research

Improving NOMA Multi-Carrier Systems with Intentional Frequency Offsets

Abstract

In this letter, we investigate the possible benefits of asynchrony in the frequency domain for the non-orthogonal multiple access (NOMA) schemes. Despite the common perspective that asynchrony in transmission or reception of multi-stream signals is harmful, we demonstrate the advantages of adding intentional frequency offset to the conventional power domain-NOMA (P-NOMA). We introduce two methods which add artificial frequency offsets between different sets of sub-carriers destined for different users. The first one uses the same successive interference cancellation (SIC) method as the conventional P-NOMA except that it enjoys reduced inter-user interference (IUI) between interfering sub-carriers. The second scheme adopts a precoding at the base station and a linear preprocessing scheme at the receiving user. It decomposes the broadcast channel into parallel channels circumventing the need for SIC. As a result, it fully exploits the advantages provided by the frequency asynchrony and enables the interference-free transmission to the users. The numerical results show that both methods can outperform the conventional P-NOMA

    Similar works