies, users can play AR games in the Metaverse. However, these high-resolution games are compute-intensive, and in-game graphical scenes need to be offloaded from mobile devices to an edge server for computation. In this work, we consider an optimization problem where the Metaverse Service Provider (MSP)'s objective is to reduce downlink transmission latency of in-game graphics, the latency of uplink data transmission, and the worst-case (greatest) battery charge expenditure of user equipments (UEs), while maximizing the worst-case (lowest) UE resolution-influenced in-game earning potential through optimizing the downlink UE-Metaverse Base Station (UE-MBS) assignment and the uplink transmission power selection. The downlink and uplink transmissions are then executed asynchronously. We propose a multi-agent, loss-sharing (MALS) reinforcement learning model to tackle the asynchronous and asymmetric problem. We then compare the MALS model with other baseline models and show its superiority over other methods. Finally, we conduct multi-variable optimization weighting analyses and show the viability of using our proposed MALS algorithm to tackle joint optimization problems.Comment: This paper has been submitted to IEEE Transactions on Wireless Communications (TWC), 202

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System
    • …
    corecore