1,241 research outputs found

    Differential Evolution Approach to Detect Recent Admixture

    Full text link
    The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix is an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.Comment: presented at ISMB 2014, VariSI

    Generalized Entropy Method for the Renewal Equation with Measure Data

    Get PDF
    We study the long-time asymptotics for the so-called McKendrick-Von Foerster or renewal equation, a simple model frequently considered in structured population dynamics. In contrast to previous works, we can admit a bounded measure as initial data. To this end, we apply techniques from the calculus of variations that have not been employed previously in this context. We demonstrate how the generalized relative entropy method can be refined in the Radon measure framework

    Diversity Control in Evolutionary Computation using Asynchronous Dual-Populations with Search Space Partitioning

    Get PDF
    Diversity control is vital for effective global optimization using evolutionary computation (EC) techniques. This paper classifies the various diversity control policies in the EC literature. Many research works have attributed the high risk of premature convergence to sub-optimal solutions to the poor exploration capabilities resulting from diversity collapse. Also, excessive cost of convergence to optimal solution has been linked to the poor exploitation capabilities necessary to focus the search. To address this exploration-exploitation trade-off, this paper deploys diversity control policies that ensure sustained exploration of the search space without compromising effective exploitation of its promising regions. First, a dual-pool EC algorithm that facilitates a temporal evolution-diversification strategy is proposed. Then a quasi-random heuristic initialisation based on search space partitioning (SSP) is introduced to ensure uniform sampling of the initial search space. Second, for the diversity measurement, a robust convergence detection mechanism that combines a spatial diversity measure; and a population evolvability measure is utilised. It was found that the proposed algorithm needed a pool size of only 50 samples to converge to optimal solutions of a variety of global optimization benchmarks. Overall, the proposed algorithm yields a 33.34% reduction in the cost incurred by a standard EC algorithm. The outcome justifies the efficacy of effective diversity control on solving complex global optimization landscapes. Keywords: Diversity, exploration-exploitation tradeoff, evolutionary algorithms, heuristic initialisation, taxonomy

    Robust evolutionary methods for multi-objective and multdisciplinary design optimisation in aeronautics

    Get PDF

    A Hybrid Global Minimization Scheme for Accurate Source Localization in Sensor Networks

    Get PDF
    We consider the localization problem of multiple wideband sources in a multi-path environment by coherently taking into account the attenuation characteristics and the time delays in the reception of the signal. Our proposed method leaves the space for unavailability of an accurate signal attenuation model in the environment by considering the model as an unknown function with reasonable prior assumptions about its functional space. Such approach is capable of enhancing the localization performance compared to only utilizing the signal attenuation information or the time delays. In this paper, the localization problem is modeled as a cost function in terms of the source locations, attenuation model parameters and the multi-path parameters. To globally perform the minimization, we propose a hybrid algorithm combining the differential evolution algorithm with the Levenberg-Marquardt algorithm. Besides the proposed combination of optimization schemes, supporting the technical details such as closed forms of cost function sensitivity matrices are provided. Finally, the validity of the proposed method is examined in several localization scenarios, taking into account the noise in the environment, the multi-path phenomenon and considering the sensors not being synchronized

    Passive Target Localization Problem Based on Improved Hybrid Adaptive Differential Evolution and Nelder-Mead Algorithm

    Get PDF
    This paper considers a passive target localization problem in Wireless Sensor Networks (WSNs) using the noisy time of arrival (TOA) measurements, obtained from multiple receivers and a single transmitter. The objective function is formulated as a maximum likelihood (ML) estimation problem under the Gaussian noise assumption. Consequently, the objective function of the ML estimator is a highly nonlinear and nonconvex function, where conventional optimization methods are not suitable for this type of problem. Hence, an improved algorithm based on the hybridization of an adaptive differential evolution (ADE) and Nelder-Mead (NM) algorithms, named HADENM, is proposed to find the estimated position of a passive target. In this paper, the control parameters of the ADE algorithm are adaptively updated during the evolution process. In addition, an adaptive adjustment parameter is designed to provide a balance between the global exploration and the local exploitation abilities. Furthermore, the exploitation is strengthened using the NM method by improving the accuracy of the best solution obtained from the ADE algorithm. Statistical analysis has been conducted, to evaluate the benefits of the proposed modifications on the optimization performance of the HADENM algorithm. The comparison results between HADENM algorithm and its versions indicate that the modifications proposed in this paper can improve the overall optimization performance. Furthermore, the simulation shows that the proposed HADENM algorithm can attain the Cramer-Rao lower bound (CRLB) and outperforms the constrained weighted least squares (CWLS) and differential evolution (DE) algorithms. The obtained results demonstrate the high accuracy and robustness of the proposed algorithm for solving the passive target localization problem for a wide range of measurement noise levels
    • …
    corecore