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GENERALIZED ENTROPY METHOD FOR THE RENEWAL EQUATION WITH
MEASURE DATA

PIOTR GWIAZDA AND EMIL WIEDEMANN

ABSTRACT. We study the long-time asymptotics for the so-called McKendrick-Von Foerster or
renewal equation, a simple model frequently considered in structured population dynamics. In
contrast to previous works, we can admit a bounded measure as initial data. To this end, we apply
techniques from the calculus of variations that have not been employed previously in this context.
We demonstrate how the generalized relative entropy method can be refined in the Radon measure
framework.

Keywords: Structured population model, positive Radon measures, generalized relative en-
tropy methods, measure valued-solutions, concentration measure.

1. INTRODUCTION

This paper is devoted to the study of the long-time asymptotics of a linear structured population
model, the so-called McKendrick-Von Foerster equation (or renewal equation, in probabilistic
description). The equation gives the simplest well-known structured population model, which we
choose here in order to illustrate the usefulness of certain variational tools in proving the long-time
asymptotics with measure initial data.

Classical studies on this topic were restricted to initial data in L1 and were based on the analysis
of semigroup theory for positive, irreducible operators (see e.g. [1] and the monograph [29]), or
followed Feller’s approach for Markov Processes, making use of the Laplace transform (see e.g.
the monograph [19]. Both approaches give rise to an exponential convergence result under the
assumption of a spectral gap property. However, for the model discussed in this paper and in
contrast to the selection-mutation equation [3, 20], the presence of the transport term destroys
strong continuity of the semigroup in the space of measures with total variation norm, so that new
ideas are needed to include measure initial data.

An entirely new approach was proposed by B. Perthame and collaborators in the papers [22–24],
see also the subsequent monograph [25]. This method, called generalized relative entropy method,
was based on multiplying the linear equation by some nonlinear function of the solution in order to
obtain a family of nonlinear renormalizations (so-called relative entropies). A clear adventage of
this method was to enable the proof of a convergence result even in the absence of a spectral gap.
However this method seems prima facie also restricted to solutions in L1, since the composition of
nonlinear function with a Radon measure has no obvious meaning.

On the other hand, in the last years there was a strong development of existence and uniqueness
theory and the convergence of numerical schemes in spaces of nonegative measures for structure
population models [2, 5–8, 10, 15–17, 28], as well as for related crowded dynamic models, see
e.g. [11, 12, 26]. The motivation for considering such measure solutions comes from the desire to
treat discrete and continuous initial distributions in a unified way. The aim of this paper is thus
to fill the gap in the existing theory of measure solutions in terms of the long-time asymptotics,
and to extend the method of generalized relative entropy to the case of initial data in the space of
measures.
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2 PIOTR GWIAZDA AND EMIL WIEDEMANN

The method presented below is influenced by recent studies on measure-valued-strong unique-
ness (based on the relative energy method). This direction of research started with the incompress-
ible Euler equations [4], and was later extended to nonlinear elasticity [9] as well as compressible
Euler [14] and Navier-Stokes equations [13].

To deal with measure data, we use the notion of recession function, which allows in a sense to
take a nonlinear function of a bounded measure, and a continuity theorem for certain functionals
due to Reshetnyak [27] and later refined by Kristensen-Rindler [21]. It turns out (Theorem 4.1)
that the combination of these techniques, which have not previously been exploited in population
models, and known results for the L1 setting allows for a remarkably simple proof of the long-time
asymptotics for measure initial data.

In Section 5, we formulate and prove the generalized relative entropy inequality in the context
of measure solutions and show how this approach yields an alternative way to show the long-time
asymptotics. Of course, Theorem 5.3 is weaker than Theorem 4.1 and is proved in a more compli-
cated fashion, so that Section 5 seems redundant if we focus only on the McKendrick-Von Foerster
model. However we expect that the generalized relative entropy approach will be fruitful also for
more sophisticated structured population models, for which statements like Theorem 4.1 (related
to the hypercontractivity property and the spectral gap) are not available even for L1 data. We hope
to achieve such results in the future, but for the time being our aim is to demonstrate how, in the
simplest case, the relative entropy method can be used in the measure setting.

Acknowledgments: Part of this research was done while the authors were participating in the
Research in Pairs program at Mathematisches Forschungsinstitut Oberwolfach. They would like to
thank the Institute for its warm hospitality. P. G. is supported by Grant no. 2015/18/M/ST1/00075
from the National Science Centre, Poland.

2. THE MODEL

Following the presentation and notation from [25], we consider the McKendrick-Von Foerster
equation or renewal equation in the form

∂tn(t,x)+∂xn(t,x) = 0 on (R+)2,

n(t,x = 0) =
∫

∞

0
B(y)n(t,y)dy,

n(t = 0,x) = n0(x).

(2.1)

Here, n(x, t) denotes the population density at time t with age x, and B ∈ L∞(R+;R+) is a birth
rate with the property that there exists a λ0 > 0 such that∫

∞

0
B(x)dx > 1.

Under these assumptions, it can be shown that there exist uniquely determined solutions of the
primal and dual eigenvalue problems,

∂xN(x)+λ0N(x) = 0, x≥ 0,

N(0) =
∫

∞

0
B(y)N(y)dy,

N > 0,
∫

∞

0
N(x)dx = 1

(2.2)
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and
−∂xϕ(x)+λ0ϕ(x) = ϕ(0)B(x), x≥ 0,

ϕ ≥ 0,
∫

∞

0
N(x)ϕ(x)dx = 1.

In fact, one easily discovers that the solution of (2.2) is given by N(x) = λ0e−λ0x. As the birth
rate has integral greater than one and we do not include a death rate, one expects the population to
grow exponentially in time. In order to quotient out this growth, we set

ñ(t,x) = n(t,x)e−λ0t ,

whereupon (2.1) becomes

∂t ñ(t,x)+∂xñ(t,x)+λ0ñ(t,x) = 0 on (R+)2,

ñ(t,x = 0) =
∫

∞

0
B(y)ñ(t,y)dy,

ñ(t = 0,x) = n0(x).

(2.3)

The formulation presented above is obviously not valid in the case of initial data in the space of
measures, because for weak (or distributional) solutions, a pointwise equation involving deriva-
tives of the unknown function has no meaning. Therefore as usual solutions (which are then proved
to be Lipschitz continuous in the space of measures equipped with a Lipschitz-bounded distance)
are understood in an integral sense only; see for more details [15, 16] (see e.g. Definition 3.1.
in [15]). We also refer to these papers for a result on the Lipschitz dependence of the solution on
the initial data (in the space of measures equipped with the Lipschitz-bounded distance, see e.g.
proposition 3.9 [15]). Since the bounded Lipschitz distance metrizes the weak-star convergence
on balls with respect to the total variation norm (see e.g. Theorem 2.7 in [15]), this also implies
that if we consider a sequence of initial data converging weakly-star, then also the corresponding
sequence of solutions will converge weakly-star (for every fixed time).

3. RECESSION FUNCTIONS AND CONTINUITY OF FUNCTIONALS

We are interested in the long time asymptotics as t → ∞ of this equation in the case that the
initial data n0 is only a bounded measure on [0,∞). To study this problem we need some tools
from the calculus of variations, which we recall in the sequel.

First, suppose f : Rn→ R is a continuous function with at most linear growth: | f (z)| ≤C(1+
|z|). We define (if it exists) its recession function as

f ∞(z) = lim
s→∞

f (sz)
s

, z ∈ Rn \{0}.

Note that f ∞ is 1-homogeneous, i.e. f ∞(αz) = α f ∞(z) for any α > 0, so that it is completely
determined by its values on the unit sphere Sn−1.

Definition 3.1. The set F (Rn) of continuous functions f : Rn→R which have a recession func-
tion that is continuous on Sn−1 is called the class of admissible integrands.

Given a domain Ω ⊂ Rm and a (possibly vector-valued) finite measure γ ∈M (Ω;Rn), we can
write its Radon-Nikodým decomposition w.r.t. Lebesgue measure as γ = γa(x)dx+ γs, where γs

and dx are mutually singular. We write

〈γ〉 :=
∫

Ω

√
1+ |γa|2dx+ |γs|(Ω).
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We have the following (semi-)continuity properties (the first one is well-known, the second one is
known as Reshetnyak’s continuity theorem [21, 27]):

Proposition 3.2. Let {γn} be a bounded sequence in M (Ω;Rn) and assume γn
∗
⇀ γ weakly* in

the space of measures. Let f ∈F (Rn).

a) If f is convex and ψ ∈Cb(Ω), ψ ≥ 0, then

liminf
n→∞

{∫
Ω

ψ(x) f (γa
n (x))dx+

∫
Ω

ψ(x) f ∞

(
γs

n

|γs
n|

)
d|γs

n|(x)
}

≥
∫

Ω

ψ(x) f (γa(x))dx+
∫

Ω

ψ(x) f ∞

(
γs

|γs|

)
d|γs|(x).

b) If 〈γn〉 → 〈γ〉 and ψ ∈Cb(Ω), then

lim
n→∞

{∫
Ω

ψ(x) f (γa
n (x))dx+

∫
Ω

ψ(x) f ∞

(
γs

n

|γs
n|

)
d|γs

n|(x)
}

=
∫

Ω

ψ(x) f (γa(x))dx+
∫

Ω

ψ(x) f ∞

(
γs

|γs|

)
d|γs|(x).

4. LONG TIME ASYMPTOTICS

It was proved in [15] that (2.3) has a unique solution in the sense of distributions when n0 ∈
M+([0,∞)). We show the following result on the long-time behavior of this solution:

Theorem 4.1. Let n0 ∈M+([0;∞)). Then there is y0 > 0, σ > 0 and a bounded function η ,
positive on suppϕ , such that the solution of the renewal equation satisfies∫

∞

0
η(x)d|ñ(t,x)−m0N(x)dx| ≤ e−σ(t−y0)

∫
∞

0
η(x)d|ñ0(x)−m0N(x)dx|, (4.1)

where m0 =
∫

∞

0 ϕ(x)dn0(x).

Proof. We use the variational techniques from the previous section in order to argue by approxima-
tion. Let n0

ε be a regularization of n0 such that n0
ε

∗
⇀ n0 in the sense of measures and 〈n0

ε〉 → 〈n0〉.
By Theorem 1.1 in [18], (4.1) holds true for ñε(t,x) (the solution emanating from n0

ε ), with m0

replaced by mε :=
∫

∞

0 ϕ(x)dn0
ε(x). Note carefully that y0, σ , and η do not depend on ε . Moreover,

for every t > 0, ñε(t)
∗
⇀ ñ(t) in the sense of measures; indeed this follows from Theorems 2.7 and

4.6 in [15]. This immediately implies mε → m0.
The right hand side of (4.1) with ε converges, as ε → 0, to the right hand side with n0 and m0;

indeed this follows from Proposition 3.2b) setting γε = ñ(t,x)ε −mεN(x)dx, f = | · |, and ψ = η .
Likewise, by Proposition 3.2a), the liminf of the left hand side, as ε → 0, is no less than the left
hand side with ñ and m0. Thus, (4.1) is already proved. �

Remark 4.2. In fact the proof of Theorem 4.1 is not specific to the renewal equation. Indeed,
whenever a contraction property like (4.1) is known for some model for L1 data (even for a speed of
convergence other than exponential), our approximation argument works, provided the existence
of measure-valued solutions is available.

5. GENERALIZED RELATIVE ENTROPY

Similar techniques can be applied in order to formulate and prove the generalized relative en-
tropy inequality.

Theorem 5.1. Let ñ(t,x) be the solution of (2.3) with n0 ∈M ([0;∞)).
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a) If H : R→ R+ is a convex admissible integrand, then

d
dt

{∫
∞

0
ϕ(x)N(x)H

(
ña(t,x)
N(x)

)
dx+

∫
∞

0
ϕ(x)H∞

(
ñs(t)
|ñs(t)|

(x)
)
|ñs(t,dx)|

}
≤ 0 (5.1)

in the sense of distributions.
b) Let µ = B(x)

N(0)N(x)dx. If H is a convex admissible integrand, then∫
∞

0

{∫
∞

0
H
(

ña(t,x)
N(x)

)
dµ(x)+

∫
∞

0

B(x)
N(0)

H∞

(
ñs(t)
|ñs(t)|

(x)
)
|ñs(t,dx)|−H

(∫
∞

0

B(x)
N(0)

ñ(t,dx)
)}

dt

≤
∫

∞

0
ϕ(x)N(x)H

(
(n0)a(x)

N(x)

)
dx+

∫
∞

0
ϕ(x)H∞

(
(n0)s

|(n0)s|
(x)
)
|(n0)s(dx)|.

(5.2)

Proof. Let again n0
ε be a regularization of n0 with n0

ε

∗
⇀ n0 in the sense of measures and 〈n0

ε〉 →
〈n0〉. Theorem 3.3 in [25] and its proof imply that (5.1) and (5.2) are true for ñε(t,x), the solution
arising from n0

ε . And again, for every t > 0, ñε(t)
∗
⇀ ñ(t) in the sense of measures.

Therefore, using the lower semicontinuity from Proposition 3.2, the left hand side of (5.1) is not
greater than the liminf of the corresponding expressions for ñε . On the other hand, the right hand
side of (5.1) for ñε converges to the right hand side for ñ by part b) of Proposition 3.2. Altogether
we obtain a).

Similarly, for (5.2) the right hand side converges as ε→ 0 and the first two space integrals of the
left hand side, for fixed t > 0, might only decrease in the liminf. Moreover, for the third integral,∫

∞

0

B(x)
N(0)

ñε(t,dx)→
∫

∞

0

B(x)
N(0)

ñ(t,dx)

for every t by the weak convergence of ñε(t).
For simplicity let us denote by J(t) the time integrand in (5.2) (so that

∫
J(t)dt is the left hand

side of (5.2)) and by Jε(t) the corresponding expression with ñ replaced by ñε . We have shown that
liminfε→0 Jε(t)≥ J(t) for every t. Observe also that the Jε are non-negative by Jensen’s inequality.
Hence from Fatou’s Lemma it follows that

liminf
ε→0

∫
∞

0
Jε(t)dt ≥

∫
∞

0
liminf

ε→0
Jε(t)dt ≥

∫
∞

0
J(t)dt.

This completes the proof of b). �

Let us indicate how, formally, the long-time asymptotics follow from the theorem. Inequal-
ity (5.2) has a finite right hand side, which means that the space integrals on the left hand side
have to converge to zero as t → ∞. Denoting by ñ∞(x) the expected stationary state at t = ∞, we
thus have∫

∞

0
H
(

ña
∞(x)

N(x)

)
dµ(x)+

∫
∞

0

B(x)
N(0)

H∞

(
ñs

∞

|ñs
∞|
(x)
)
|ñs

∞(dx)|−H
(∫

∞

0

B(x)
N(0)

ñ∞(dx)
)
= 0.

From the first part of the following version of Jensen’s inequality it then follows that na
∞ ≡ CN

and ns
∞ = 0 on the support of B. Indeed, it suffices to set µ = ñ(t,dx)/N(x), ψ = B(x)N(x)/N(0)

(recall that
∫

B(x)N(x)dx = N(0)) and f = H.

Proposition 5.2. Let f ∈F (Rn) be strictly convex and ψ ≥ 0 be bounded and continuous on Ω

with
∫

Ω
ψ(x)dx = 1.

a) If µ is a finite measure on Ω, then∫
Ω

ψ(x) f (µa(x))dx+
∫

Ω

ψ(x) f ∞

(
µs

|µs|
(x)
)

dµ
s(x)≥ f

(∫
Ω

ψ(x)dµ(x)
)

(5.3)
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with equality if and only if µ =Cdx on the support of ψ .
b) If {µε}ε>0 is a family of finite measures on Ω such that

lim
ε→0

{∫
Ω

ψ(x) f (µa
ε (x))dx+

∫
Ω

ψ(x) f ∞

(
µs

ε

|µs
ε |
(x)
)

dµ
s
ε(x)− f

(∫
Ω

ψ(x)dµε(x)
)}

= 0,

(5.4)

then

lim
ε→0

(∫
Ω

|µa
ε (x)−mε |ψ(x)dx+

∫
Ω

ψ(x)d|µs
ε |(x)

)
= 0,

where mε =
∫

Ω
ψ(x)dµε(x).

Proof. a) Let µε be a regularization of µ such that µε

∗
⇀ µ and 〈µε〉 → 〈µ〉 as ε → 0. For each

ε > 0, (5.3) follows by Jensen’s inequality applied to the probability measure ϕ(x)dx. By part
b) of Proposition (3.2), the left hand side of (5.3) for µε converges to the left hand side for µ .
The convergence of the integral on the right hand side as ε → 0 follows simply from the weak*
convergence of µε to µ .

It remains to show that equality holds if and only if µ =Cdx. Clearly, if µ =Cdx then equality
holds. Conversely, suppose we have equality in (5.3). Then by the same arguments as above,

lim
ε→0

{∫
Ω

ψ(x) f (µε(x))dx− f
(∫

Ω

ψ(x)µε(x)dx
)}

= 0 (5.5)

By an affine transformation (which may depend on ε), we can assume w.l.o.g. that
∫

µεψdx = 0,
f (0) = 0, and f (z)> 0 when |z|> 0. Hence by strict convexity, for every δ > 0 there exists Cδ > 0
(depending only on δ and f ) such that

f (z)≥Cδ |z| whenever |z| ≥ δ .

Therefore we have∫
Ω

|µε(x)|ψ(x)dx≤ 1
Cδ

∫
Ω

f (µε(x))ψ(x)dx+δ .

This shows
∫

Ω
|µε |ψdx→ 0. If we remove our assumption

∫
µεψdx = 0 again, we obtain∫

Ω

|µε(x)−m0|ψ(x)dx→ 0,

where m0 :=
∫

Ω
ψ(x)dµ(x), and Proposition (3.2) implies∫

Ω

ψ(x)d|µ(x)−m0|= 0,

whence the claim follows.
b) For each ε > 0, let {µε,δ}δ>0 be a regularization of µε such that µε,δ

∗
⇀ µε and 〈µε,δ 〉→ 〈µε〉

as δ → 0. Let us denote by J(µε) the expression within the limit in (5.4) and by J(µε,δ ) the
corresponding expression with Jε replaced by µε,δ . Then by Proposition (3.2), for fixed ε we have

lim
δ→0

J(µε,δ ) = J(µε).

Let now δ (ε) be a function such that, on one hand,

|J(µε,δ (ε))− J(µε)|< ε,

and on the other hand,

µε,δ (ε)−µε

∗
⇀ 0 and 〈µε,δ (ε)−µε〉 → 0

as ε → 0.
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Then, by assumption, limε→0 J(µε,δ (ε)) = 0. But now we are exactly in the situation of (5.5)
and therefore deduce∫

Ω

ψ(x)d|µε(x)−mε | → 0,

as claimed. �

We are now ready to prove the following result on long-time asymptotics. We impose here in
addition an assumption which guarantees that suppB⊃ suppϕ , corresponding to condition (3.18)
in [25].

Theorem 5.3. Assume in addition there exists C > 0 such that B(x)≥Cϕ(x). Let n0 ∈M+([0;∞)).
Then the solution of the renewal equation satisfies

lim
t→∞

∫
∞

0
ϕ(x)d|ñ(t,x)−m0N(x)dx|= 0, (5.6)

where m0 =
∫

∞

0 ϕ(x)dn0(x).

Remark 5.4. The assumption on B can be easily relaxed to th following assumption: There exists
C > 0 and a finite set of xi (i = 1, ..,N) such that ∑

N
i=1 B(x− xi)≥Cϕ(x). For this purpose we can

observe that H
(

ña(t,x)
N(x)

)
and H∞

(
ñs(t)
|ñs(t)|(x)

)
|ñs(t,dx)| are constant along characteristics.

Proof. Denote again by J(t) the time integrand on the left hand side of (5.2). As the right hand
side is finite, we have

∫
∞

0 J(t)dt < ∞, and since J ≥ 0 by Proposition 5.2a), we obtain a sequence
tk ↗ ∞ such that limk→∞ J(tk) = 0. Apply now Proposition 5.2b) with µε replaced by ñ(tk)/N,
ψ = BN/N(0), and f = H to obtain

lim
k→∞

∫
∞

0
B(x)d|ñ(tk,x)−mkN(x)|= 0,

which by our assumption B≥Cϕ yields

lim
k→∞

∫
∞

0
ϕ(x)d|ñ(tk,x)−mkN(x)|= 0. (5.7)

Here we denoted mk =
∫

∞

0 B(x)dñ(tk,x)/N(0).
Next, let us show limk→∞ mk = m0. To this end, we use the conservation law∫

∞

0
ϕ(x)dñ(t,x) =

∫
∞

0
ϕ(x)dn0(x) for all t > 0,

which is obtained from (5.1) by setting H =±id. But (5.7) implies a fortiori∫
∞

0
ϕ(x)dñ(tk,x)−mk

∫
∞

0
ϕ(x)N(x)→ 0,

whence mk→ m0 follows since
∫

ϕNdx = 1.
Thus we have established (5.6) at least for the subsequence {tk}. Now, consider the functional

µ 7→
∫

Ω

ψ(x) f (µa(x))dx+
∫

Ω

ψ(x) f ∞

(
µs

|µs|
(x)
)

dµ
s(x)

for f and ψ as in Proposition 5.2. It follows from (5.3) that m0dx is the unique (up to a ψdx-
nullset) minimizer of this functional in the space of finite measures subject to the side constraint∫

ψ(x)dµ(x) = m0.
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Taking now ψ = ϕN, f = H and µ = ñ(tk)/N, and using the monotonicity property (5.1), we find
that

lim
t→∞

{∫
∞

0
ϕ(x)N(x)H

(
ña(t,x)
N(x)

)
dx+

∫
∞

0
ϕ(x)H∞

(
ñs(t)
|ñs(t)|

(x)
)
|ñs(t,dx)|

}
= H(m0).

Finally, still setting ψ = ϕN, f = H and µ = ñ(tk)/N, an application of Proposition 5.2b) yields
(5.6).

�
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