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Abstract

We consider the localization problem of multiple wideband sources in a multi-path environment by coherently
taking into account the attenuation characteristics and the time delays in the reception of the signal. Our
proposed method leaves the space for unavailability of an accurate signal attenuation model in the environment
by considering the model as an unknown function with reasonable prior assumptions about its functional space.
Such approach is capable of enhancing the localization performance compared with only utilizing the signal
attenuation information or the time delays. In this article, the localization problem is modeled as a cost function in
terms of the source locations, attenuation model parameters, and the multi-path parameters. To globally perform
the minimization, we propose a hybrid algorithm combining the differential evolution algorithm with the
Levenberg-Marquardt algorithm. Besides the proposed combination of optimization schemes, supporting the
technical details such as closed forms of cost function sensitivity matrices are provided. Finally, the validity of the
proposed method is examined in several localization scenarios, taking into account the noise in the environment,
the multi-path phenomenon and considering the sensors being not synchronized.

1 Introduction
A challenging and highly demanding signal-processing
application is the localization of signal sources using the
physical measurements at some sensors in the environ-
ment. Source localization has become an important task
in various applications such as mobile communications,
global positioning system (GPS), radar, sonar, naviga-
tion, seismology, and geophysics [1-5].
During the recent decades various algorithms have

been proposed to estimate the location of the signal
sources. These methods utilize different signal charac-
teristics at different sensors and generally can be classi-
fied in three main categories: using the time difference
of arrival (TDOA); analyzing the signal direction of arri-
val (DOA) at distinct arrays; and using the differences in
the signal amplitude or received energy level. For a con-
stant propagation speed, the TDOA among different
sensors is proportional to the source-sensor range differ-
ences and may be estimated through methods such as
cross-correlation (CC) [6] or its generalized version
(GCC) [7]. The source locations can then be estimated

using geometric methods such as linear, spherical or
hyperbolic intersections [8-10]. To estimate the DOA,
for narrowband signals, high resolution algorithms such
as multiple signal classification (MUSIC) [11] and maxi-
mum likelihood (ML) [12] are proposed. In [13], those
authors propose an approximate maximum likelihood
method (AML) for wideband signals using spectral
properties of the signal when rather long sample
streams are available. In this method, the corresponding
cost function can be directly expressed in terms of the
source locations or in a far-field case, may be expressed
in terms of the relative time delays followed by a post-
processing step to find the source locations from the
corresponding DOAs. The post-processing step may be
carried out through geometric methods such as cross
bearing or a machine learning approach such as the
support vector machine (SVM) method [14]. Using the
differences in the signal intensity or energy level for the
purpose of localization is a more recent technique
[15,16]. Theoretically, this class of localization can be
considered for both narrowband and wideband signals
by only taking into account the attenuation information
and usually neglecting the time delay information. For
these methods, a precise attenuation model in the envir-
onment is inevitable for an accurate localization.
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Moreover, from an optimization perspective the result-
ing cost functions in these kind of approaches usually
undergo many local optima and saddle points which
require considering specific optimization schemes [17].
In this article, we manage the problem of localization

of multiple wideband sources by coherently taking into
account the TDOA and the amplitude attenuation pat-
tern. Our method generalizes the AML approach to uti-
lize the signal attenuation characteristics. We provide a
more robust algorithm in which the targets should
simultaneously satisfy the correct time delays among the
sensors and provide sensible level of attenuation at each
sensor. Unlike the aforementioned energy and intensity
based methods which not only ignore the time delay
stamps but also require knowing the signal attenuation
model, we benefit using the delay information and as a
generalization to our recent study in [18], leave the
space for not knowing an exact signal attenuation model
in the environment by suggesting an appropriate func-
tional space for it. We minimize a cost function which
is obtained through maximum likelihood approach from
which the locations, attenuation model parameters, and
the multi-path parameters are obtained. To apply the
minimization, we propose a hybrid approach combining
the differential evolution algorithm [19] with the Leven-
berg-Marquardt algorithm [20]. This combination pro-
vides a minimization scheme which is likely to globally
search for the optima and rather quickly converges to
the accurate results. Through simulations and Cramér-
Rao bound, we verify the effectiveness of the novel
method introduced in this paper.
This article is organized as follows. In Section 2, we

propose a general form for the received signal at every
sensor and later provide an adaptive model for the sig-
nal attenuation based on Laurent polynomials. In Sec-
tion 3, a maximum likelihood estimation of the source
location and attenuation parameters is proposed. We
also provide the Cramér-Rao bound for this estimation
problem. For the purpose of minimization in Section 4,
a hybrid approach combining the differential evolution
algorithm with the Levenberg-Marquardt is proposed
for which the combination algorithm and closed form
equations for calculation of the Jacobian are provided.
In Section 5, we examine the efficiency of proposed
method through some examples, and finally there are
some concluding remarks in Section 6.

2 Problem definition
2.1 Signal model
Although the general approach proposed in this article
is in theory independent of signal nature and the type of
sensors used, in order to make reasonable simulations
we consider acoustic source localization. Consider N
acoustic sources having unknown locations rSn . Each

source is omni-directionally emitting a signal sn(t), n =
1, ..., N at the time frame t. We also consider M acous-
tic microphones that are placed in known positions rMm ,
m = 1, ..., M, in the same environment. For every source
in the environment, the function that describes the sig-
nal attenuation at a specific point is a(r), where r is the
distance from the point to the source. In general, the
signal attenuation function may be a function of various
parameters such as signal frequency, medium inhomo-
geneity, etc. To simplify the problem, in this article we
consider this function to be an identical form for all
sources and solely function of the distance to the
source. However, unlike some previous energy-based
localizations [16,17] in which the attenuation is known
to be proportional to r-1, the actual form of a(·) is con-
sidered unknown function here. This type of modeling
provides an additional flexibility to the problem for
more realistic scenarios where the inverse proportional-
ity of a(·) to r is violated because of other parameters,
such as signal bandwidth and medium inhomogeneity.
Considering sn(t - 1 × Ns/v) to be the signal measured
one length unit away from every source, with Ns being
the samples per second and v being the propagation
speed, ideally the overall received signal samples from
the acoustic sources at every microphone is modeled as

xm(t) =
N∑
n=1

α(ρm,n)sn(t − τm,n), (1)

for

t = 0, 1, . . . , nt − 1, m = 1, 2, . . . , M.

where ρm,n = ||rMm − rSn || is the distance from nth

source to mth microphone, and τm,n = rm,n Ns/v is the
corresponding time samples delay in receiving the sig-
nal. The received signal in (1) is normalized to each
microphone gain level to decrease the number of nota-
tions. A more realistic model takes into account the
noise in the environment and also the signals going
through a multi-path channel before arriving at every
sensor; hence, we rewrite the received signal as

xm(t) =
N∑
n=1

α(ρm,n)sn(t − τm,n) +
N∑
n=1

Pm,n∑
p=1

γm,n,psn(t − τ̂m,n,p) + wm(t). (2)

The term wm(t) represents the background noise
which is considered to be a zero-mean white Gaussian
with variance s2 for the sake of this article: Gaussianity
is not a limiting assumption in this article. Between the
nth source and mth microphone, we consider Pm,n indir-
ect paths each causing gm,n,p loss in the signal amplitude
and τ̂m,n,p delay in the signal reception, modeling the
multi-path phenomenon. Beside the positions rSn , which
are the main unknowns of the localization problem, the
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signals sn(t), the multi-path parameters gm,n,p and τ̂m,n,p ,
and the propagation loss function a(·) are also unknown
and should be determined based on the received signals
at the sensors. The appearance of τm,n (which is related
to the unknown quantities rSn ) and τ̂m,n,p as the argu-
ment of an unknown signal sn(t) causes an extra com-
plexity for any optimization scheme performed to solve
the localization problem. However, this problem may be
remedied by applying the discrete Fourier transform to
(2) to extract the delays and form an equivalent equa-
tion in which the unknown parameters are separated in
individual terms:

Xm(f ) =
N∑
n=1

α(ρm,n) exp
(

− j2π

nf
f τm,n

)
Sn(f )

+
N∑
n=1

Pm,n∑
p=1

γm,n,p exp
(

− j2π

nf
f τ̂m,n,p

)
Sn(f ) + ξm(f )

(3)

For

f = 0, 1, . . . , nf − 1, m = 1, 2, . . . , M.

where, Xm(f), Sn(f) and ξm(f) are the data, signal, and
noise spectra respectively. As stated in [13], we empha-
size on the fact that, for (3) to be a valid equivalent
form of (2), we need nt to be large enough to avoid
edge effects and accordingly nf >nt. In general, having
more samples from the signal better poses the problem.

2.2 A low-order representation of signal attenuation
model
As discussed earlier, our assumption about the attenua-
tion model in the environment in this article is an iden-
tical model for all sources, which is only dependent on
the distance of the point to the acoustic source. In an
ideal environment, a(r) can be well modeled as a multi-
ple of r-1. Since there are different parameters involved
in the attenuation modeling, a(r) is being considered as
an unknown here. However, in order to keep the well-
posedness of the problem, we choose it to be an ele-
ment of a low-dimensional function space. For this sake,
we consider a(r) to be a Laurent polynomial of limited
order as

α(ρ) =
L∑

�=1

βlρ
−�, L > 0. (4)

In this model, only negative powers of r are consid-
ered, which is because for an attenuation model, we are
physically required to have

lim
ρ→∞ α(ρ) = 0. (5)

In many applications, the low-order representation of
a(r) in (4) is acceptable enough to model the attenua-
tion, and usually considering only few terms in the ser-
ies (i.e., L rather small), would suffice for the
localization problem.

3 A maximum likelihood estimation of the
unknowns
3.1 Derivation
Based on the general attenuation model proposed,
matching of the data spectra with those of the model
can be expressed by using (4) in (3) as

Xm(f ) =
N∑
n=1

L∑
�=1

β�ρ
−�
m,n exp

(
− j2π

nf
f τm,n

)
Sn(f )

+
N∑
n=1

Pm,n∑
p=1

γm,n,p exp
(

− j2π

nf
f τ̂m,n,p

)
Sn(f ) + ξm(f ).

(6)

The central limit theorem states that ξm(f), which is a
transformed zero mean Gaussian random variable to the
frequency domain, should be a complex zero mean
Gaussian with variance nts2. For every frequency bin f
having X(f) = [X1(f), ..., XM (f) ]T, S(f) = [S1(f), ..., SN (f) ]
T and ξ(f) = [ξ1(f), ..., ξM (f) ]T, (6) can be written in a
matrix form as

X(f ) = (K(f ) +H(f ))S(f ) + ξ(f ) (7)

where K(f) = R(f) b with

β = [β1, . . . ,βL]T ⊗ IN×N, (8)

for which ⊗ represents the Kronecker product, and
IN×N the identity matrix of size N × N, and

R(f ) = [R1(f ), . . . ,RL(f )], (9)

where

R�(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ−�
1,1e

−
j2πNs

nf v
fρ1,1

· · · ρ−�
1,Ne

−
j2πNs

nf v
fρ1,N

...
. . .

...

ρ−�
M,1e

−
j2πNs

nf v
fρM,1

· · · ρ−�
M,Ne

−
j2πNs

nf v
fρM,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

for ℓ = 1, ..., L. The matrix H(f) is related to the multi-
path parameters and its elements are

[H(f )](m,n) =
Pm,n∑
p=1

γm,n,p exp
(

− j2π

nf
f τ̂m,n,p

)
. (10)

Rewriting the negative log-likelihood function to esti-
mate the unknown parameters θ including the source
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positions, source signal spectrums, multi-path para-
meters and quantities bℓ, we have

θ∗ = argmin
θ

QHQ (11)

where

Q =

⎡
⎢⎣

Q(0)
...

Q(nf /2)

⎤
⎥⎦ (12)

and Q(f ) = X(f ) − K̃(f )S(f ) using the notation

K̃(f ) = K(f ) +H(f ). (13)

Similar to the idea in [13], for a real valued signal, we
can only consider up to nf /2 frequency bins and form
Q with blocks of Q(f) for f = 0, 1, ..., nf /2. We would
like to highlight the fact that in [13], the zero frequency
bin is ignored due to producing a constant term in the
likelihood function; however, in our approach, the
matrices K(0) and H(0) are still dependent on rm,n and
the multi-path parameters gm,n,p and hence are worth
being considered.
Clearly, the minimization in (11) is equivalent to mini-

mizing QH (f) Q(f) for every f. Considering the unknown
signal spectrum S(f), the minima should satisfy

∂
(
QH(f )Q(f )

)
∂SH(f )

= 0 (14)

which results in S(f ) = K̃
†
(f )X(f ) with K̃

†
(f ) repre-

senting the pseudo-inverse of K̃(f ) . Replacing the
obtained S(f) in Q(f) results in

Q(f ) = X(f ) − K̃(f )K̃
†
(f )X(f ), (15)

for f = 0, ..., nf /2, and therefore the unknowns of the
minimization reduce to the source positions, multi-path
parameters, and the attenuation coefficients. Consider-
ing a 2D localization problem, as the case in the exam-
ple section, neglecting the multi-path the vector of
unknowns would be

θ = [xS1 , . . . , xSN , ySN , . . . , ySN , β1, . . . , βL]T , (16)

where xSn and ySn are, respectively, the x and y com-
ponents of the position vector rSn . In case of multi-path,
the parameters gm,n,p and τ̂m,n,p are also included in θ.
The approach is clearly not only limited to 2D Cartesian
systems and 3D Scenarios, and other coordinate systems
may also be considered.

3.2 Cramér-Rao lower bounds for the estimated
parameters
For an unbiased parameter estimation problem, the Cra-
mér-Rao lower bound (CLRB) is a theoretical lower
bound on the variance of the problem estimates. Based
on (7), the total model relating the parameters of inter-
est to the complete dataset is

X = G(θ ; S) + ξ . (17)

where X = [X(0)T, ..., X(nf /2)
T ]T is the full dataset, S

= [S(0)T, ..., S(nf /2)
T ]T contains the signal spectra of all

the sources, and ξ = [ξ(0)T, ..., ξ(nf /2)
T ]T is the corre-

sponding noise vector. Moreover, G(θ ; S) = K̃S for

which the matrix K̃ explicitly dependent on θ is

K̃ =

⎡
⎢⎢⎢⎣
K̃(0) 0 · · · 0
0 K̃(1) · · · 0
...

...
. . .

...
0 0 · · · K̃(nf /2)

⎤
⎥⎥⎥⎦ . (18)

The Cramér-Rao lower bound is defined as the diago-
nal elements of the inverse Fisher matrix F, which for
the model in (17) is representable as [21]

F =
[

∂G

∂ϑ

]H

R−1
ξ

[
∂G

∂ϑ

]
. (19)

where

ϑ =
[
S
θ

]
, (20)

and Rξ is the noise covariance matrix which for our

problem is simply nts2I. The matrix
[
∂G/∂ϑ

]
is com-

posed of the sub-blocks
[
∂G/∂S

]
,

[
∂G/∂rSn

]
,

[
∂G/∂β�

]
,[

∂G/∂γm,n,p
]
, and

[
∂G/∂τ̂m,n,p

]
Clearly

∂G
∂S

= K̃. (21)

For the θ parameters, since K̃ is composed of K̃(f ) , we

only discuss the sensitivity of K̃(f ) to every class of para-
meters. Based on the fact that K(f) = R(f) b we can write

∂K̃(f )
∂β�

=
∂K(f )
∂β�

= R(f )
∂β

∂β�

, � = 1, 2, . . . , L (22)

where

∂β

∂β�

= [0, . . . , 0,

�th element︷︸︸︷
1, 0, . . . , 0]T ⊗ IN×N. (23)
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To calculate ∂K̃(f )/∂xSn , we have

∂K̃(f )
∂xSn

=
∂R(f )
∂xSn

β, n = 1, 2, . . . , N (24)

where

∂R(f )
∂xSn

=

[
∂R1(f )

∂xSn
, . . . ,

∂RL(f )
∂xSn

]
. (25)

The matrix ∂R�(f )/∂xSn is a matrix with the same size
as Rℓ (f), with all columns being zero except the nth col-
umn. Simply applying the derivative shows that the (m,
n) element of ∂R�(f )/∂xSn is related to the (m, n) ele-
ment of Rℓ(f) through

[
∂Rl(f )
∂xSn′

]
m,n

= δ(n, n′)
(
xMm − xSn

ρm,n

)
×

(
�

ρm,n
+
j2πNsf
nf v

) [
R�(f )

]
m,n, (26)

where

δ(n, n′) =

{
1, n = n′

0, n �= n′ .

An analogous technique is used to derive ∂K̃(f )/∂ySn .
For the multi-path parameters, we have

∂K̃(f )/∂γm,n,p = ∂H(f )/∂γm,n,p and also have

∂K̃(f )/∂τ̂m,n,p = ∂H(f )/∂τ̂m,n,p . Accordingly, the elements

of each matrix are obtained through

[
∂H(f )
∂γm′ ,n′ ,p

]
(m,n)

= δ(m, m′)δ(n,n′) exp(− j2π

nf
f τ̂m,n,p) (27)

and
[

∂H(f )
∂τ̂m′ ,n′,p

]
(m,n)

= −δ(m, m′)δ(n,n′)
j2π

nf
fγm,n,p × exp(− j2π

nf
f τ̂m,n,p). (28)

Specifying the elements of the Fisher matrix F yields
the CRLB values for all the estimations.

4 Minimization strategy
The minimization in (11) may be performed through
various optimization schemes, most generally categor-
ized as global and local optimizations. For a global opti-
mization different approaches such as deterministic,
stochastic, or evolutionary and metaheuristic methods
may be considered [22-24]. Clearly for an accurate loca-
lization, global minimizers of (11) are required. How-
ever, in general, using global methods to optimize an
arbitrary function may be iteratively or computationally
expensive. As an alternative to this and specifically for a
least squares cost function as (11), local search methods
such as gradient descent and quasi-Newton methods
may be considered [20]. Although these methods can be

relatively faster than the global ones, there is always a
chance of getting trapped into a local minima. In the
context of localization, although for good initial esti-
mates of the source relatively fast methods such as the
gradient descent and alternating projection are pro-
posed, to increase the chances of finding a global
minima, the process usually involves exhaustive search
methods such as the grid search and multiresolution
search [13,16].
For the purpose of this article, we consider a hybrid

approach combining a global search method with a fast
local search method [25,26]. Hybrid methods have
received considerable interests in different areas in the
recent years [26-29]. More specifically, we consider a
hybrid combination of the differential evolution (DE)
algorithm [19] as successful evolutionary search with the
Levenberg-Marquardt algorithm (LMA) [20,30] as a
rather fast and robust local search method. Before get-
ting to the combination scheme, we provide a brief
description of each method highlighting the main tech-
nical issues specifically in the context of our localization
problem.

4.1 Differential evolution algorithm
DE is among the metaheuristic and evolutionary global
optimization schemes. Simplicity and successful perfor-
mance are the main advantages of this algorithm. Con-
sidering θ = [θ1, θ2, ..., θD] to be the vector of problem
unknowns with size D, at every generation G of the
algorithm, NP parameter vectors θi,G = [θ1,i,G, θ2,i,G, ...,
θD,i,G], i = 1, 2, ..., NP, are generated. The initial popula-
tion is randomly chosen with a uniform distribution in
the search region. For this study, we consider the DE/
rand/1/bin, which is a general and widely used strategy
of this algorithm [19,31]. For every generation, three
main operations are performed as follows:
4.1.1 Mutation
In this phase, a mutant vector μi,G is generated as

μi,G = θ r1,G + F(θ r2,G − θ r3,G), (29)

where r1, r2, and r3 are randomly selected indices
among 1, 2, ..., NP, and F ε 0[2] is a constant real scalar
controlling the difference vector amplification.
4.1.2 Crossover
A mixing with the mutant vector to increase the diver-
sity of the population is performed by generating new
trial vectors υi,G of length D, defined as

vd,i,G =
{

μd,i,G, r(d)[0,1] ≤ CR or d = k(i)
θd,i,G, otherwise,

(30)

with d = 1, 2, ..., D. Here, CR ε [0,1] is the crossover
constant, r(d)[0,1] is the dth evaluation of a uniform ran-
dom number generator in [0,1] and k(i) ε {1, 2, ..., D} is
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a randomly chosen index ensuring that υi,G takes at least
one of the elements of μi,G.
4.1.3 Selection
At this step a next generation population member θi,G+1
is produced by a selection among θi,G and υi,G. This
selection is based on the fitness, and basically, the vector
with the lower cost proceeds to the next generation.

4.2 A Levenberg-Marquardt algorithm for the local
minimization
As the local minimization scheme, we suggest using the
LMA. Our attention toward this algorithm is based on
several advantages. LMA is basically considered as a
Newton type method and provides a rather quadratic
convergence. Meanwhile, this algorithm benefits from
stability and uses a trust region approach [30]. The
other feature of this method, considered as an advantage
over other methods such as the gradient descent, is its
suitability for cases where there are different variables of
different types as the cost function arguments. In fact,
LMA is almost independent of variable scaling, while for
methods such as the gradient descent, minimizing a cost
function dependent on a set of variables with different
natures and scales requires appropriate parameter scal-
ing to guarantee a proper convergence [30]. This is a
demanding feature for our problem where the θ vector
in general consists of the source locations, attenuations
coefficients, and the multi-path parameters.
In the LMA, which is an iterative algorithm, we start

with a θ(0) as the starting point. At every iteration, hav-
ing θ(i) already in hand, θ(i+1) can be obtained by solving

(JTθ Jθ + λ(i)I)(θ (i+1) − θ (i)) = −JTθQ, (31)

where Q is the vertical vector of length Mnf /2 shown
in (12) and obtained for values θ(i) at that iteration. The
parameter l(i) is the damping factor, obtained at every
iteration based on the trust region approach [20,30].
The Jacobian matrix Jθ contains the sensitivities of Q to
every element of θ. In order to run the algorithm, we
need to know the Jacobian matrix at every iteration,
obtaining which is discussed in the Appendix.

4.3 The hybrid combination scheme
For the purpose of combining the DE with the LMA, we
propose using a sequential hybridization approach [26].
In this approach, the DE initially starts the minimization
by generating consecutively more fitting generations.
After a certain number of generations or after getting
relatively slow in decreasing the fitness, the best θ in the
last generation is passed to the LMA algorithm as an
initialization. The minimization continues until conver-
gence. An illustration of this algorithm is provided in
Figure 1.

5 Simulation results
To examine the method developed in the previous sec-
tion, we consider some localization examples in this
section. In the first example, we consider a reverbera-
tion-free environment to show the efficiency of the
method for such cases and provide a comparative
study for this scenario. The second example brings
more realistic issues such as the multi-path, and sensor
synchronization error into the problem, and examines
the performance of the proposed method for such
cases.
Before proceeding with the examples, we would like to

highlight a fact regarding the relationship between the
cost function and the matrix K̃ . Referring to (15), it can

be easily verified that scaling K̃(f ) by a scalar does not

change the cost function. In other words, if the bℓ and
gm,n,p values are simultaneously scaled by a scalar value,
then the cost function remains the same. Therefore, we
rewrite the attenuation model in (4) as

α(ρ) = ρ−1 +
L∑

�=1

β�ρ
−�−1, (32)

which somehow normalizes a(·) and unifies the repre-
sentation. Clearly, since the desired unknowns of the
problem are the acoustic source coordinates, obtaining a
multiple of the attenuation and multi-path coefficients is
non-problematic. The true attenuation model to be used
in this article is a(r) = r-1.25 [15].

5.1 Example 1
For the purpose of this example, we consider the sen-
sors to be placed in the first quarter of the x-y plane as
a spiral array of M = 40 microphones. The spiral is

G = Gmax?

Generation

G = G + 1

Apply the LMA

G = 0

Generate an Initial Population

End

Yes
No

Create and Test a New DE

Figure 1 A sequential hybridization combing the DE with the
LMA.
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represented in a parametric form as

[
xMm

yMm

]
=

[
4 + s

π
cos s

4 + s
π
sin s

]
, (33)

where the angles s are equally spaced in [2π, 4π]. Our
purpose of choosing such sensor arrangement was to
provide a non-symmetric and still reproducible arrange-
ment. The sensor locations are shown in Figure 2. The
sources used in this example are wideband sources with
center frequency 500 Hz and 200 Hz bandwidths. The
sampling frequency is 4 KHz. The number of samples
available from the sources at every sensor is nt = 4000
(i.e., the signal duration is 1 s), and the number of fre-
quency bins is taken to be nf = 4100. The signal to
noise ratio (SNR) at every sensor is 20 dB, and the
speed of propagation is considered to be the speed of
sound as v = 345 m/s. In the proposed minimization
scheme and more specifically the DE part, we take Gmax

= 5. Moreover, we set F = 0.8, CR = 1, and NP = 40.
This parameter setting was selected as a general DE set-
ting; however, more discussions on determining the DE
parameters are available in [19]. The general attenuation
model is considered to be a(r) = r-1 + b1r-2 + b2r-3, for
which the values b1 and b2 are in charge of tuning the
unknown model. There is no reverberation in the envir-
onment (i.e., K̃ = K ), and all sensors are synchronized
in receiving the signal.

To provide a better understanding of the problem, in
Figure 2, the cost function behavior for a known
attenuation model is shown. In Figure 2a, the cost is
shown when the source is located at point (4, 3) within
the sensors convex hull. All positions are in meters. Fig-
ure 2b shows the cost when the source is located at (12,
10) outside the sensors region. In both cases the cost
functions are rather well-behaved functions away from
the sensors. Intuitively, for two neighboring points in
the domain, sudden variation of the cost function with
respect to both time delay criteria and attenuation
model constraints is unlikely, and hence the resulting
cost functions are usually expected to be rather slow
varying and well behaved, away from the sensors.
In Figure 3, we have shown the iterative procedure of

finding a single source, once located at (4, 3) and once
at (12, 10). For the first case, the source location is esti-
mated to be at (4.002, 3.008) and the attenuation coeffi-
cients are estimated to be b1 = −23.85 and b2 = 27.93.
In the second case the source estimation is (11.999,
10.002) and the attenuation coefficients are found to be
b1 = 4.19 and b2 = 1.79. We observe that both localiza-
tion results accurately match the exact source positions.
The attenuation coefficients obtained in both cases are
only in charge of fitting the low order model to the true
model for the source-sensor ranges in each problem and
due to different problems they do not necessarily need
to be in the same ranges. By providing this low-order

(a) (b)

Figure 2 Cost function behavior: (a) The cost function corresponding to a source located at (4, 3) assuming a known attenuation model. (b)
The cost function corresponding to a source located at (12, 10).
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attenuation model, we provide the flexibility to the pro-
blem for accurately estimating the sources.
As a more challenging problem, we consider concur-

rent localization of the two sources located at (4, 3) and
(12, 10). Figure 4 shows the iterative procedure of find-
ing the sources. The estimated source locations are
(4.000, 3.001) and (11.989, 9.993), and the attenuation
parameters are estimated to be b1 = 4.77 and b2 =
−3.94. Again, an accurate match between the exact
source locations and the estimated ones is observable.

We further examine our proposed method through a
comparison with the AML method developed in [13]. For
this purpose, we start reducing the signal samples by redu-
cing the signal duration from 1 to 0.1 seconds and obser-
ving the error caused in the source estimation. Here, we
consider the single source localization for the source being
located at (12, 10). Figure 5 shows the resulting error, as
the signal duration decreases in both methods. As it is
clearly observed, using both time delay and attenuation
information helps our method provide better estimates of
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Figure 3 Single source localization results: (a) The progressive estimates of a single source located at (4, 3). The first jumps and good initials
correspond to applying the DE. (b) The progressive estimates of a single source located at (12, 10). (c) The evolution of the attenuation model
parameters for the single source located at (12, 10).
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Figure 4 Multiple sources localization results: (a) Concurrent estimates of two sources located at (4, 3) and (12, 10) and (b) the
corresponding evolution of the attenuation model parameters.
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the source locations even with less available data, com-
pared to the AML method which only uses the time delay
information. We further examine the performance of both
methods for various SNR values. In Figure 6, the CRLB is
calculated for the same single source scenario with the
source located at (12, 10). The RMS errors in estimating
the x and y components of the source are obtained through
50 independent noise realizations for every SNR value
shown in the figure. Again, the proposed method shows an
acceptable performance regarding the closeness to the
CRLB and the superior performance compared to the
AML method.

5.2 Example 2
In a more realistic scenario, we examine the perfor-
mance of the proposed method in a noisy environment

where sensor synchronization error and reverberation
are likely to happen. The sensor network configuration
is shown in Figure 7, where three circular arrays each
composed of 25 sensors centered at points (15,5), (2,15),
and (5,28) are considered. The acoustic source is located
at (35,25), and the signal specifications are the same as
the previous example. For this example Gmax is taken to
be 20 to benefit more from a global search of a cost
function which may not be as well behaved as the pre-
vious example because of bringing more unknown para-
meters into the problem. The low-order attenuation
model considered in this example is a(r) = r-1 + br-2,
with b as the tuning parameter. Again, an SNR of 20 dB
is considered at all sensors for all the experiments.
We first examine the case that the sensors are not

exactly synchronized to receive the data. For this
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Figure 5 The localization error versus the signal duration for our proposed method and the AML method.
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Figure 6 RMS error comparison: (a) The RMS error in estimating the x component of a source located at (12, 10) and (b) the corresponding
RMS error in estimating the y component of the source.
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purpose, we rewrite the main component of the signal
in (1) as

N∑
n=1

α(ρm,n)sn(t − τm,n + ζ ), (34)

where ζ is a random variable uniformly distributed
around zero. Equation (34) basically models the asyn-
chronous measurements of the sensor data. In Table 1,
we have provided the localization results for three differ-
ent synchronization error variances 0.5, 1, and 2 ms.
Clearly the phase error is a destructive phenomenon in
TDOA localization algorithms; however, considering the
localization errors in Table 1, one would observe that
exploiting the attenuation information beside the phase
information enables our algorithm to perform a rather
accurate localization task in case of sensors being out of
synchronism.
Furthermore, a more challenging problem is when the

reverberation is also taken into account. In theory, for
the emitted signal to arrive at every measuring sensor,
an individual multi-path filter should be considered.

Although the formulation in this article is general, for
the purpose of this example, we have made a reasonable
and practical assumption that for all the sensors within
each array, the filter representing the multi-path is iden-
tical. In general, the sensor network may be represented
as a collection of several clusters with each being com-
posed of sensors closely placed and each cluster treated
as a single receiving node. This assumption prevents
dealing with a large collection of unknowns (gm,n,p and
τ̂m,n,p ) for every source-sensor pair and aggregates them
into fewer parameters each assigned to the clusters.
To generate a reverberated signal, we use the multi-

path FIR filters shown in Figure 8 where three or four
shifted scales of the signal are added to it. For the locali-
zation purpose, however, we only consider finding the
main indirect path. In other words, for every array
shown in Figure 7, only one multi-path coefficient g and
one multi-path delay τ̂ is to be estimated which totally
brings six unknowns associated with the multi-path phe-
nomenon into the minimization problem. The remain-
ing minimization unknowns are the source coordinates
and the attenuation coefficients as before. The fourth
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Figure 7 A sensor network configuration: each array consists of 25 sensors.

Table 1 Localization Results for the Sensor Network Configuration in Figure 7.

Type of Problem Synchronization Error
Variance (mS)

Gmax Number of LMA
Iterations

Estimated Target
Coordinates

Localization Error
(meters)

Array
Synchronization

Reverberation

■ □ 0.5 20 21 (34.62, 24.91) 0.386

■ □ 1.0 20 28 (33.99, 24.71) 1.053

■ □ 2.0 20 31 (33.79, 24.66) 1.254

□ ■ 0 20 24 (34.89, 24.97) 0.113

■ ■ 0.5 20 25 (34.60, 24.89) 0.418
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row of Table 1 shows the localization result for this pro-
blem. Although the number of unknowns were relatively
higher than the previous examples and the cost function
is clearly not as well behaved as before, using DE as the
initial minimization scheme provides a suitable starting
state for the LMA, and this sequential technique helps
the algorithm make a rather accurate localization in a

noisy and reverberated environment. The fifth row of
Table 1 corresponds to the case of having both the
multi-path and the synchronization issues, for which the
results are still promising. The progressive estimates of
the target throughout the minimization are shown in
Figure 9.

6 Conclusion
In this article, we proposed an efficient method for loca-
lization of multiple wideband sources based on both sig-
nal attenuation and time delay information. The method
developed in this article models the localization problem
as a minimization problem and provides an additional
flexibility of not being exactly aware of the signal
attenuation model. We propose a certain function space
for the unknown model, and tune it iteratively along to
estimate the signal source locations. The minimization
scheme used here is a hybrid algorithm, combining the
differential evolution with the LMA. This combination
increases the chances of finding a global minima while
benefits from the speed and computational advantages
of Newton methods. The accuracy and performance of
the method is examined through several simulations
depicting a noisy environment, a multi-path environ-
ment, and lack of synchronization among sensors. In
the simulations, we compared our approach with the
approximate maximum likelihood method which show
the superiority of the proposed method.
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Figure 9 The progressive estimates of a single source located at (35, 25). The first jumps and good initials correspond to applying the DE.
(a) Considering only the multi-path phenomenon in the environment. (b) Considering both, the multi-path and sensor synchronization errors.
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Appendix
As mentioned earlier, in order to find columns of the
Jacobian, we are required to find ∂Q/∂θ, where θ is one
of the unknown parameters xSn , ySn , bℓ, gm,n,p, or τ̂m,n,p .
Since Q is a vector containing sub-vectors Q(f) for f = 0,
1, ..., nf /2, we will only find ∂Q(f)/∂θ, and clearly form-
ing ∂Q/∂θ would be aligning the corresponding sub-
vectors.
We first start with replacing the pseudo-inverse of

K̃(f ) in (15) which states that

Q(f ) = X(f ) − K̃(f )(K̃
H
(f )K̃(f ))−1K̃

H
(f )X(f ). (35)

We can clearly see that finding ∂Q(f)/∂θ requires hav-

ing ∂K̃(f )(K̃
H
(f )K̃(f ))−1K̃

H
(f )/∂θ . We therefore preli-

minarily derive some related equations. Consider a
matrix M, not in general rectangular, elements of which
are dependent on a real variable θ. We assume (MHM)-1

exists or in other words M † = (MH M )-1 M H. Using
product rule, we have

∂MM†

∂θ
=

∂

∂θ
M(MHM)−1MH

=
∂M
∂θ

(MHM)−1MH +M
∂(MHM)

−1

∂θ
MH +M(MHM)−1 ∂MH

∂θ

=
∂M
∂θ

M† +M
∂(MHM)

−1

∂θ
MH +M†H ∂MH

∂θ

(36)

Also we know that for an invertible matrix M̃ again
dependent on θ we have

∂M̃
−1

∂θ
= −M̃

−1 ∂M̃

∂θ
M̃

−1
. (37)

Using (37) in (36) regarding the term ∂(M H M)-1/∂θ
would result in

∂MM†

∂θ
= (I − M†HMH)

∂M
∂θ

M† +M†H ∂MH

∂θ
(I − MM†). (38)

Based on (35), and knowing (38), we now have

∂Q(f )
∂θ

= (P(f ) + PH(f ))X(f ), (39)

where

P(f ) = (K̃
†H
(f )K̃

H
(f ) − I)

∂K̃(f )
∂θ

K̃
†
(f ). (40)

To complete the derivation we only need to have

∂K̃(f )/∂θ , which is already discussed in Section 3.2.
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