7 research outputs found

    Dynamical systems via domains:Toward a unified foundation of symbolic and non-symbolic computation

    Get PDF
    Non-symbolic computation (as, e.g., in biological and artificial neural networks) is astonishingly good at learning and processing noisy real-world data. However, it lacks the kind of understanding we have of symbolic computation (as, e.g., specified by programming languages). Just like symbolic computation, also non-symbolic computation needs a semantics—or behavior description—to achieve structural understanding. Domain theory has provided this for symbolic computation, and this thesis is about extending it to non-symbolic computation. Symbolic and non-symbolic computation can be described in a unified framework as state-discrete and state-continuous dynamical systems, respectively. So we need a semantics for dynamical systems: assigning to a dynamical system a domain—i.e., a certain mathematical structure—describing the system’s behavior. In part 1 of the thesis, we provide this domain-theoretic semantics for the ‘symbolic’ state-discrete systems (i.e., labeled transition systems). And in part 2, we do this for the ‘non-symbolic’ state-continuous systems (known from ergodic theory). This is a proper semantics in that the constructions form functors (in the sense of category theory) and, once appropriately formulated, even adjunctions and, stronger yet, equivalences. In part 3, we explore how this semantics relates the two types of computation. It suggests that non-symbolic computation is the limit of symbolic computation (in the ‘profinite’ sense). Conversely, if the system’s behavior is fairly stable, it may be described as realizing symbolic computation (here the concepts of ergodicity and algorithmic randomness are useful). However, the underlying concept of stability is limited by a no-go result due to a novel interpretation of Fitch’s paradox. This also has implications for AI-safety and, more generally, suggests fruitful applications of philosophical tools in the non-symbolic computation of modern AI

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Framework for binding operators

    Get PDF

    Geometric Characterization of Hereditarily Bijective Boolean Networks

    No full text
    The study of relationships between structure and dynamics of asynchronous Boolean networks has recently led to the introduction of hereditarily bijective maps and even or odd self-dual networks. We show here that these two notions can be simply characterized geometrically: through orthogonality between certain affine subspaces. We also use this characterization to provide a construction of the class of hereditarily bijective maps, and to study its stability properties
    corecore